
Informatica®

10.2 HotFix 1

Web Services Guide

Informatica Web Services Guide
10.2 HotFix 1
August 2018

© Copyright Informatica LLC 2009, 2019

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/

Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, please report them to us in writing at
Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2019-04-29

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 11
Informatica Resources. 11

Informatica Network. 11

Informatica Knowledge Base. 11

Informatica Documentation. 11

Informatica Product Availability Matrixes. 12

Informatica Velocity. 12

Informatica Marketplace. 12

Informatica Global Customer Support. 12

Chapter 1: Web Services. 13
Web Services Overview. 13

REST and SOAP Web Service Differences. 14

Web Service Process. 14

Web Service Consumer Transformation Process. 15

Chapter 2: SOAP Web Services . 16
SOAP Web Service Components. 16

Operations. 16

WSDL . 17

SOAP. 17

Developing SOAP Web Services. 18

SOAP Web Service Examples. 18

Chapter 3: WSDL Data Object. 20
WSDL Data Object Overview. 20

WSDL Data Object Overview View. 21

WSDL Data Object Advanced View. 21

Importing a WSDL Data Object. 21

WSDL Synchronization. 22

Synchronizing a WSDL Data Object. 22

Certificate Management. 23

Informatica Developer Certificate Properties. 23

Adding Certificates to Informatica Developer. 23

Chapter 4: Schema Object. 24
Schema Object Overview. 24

Schema Object Overview View. 24

Schema Files. 25

Schema Object Schema View. 25

4 Table of Contents

Namespace Properties. 25

Element Properties. 26

Simple Type Properties. 28

Complex Type Properties . 29

Attribute Properties. 29

Schema Object Advanced View. 30

Creating a Schema Object. 31

Schema Updates. 31

Schema Synchronization. 32

Schema File Edits. 32

Certificate Management. 34

Informatica Developer Certificate Properties. 35

Adding Certificates to Informatica Developer. 35

Chapter 5: How to Create a SOAP Web Service. 36
Create a SOAP Web Service Overview. 36

Types and Elements. 37

Web Service Overview View. 37

Web Service WSDL View. 39

Create a Web Service from a WSDL Data Object. 40

Step 1. Create a Web Service from a WSDL Data Object. 40

Step 2. Add an Operation to a Web Service. 41

Associating a WSDL Data Object with a Web Service. 41

Create a SOAP Web Service Manually. 41

Step 1. Creating a Web Service Manually. 42

Step 2. Creating an Operation. 42

Step 3. Create an Element. 46

Step 4. Create a Predefined Fault. 47

Step 5. Create a Header. 47

Chapter 6: Operation Mappings. 48
Operation Mappings Overview. 48

Operation Mapping General Tab. 49

Operation Mapping Operation Tab. 49

Operation Mapping Advanced Tab. 49

Input Transformation. 50

Input Transformation Ports Tab. 50

Rules and Guidelines to Map the Operation Input to Ports. 50

Configuring the Input Transformation. 51

Output Transformation. 52

Output Transformation Ports Tab. 52

Output Transformation Advanced Tab. 53

Rules and Guidelines to Map Ports to the Operation Output. 53

Table of Contents 5

Configuring the Output Transformation. 53

Fault Transformation. 55

Fault Transformation Ports Tab. 56

Fault Transformation Advanced Tab. 56

Rules and Guidelines to Map Ports to the Operation Fault. 56

Creating a Fault Transformation. 56

Configuring the Fault Transformation. 57

Fault Handling. 58

System-Defined Faults. 60

Predefined Faults. 60

Generic Faults. 61

Test Operation Mappings. 62

Testing Operation Mappings. 62

Customized View Options. 62

Chapter 7: Parsing Web Service SOAP Messages. 63
Parsing Web Service SOAP Message Overview. 63

Transformation User Interface. 64

Multiple-Occurring Output Configuration. 65

Normalized Relational Output. 65

Generated Keys. 65

Denormalized Relational Output. 66

Pivoted Relational Output. 67

Parsing anyType Elements. 67

Parsing Derived Types. 68

Parsing QName Elements. 69

Parsing Substitution Groups. 69

Parsing XML Constructs in SOAP Messages. 69

Choice Element. 70

List Element. 70

Union Element. 70

Chapter 8: Generating Web Service SOAP Messages. 71
Generating Web Service SOAP Messages Overview. 71

Transformation User Interface. 72

Input Ports Area. 72

Operation Area. 73

Port and Hierarchy Level Relationships . 73

Keys. 74

Map Ports. 75

Map a Port . 76

Map a Group. 76

Map Multiple Ports. 77

6 Table of Contents

Pivoting Multiple-Occurring Ports . 77

Map Denormalized Data. 78

Derived Types and Element Substitution. 79

Generating Derived Types. 80

Generating anyType Elements and Attributes. 80

Generating Substitution Groups. 81

Generating XML Constructs in SOAP Messages. 81

Choice Element. 81

List Element. 82

Union Element. 82

Chapter 9: Web Service Consumer Transformation. 84
Web Service Consumer Transformation Overview. 84

SOAP Messages. 85

WSDL Files. 85

Operations. 85

Web Service Security. 86

WSDL Selection. 87

Web Service Consumer Transformation Ports. 87

HTTP Header Input Ports. 88

Other Input Ports. 88

Web Service Consumer Transformation Input Mapping. 89

Rules and Guidelines to Map Input Ports to Nodes. 90

Customize View Options. 90

Mapping Input Ports to the Operation Input. 90

Web Service Consumer Transformation Output Mapping. 92

Rules and Guidelines to Map Nodes to Output Ports. 93

Mapping the SOAP Message as XML . 93

Customize View Options. 93

Mapping the Operation Output to Output Ports. 94

Web Service Consumer Transformation Advanced Properties. 95

Web Service Error Handling. 97

Message Compression . 97

Concurrency. 98

Filter Optimizations. 99

Enabling Early Selection Optimization with the Web Service Consumer Transformation. 99

Push-Into Optimization with the Web Service Consumer Transformation. 99

Creating a Web Service Consumer Transformation. 101

Web Service Consumer Transformation Example. 103

Input File. 103

Logical Data Object Model. 103

Logical Data Object Mapping. 103

Web Service Consumer Transformation. 104

Table of Contents 7

Chapter 10: REST Web Services . 106
REST Web Services Overview. 106

REST Web Service Process. 107

Web Service Consumer Transformation Process. 107

REST Web Service Resources. 108

REST Web Service Schema View. 110

Data Object Synchronization. 110

Resource Keys. 110

Resource Mappings. 111

Default Resource Mappings. 111

Custom Resource Mappings. 112

REST Web Service Output Transformation. 113

Multiple-Occurring Data in the REST Output Transformation. 114

Request Messages. 115

Filter Data in Resource Mappings. 115

Search By Key. 116

Response Message Formats. 117

Response Data Preview. 118

Chapter 11: How to Create a REST Web Service . 120
Create a REST Web Service . 120

How to Manually Create A REST Web Service . 121

Example REST Web Service. 121

Step 1. Create the REST Web Service Resource. 121

Creating the REST Web Service Resource. 121

Step 2. Define the Resource Mapping. 124

Defining the Resource Mapping. 125

Step 3. Configure the Output Mapping. 128

Configuring the Output Mapping. 129

Step 4. Test the Mapping in the Data Viewer View. 129

Filtering the Output by Resource ID. 129

Filtering the Output by Filter Condition. 130

Step 5. Deploy the Application . 131

Deploying the Application. 132

Step 6. Query the Web Service from a Browser. 133

Querying the Web Service . 134

How to Create a REST Web Service From a Data Object. 135

How to Deploy a Data Object as a REST Web Service. 138

Chapter 12: REST Web Service Consumer Transformation. 141
REST Web Service Consumer Transformation Overview. 141

REST Web Service Consumer Transformation Process. 142

8 Table of Contents

REST Web Service Consumer Transformation Configuration. 143

Message Configuration. 143

Resource Identification. 143

HTTP Methods. 144

HTTP Get Method. 145

HTTP Post Method. 145

HTTP Put Method. 146

HTTP Delete Method. 147

REST Web Service Consumer Transformation Ports. 147

Input Ports. 148

Output Ports. 148

Pass-through Ports. 148

Argument Ports. 148

URL Ports. 148

HTTP Header Ports. 149

Cookie Ports. 149

Output XML Ports. 149

Response Code Ports. 150

REST Web Service Consumer Transformation Input Mapping. 150

Rules and Guidelines to Map Input Ports to Elements. 150

Mapping Input Ports to the Method Input. 151

REST Web Service Consumer Transformation Output Mapping. 152

Rules and Guidelines to Map Elements to Output Ports. 152

Customize View Options. 153

Mapping the Method Output to Output Ports. 153

REST Web Service Consumer Transformation Advanced Properties. 154

REST Web Service Consumer Transformation Creation. 155

Creating a REST Web Service Consumer Transformation. 155

Parsing a JSON Response Message that Contains Arrays. 156

Example JSON Response Message. 156

Unnamed Arrays in a Response Message. 157

Chapter 13: REST Web Service Consumer Transformation Use Cases. 158
How to Configure a REST Web Service Consumer Transformation to Receive Data. 159

How to Receive Unparsed Data from the Web Service. 159

How to Receive Parsed Data from the Web Service. 161

How to Use a Schema to Create a REST Web Service Consumer Transformation. 165

How to Handle Request and Response Messages in XML Format. 165

How to Parse Request and Response Messages in JSON Format. 171

How to Generate a Custom URL in the REST Web Service Consumer Transformation. 175

How to Use URL Ports to Build a Dynamic URL. 175

How to Use Argument Ports to Generate URL Parameters. 176

Table of Contents 9

Chapter 14: REST and SOAP Web Service Administration. 178
Web Service Administration Overview. 178

Web Service Properties Configuration . 179

Web Service Properties. 179

Web Service Operation and Resource Properties. 181

Web Service Result Set Caching. 181

Web Service Security Management. 183

Web Service Permissions. 183

UserName Token in a SOAP Request. 184

Web Services on a Grid. 187

Configure a Grid that Runs Jobs in the Service Process. 187

Web Service Logs. 187

Web Service Trace Levels. 187

Web Service Monitoring. 188

Properties View for a Web Service. 188

Reports View for a Web Service. 189

Operations View for a REST or SOAP Web Service. 189

Requests View for a Web Service. 189

Appendix A: Datatype Compatibility. 190
Data Type Reference Overview. 190

XML and Transformation Datatypes. 191

Decimal. 193

Index. 194

10 Table of Contents

Preface
The Informatica Web Services Guide is written for data quality and data services developers. This guide
assumes that you have an understanding of web services concepts.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

11

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

12 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Web Services
This chapter includes the following topics:

• Web Services Overview, 13

• REST and SOAP Web Service Differences, 14

• Web Service Process, 14

• Web Service Consumer Transformation Process, 15

Web Services Overview
A web service client can connect to an Informatica web service to access, transform, or deliver data. An
external application or a Web Service Consumer transformation can connect to a web service as a web
service client. You can create an Informatica web service in the Developer tool.

A web service can process requests for information, requests to update data, or requests to perform tasks.
For example, a web service client sends a request to run a web service operation. The web service client
passes a customer ID in the request. The web service retrieves the customer and the order information and it
returns the information to the client in a response.

An Informatica web service communicates to web service clients using Simple Object Access Protocol
(SOAP) or Representational State Transfer (REST) messaging protocol.

You can create the following types of web services or web service clients in the Developer tool:

SOAP Web Service

Web service that uses SOAP protocol. The web service client request and the web service response are
SOAP messages. The web service description language (WSDL) is an XML-based interface definition
language that describes the functionality of a web service. A WSDL file contains a description of how to
call the web service, what parameters the web service expects, and which data structures the web
service returns. You can create an Informatica SOAP web service from a WSDL file.

SOAP Web Service Consumer transformation

Connects to a web service as a web service client to access or transform data midstream in a mapping.
You can create a SOAP Web Service Consumer transformation from a WSDL.

REST Web Service

Web service that receives an HTTP request to perform web service operations. An Informatica REST web
service can receive an HTTP request to perform a GET operation. An Informatica REST web service can
return a response in a JSON file or in an XML file.

13

REST Consumer Transformation

Connects to a REST web service as a web service client to access or transform data midstream in a
mapping. The REST Web Service Consumer transformation connects to a web service through a URL that
you define in the transformation, in an HTTP connection, or in an HTTPS connection. The request and
the response messages contain XML or JSON data.

REST and SOAP Web Service Differences
You can create REST or SOAP web services in the Informatica Developer tool.

REST and SOAP web services have the following differences:

Request message format

SOAP messages are structured XML. A SOAP web service parses the XML to determine the operation
that the web service must perform. The REST request is a simple URI string that contains a query.

Response message format

A SOAP web service returns a response in an XML format as defined by a WSDL.

An Informatica REST web service returns JavaScript Object Notation (JSON) or XML response
messages. The response message format is not defined by a WSDL or schema. You define the output
format when you define the Informatica REST web service.

Web service mapping format

An Informatica SOAP web service contains an operation mapping. A SOAP operation mapping contains
an Input transformation that parses the XML from a request message. You must add transformations to
the web service mapping process the data as required by the client request.

An Informatica REST web service contains a resource mapping. The resource mapping does not read the
request query. The REST resource mapping contains a Read transformation instead of an Input
transformation. The Read transformation reads a data object in the Model repository to retrieve data to
return to the client. By default, you do not have to add a Filter transformation or a Lookup transformation
to retrieve the data based on the client query. The REST web service filters the output data after the
mapping returns data.

Web Service Process
Web services receive requests from web service clients.

The following process describes how the Data Integration Service processes web service requests from web
service clients:

1. The Data Integration Service receives a request from a web service client.

2. The Web Service Module of the Data Integration Service or the REST Web Service Module of the Data
Integration Service processes the request by running a mapping.

3. The Web Service Module or the REST Web Service Module sends a response to the web service client.

14 Chapter 1: Web Services

Web Service Consumer Transformation Process
An external application or a Web Service Consumer transformation can connect to a web service as a web
service client.

The following process describes how a Web Service Consumer transformation sends a requests and receives
a response from a web service:

1. The Web Service Consumer transformation generates a request and connects to the web service with a
connection object.

2. The Web Service Consumer transformation receives the a response from the web service.

3. The Web Service Consumer transformation extracts data from the response and returns the data in
transformation output ports.

Web Service Consumer Transformation Process 15

C h a p t e r 2

SOAP Web Services
This chapter includes the following topics:

• SOAP Web Service Components, 16

• Developing SOAP Web Services, 18

• SOAP Web Service Examples, 18

SOAP Web Service Components
The SOAP web service components define the purpose of the web service and how the web service client
communicates with the web service.

A web service has the following components:

Operations

A web service can have one or more operations. Each operation corresponds to an action in the web
service.

Web Services Description Language (WSDL)

A WSDL is an XML document that describes the protocols, formats, and signatures of the web service
operations.

Simple Object Access Protocol (SOAP)

SOAP is the communications protocol for web services.

Operations
A web service contains an operation for each action supported by the web service.

For example, a web service can have an operation named getcustomerid that receives a customer name and
responds with the customer details. The operation input includes an element for the customer name. The
operation output includes elements for customer details based on the customer name.

When you define an operation in the Developer tool, you define the operation components. An operation has
the following components:

Operation input and output

The operation input defines the elements in the SOAP request for the operation. The operation output
defines the elements in a SOAP response for the operation.

16

The operation input and the operation output can contain a header. A header receives or sends data
within the SOAP message. The header defines the elements in the header of a SOAP request or SOAP
response.

Operation faults

An operation fault defines the message format for error messages that might be output as the result of
the operation. You can define multiple operation faults for an operation.

You must configure an operation mapping for each operation. The operation input, operation output, and
each operation fault correspond to a transformation in the operation mapping.

WSDL
A WSDL is an XML schema that describes the protocols, formats, and signatures of the web service
operations.

A WSDL contains a description of the data to be passed to the web service so that both the sender and the
receiver of the service request understand the data being exchanged. The elements of a WSDL contain a
description of the operations to be performed on that data, so that the receiver of a message knows how to
process it. The elements of a WSDL also contain a binding to a protocol or transport, so that the sender of a
message knows how to send it.

You can view the WSDL of a web service in the Developer tool or in the Administrator tool. After you deploy a
web service to a Data Integration Service, you can view the WSDL URL or you can download the WSDL to a
file. When you access the WSDL URL that the Administrator tool displays, you can see the content of the
WSDL.

SOAP
SOAP is the communications protocol for web services. It defines the format for web service request,
response, and fault messages. The Data Integration Service can process SOAP 1.1 and SOAP 1.2 messages
with document/literal encoding.

A SOAP message contains the following sections:

SOAP envelope

The envelope defines the framework of the message, the content of the message, and what should
handle the message.

SOAP header

The header identifies the entity that sent the SOAP message. It includes authentication information. It
also includes information about how to process the SOAP message.

SOAP body

The body is the container for the data that the client and web service provider pass between each other.

SOAP messages are XML. When a SOAP message contains multiple-occurring elements, the groups of
elements form levels in the XML hierarchy. The groups are related when one level is nested within another.

A SOAP request message can contain hierarchical data. For example, the client sends a request to add
customer orders to a sales database. The client passes two groups of data in a SOAP request message. One
group contains a customer ID and name, and the other group contains order information. The order
information occurs multiple times.

A SOAP response message can contain hierarchical data. For example, a web service client generates a
SOAP request for customer orders. The web service returns an order header and multiple-occurring order
detail elements in the SOAP response.

SOAP Web Service Components 17

Developing SOAP Web Services
Develop a SOAP web service to provide an interface that a web service client can use to perform operations.
A web service client can be an external web service client or a Web Service Consumer transformation. For
example, a web service client can connect to a web service to view customer details based on the customer
name or the customer ID.

Complete the following steps to develop a web service:

1. Create a web service.

• Create a web service from a WSDL data object. Import a WSDL file to create a WSDL data object. The
WSDL file defines the operation input, the operation output, and the operation faults for a web
service.

• Manually create a web service. Configure the operation input, the operation output, and the operation
faults. You can use elements and types from a schema object to define the operation components.
You can use reusable mapplets, reusable transformations, and reusable logical data objects to define
the elements of the operation input and operation output for an operation.

2. Configure operation mappings.
Configure how the Data Integration Service extracts data between the SOAP messages and the Input
transformation and Output transformation ports. Also, configure the operation mapping logic and test
each operation mapping.

3. Deploy the web service to a Data Integration Service.
Add the web service to an application and deploy the application to the Data Integration Service. When
you deploy an application that contains a web service that is already running on the Data Integration
Service, the Data Integration Service appends a number to the service name of the web service.

4. Complete administration tasks for the web service.
Configure the web service properties and security in the Administrator tool.

A SOAP web service client can connect to a SOAP web service that is running on a Data Integration Service.
Web service clients use the content of the WSDL to connect to a web service. You can configure the Web
Service Consumer transformation to connect to a web service with a web service connection object.

SOAP Web Service Examples
You might create a web service to access customer data or you might create a web service to validate
customer address data.

Access Customer Data

Hypostores customer service representatives want to access customer data from the Los Angeles and
Boston offices over a network. The customer service representatives want to view customer details based on
the customer name or the customer ID. The corporate policy requires that data accessed over a network
must be secure.

18 Chapter 2: SOAP Web Services

The developer and administrator complete the following steps to provide access to the data required by
customer service:

1. In the Developer tool, the developer creates a web service with the following operations:

• getCustomerDetailsByName
The operation input includes an element for the customer name. The operation output includes
elements for the customer details based on the customer name.

• getCustomerDetailsById
The operation input includes an element for the customer ID. The operation output includes elements
for customer details based on the customer ID.

2. The developer configures an operation mapping for each operation with the following components:

• An Input transformation and an Output transformation.

• A Lookup transformation that performs a lookup on a logical data object that defines a single view of
customer data from the Los Angeles and Boston offices.

3. The developer deploys the web service to a Data Integration Service.

4. In the Administrator tool, the administrator configures the web service to use transport layer security and
message layer security so that it can receive authorized requests using an HTTPS URL.

5. The administrator sends the WSDL URL to customer service so that they can connect to the web service.

Validate Customer Address Data

The Hypostores fulfillment department wants to validate address data before finalizing orders. The Address
Validator transformation compares input address data with address reference data to determine the
accuracy of input addresses and fix errors in those addresses.

The developer and administrator complete the following steps to provide address validation functionality to
the fulfillment department:

1. In the Developer tool, the developer creates a mapplet with an Address Validator transformation that
receives address data as input and returns validated address data as output.

2. The developer creates a web service and uses the mapplet to create the web service operation.
You can use the Create Web Service wizard to create an operation from an reusable object.

3. The developer deploys the web service to a Data Integration Service.

4. The administrator sends the WSDL URL to the fulfillment department so that they can connect to the
web service.

The web service accepts an address as input and return a validated address as output.

SOAP Web Service Examples 19

C h a p t e r 3

WSDL Data Object
This chapter includes the following topics:

• WSDL Data Object Overview, 20

• WSDL Data Object Overview View, 21

• WSDL Data Object Advanced View, 21

• Importing a WSDL Data Object, 21

• WSDL Synchronization, 22

• Certificate Management, 23

WSDL Data Object Overview
A WSDL data object is a physical data object that uses a WSDL file as a source. You can use a WSDL data
object to create a web service or a Web Service Consumer transformation. Import a WSDL file to create a
WSDL data object.

After you import a WSDL data object, you can edit general and advanced properties in the Overview and
Advanced views. The WSDL view displays the WSDL file content.

Consider the following guidelines when you import a WSDL:

• The WSDL file must be WSDL 1.1 compliant.

• The WSDL file must be valid.

• Operations that you want to include in a web service or a Web Service Consumer transformation must use
Document/Literal encoding. The WSDL import fails if all operations in the WSDL file use an encoding type
other than Document/Literal.

• The Developer tool must be able to access any schema that the WSDL file references.

• If a WSDL file contains a schema or has an external schema, the Developer tool creates an embedded
schema within the WSDL data object.

• If a WSDL file imports another WSDL file, the Developer tool combines both WSDLs to create the WSDL
data object.

• If a WSDL file defines multiple operations, the Developer tool includes all operations in the WSDL data
object. When you create a web service from a WSDL data object, you can choose to include one or more
operations.

20

WSDL Data Object Overview View
The WSDL data object Overview view displays general information about the WSDL and operations in the
WSDL.

The following table describes the general properties that you configure for a WSDL data object:

Property Description

Name Name of the WSDL data object.

Description Description of the WSDL data object.

The following table describes the columns for operations defined in the WSDL data object:

Property Description

Operation The location where the WSDL defines the message format and protocol for the operation.

Input The WSDL message name associated with the operation input.

Output The WSDL message name associated with the operation output.

Fault The WSDL message name associated with the operation fault.

WSDL Data Object Advanced View
The WSDL data object Advanced view displays advanced properties for a WSDL data object.

The following table describes the advanced properties for a WSDL data object:

Property Description

Connection Default web service connection for a Web Service Consumer transformation.

File Location Location where the WSDL file exists.

Importing a WSDL Data Object
You can import a WSDL data object from a WSDL file or a URI that points to the WSDL location. You can
import a WSDL data object from a WSDL file that contains either a SOAP 1.1 or SOAP 1.2 binding operation or
both.

1. Click File > New > Data Object.

2. Select WSDL data object and click Next.

WSDL Data Object Overview View 21

The New WSDL Data Object dialog box appears.

3. Click Browse next to the WSDL option and enter the location of the WSDL. Then, click OK.

When you enter the location of the WSDL, you can browse to the WSDL file or you can enter the URI to
the WSDL.

Note: If the URI contains non-English characters, the import might fail. Copy the URI to the address bar in
any browser. Copy the location back from the browser. The Developer tool accepts the encoded URI from
the browser.

4. Enter a name for the WSDL.

5. Click Browse next to the Location option to select the project or folder location where you want to import
the WSDL data object.

6. Click Next to view the operations in the WSDL.

7. Click Finish.

The data object appears under Physical Data Object in the project or folder in the Object Explorer view.

WSDL Synchronization
You can synchronize a WSDL data object when the WSDL files change. When you synchronize a WSDL data
object, the Developer tool reimports the object metadata from the WSDL files.

You can use a WSDL data object to create a web service or a Web Service Consumer transformation. When
you update a WSDL data object, the Developer tool updates the objects that reference the WSDL and marks
them as changed when you open them. When the Developer tool compares the new WSDL with the old WSDL,
it identifies WSDL components through the name attributes.

If no name attribute changes, the Developer tool updates the objects that reference the WSDL components.
For example, you edit a WSDL file and change the type for simple element "CustID" from xs:string to
xs:integer.

If a name attribute changes, the Developer tool marks the objects that reference the WSDL component as
changed when you open them.

The Developer tool validates the WSDL files before it updates the WSDL data object. If the WSDL files contain
errors, the Developer tool does not import the files.

Synchronizing a WSDL Data Object
Synchronize a WSDL data object when the WSDL files change.

1. Right-click the WSDL data object in the Object Explorer view, and select Synchronize.

The Synchronize WSDL Data Object dialog box appears.

2. Click Browse next to the WSDL field, and enter the location of the WSDL. Then, click OK.

When you enter the location of the WSDL, you can browse to the WSDL file or you can enter the URI to
the WSDL.

Note: If the URI contains non-English characters, the import might fail. Copy the URI to the address bar in
any browser. Copy the location back from the browser. The Developer tool accepts the encoded URI from
the browser.

3. Verify the WSDL name and location.

22 Chapter 3: WSDL Data Object

4. Click Next to view the operations in the WSDL.

5. Click Finish.

The Developer tool updates the objects that reference the WSDL and marks them as changed when you
open them.

Certificate Management
The Developer tool must use a certificate to import WSDL data objects and schema objects from a URL that
requires client authentication.

By default, the Developer tool imports objects from URLs that require client authentication when the server
that hosts the URL uses a trusted certificate. When the server that hosts the URL uses an untrusted
certificate, add the untrusted certificate to the Developer tool. If you do not add the untrusted certificate to
the Developer tool, the Developer tool cannot import the object. Request the certificate file and password
from the server administrator for the URL that you want import objects from.

The certificates that you add to the Developer tool apply to imports that you perform on the Developer tool
machine. The Developer tool does not store certificates in the Model repository.

Informatica Developer Certificate Properties
Add certificates to the Developer tool when you want to import objects from a URL that requires client
authentication with an untrusted certificate.

The following table describes the certificate properties:

Property Description

Host Name Name of the server that hosts the URL.

Port Number Port number of the URL.

Certificate File Path Location of the client certificate file.

Password Password for the client certificate file.

Adding Certificates to Informatica Developer
When you add a certificate, you configure the certificate properties that the Developer tool uses when you
import objects from a URL that requires client authentication with an untrusted certificate.

1. Click Window > Preferences.

2. Select Informatica > Web Services > Certificates.

3. Click Add.

4. Configure the certificate properties.

5. Click OK.

Certificate Management 23

C h a p t e r 4

Schema Object
This chapter includes the following topics:

• Schema Object Overview, 24

• Schema Object Overview View, 24

• Schema Object Schema View, 25

• Schema Object Advanced View, 30

• Creating a Schema Object, 31

• Schema Updates, 31

• Certificate Management, 34

Schema Object Overview
A schema object is a hierarchical schema that you import to the Model repository. After you import the
schema, you can view the schema components in the Developer tool. You can import an Avro, Parquet, XML,
or JSON schema. The Developer tool converts the schema to an .xsd file in the Model repository.

When you create a SOAP web service, you can define the structure of the web service based on a hierarchical
schema. When you create a web service without a WSDL, you can define the operations, the input, the output,
and the fault signatures based on the types and elements that the schema defines.

When you import a schema you can edit general schema properties in the Overview view. Edit advanced
properties in the Advanced view. View the schema file content in the Schema view.

Schema Object Overview View
Select the Overview view to update the schema name or schema description, view namespaces, and manage
schema files.

The Overview view shows the name, description, and target namespace for the schema. You can edit the
schema name and the description. The target namespace displays the namespace to which the schema
components belong. If no target namespace appears, the schema components do not belong to a
namespace.

The Schema Locations area lists the schema files and the namespaces. You can add multiple root .xsd files.
If a schema file includes or imports other schema files, the Developer tool includes the child .xsd files in the
schema.

24

Schema Files
You can add multiple root-level .xsd files to a schema object. You can also remove root-level .xsd files from a
schema object.

When you add a schema file, the Developer tool imports all .xsd files that are imported by or included in the
file you add. The Developer tool validates the files you add against the files that are part of the schema
object. The Developer tool does not allow you to add a file if the file conflicts with a file that is part of the
schema object.

For example, a schema object contains root schema file "BostonCust.xsd." You want to add root schema file
"LACust.xsd" to the schema object. Both schema files have the same target namespace and define an
element called "Customer." When you try to add schema file LACust.xsd to the schema object, the Developer
tool prompts you to retain the BostonCust.xsd file or overwrite it with the LACust.xsd file.

You can remove any root-level schema file. If you remove a schema file, the Developer tool changes the
element type of elements that were defined by the schema file to xs:string.

To add a schema file, select the Overview view, and click the Add button next to the Schema Locations list.
Then, select the schema file. To remove a schema file, select the file and click the Remove button.

Schema Object Schema View
The Schema view shows an alphabetic list of the groups, elements, types, attribute groups, and attributes in
the schema. When you select a group, element, type, attribute group, or attribute in the Schema view,
properties display in the right panel. You can also view each .xsd file in the Schema view.

The Schema view provides a list of the namespaces and the .xsd files in the schema object.

You can perform the following actions in the Schema view:

• To view the list of schema constructs, expand the Directives folder. To view the namespace, prefix, and
the location, select a schema construct from the list.

• To view the namespace prefix, generated prefix, and location, select a namespace. You can change the
generated prefix.

• To view the schema object as an .xsd file, select Source. If the schema object includes other schemas,
you can select which .xsd file to view.

• To view an alphabetic list of groups, elements, types, attribute groups, and attributes in each namespace
of the schema, select Design. You can enter one or more characters in the Name field to filter the groups,
elements, types, attribute groups, and attributes by name.

• To view the element properties, select a group, element, type, attribute group, or attribute. The Developer
tool displays different fields in the right panel based on the object you select.

When you view types, you can see whether a type is derived from another type. The interface shows the
parent type. The interface also shows whether the child element inherited values by restriction or extension.

Namespace Properties
The Namespace view shows the prefix and location for a selected namespace.

The namespace associated with each schema file differentiates between elements that come from different
sources but have the same names. A Uniform Resource Identifier (URI) reference defines the location of the
file that contains the elements and attribute names.

Schema Object Schema View 25

When you import a schema that contains more than one namespace, the Developer tool adds the
namespaces to the schema object. When the schema file includes other schemas, the namespaces for those
schemas are also included.

The Developer tool creates a generated prefix for each namespace. When the schema does not contain a
prefix, the Developer tool generates the namespace prefix tns0 and increments the prefix number for each
additional namespace prefix. The Developer tool reserves the namespace prefix xs. If you import a schema
that contains the namespace prefix xs, the Developer tool creates the generated prefix xs1. The Developer
tool increments the prefix number when the schema contains the generated prefix value.

For example, Customer_Orders.xsd has a namespace. The schema includes another schema, Customers.xsd.
The Customers schema has a different namespace. The Developer tool assigns prefix tns0 to the
Customer_Orders namespace and prefix tns1 to the Customers namespace.

To view the namespace location and prefix, select a namespace in the Schema view.

When you create a web service from more than one schema object, each namespace must have a unique
prefix. You can modify the generated prefix for each namespace.

Element Properties
An element is a simple or a complex type. A complex type contains other types. When you select an element
in the Schema view, the Developer tool lists the child elements and the properties in the right panel of the
screen.

The following table describes element properties that appear when you select an element:

Property Description

Name The element name.

Description Description of the type.

Type The element type.

The following table describes the child element properties that appear when you select an element:

Property Description

Name The element name.

Type The element type.

Minimum Occurs The minimum number of times that the element can occur at one point in an instance.

Maximum Occurs The maximum number of times that the element can occur at one point in an instance.

Description Description of the element.

To view additional child element properties, click the double arrow in the Description column to expand the
window.

26 Chapter 4: Schema Object

The following table describes the additional child element properties that appear when you expand the
Description column:

Property Description

Fixed Value A specific value for an element that does not change.

Nillable The element can have nil values. A nil element has element tags but has no value and no content.

Abstract The element is an abstract type. An instance must include types derived from that type. An
abstract type is not a valid type without derived element types.

Minimum Value The minimum value for an element in an instance.

Maximum Value The maximum value for an element in an instance.

Minimum Length The minimum length of an element. Length is in bytes, characters, or items based on the element
type.

Maximum Length The maximum length of an element. Length is in bytes, characters, or items based on the element
type.

Enumeration A list of all legal values for an element.

Pattern An expression pattern that defines valid element values.

Advanced Element Properties
To view advanced properties for a element, select the element in the Schema view. Click Advanced.

The following table describes the element advanced properties:

Property Description

Abstract The element is an abstract type. A SOAP message must include types derived from that type. An
abstract type is not a valid type without derived element types.

Block Prevents a derived element from appearing in the hierarchy in place of this element. The block
value can contain "#all" or a list that includes extension, restriction, or substitution.

Final Prevents the schema from extending or restricting the simple type as a derived type.

Substitution
Group

The name of an element to substitute with the element.

Nillible The element can have nil values. A nil element has element tags but has no value and no content.

Schema Object Schema View 27

Simple Type Properties
A simple type element is an element that contains unstructured text. When you select a simple type element
in the Schema view, information about the simple type element appears in the right panel.

The following table describes the properties you can view for a simple type:

Property Description

Type Name of the element.

Description Description of the element.

Variety Defines if the simple type is union, list, anyType, or atomic. An atomic element contains no
other elements or attributes.

Member types A list of the types in a UNION construct.

Item type The element type.

Base The base type of an atomic element, such as integer or string.

Minimum Length The minimum length for an element. Length is in bytes, characters, or items based on the
element type.

Maximum Length The maximum length for an element. Length is in bytes, characters, or items based on the
element type.

Collapse whitespace Strips leading and trailing whitespace. Collapses multiple spaces to a single space.

Enumerations Restrict the type to the list of legal values.

Patterns Restrict the type to values defined by a pattern expression.

Simple Type Advanced Properties
To view advanced properties for a simple type, select the simple type in the Schema view. Click Advanced.

The advanced properties appear below the simple type properties.

The following table describes the advanced property for a simple type:

Property Description

Final Prevents the schema from extending or restricting the simple type as a derived type.

28 Chapter 4: Schema Object

Complex Type Properties
A complex type is an element that contains other elements and attributes. A complex type contains elements
that are simple or complex types. When you select a complex type in the Schema view, the Developer tool
lists the child elements and the child element properties in the right panel of the screen.

The following table describes complex type properties:

Property Description

Name The type name.

Description Description of the type.

Inherit from Name of the parent type.

Inherit by Restriction or extension. A complex type is derived from a parent type. The complex type might reduce
the elements or attributes of the parent. Or, it might add elements and attributes.

To view properties of each element in a complex type, click the double arrow in the Description column to
expand the window.

Complex Type Advanced Properties
To view advanced properties for a complex type, select the element in the Schema view. Click Advanced.

The following table describes the advanced properties for a complex element or type:

Property Description

Abstract The element is an abstract type. A SOAP message must include types derived from that type. An
abstract type is not a valid type without derived element types.

Block Prevents a derived element from appearing in the schema in place of this element. The block
value can contain "#all" or a list that includes extension, restriction, or substitution.

Final Prevents the schema from extending or restricting the simple type as a derived type.

Substitution
Group

The name of an element to substitute with the element.

Nillible The element can have nil values. A nil element has element tags but has no value and no content.

Attribute Properties
An attribute is a simple type. Elements and complex types contain attributes. Global attributes appear as part
of the schema. When you select a global attribute in the Schema view, the Developer tool lists attribute
properties and related type properties in the right panel of the screen.

The following table describes the attribute properties:

Property Description

Name The attribute name.

Schema Object Schema View 29

Property Description

Description Description of the attribute.

Type The attribute type.

Value The value of the attribute type. Indicates whether the value of the attribute type is fixed or has a default
value. If no value is defined, the property displays default=0.

The following table describes the type properties:

Property Description

Minimum Length The minimum length of the type. Length is in bytes, characters, or items based on the type.

Maximum Length The maximum length of the type. Length is in bytes, characters, or items based on the type.

Collapse Whitespace Strips leading and trailing whitespace. Collapses multiple spaces to a single space.

Enumerations Restrict the type to the list of legal values.

Patterns Restrict the type to values defined by a pattern expression.

Schema Object Advanced View
View advanced properties for the schema object.

The following table describes advanced properties for a schema object:

Name Value Description

elementFormDefault Qualified or
Unqualified

Determines whether or not elements must have a namespace. The
schema qualifies elements with a prefix or by a target namespace
declaration. The unqualified value means that the elements do not
need a namespace.

attributeFormDefault Qualified or
Unqualified

Determines whether or not locally declared attributes must have a
namespace. The schema qualifies attributes with a prefix or by a
target namespace declaration. The unqualified value means that the
attributes do not need a namespace.

File location Full path to the .xsd
file

The location of the .xsd file when you imported it.

30 Chapter 4: Schema Object

Creating a Schema Object
You can import a hierarchical schema file or sample file to create a schema object in the repository.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Schema.

The New Schema dialog box appears.

3. To import a schema file, select Create from schema, and then browse to and select a hierarchical
schema file.

You can enter a URI or a location on the file system to browse. The Developer tool validates the schema
you choose. Review validation messages. You can select an Avro, Parquet, JSON, or .xsd schema file.

Note: If the URI contains non-English characters, the import might fail. Copy the URI to the address bar in
any browser. Copy the location back from the browser. The Developer tool accepts the encoded URI from
the browser.

4. To create a schema from a sample file, select Create from a sample file, and then browse to and select
a hierarchical file.

You can select an Avro, Parquet, JSON, or XML file.

Note: If you select a file with a different extension that contains Avro, Parquet, JSON, or XML content, the
wizard recognizes the file content.

5. Optionally, change the schema name.

6. Click Next to view a list of the elements and types in the schema.

7. Click Finish to import the schema.

The schema appears under Schema Objects in the Object Explorer view. The Developer tool stores the
schema as an .xsd file.

8. To change the generated prefix for a schema namespace, select the namespace in the Object Explorer
view. Change the Generated Prefix property in the Namespace view.

Schema Updates
You can update a schema object when elements, attributes, types, or other schema components change.
When you update a schema object, the Developer tool updates objects that use the schema.

You can update a schema object through the following methods:

Synchronize the schema.

Synchronize a schema object when you update the schema files outside the Developer tool. When you
synchronize a schema object, the Developer tool reimports all of the schema .xsd files that contain
changes.

Edit a schema file.

Edit a schema file when you want to update a file from within the Developer tool. When you edit a
schema file, the Developer tool opens the file in the editor you use for .xsd files. You can open the file in
a different editor or set a default editor for .xsd files in the Developer tool.

You can use a schema to define element types in a web service. When you update a schema that is included
in the WSDL of a web service, the Developer tool updates the web service and marks the web service as

Creating a Schema Object 31

changed when you open it. When the Developer tool compares the new schema with the old schema, it
identifies schema components through the name attributes.

If no name attribute changes, the Developer tool updates the web service with the schema changes. For
example, you edit a schema file from within the Developer tool and change the maxOccurs attribute for
element "Item" from 10 to unbounded. When you save the file, the Developer tool updates the maxOccurs
attribute in any web service that references the Item element.

If a name attribute changes, the Developer tool marks the web service as changed when you open it. For
example, you edit a schema outside the Developer tool and change the name of a complex element type from
"Order" to "CustOrder." You then synchronize the schema. When you open a web service that references the
element, the Developer tool marks the web service name in the editor with an asterisk to indicate that the
web service contains changes. The Developer tool adds the CustOrder element type to the web service, but it
does not remove the Order element type. Because the Developer tool can no longer determine the type for the
Order element, it changes the element type to xs:string.

Schema Synchronization
You can synchronize a schema object when the schema components change. When you synchronize a
schema object, the Developer tool reimports the object metadata from the schema files.

Use schema synchronization when you make complex changes to the schema object outside the Developer
tool. For example, you might synchronize a schema after you perform the following actions:

• Make changes to multiple schema files.

• Add or remove schema files from the schema.

• Change import or include elements.

The Developer tool validates the schema files before it updates the schema object. If the schema files
contain errors, the Developer tool does not import the files.

To synchronize a schema object, right-click the schema object in the Object Explorer view, and select
Synchronize.

Schema File Edits
You can edit a schema file from within the Developer tool to update schema components.

Edit a schema file in the Developer tool to make minor updates to a small number of files. For example, you
might make one of the following minor updates to a schema file:

• Change the minOccurs or maxOccurs attributes for an element.

• Add an attribute to a complex type.

• Change a simple object type.

When you edit a schema file, the Developer tool opens a temporary copy of the schema file in an editor. You
can edit schema files with the system editor that you use for .xsd files, or you can select another editor. You
can also set the Developer tool default editor for .xsd files. Save the temporary schema file after you edit it.

The Developer tool validates the temporary file before it updates the schema object. If the schema file
contains errors or contains components that conflict with other schema files in the schema object, the
Developer tool does not import the file.

Note: When you edit and save the temporary schema file, the Developer tool does not update the schema file
that appears in the Schema Locations list. If you synchronize a schema object after you edit a schema file in
the Developer tool, the synchronization operation overwrites your edits.

32 Chapter 4: Schema Object

Setting a Default Schema File Editor
You can set the default editor that the Developer tool opens when you edit a schema file.

1. Click Window > Preferences.

The Preferences dialog box appears.

2. Click Editors > File Associations.

The File Associations page of the Preferences dialog box appears.

3. Click Add next to the File types area.

The Add File Type dialog box appears.

4. Enter .xsd as the file type, and click OK.

5. Click Add next to the Associated editors area.

The Editor Selection dialog box appears.

6. Select an editor from the list of editors or click Browse to select a different editor, and then click OK.

The editor that you select appears in the Associated editors list.

7. Optionally, add other editors to the Associated editors list.

8. If you add multiple editors, you can change the default editor. Select an editor, and click Default.

9. Click OK.

Editing a Schema File
You can edit any schema file in a schema object.

1. Open a schema object.

Schema Updates 33

2. Select the Overview view.

The Overview view of the schema object appears.

3. Select a schema file in the Schema Locations list.

4. Click Open with, and select one of the following options:

Option Description

System Editor The schema file opens in the editor that your operating system uses for .xsd files.

Default Editor The schema file opens in the editor that you set as the default editor in the Developer tool. This
option appears if you set a default editor.

Other You select the editor in which to open the schema file.

The Developer tool opens a temporary copy of the schema file.

5. Update the temporary schema file, save the changes, and close the editor.

The Developer tool prompts you to update the schema object.

6. To update the schema object, click Update Schema Object.

The Developer tool updates the schema file with the changes you made.

Certificate Management
The Developer tool must use a certificate to import WSDL data objects and schema objects from a URL that
requires client authentication.

By default, the Developer tool imports objects from URLs that require client authentication when the server
that hosts the URL uses a trusted certificate. When the server that hosts the URL uses an untrusted
certificate, add the untrusted certificate to the Developer tool. If you do not add the untrusted certificate to
the Developer tool, the Developer tool cannot import the object. Request the certificate file and password
from the server administrator for the URL that you want import objects from.

34 Chapter 4: Schema Object

The certificates that you add to the Developer tool apply to imports that you perform on the Developer tool
machine. The Developer tool does not store certificates in the Model repository.

Informatica Developer Certificate Properties
Add certificates to the Developer tool when you want to import objects from a URL that requires client
authentication with an untrusted certificate.

The following table describes the certificate properties:

Property Description

Host Name Name of the server that hosts the URL.

Port Number Port number of the URL.

Certificate File Path Location of the client certificate file.

Password Password for the client certificate file.

Adding Certificates to Informatica Developer
When you add a certificate, you configure the certificate properties that the Developer tool uses when you
import objects from a URL that requires client authentication with an untrusted certificate.

1. Click Window > Preferences.

2. Select Informatica > Web Services > Certificates.

3. Click Add.

4. Configure the certificate properties.

5. Click OK.

Certificate Management 35

C h a p t e r 5

How to Create a SOAP Web
Service

This chapter includes the following topics:

• Create a SOAP Web Service Overview, 36

• Types and Elements, 37

• Web Service Overview View, 37

• Web Service WSDL View, 39

• Create a Web Service from a WSDL Data Object, 40

• Create a SOAP Web Service Manually, 41

Create a SOAP Web Service Overview
When you create a SOAP web service, you create a web service object in the repository. You can create a
SOAP web service from a WSDL data object or you can manually create a SOAP web service. Each SOAP web
service can have one or more operations.

When you create a SOAP web service from a WSDL data object, you choose the operations that you want to
include in the web service from the WSDL data object. Each operation can use a SOAP 1.1 binding or a SOAP
1.2 binding but not both.

When you manually create a web service, you create operations and define the elements of the operation
input, operation output, and operation faults for each operation. You can use a reusable object to define the
elements of the operation input and operation output for an operation.

A web service object has an Overview view and a WSDL view. You can create and configure operations in the
Overview view. You can view the WSDL file content in the WSDL view.

After you create a web service, configure the operation mapping for each operation. You can optionally add
operations to the web service.

36

Types and Elements
When you create a web service from a WSDL data object, the WSDL data object defines the elements and
element types for each operation. When you manually create an web service, you can define the elements or
use types from schema objects to define the elements.

If operation components include anyType elements, any elements, anyAttribute attributes, derived type
elements, or substitution groups, you must choose one or more types, elements, or attributes when you
configure the operation mapping. For example, if the operation input includes an anyType element, choose
the one or more types when you configure the Input transformation.

When you use a schema object to define element types, the Developer tool includes the schema object in the
WSDL of the web service. When you delete the schema object or delete the link to the schema object in the
web service WSDL, the Developer tool changes the element type of elements that were defined by the
schema object to xs:string. You can update the element type to another type.

When you manually create a web service, the web service requires a unique generated prefix value for each
namespace that it uses to define operation components. For example, if a web service uses schema object
schemaA and schema object schemaB to define types, schemaA and schema B cannot have the same
generated prefix value for any namespace.

Web Service Overview View
The web service Overview view displays general information about the web service and detailed information
about the web service operations and operation components.

General Properties

The following table describes the general properties that you configure for a web service:

Property Description

Name The web service object name.

Description The description of the web service.

Namespace The targetNamespace of the web service. If the web service is associated with a WSDL data
object, this field is read-only.

Prefix The prefix of the targetNamespace. If the web service is associated with a WSDL data object, this
field is read-only.

WSDL Data Object The WSDL data object associated with the web service. This property displays if the web service
was created from a WSDL data object.

Service Name The service name. Default is the name of the web service or the service name defined in the
associated WSDL data object. If the web service is associated with a WSDL data object, this field
is read-only.

Operations Area

When you select an operation on the left side of the Operations area, the details appear on the right side. The
left side of the Operations area displays a tree view of the operation with the related input, output, and fault.

Types and Elements 37

The following table describes the operation and the input and output properties that appear on the right side
of the Operations area:

Properties Description

Operation Name The name of the operation.

Description The description of the operation

Binding Type The binding type of the operation.

Input The WSDL message name associated with the operation input.

Output The WSDL message name associated with the operation output.

Element Name The name of the XSD element referred by the operation input or output.

Name The child element of the element referred by the operation input or output.

Type The element type.

Min. Occurs The minimum number of times that the element can occur at one point in an XML instance.

Max. Occurs The maximum number of times that the element can occur at one point in an XML instance.

Description The description of the element.

To view additional child element properties, click the double arrow in the Description column to expand the
window.

The following table describes the additional child element properties that appear when you expand the
Description column:

Property Description

Fixed Value A specific value for an element that does not change.

Nillable The element can have nil values. A nil element has element tags but has no value and no content.

Abstract The element is an abstract type. An XML instance must include types derived from that type. An
abstract type is not a valid type without derived element types.

Minimum Value The minimum value for an element in an XML instance.

Maximum Value The maximum value for an element in an XML instance.

Minimum Length The minimum length of an element. Length is in bytes, characters, or items based on the element
type.

Maximum Length The maximum length of an element. Length is in bytes, characters, or items based on the element
type.

38 Chapter 5: How to Create a SOAP Web Service

Property Description

Enumeration A list of all legal values for an element.

Pattern An expression pattern that defines valid element values.

Operation Mappings Area

The following table describes the columns for operation mappings:

Property Description

Operation Mapping The operation mapping name.

Operation The operation name.

Input The WSDL message name associated with the operation input.

Output The WSDL message name associated with the operation output.

Fault The WSDL message name associated with the operation fault.

Web Service WSDL View
You can preview the contents of the WSDL file on the WSDL view of a web service.

When you create a web service from a WSDL object, you can view the contents of the WSDL file.

When you manually create a web service, the Developer tool generates the contents of a WSDL file based on
the configuration of the operation input, operation output, operation fault, and headers. You add elements to
the schema of the WSDL or edit elements in the schema of the WSDL. You can also delete imported schema
object from the WSDL.

Each operation input, operation output, operation fault, and header corresponds to a message in the WSDL.
Operation faults and headers can share messages in a WSDL. When you use an element from the schema of
the WSDL to create a fault or a header, the message name is the same as the element name.

You can view the WSDL design or the WSDL source. The WSDL design displays the hierarchical view of the
WSDL contents. The WSDL source displays the content of the WSDL in an XML format.

To preview the WSDL in the Developer tool, select Source next to the Show field on the WSDL view of the web
service.

Web Service WSDL View 39

Create a Web Service from a WSDL Data Object
When you create a SOAP web service from a WSDL data object, the WSDL defines one or more operations
and the elements of each operation input, operation output, and operation fault.

You can add an operation if the WSDL has multiple operations that you can select from. You cannot create an
operation that is not defined in the WSDL.

You must create a WSDL data object before you create a web service from a WSDL data object. The WSDL
must be based on SOAP 1.1 or SOAP 1.2. You can use the Create Web Service from a WSDL Data Object
wizard to create a WSDL data object before you create a web service from a WSDL data object.

When you create a web service from a WSDL data object, the web service is dependent on the WSDL data
object. If you delete the WSDL data object, the operation mapping is not valid and you must associate a
WSDL data object with the web service. The Developer tool removes the association between a web service
and the WSDL data object when a WSDL data object is deleted from the repository.

Step 1. Create a Web Service from a WSDL Data Object
When you create a web service from a WSDL data object, the Developer tool uses information defined in the
WSDL data object to create an operation mapping for each operation in the web service.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Data Service.

The New Data Service dialog box appears.

3. Click Web Service from a WSDL data object, and then click Next.

4. To create a WSDL data object, click New WSDL Data Object.

a. Click Browse next to the Location option to enter the location of the WSDL. Click OK.

b. Enter a name for the WSDL.

c. Click Finish.

5. Enter a name for the web service.

6. Click Browse next to the WSDL Data Object option to select the WSDL data object.

7. Click Browse next to the Operation option to select one or more operations that you want to include in
the web service.

The WSDL data object can contain multiple bindings of SOAP 1.1 and SOAP 1.2 formats. You can select
a specific operation from only one of these bindings.

8. Click Next.

9. By default, the SOAP version of the operation you select will be displayed as the Operation Type.

10. Optionally, select the Mapping Input tab for each operation input to map data from the operation input to
the output ports.

You can also map the data when you configure the Input transformation.

11. Optionally, select the Mapping Output tab for each operation output to map data from the input ports to
the operation output.

You can also map the data when you configure the Output transformation.

12. Optionally, select the Mapping Fault tab for each operation fault to map data from the input ports to the
operation fault.

You can also map the data when you configure the Fault transformation.

40 Chapter 5: How to Create a SOAP Web Service

13. Click Finish.

Step 2. Add an Operation to a Web Service
You can optionally add operations to a Web Service.

1. In the Object Explorer view, open a web service that is dependent on a WSDL data object.

2. Select the Overview view.

3. In the Operations section, select the Operation mappings area.

4. From the Operations mappings area, click Choose.

You will see the Select One or more Operations dialog box.

5. Select the operation you want to add and click OK.

Associating a WSDL Data Object with a Web Service
To associate a WSDL data object with a web service, choose a WSDL data object and associate each
operation mapping with an operation defined in the WSDL data object.

When you create a web service from a WSDL data object, the web service is dependent on the WSDL data
object. If you delete the WSDL data object, the operation mapping is not valid and you must associate a
WSDL data object with the web service.

1. In the Object Explorer view, open a web service that is dependent on a WSDL data object.

2. Select the Overview view.

3. Click Browse next to the WSDL Data Object option.

The Select a WSDL Data Object dialog box appears.

4. Select the WSDL data object and click OK.

5. In the Operation Mappings area, associate a WSDL operation with each web service operation mapping.

a. Right-click in the Operation column of an operation mapping row and click Select an operation.

The Select an Operation dialog box appears.

b. Select the operation and click OK.

Create a SOAP Web Service Manually
When you create a SOAP web service without a WSDL data object, you define the web service properties,
operations, and operation components. Operation components include the operation input, the operation
output, and operation faults.

When you manually create a web service, you can define one or more operations. When you manually create
an operation, you can select the SOAP binding type and use elements and types from schema objects to
define the operation elements. You can also use a mapplet, reusable transformation, logical data object, flat
file data object, or relational data object to create an operation. When you create an operation from reusable
object, you select the fields that you want to include in the operation from the object.

The Developer tool generates the contents of a WSDL file using the web service properties and the
operations that you define. You can preview the contents of a WSDL file after you create the web service.

Create a SOAP Web Service Manually 41

Step 1. Create a Web Service Manually
Use the Create a Web Service wizard to create a web service.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Data Service.

The New Data Service dialog box appears.

3. Click Web Service.

The New Web Service dialog box appears.

4. Enter a name for the web service.

5. Optionally, enter the namespace and the namespace prefix.

6. Click Next.

The New Web Service dialog box appears.

You must create an operation after you create the web service.

Step 2. Create an Operation
When you manually create a web service, you can create an operation from the Create a Web Service wizard
or the New Operation wizard.

The following table lists the options to create an operation:

Options to Create an
Operation

Path

Use the Create a Web Service
wizard.

Click New > Data Service > Web Service.
From a reusable object or from an empty object.
Note: A reusable object can be a physical data object, a mapplet, or a
transformation.

Use the New Operation wizard. Right-click a web service from the Object Explorer or Outline view and click New >
Operation.

Use the New Operation wizard. Create a web service and then select the web service Overview view. In the
Operations area, click the arrow next to the New button and select New Operation.

Use the New Operation wizard. Drag a reusable object into the Operations area of the Overview view.

Create an Operation from a Reusable Object
Use the Create a Web Service wizard to create a web service and create operations from reusable objects.

You can create operations that look up data in logical data objects, flat file data objects, and relational data
objects. You can also create operations from a mapplet or reusable transformation. The mapplet or reusable
transformation defines elements of the operation input and output. You cannot create an operation from a
Web Service Consumer transformation.

42 Chapter 5: How to Create a SOAP Web Service

After you complete the steps to create a web service, you can create an operation from a data object, a
mapplet, or reusable transformation within the Create a Web Service wizard.

1. In the New Web Service dialog box, click the arrow next to the New button. Then, select Operation >
Create from a Reusable Object.

The Select Reusable Object dialog box appears.

Note: You can also create an operation from a data object by opening a web service in the Object
Explorer and selecting Overview > Operations area. Click the arrow next to the New button.

2. Select the object and click OK.

3. Optionally, enter the operation name and description.

The Developer tool uses the name you provide for the operation to define the names for the operation
input and the operation output.

4. Select the binding type of the operation.

Default is SOAP 1.1. You cannot change the binding type of the operation after you have created and
saved the operation.

5. Click the operation input to view and configure its properties.

a. Select the operation input fields on the Operation Input tab.

Note: If the object has more than one input group, select the input group and the operation input
fields on the Operation Input tab.

b. Optionally, configure the minimum and maximum number of occurrences for each element.

c. Optionally, click the Mapping Input tab to configure how to map data from the operation input to the
output ports.

You can also map the data when you configure the Input transformation.

6. Click the operation output to display and configure its properties.

a. Select the operation output fields on the Operation Output tab.

Note: If the object has more than output group, select the output group and the operation output
fields on the Operation Output tab.

b. Optionally, configure the minimum number of occurrences for each element.

c. Optionally, click the Mapping Output tab to configure how to map data from the input ports to the
operation output.

You can also map the data when you configure the Output transformation.

7. If the operation sends user-defined faults, click the arrow next to the New button and then click Fault.

You can choose to create an element for the fault or select a reusable element.

8. Click each operation fault to display and configure its properties.

You can click the Mapping Fault tab to configure how to map data from the input ports to the operation
fault. You can also map the data when you configure the Fault transformation.

9. Repeat steps 1 through 8 to create and configure more operations.

10. Click Finish.

The Developer tool creates an operation mapping for each operation based on how you configure each
operation.

You can optionally create an element or a predefined fault.

Create a SOAP Web Service Manually 43

Manually Create an Operation
Use the Create Web Service wizard to define operations and to define the operation input, operation output,
and operation faults for each operation.

After you complete the steps to create a web service, you can create and configure the operation from within
the Create a Web Service wizard.

1. In the New Web Service dialog box, click the arrow next to the New button. Then, select Operation >
Create as empty.

a. Enter a name for the operation.

The Developer tool uses the operation name to define the names for the operation input and the
operation output.

b. Select the SOAP version for the operation as the Binding Type.

c. To define fault messages, click the arrow next to the New button and then click Fault.

You can choose to create each element for the fault message or select reusable elements. The
wizard adds the elements to the detail element in the fault message.

2. Click the operation input to display and configure its properties.

a. Click the Operation Input tab.

b. To add elements, click the arrow next to the New button, and then click Element. To add child
elements, select an element, click the arrow next to the New button and click Child Element.

c. To specify a type for each element, click the selection button in the Type field. Choose an XSD type
or a schema object type and click OK.

Tip: Click the Type field and enter the first few characters of the type you want to select. A list of
XSD types with names that start with the characters you enter will appear in a list.

d. Configure the minimum and maximum number of occurrences for each element.

e. Optionally, enter a description for each element.

f. Optionally, click the Mapping Input tab to map data from the operation input to the output ports.

You can also map the data when you configure the Input transformation.

3. Click each operation fault to display and configure its properties.

You can click the Mapping Fault tab to configure how to map data from the input ports to the operation
fault. You can also map the data when you configure the Fault transformation.

4. Click the operation output to display and configure its properties.

a. Click the Operation Output tab.

b. To add elements, click the arrow next to the New button, and then click Element. To add child
elements, select an element, click the arrow next to the New button, and then click Child Element.

c. To specify a type for each element, click the selection button in the Type field. Then, choose an XSD
type or a schema object type and click OK.

d. Configure the minimum and maximum number of occurrences for each element.

e. Optionally, enter a description for each element.

f. Optionally, click the Mapping Output tab to map data from the input ports to the operating output.

You can also map the data when you configure the Output transformation.

5. Repeat steps 1 through 4 to add and configure more operations.

6. Click Finish.

The Developer tool creates an operation mapping for each operation based on how you configure each
operation.

44 Chapter 5: How to Create a SOAP Web Service

You can optionally create an element or a predefined fault.

Creating an Operation from the New Operation Wizard
Use the New Operation wizard to create an operation after you have created a web service manually.

1. Choose a method to create an operation.

• From the Object Explorer, right-click on a web service and select New > Operation.

• From the Outline View, right-click on a web service and select New > Operation.

• Open a web service in the Object Explorer and select Overview > Operations area. Click the arrow
next to the New button.

The New Operation dialog box apears.

2. Enter a name for the operation and optionally enter a description.

The Developer tool uses the operation name to define the names for the operation input and the
operation output.

3. Click Next.

4. Select the binding type of the operation.

Default is SOAP 1.1. You cannot change the binding type of the operation after you have created and
saved the operation.

5. Optionally, select the Mapping Input tab for each operation input to map data from the operation input to
the output ports.

You can also map the data when you configure the Input transformation.

6. Optionally, select the Mapping Output tab for each operation output to map data from the input ports to
the operation output.

You can also map the data when you configure the Output transformation.

7. Optionally, click the arrow next to the New button to create a Fault for the operation.

You can choose to create each element for the fault message or select reusable elements. The wizard
adds the elements to the detail element in the fault message. You can also map the data when you
configure the Fault transformation.

8. Click Finish.

You can optionally create an element or a predefined fault.

Drag a Reusable Object
Drag a reusable object to the Operations area of the Overview view to create an operation from a reusable
object.

1. Open a web service from the Object Explorer view.

2. From the Overview view, select the Operations area.

3. Drag a reusable object from the Object Explorer view to the Operations area in the Overview view.

The New Operation dialog box appears.

4. Select the binding type of the operation.

Default is SOAP 1.1. You cannot change the binding type of the operation after you have created and
saved the operation.

5. Optionally, select the Mapping Input tab for each operation input to map data from the operation input to
the output ports.

Create a SOAP Web Service Manually 45

You can also map the data when you configure the Input transformation.

6. Optionally, select the Mapping Output tab for each operation output to map data from the input ports to
the operation output.

You can also map the data when you configure the Output transformation.

7. Optionally, click the arrow next to the New button to create a fault for the operation.

You can also map the data when you configure the Fault transformation.

8. Click Finish.

You can optionally create an element or a predefined fault.

Step 3. Create an Element
You can optionally create an element on the WSDL view of a web service. You can create an operation fault or
a header with elements you create in the WSDL view of the web service. An element can contain multiple
elements and child elements.

Before you create an element, you must create a web service and define one or more operations from the
Create a Web Service wizard.

1. Open the web service.

2. Select the WSDL view.

3. Show the Design of the WSDL. Then, in the Schema section select an element or the namespace entry
above the elements.

4. Click the New Element button.

5. To add an element to the element, click the arrow next to the New button, and then click Element.

6. To add child elements to an element, select the element, click the arrow next to the New button, and then
click Child Element.

7. Optionally, configure the type for each element.

a. Click the Selection button in the Type field.

b. Choose an XSD type or a Schema object type and click OK.

8. Optionally, configure the minimum and maximum number or occurrences for each element.

9. Optionally, enter a description for each element.

You can optionally create a predefined fault.

Change the Hierarchy Level of Elements
After you create an element, you can change the hierarchy level. Right-click in the Operation Input tab and
Operation Output tab when you manually create an operation, to perform operations such as remove, move,
or copy an element or child element.

You can also change the hierarchy of an element by dragging an element or a child element.

46 Chapter 5: How to Create a SOAP Web Service

Step 4. Create a Predefined Fault
You can optionally create a fault to send user-defined errors within the SOAP response. When you create a
predefined fault, the Developer tool adds a Fault transformation to the operation mapping.

Create a web service and define one or more operations. You can create a fault when you create an operation
or you can add a fault to an operation. An operation can have multiple faults.

1. Open a web service.

2. In the Outline view, select the operation mapping.

The operation mapping appears in the editor.

3. Click the Operation tab in the Properties view.

4. Click the arrow next to the New button.

5. Click Fault.

6. Choose to create an element or reuse an element.

• Select Create New Element to create an element for the fault. You can create child elements and
multiple-occurring elements.

• Select Reuse Existing Element to reuse an element for the fault.

The Developer tool adds elements to the detail element in the fault message hierarchy.

Step 5. Create a Header
You can optionally create a header to receive or send data within the header of the SOAP message. You can
create a header for an operation input or operation output. You can use the HTTP POST method.

1. Open a web service.

2. Select the operation mapping in the Outline view.

The operation mapping appears in the editor.

3. Click the Operations tab in the Properties view.

4. Choose to add a header to the operation input or the operation output.

• Select the input to add the header to the operation input.

• Select the output to add the header to the operation output.

5. Click the arrow next to the New button.

6. Click Header and then choose to create an element or reuse an element.

• Select Create New Element to create a element for the header.

• Select Reuse Existing Element to reuse an element for the header.

Create a SOAP Web Service Manually 47

C h a p t e r 6

Operation Mappings
This chapter includes the following topics:

• Operation Mappings Overview, 48

• Operation Mapping General Tab, 49

• Operation Mapping Operation Tab, 49

• Operation Mapping Advanced Tab, 49

• Input Transformation, 50

• Output Transformation, 52

• Fault Transformation, 55

• Fault Handling, 58

• Test Operation Mappings, 62

• Customized View Options, 62

Operation Mappings Overview
An Informatica SOAP web service has an operation mapping. An operation mapping performs the web
service operation for the web service client.

An operation mapping can contain an Input transformation, an Output transformation, and multiple Fault
transformations. The Input, Output, and Fault transformations process SOAP messages. The mapping can
also contain other transformations that retrieve, transform, or update data based on the web service
operation that the client requests.

After you create a web service in the Developer tool, configure an operation mapping for each operation in
the web service. An operation mapping represents the logic for an operation.

When you configure the operation mapping, you define how the Data Integration Service processes the data
that it receives in the SOAP request. The SOAP request can be of SOAP 1.1 or SOAP 1.2 format based on the
binding type used by the binding operation associated with the operation mapping.

The Input transformation receives a SOAP request from a web service client and then returns data to
transformations downstream in the mapping. The transformations perform the operation that the client
requests.

The Output transformation receives data to return to the client. The Output transformation generates a SOAP
response message to send to the client.

48

If an error occurs, the Data Integration Service generates a fault. The Data Integration Service returns user-
defined faults from a Fault transformation. A user-defined fault consists of two types of faults: predefined
fault and generic fault.

To configure the operation mapping, complete the following steps:

1. Configure the Input, Output, and Fault transformations.

2. Create and configure additional transformations to implement the operation logic.

3. Link ports.

4. Validate and save the mapping.

You can view and configure operation mapping properties on the General tab, Operation tab, and the
Advanced tab in the operation mapping Properties view.

Operation Mapping General Tab
Configure the operation mapping name and description on the General tab of the operation mapping
Properties view.

The General tab also displays the name of the operation that is associated with the operation mapping.

Operation Mapping Operation Tab
View or configure operation properties on the Operation tab of the operation mapping Properties view.

When you manually create a web service, you can use the Operation tab to define a fault or update the
operation input or output. You can also add a header to an operation input or to an operation output.

Operation Mapping Advanced Tab
Configure operation mapping advanced properties on the Advanced tab of the Properties view. When you
configure the advanced properties you can specify if you want the Data Integration Service to validate the
XML of the SOAP request.

The following table describes the advanced properties for an operation mapping:

Property Description

XML Schema
Validation

Validates the SOAP request message at run time. Select Error on Invalid XML or No Validation.
When the XML is not valid, the Data Integration Service returns a fault in the SOAP response and
logs errors in the web service run-time log.

Operation Mapping General Tab 49

Input Transformation
The Input transformation represents the input element and header elements in the web service WSDL. The
Input transformation receives the SOAP request from the client. It parses the XML message into groups of
relational data and passes the data to other transformations in the operation mapping.

The Developer tool creates the Input transformation when you define the operation input for a web service.

Use the Input transformation Ports tab to view the operation input hierarchy, define output ports, and map
data from the operation input to the output ports. The operation input hierarchy defines the SOAP request
message hierarchy.

You can map the complete SOAP request as XML instead of returning groups of relational data in separate
output ports. When you map the SOAP request as XML, the Data Integration Service returns the complete
SOAP message in one output port.

Input Transformation Ports Tab
Define output groups, define output ports, and map nodes from the operation input to the output ports on
Ports tab.

Choose to show the ports if you do not need to view the operation input hierarchy. When you show the ports,
you can define groups, define ports, and map nodes from the operation input to the output ports. To map a
node from the operation input to an output port, click the field in the Location column and expand the
hierarchy in the Select Location dialog box. Then, choose a node from the hierarchy.

Choose to show the input mapping to view the operation input hierarchy. The left side of the tab is the
Operation Input area and the right side of the tab is the Ports area. The Operation Input area shows the SOAP
request message hierarchy. You can define the output ports in the Ports area. When you map a node from the
operation input to an output port, the location of the node appears in the Location column in the Operation
Input area.

When you show the input mapping, you can choose to display the output ports in a hierarchy. You can also
choose to view the lines that connect the input ports to the nodes in the operation input.

The Developer tool maps nodes in the first level of the operation input to output ports when you choose to
map the first level of the hierarchy. The Developer tool also creates the output ports that is requires to map
the data. If the first level of the hierarchy contains a multi-occurring parent node with one or more multi-
occurring child nodes, the Developer tool does not create the ports or map the first level of the hierarchy.

Rules and Guidelines to Map the Operation Input to Ports
When you configure the Input transformation, you map nodes from the operation input hierarchy to output
ports.

Consider the following rules and guidelines when you map nodes from the operation input hierarchy to output
ports:

• The node and the output port must have compatible datatypes.

• You cannot map a node to more than one output port in a group.

50 Chapter 6: Operation Mappings

Configuring the Input Transformation
If the web service operation receives a SOAP request message, configure the Input transformation to process
the request. Define output ports in the transformation. Map nodes from the operation input to the output
ports.

1. Select the Input transformation in the editor.

2. Click the Ports tab of the Properties view.

3. Click Input mapping.

The Operation Input area shows the request message hierarchy. Define the output ports in the Ports
area.

4. Optionally, click Show Lines to view the lines that connect the output ports to the nodes in the operation
input.

You can choose to view all the lines or to view the lines for the selected ports.

5. Optionally, click Show as Hierarchy to display the output ports in a hierarchy.

Each child group appears under the parent group.

6. If the operation input includes anyType elements, any elements, anyAttribute attributes, derived type
elements, or substitution groups, choose objects in the Operation Input area. In the Type column for a
node, click Choose and then choose one or more types, elements, or attributes from the list.

7. To add an output group, use one of the following methods:

Option Description

Drag a node Drag the pointer from a group node or a child node in the Operation Input area to an empty
column in the Ports area. If the node is a group node, the Developer tool adds a group without
ports. If other output groups exist, the Map to new group dialog box prompts you to relate the
group to another group. The Developer tool creates keys for related groups.

Manually add a
group

Click New > Group to add a group.

Select Map
first level
hierarchy

Select Map first level hierarchy. The Developer tool maps nodes in the first level of the
operation input to output ports and groups. The Developer tool also creates the output ports
and groups that it requires to map the data. If the first level of the hierarchy contains a multi-
occurring parent node with one or more multi-occurring child nodes, the Developer tool does
not create the ports or map the first level of the hierarchy.

8. To add output ports and map nodes to the output ports, use one of the following methods:

Option Description

Drag a node Drag the pointer from a node in the operation input to a group name or port in the Ports
area.

Click the Map
button

Select one or more nodes in the Operation Input area. Select a destination in the Ports area.
Click Map.

Copy ports Select ports from another transformation and copy them to the Operation Input area. To
copy ports, you can use keyboard shortcuts or you can use the copy and the paste buttons in
the Developer tool.

Input Transformation 51

Option Description

Manually add a
port

Click New > Field to add a port.

Select Map first
level hierarchy

Select Map first level hierarchy. The Developer tool maps nodes in the first level of the
operation input to output ports and groups. The Developer tool also creates the output ports
and groups that it requires to perform the mapping. If the first level of the hierarchy
contains a multi-occurring parent node with one or more multi-occurring child nodes, the
Developer tool does not create the ports or map the first level of the hierarchy.

9. To clear the locations of ports, use one of the following methods:

Option Description

Click the Clear button Select one or more ports in the Ports area and click Clear.

Delete the lines that connect
nodes to ports

Select one or more lines that connect the nodes in the operation input to the
output ports and press Delete.

10. To map the complete SOAP request as XML, right-click the Request node in the Operation Input area and
select Map as XML.

Output Transformation
The Output transformation represents the output element and header elements in the web service WSDL. The
Output transformation creates a SOAP response message from groups of relational data in the operation
mapping. A WSDL might describe a large SOAP message hierarchy, but a web service operation might return
data for part of the SOAP response message.

The Developer tool creates an Output transformation when you define the web service operation output.

Use the Output transformation Ports tab to view the operation output hierarchy, add transformation input
ports, and map the input ports to the operation output. The operation output hierarchy defines the SOAP
response message hierarchy.

You can map XML data from one string or text input port to the entire SOAP response. When you map XML
data to the entire SOAP response, you cannot map ports to nodes in the operation output.

Configure advanced properties in the Output transformation Advanced tab.

Output Transformation Ports Tab
Define input groups, define input ports, and map input ports to operation output nodes on the Ports tab.

When you show the ports, you can manually add groups and ports or you can copy ports from other
transformations into the Output transformation. You can use keyboard shortcuts or you can use the copy and
the paste buttons in the Developer tool.

When you show the output mapping, you can define input groups, define input ports, and map input ports to
operation output hierarchy. The left side of the tab is the Ports area and the right side of the tab is the
Operation Output area. The Operation Output area shows the SOAP response message hierarchy. You can
define input groups and input ports in the Ports area. When you map the input ports from the Ports area to

52 Chapter 6: Operation Mappings

nodes in the Operation Output area, the input port location appears in the Location column in the Operation
Output area.

The Developer tool maps input ports to nodes in the first level of the operation output when you choose to
map the first level of the hierarchy. The Developer tool also creates the input ports that it requires to map the
data. If the first level of the hierarchy contains a multi-occurring parent node with one or more multi-occurring
child nodes, the Developer tool does not create the ports or map the first level of the hierarchy.

When you show the output mapping, you can choose to view the lines that connect the input ports to the
nodes in the operation input.

Output Transformation Advanced Tab
Configure the Output transformation advanced properties on the Advanced tab.

The following table describes the property that you can configure on the Output transformation Advanced
tab:

Property Description

Sorted Input Enables the Data Integration Service to generate output without processing all of the input data. Enable
sorted input when the input data is sorted by the keys in the operation input hierarchy. Default is
disabled.

Rules and Guidelines to Map Ports to the Operation Output
When you configure the Output transformation, you map ports to the operation output hierarchy.

Consider the following rules and guidelines when you map input ports to the operation output hierarchy:

• The input port and the node must have compatible datatypes.

• You can map an input port to one node in the hierarchy.

• You can map ports from one input group to nodes in the same hierarchy level in the operation output.

• You can map different ports from one input group to nodes in different hierarchy levels in the operation
output.

• Map input ports to the keys in the operation output. Any port that you map to a key must be a string,
integer, or bigint datatype. Map data to the keys in all levels in the operation output above the hierarchy
level that you are including in the SOAP message. Include the foreign keys for all levels above and
including the level you are mapping.

Note: You do not have to map input ports to keys if you are mapping only the lowest level of the operation
output hierarchy.

• You can map multiple input ports of different datatypes to a key. When you click the Location field for a
key, you can reorder the input ports or remove one of the ports.

Configuring the Output Transformation
If the web service operation returns a response message, configure the Output transformation. Define input
ports in each transformation and map data from the input ports to nodes in the operation output hierarchy.

1. Select the Output transformation in the editor.

2. Click the Ports tab of the Properties view.

Output Transformation 53

3. Click Output Mapping.

The Operation Output area shows the operation output hierarchy. Define the input ports in the Ports
area.

4. Optionally, click Show Lines to view the lines that connect the input ports to the nodes in the operation
fault. You can choose to view all the lines or to view the lines for the selected ports.

5. If the operation output includes anyType elements, any elements, anyAttribute attributes, derived type
elements, or substitution groups, choose objects in the Operation Output area. In the Type column for a
node, click Choose and then choose one or more types, elements, or attributes from the list.

6. To add an input group, use one of the following methods:

Option Description

Drag a node Drag the pointer from a group node or a child node in the Operation output area to an
empty column in the Ports area. If the node is a group node, the Developer tool adds a
group without ports.

Manually add a
group

Click the arrow next to the New button and then click New Group.

Select Map first
level hierarchy

Select Map first level hierarchy. The Developer tool maps nodes in the first level of the
operation input to output ports and groups. The Developer tool also create the input ports
and groups that it requires to map the data.

7. To add an input port, use one of the following methods:

Option Description

Manually add a port Click the arrow next to the New button and then click New Port.

Drag a port from another
transformation

In the editor, drag a port from another transformation to the Output transformation.

Copy a port Select ports from another transformation and copy them to the Operation output
area. To copy ports, you can use keyboard shortcuts or you can use the copy and
the paste buttons in the Developer tool.

Select Map first level
hierarchy

Select Map first level hierarchy. The Developer tool maps nodes in the first level of
the operation output to input ports and groups. The Developer tool also create the
input ports and groups that it requires to perform the mapping.

8. To map data from the input ports to nodes in the operation output hierarchy, drag the pointer from each
input port or group to the associated node in the Operation Output. The input field location appears next
to the node in the Operation Output area.

9. To map XML data from an input port to the complete SOAP response, right-click the port and select Map
as XML.

10. To map input ports as a composite key, use one of the following methods:

Option Description

Drag input ports Select two or more input ports and drag them to a key in the operation output
hierarchy.

54 Chapter 6: Operation Mappings

Option Description

Select input ports from the
Select Location dialog box

Click in the Location column of a key in the operation output hierarchy and
then select the input ports.

11. To clear the locations of nodes, use one of the following methods:

Option Description

Click the Clear button Select one or more nodes in the Operation Output area and click Clear.

Delete the lines that connect
ports to nodes

Select one or more lines that connect the input ports to the nodes in the
operation output and press Delete.

Fault Transformation
The Fault transformation represents the Fault element in the web service WSDL. The Fault transformation
generates a user-defined fault in the web service operation.

The Fault transformation represents either of the following user-defined faults:
Predefined fault

A predefined fault is where the Fault transformation represents the Fault element in the web service
WSDL. In a predefined fault, the Fault transformation creates an error message from relational data in
the web service operation mapping.

Generic fault

A generic fault is where the Fault transformation does not represent any of the Fault elements defined in
the web service WSDL for a web service operation. The Fault transformation for a generic fault returns a
generic error message when an error occurs in a transformation. You can create and configure a Fault
transformation for a generic fault from the Developer tool.

An operation mapping can contain multiple Fault transformations. You can add multiple instances of the
same Fault transformation in a mapping to generate the same message in different parts of the mapping.

You can add Fault transformations to the mapping or remove them from the mapping without changing the
operation signature. If you know that a fault error can never occur when the mapping runs, you can remove
the Fault transformation from the mapping. You must connect a Fault transformation to an upstream
transformation or the mapping is not valid.

When you create a fault in an operation that has a SOAP 1.1 binding, the wizard creates the faultcode,
faultstring, and faultactor elements. When you create a fault in an operation that has a SOAP 1.2 binding, the
wizard creates the code, reason, node, and role elements. When you add elements to the fault, the wizard
adds the elements to the detail group in the fault. Use the Fault transformation Ports tab to view the
operation fault hierarchy, add transformation input ports, and map the input ports to the operation fault. The
operation fault hierarchy defines the SOAP response message hierarchy for error messages that result from
a user-defined fault.

You can map XML data from one string or text input port to the entire SOAP response. When you map XML
data to the entire SOAP response, you cannot map ports to nodes in the operation fault.

Configure advanced properties in the Fault transformation Advanced tab.

Fault Transformation 55

Fault Transformation Ports Tab
Define the input groups, define input ports, and map input ports to operation fault nodes on the Ports tab.

When you show the ports, you can manually define groups and ports. Or, you can copy ports from other
transformations into the Fault transformation. You can use keyboard shortcuts or you can use the copy and
the paste buttons in the Developer tool.

When you show the fault mapping, you can define input groups, define input ports, and map input ports to
operation fault hierarchy. The left side of the tab is the Ports area and the right side of the tab is the
Operation fault area. The Operation fault area shows the SOAP response message hierarchy. When you map
the input ports from the Ports area to nodes in the Operation fault area, the input port location appears in the
Location column in the Operation fault area.

The Developer tool maps input ports to nodes in the first level of the operation fault when you choose to map
the first level of the hierarchy. The Developer tool also creates the ports that it requires to map the data.

Fault Transformation Advanced Tab
Configure the Fault transformation advanced properties on the Advanced tab.

The following table describes the property that you can configure on the Advanced tab:

Property Description

Sorted Input Enables the Data Integration Service to generate output without having to process all of the input data.
Enable sorted input when the input data is sorted by the keys in the operation fault hierarchy. Default is
disabled.

Rules and Guidelines to Map Ports to the Operation Fault
When you configure the Fault transformation, you map input ports to the operation fault hierarchy.

Consider the following rules and guidelines when you map input ports to the operation fault hierarchy:

• You can map an input port to one node in the operation fault hierarchy. The input port and the node must
have compatible datatypes.

• You can map ports from one input group to nodes in the same hierarchy level in the operation fault.

• You can map different ports from one input group to nodes in different hierarchy levels in the operation
fault.

• You must map input port data to the keys in the operation fault hierarchy. Any port that you map to a key
must be a string, integer or bigint datatype. Map data to the keys in all levels in the operation fault above
the hierarchy level that you are including in the SOAP message. Include the foreign keys for all levels
above and including the level you are mapping.

• You can map multiple input ports of different datatypes to a key. When you click the Location field for a
key, you can reorder the input ports or remove one of the ports.

Creating a Fault Transformation
You can create a generic fault or a predefined Fault transformation. For a generic fault, the web service WSDL
does not define the fault element. For a predefined fault, the web service uses a fault element to define the
fault.

1. Open a web service.

56 Chapter 6: Operation Mappings

2. In the Outline view, select the operation mapping.

The operation mapping appears in the editor.

3. In the editor, right-click and select Add Transformation.

The Add Transformation dialog box appears.

4. Select Fault and click OK.

The Add Fault dialog box appears.

5. To create a fault transformation, complete one of the following steps.

• Select Create as a generic fault.

• Select Create as a predefined fault from a fault element.

Note: The web service contains an element that defines the fault.

6. Click OK.

The Fault transformation appears as a generic fault or a predefined fault.

Configuring the Fault Transformation
If the web service operation returns faults or if you create a Fault transformation for a generic fault, configure
each Fault transformation. Define input ports and map data from the input ports to nodes in the operation
fault.

1. Select the Fault transformation in the editor.

2. Click the Ports tab of the Properties view.

3. Click Fault mapping.

The Operation fault area shows the response or fault message hierarchy. Define the input ports in the
Ports area.

4. Optionally, click Show Lines to view the lines that connect the input ports to the nodes in the operation
fault. You can choose to view all the lines or to view the lines for the selected ports.

5. If the operation fault includes anyType elements, any elements, anyAttribute attributes, derived type
elements, or substitution groups, choose objects in the Operation Fault area. In the Type column for a
node, click Choose and then choose one or more types, elements, or attributes from the list.

6. To add an input group, use one of the following methods:

Option Description

Drag a node Drag the pointer from a group node or a child node in the Operation fault area to an empty
column in the Ports area. If the node is a group node, the Developer tool adds a group
without ports.

Manually add a
group

Click the arrow next to the New button and then click New Group.

Select Map first
level hierarchy

Select Map first level hierarchy. The Developer tool maps nodes in the first level of the
operation fault to input ports and groups. The Developer tool also create the input ports
and groups that it requires to map the data.

Fault Transformation 57

7. To add an input port, use one of the following methods:

Option Description

Manually add a port Click the arrow next to the New button and click New Port.

Drag ports from other
transformations

In the editor, drag a port from another transformation to the Fault transformation.

Copy ports Select ports from another transformation and copy them to the Operation Fault
area. To copy ports, you can use keyboard shortcuts or you can use the copy and
the paste buttons in the Developer tool.

Select Map first level
hierarchy

Select Map first level hierarchy. The Developer tool maps nodes in the first level of
the operation fault to input ports and groups. The Developer tool also create the
input ports and groups that it requires to map the data.

8. To map data from the input ports to nodes in the operation fault hierarchy, drag the pointer from each
input port or group to the associated node in the operation fault.

The input field location appears next to the node in the Operation fault area.

9. To map XML data from an input port to the complete SOAP response, right-click the port and select Map
as XML.

10. To map input ports as a composite key, use one of the following methods:

Option Description

Drag input ports Select two or more input ports and drag them to a key in the operation fault
hierarchy.

Select input ports from the
Select Location dialog box

Click in the Location column of a key in the operation fault hierarchy and then
select the input ports.

11. To clear the locations of nodes, use one of the following methods:

Option Description

Click the Clear button Select one or more nodes in the Operation Fault area and click Clear.

Delete the lines that connect
ports to nodes

Select one or more lines that connect the input ports to the nodes in the
operation fault and press Delete.

Fault Handling
When an error occurs in a web service, the Data Integration Service generates an error message and returns
the message in a fault to the web service client.

If a SOAP 1.1 request is sent to an operation with SOAP 1.2 binding, the web service will generate a fault
using SOAP 1.1. If a SOAP 1.2 request is sent to an operation with a SOAP 1.1 binding, the web service will
generate a fault using SOAP 1.2. A web service can generate system defined faults and user-defined faults.

58 Chapter 6: Operation Mappings

The Data Integration Service returns an error message to a web service client when a user-defined error
occurs. A user-defined fault can be one of the following types:

• Predefined

• Generic

When the operation mapping contains an Output transformation, the web service returns data from the
Output transformation or it returns a fault. If a fault occurs after the operation mapping has committed data
to target transformations or external applications, the Data Integration Service cannot roll back the data. The
mapping stops and the Data Integration Service discards the data that the web service Output transformation
received.

SOAP 1.1 Fault

For SOAP 1.1, a fault is a SOAP message with the following structure:

 Fault (FaultName)
 Key_Fault (FaultName)
 faultcode xs:QName
 faultstring xs:string
 faultactor xs:anyURI
 detail

The fault contains the following elements:

Fault code

A fault identification code such as an error message number.

Fault string

An explanation of the error.

Fault actor

Optional information about the object that caused the fault to occur.

Detail

Optional information that varies based on the fault.

SOAP 1.2 Fault

For SOAP 1.2, a fault is a SOAP message with the following structure:

 Fault (FaultName)
 Key_Fault (FaultName)
 Code tns:faultcodeEnum
 Reason tns:reasontext
 Node xs:anyURI
 Role xs:anyURI
 detail

The fault contains the following elements:

Code

A fault identification.

The Value element of Code must be one of the following values:

• infasoapns:DataEncodingUnknown

• infasoapns:MustUnderstand

Fault Handling 59

• infasoapns:Receiver

• infasoapns:Sender

• infasoapns:VersionMismatch

Note: You can expand the Code fault element to extract the SubCode fault element up to one level. The
schema type for SubCode is xsd:QName. You can use the SubCode fault element to define an error
message number.

Reason

An explanation of the error.

Node

Contains the URI of the SOAP node that generated the fault.

Role

Optional information about the object that caused the fault to occur.

Detail

Optional information that varies based on the fault.

System-Defined Faults
The Data Integration Service generates a system-defined fault when it encounters a system error. When a
system error occurs, the Data Integration Service returns an error message in a system-defined fault.

For example, the Data Integration Service might return the following fault when a numeric input port receives
data that is not numeric:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode>WSCMN_10022</faultcode>
 <faultstring>[WSCMN_10022] Mapping execution failed:
[com.informatica.platform.ldtm.common.ExecutionException: [MPSVCCMN_10009] The Mapping
Service Module [MappingService] encountered an exception with the following details:
[LDTM_0072] [ERROR] XML parsing component [Input_S2R] message code: [66022], message
body: A data conversion error occurred in field [customerID] of the transformation group
[Operation]. The field contains the following data: [1100AA].].</faultstring>
 <detail> </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

Note: The example uses SOAP 1.1.

You can return an error message to the web service client without a Fault transformation. You can raise a
fault by calling the ABORT(msg) function in an Expression transformation. When you call an ABORT message,
the Data Integration Service generates a system-defined fault message. The message that you pass into the
ABORT function becomes the fault string in the system-defined fault.

Predefined Faults
For a predefined fault, the web service uses a fault element to define the fault. Configure a Fault
transformation to return a custom error message.

When you configure a Fault transformation in a web service, you must define the operation mapping logic
that returns the error condition. You need to define a transformation to generate the error message to pass to
the Fault transformation.

60 Chapter 6: Operation Mappings

When you define a Fault transformation, you define the data to return in the fault code, fault string, and fault
actor. You can also add more elements in the fault message in order to return more information to the web
service client. When you define the elements in the fault, the wizard adds the elements to the detail group.
You can define multiple-occurring elements and create hierarchical relationships between groups of
elements in the detail group.

You can use the same Fault transformation multiple times in a mapping when the error message structure is
the same for each error. Otherwise, you can configure a different Fault transformation for each error
message that you want to return to a web service client.

For example, you configure a Fault transformation to return messages to the web service client when an
employee is not found in a lookup. You pass an error number to the faultcode element and an error message
to the faultstring element. You also need to return the department ID and the employee ID to the web service
client. When you define the fault, you add the DeptID and EmployeeID elements in the detail group.

The Data Integration Service might return the following fault:

<infasoapns:Envelope xmlns:infasoapns="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:infawsdlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://
www.informatica.com/dis/ws/Get_Employee_Info_Web_Service">
 <infasoapns:Body>
 <infasoapns:Fault>
 <faultcode>ERR_12345</faultcode>
 <faultstring>Web service failed to retrieve employee information.</
faultstring>
 <detail>
 <tns:Employee_Not_Found>
 <tns:DeptID>100</tns:DeptID>
 <tns:EmployeeID>2428/tns:EmployeeID>
 </tns:Employee_Not_Found>
 </detail>
 </infasoapns:Fault>
 </infasoapns:Body>
</infasoapns:Envelope>

Note: The example uses SOAP 1.1.

Generic Faults
You can define a generic fault to return an error message to a web service client when an error is not defined
by a fault element in the WSDL. Create a Fault transformation to return a generic error message when an
error occurs in a transformation.

When you create a Fault transformation for a generic fault in a web service, you must define the operation
mapping logic that returns the error condition.

When you define a Fault transformation for a generic fault, and if the operation binding is in SOAP 1.1 format,
you define the data to return in the fault code, fault string, and fault actor elements. If the operation binding is
in SOAP 1.2 format, you define the data to return in the code, reason, node, and role elements. You can also
optionally define data to return in the detail string. The detail string is optional and has an xsd:any element. If
you want to send data to the detail string, map the detail element to one of the ports defined in the web
service operation. You can also add more elements in the fault message to return more information to the
web service client.

You can create hierarchical relationships between groups of elements in the detail group. You can use the
same Fault transformation multiple times in a mapping when the error message structure is the same for
each error. You can also create a different Fault transformation for each error message that you want to
return to a web service client.

Note: After creating a fault transformation, you cannot change the status of a generic fault or a predefined
fault.

Fault Handling 61

Test Operation Mappings
Preview the output of an operation mapping to verify that it produces the results that you want. You can also
preview the output of a transformation in the mapping.

Create a web service configuration to control the settings that the Developer tool applies when you preview
the output of an operation mapping or the output of a transformation in the operation mapping. Use the
Preferences dialog box to configure the default web service run configuration. You can also use the Run
dialog box to create web service configurations that you can specify in the Data Viewer view.

Testing Operation Mappings
Test an operation mapping to preview the SOAP response for an operation. You can preview the output of an
operation mapping or you can preview output from a transformation in the mapping.

Before you can preview data, you need to select a default Data Integration Service if the domain includes
more than one service.

1. Open a web service.

2. Select the operation mapping in the Outline view.

The operation mapping appears in the editor.

3. Select the Data Viewer view.

4. In the Input window, enter a request.

5. If you want to view the output data of a specific transformation, select the transformation in the editor.
Otherwise, the output of the operation mapping displays when you run the data viewer.

6. Click Run.

The result of the request appears in the Output window.

7. To test the operation mapping with a different request, click Reset and then repeat steps 4 through 6.

Customized View Options
When you configure the Input, Output, and Fault transformations, you can change the SOAP message
hierarchy to show keys in the Operation area. You can also show grouping constructs that define how to
order nodes.

To view the customized view options, click Customize View in the Operation Input area, the Operation Output
area, or the Operation Fault area.

You can enable the following options:
All, Sequence, and Choice

Show a line that indicates whether an element definition is all, sequence, or choice.

Nodes in an all group must all be included in the SOAP message.

Nodes in a sequence group must be in the order specified in the WSDL.

At least one node in a choice group must appear in the SOAP message.

Keys

View the keys for each hierarchy level.

62 Chapter 6: Operation Mappings

C h a p t e r 7

Parsing Web Service SOAP
Messages

This chapter includes the following topics:

• Parsing Web Service SOAP Message Overview, 63

• Transformation User Interface, 64

• Multiple-Occurring Output Configuration, 65

• Parsing anyType Elements, 67

• Parsing Derived Types, 68

• Parsing QName Elements, 69

• Parsing Substitution Groups, 69

• Parsing XML Constructs in SOAP Messages, 69

Parsing Web Service SOAP Message Overview
The Data Integration Service generates row data when it parses a SOAP message in a web service
transformation.

The web service Input transformation and the Web Service Consumer transformation are web service
transformations that parse SOAP messages.

To configure a transformation to parse a SOAP message, create output ports in a structure similar to the
SOAP message hierarchy. Map the nodes in the SOAP message hierarchy to the ports.

You can configure normalized groups of output ports, denormalized groups, and pivoted groups of ports.
When the SOAP message contains derived types, anyType elements, or substitution groups, you can
configure different output groups based on what types might occur in the SOAP messsage instance.

63

Transformation User Interface
The Web Service Consumer transformation and the web services Input transformation provide a user
interface that you can use to map data from the SOAP message to the transformation output ports.

The following figure shows a mapping between SOAP 1.1 message nodes and output ports in a Web Service
Consumer transformation:

Operation Area

The Operation area contains the SOAP message hierarchy. Complex nodes or multiple-occurring nodes
define hierarchy levels in the structure. The Developer tool adds keys to the levels that define the parent-child
relationships between them.

In the preceding figure, the SOAP message hierarchy has the following levels:

Response or Request

Level that represents the root of the response or request message.

Company

Top level of the request data.

Departments

Multiple-occurring departments within the company.

Employees

Employee is a complex element within a department.

Fault Group

Fault message group that receives error messages.

Ports Area

You can map data from levels of the SOAP message to output ports. Each group of output ports can be
related to other output groups with primary foreign-key relationships.

In the preceding figure, the transformation has groups of output ports that correspond to the groups of nodes
in the SOAP message.

64 Chapter 7: Parsing Web Service SOAP Messages

Multiple-Occurring Output Configuration
When an Input transformation or Web Service Consumer transformation returns multiple-occurring data, you
can configure the output ports in different configurations.

You can configure normalized output data, pivoted output data, or denormalized output data.

For example, a SOAP message contains Departments and Employees complex elements. Each department
contains multiple employees. Departments is the parent of Employees.

The SOAP message contains the following element hierarchy:

Departments
 Department_ID
 Department_Name
 Employees
 Employee_ID
 Employee_Name

Normalized Relational Output
When you create normalized output data, the data values do not repeat in an output group. You create a one-
to-one relationship between the hierarchy levels in the SOAP message and the output groups of ports.

When the SOAP message contains a Departments parent hierarchy level and an Employees child hierarchy
level, you might create the following groups of ports:

Departments
 Department_Key
 Department_ID
 Department_Name

Employees
 Department_Key
 Employee_ID
 Employee_Name

The Department_Key is a generated key that relates the Employees output group to a Department group.

Generated Keys
When you add an output group, the Developer tool relates the output group to another output group with a
generated key. The Developer tool adds a bigint key to the parent group and to the child group. At run time,
the Data Integration Service creates the key values for the generated keys.

Example

The SOAP hierarchy has the following nodes:

Departments
 Dept_Key
 Dept_Num
 Dept_Name

 Employees
 Dept_FK
 Employee_Num
 Employee_Name

Multiple-Occurring Output Configuration 65

When you create an output group of ports for Departments, you map the Departments node to an empty field
in the Ports area. The Developer tool creates the following output group:

Departments
 Dept_Num
 Dept_Name

When you map the Employees node to an empty field in the Ports area, the Developer tool prompts you to
relate the Employees group to the Departments group. You can relate the Employees group to more than one
group. The Developer tool adds a key to the each group.

The Developer tool creates the following groups and generated keys:

Departments
 Key_Departments
 Dept_Num
 Dept_Name

 Employees
 Key_Departments
 Employee_Num
 Employee_Name

Note: You do not have to map nodes to the generated keys. The Data Integration Service creates the key
values at run time.

The Developer tool can create generated keys to multiple levels in one output group. The Employees group
might contain the following ports:

Employees
 Key_Employees
 Key_Departments
 Key_Managers
 Employee_Num
 Employee_Name

Key_Departments and Key_Managers are the generated keys that point to parent groups. Key_ Employees is a
generated key for the Employees group. Key_Employees appears when you relate a child group to the
Employees group.

Denormalized Relational Output
You can denormalize relational output. When you denormalize the output data, the element values from the
parent group repeat for each child element.

To denormalize output data, map nodes from the parent hierarchy level to the child group of output ports.

The following example shows the Department_ID and the Department_Name in the Employees output group:

Employees
 Department_ID
 Department_Name
 Employee_ID
 Employee_Name

Department_ID and Department_Name repeat for each employee in the department:

Department_ID Department_Name Employee_ID Employee_Name
100 Accounting 56500 Kathy Jones
100 Accounting 56501 Tom Lyons
100 Accounting 56509 Bob Smith

66 Chapter 7: Parsing Web Service SOAP Messages

Pivoted Relational Output
You can include a specific number of multiple-occurring elements in an output group.

To pivot multiple-occurring elements, map the multiple-occurring child element to the parent group of output
ports. The Developer tool prompts you to define the number of child elements to include in the parent.

The following example shows two instances of Employee_ID in the Departments parent group:

Departments
 Department_ID
 Department_Name
 Employee_ID1
 Employee_ID2

Parsing anyType Elements
The anyType element represents a choice of all global types in a WSDL or schema. When you map nodes to
ports in the Developer tool, you choose which types to appear in the SOAP message for the anyType element.
You must replace an anyType element in the SOAP message with a complex type or xs:string. Create groups
of ports for each type that you choose.

You must choose a type to map data to output ports. If the WSDL or schema does not contain a global type,
the Developer tool replaces the anyType element with xs:string.

To choose an element type in the Operation area, click Choose in the Type column for the anyType element.
A list of available complex types and xs:string appears.

When you replace an anyType element with derived types, the Data Integration Service populates elements
for one type at a time. The SOAP message does not contain data for the base type and the derived type at the
same time.

Derived Types Example

The WSDL contains an anyType element. You replace the element with AddressType and a derived type called
USAddressType. The SOAP message hierarchy has the following groups:

 Address:AddressType (base type)
 Address: AddressType
 Street
 City

 Address:USAddressType (derived type)
 Street
 City
 State
 ZipCode

The SOAP message contains the following data:

<address xsi: type ="AddressType">
<street>1002 Mission St.</street>
<city>san jose</city>
</address>

<address xsi:type="USAddressType">
<street>234 Fremont Blvd</street>
<city>Fremont</city>
<zip>94556</zip>
<state>CA</state>

Parsing anyType Elements 67

</address>

The Data Integration Service returns one row for xsi: AddressType:

Street City
1002 Mission St. San Jose

The Data Integration Service returns one row for the derived type xsi: USAddressType:

Street City State Zip
234 Fremont Blvd. Sunnyvale CA 94556

The Data Integration Service does not populate the AddressType if the type is xsi: USAddressType.

Parsing Derived Types
You can parse SOAP messages that contain derived types. When you define the ports that receive the data
from the SOAP message, choose which types might appear in a SOAP message. The elements in the types
you choose determine the ports that you need to create.

For example, the WSDL might contain an AddressType and a derived type called USAddressType. You can
create the following groups in the Developer tool Operation area:

 Address
 Address: AddressType
 Street
 City

 Address:USAddressType
 Street
 City
 State
 ZipCode

The SOAP message might contain the following data:

<address>
<street>1002 Mission St.</street>
<city>san jose</city>
</address>

<address xsi:type="USAddressType">
<street>234 Fremont Blvd</street>
<city>Fremont</city>
<zip>94556</zip>
<state>CA</state>
</address>

<address xsi:type="USAddressType">
<street>100 Cardinal Way</street>
<city>Redwood City</city>
<zip>94536</zip>
<state>CA</state>
</address>

<address>
<street>100 El Camino Real</street>
<city>Sunnyvale</city>
</address>

68 Chapter 7: Parsing Web Service SOAP Messages

The Data Integration Service returns the following rows for the base type, Address:

Street City
1002 Mission St. San Jose
234 Fremont Blvd Sunnyvale
100 Cardinal Way Redwood City
100 El Camino Real Sunnyvale

The Data Integration Service returns the following rows for the derived type, USAddress:

Street City State Zip
234 Fremont Blvd. Sunnyvale CA 94556
100 Cardinal Way Redwood City CA 94536

The Data Integration Service returns all addresses in the base type. The Data Integration Service returns US
Addresses in the derived type. The derived type includes the Street and City elements that the
USAddressType inhertits from the base type.

Parsing QName Elements
When Data Integration Service parses QName elements in the SOAP message, it updates QName values that
belong to the namespace of the schema to use the namespace prefix defined in the schema. Otherwise, Data
Integration Service does not update the value of the element.

For example, the schema has the namespace prefix tns defined for namespace "http://user/test". The
SOAP message has namespace prefix mytns defined for the same namespace. When the Data Integration
Service parses Qname value mytns:myelement it changes the value to tns:myElement.

When Data Integration Service generates QName elements in the SOAP message, it does not update the
value of the element.

Parsing Substitution Groups
A substitution group replaces one element with another element from the same group. Substitution groups
are similar to derived types, except that each element definition includes a substitution group name.

You can configure an output group of ports that receives elements from a specific type in a substitution
group. You can create a different output group of ports that receives an element from another type in the
substitution group.

Parsing XML Constructs in SOAP Messages
A SOAP message might contain XML constructs such as choice, list, and union elements.

Web service transformations can parse SOAP messages with these constructs with some limitations.

Parsing QName Elements 69

Choice Element
A choice element restricts a child element to one of the elements in the <choice> declaration.

The following text shows a person element that is an employee or a contractor:

<xs:element name="person">
 <xs:complexType>
 <xs:choice>
 <xs:element name="employee" type="employee"/>
 <xs:element name="contractor" type="contractor"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

You can map choice elements using the following methods:

• Create output ports for each choice element in an output group. Some elements will have null values in
the output row.

• Create an output group for each choice. For the above example, create an employee group and a
contractor group. The Data Integration Service generates a row based on which element appears in the
SOAP message.

List Element
A list is an XML element that can contain multiple simple type values, such as "Monday Tuesday Wednesday".

The Data Integration Service can return a list as a string value. When the SOAP message contains a list, you
cannot map items from the list to separate output rows. You can configure an Expression transformation to
separate the elements in the list if you need them separated in a mapping.

Union Element
The union element is a simple type that is a union of more than one type.

The following text shows an element Size that is a union of two simple types, size_no and size_string:

<xs:element name="Size">
 <xs:simpleType>
 <xs:union memberTypes="size_no size_string" />
 </xs:simpleType>
</xs:element>

To map the size to an output port, create one port for the size. Configure the output port as a string. You can
configure another transformation in the mapping to convert the data to another type.

70 Chapter 7: Parsing Web Service SOAP Messages

C h a p t e r 8

Generating Web Service SOAP
Messages

This chapter includes the following topics:

• Generating Web Service SOAP Messages Overview, 71

• Transformation User Interface, 72

• Port and Hierarchy Level Relationships , 73

• Keys, 74

• Map Ports, 75

• Pivoting Multiple-Occurring Ports , 77

• Map Denormalized Data, 78

• Derived Types and Element Substitution, 79

• Generating XML Constructs in SOAP Messages, 81

Generating Web Service SOAP Messages Overview
The Data Integration Service generates XML data from groups of input data when it generates a SOAP
message. When you create a Web Service Consumer transformation, a web service Output transformation, or
a Fault transformation, you configure which input ports to map to the SOAP message hierarchy.

To configure a transformation to generate a SOAP message, create groups of input ports and map each
group to a group in the SOAP message hierarchy. A WSDL or schema defines the structure of the SOAP
message.

You can configure groups of data in the SOAP message from denormalized input data. You can also pivot
multiple-occurring input data to multiple-occurring nodes in the SOAP message.

You can map data to derived types, anyType elements, or substitution groups in a SOAP message. You must
choose which types can occur in the SOAP message when you define a transformation. The types that you
choose determine the input ports that you need to create.

When you view the SOAP message hierarchy in the Developer tool, the hierarchy contains keys. The keys do
not appear in the SOAP message. The Data Integration Service uses keys to define parent-child relationships
between groups in the SOAP message. To configure key values, map input data to keys in the SOAP
message.

71

Transformation User Interface
The web services Output transformation, the Fault transformation, and the Web Service Consumer
transformation contain a user interface that you use to configure the SOAP message.

To configure a transformation to generate a SOAP message, create input ports in a structure similar to the
SOAP message hierarchy. The WSDL or schema determines the structure of the hierarchy. Map each input
port to a node in the SOAP message.

The following figure shows a mapping between the input ports and the SOAP message nodes in a web
service Output transformation:

Input Ports Area
Create groups of input ports in the Input Ports area. Include input ports for each level in the SOAP message
hierarchy that you need to map.

You must create a Response or Request input group and the child groups that receive the data.

When you create input port groups, define a primary key in each parent group. Define a foreign key in each
child group. The foreign key relates the group to a parent group.

You do not have to define keys for the Response level or the WSDL root level unless you are passing data at
the WSDL root level. For example, the root level might contain HTTP headers.

You might create groups of ports similar to the following groups for customers and orders:

Response
 Response_Key

 Customer_Details_Root
 Key_Cust_Det
 FK_Response_Key

 Customer
 Customer_ID
 FK_Cust_Det
 Name
 Address

 Orders
 Order_Num
 FK_Cust_ID

72 Chapter 8: Generating Web Service SOAP Messages

 Order_Items
 Order_Num
 Item
 Count
 Price

Operation Area
The Operation area shows the elements in the SOAP message hierarchy as defined by the WSDL or schema.
The SOAP message does not have to contain all the elements from the WSDL or schema. The message
contains the data that you map from the input ports.

Multiple-occurring nodes and complex nodes define hierarchy levels in the SOAP message structure. The
Developer tool adds keys to the levels to create parent-child relationships between them. All levels in the
hierarchy, except for the leaf levels, have a primary key. Each child level has a foreign key to a parent level.
The keys that appear in the SOAP message hierarchy do not appear in a SOAP message instance. The Data
Integration Service requires values in the keys to relate levels of the data when it generates the SOAP
message.

The Location column contains the group name and input port that contains the data for an element in the
SOAP message. The Location column is empty until you map an input port to the node.

In the preceding figure, the SOAP message contains a single instance of customer details and orders. The
Orders group contains a multiple-occurring element called Order. The SOAP message hierarchy has the
following levels related by key:

Response
 GetCustomerDetailsResponse
 GetCustomerDetailsResult
 Orders
 Order

The Response level represents the root of the response message. The Data Integration Service requires this
level to attach headers to the SOAP message.

The GetCustomerDetailsResponse level is the root of the message.

Port and Hierarchy Level Relationships
When you map input ports to the SOAP message hierarchy, you maintain a relationship between an input
group and a SOAP message hierarchy level. For example, you might have two input groups, Department and
Employee.

The Department input group receives the following rows:

Dept_num Name Location
101 HR New York
102 Product California

The Employee input group receives the following rows:

Dept_num Employee
101 Alice
101 Bob
102 Carol
102 Dave

Port and Hierarchy Level Relationships 73

Map the department number in the Employee group as a foreign key that establishes the relationship
between the Department and the Employee group. The department number occurs in the department
hierarchy level, but not the employee level.

The SOAP message contains the following XML structure:

<department>
 <dept_num>101</dept_num>
 <name>HR</name>
 <location>New York</location>

 <employee>
 <name>Alice</name>
 </employee>

 <employee>
 <name>Bob</name>
 </employee>
</department>

<department>
 <dept_num>102</dept_num>
 <name>Product</name>
 <location>California</location>

 <employee>
 <name>Carol</name>
 </employee>

 <employee>
 <name>Dave</name>
 </employee>

</department>

Keys
A SOAP message hierarchy includes keys. The Data Integration Service requires key values to construct the
XML hierarchy in the SOAP message.

You must map input port data to the keys in the SOAP message hierarchy. Map data to the keys in each level
that you are providing data. When you have a multiple-occurring node, you need to relate the node to a
parent.

The keys appear in the SOAP message without types. Any port that you map to a key must be a string,
integer, or bigint datatype. The primary key in the parent group and the foreign key in each child group must
have the same datatype, precision, and scale. You can map generated keys to the SOAP message keys.

You can map a port to a node and to a key in the same hierarchy level. For example, you map Employee_ID to
a node in the SOAP message and you map it to a key in the Employee level.

If two group nodes in the hierarchy have a parent-child relationship, complete the following tasks:

• Map a port to the primary key in the parent node group.

• Map a port to the foreign key in the child node group.

You can also map primary keys to input ports to remove rows with a primary key of null or with duplicate
primary keys.

You can create a composite key in a SOAP message by mapping multiple ports to the same key. Use
composite keys when you need to denormalize data and maintain unique keys for some multiple-occurring
combinations of values. You can create composite keys that contain strings, bigint, or integer values.

74 Chapter 8: Generating Web Service SOAP Messages

Note: You can include an Expression transformation in the operation mapping to generate key values.

Composite Key Example

Configure a unique division-department key from the following groups of ports:

Company
 Company_Num
 Company_Name

 Division
 Company_Num
 Divison_Num
 Division_Name

 Department
 Division_Num
 Dept_Num
 Dept_Name
 Location

The Dept_Num is unique within a division, but Dept_Num is not unique for all divisions in the Company.

You might configure a Department group that contains the division and the department information.
Configure the division number and the department number as part of the composite key:

 Department
 Division_Num + Dept_Num (key)
 Dept_Name
 Location

The order that you map the ports determines the key value.

Map Ports
After you create input ports, map each input port to the SOAP message hierarchy. The location of the port
appears next to the node in the Operation area.

You can map ports to the following types of nodes:

Atomic node

A simple element or an attribute that has no children and is not divisible.

Multiple-occurring atomic node

A simple element or an attribute that occurs multiple times at the same location in the hierarchy.

Complex node

An element that contains other elements.

If the parent node does not have a location, the parent node receives the input group name as the location.
When the parent node has a location, each node in the hierarchy level must have an output location from the
same location.

You can map an input group name to a parent node in a hierarchy level. The Developer tool updates the
location field for the parent node in the hierarchy. The Developer tool does not update the child nodes that
belong to the group in the hierarchy. When you map input ports to the child nodes, each input port location
must be the same location as the location parent node.

Map Ports 75

After you map an input group to a hierarchy level, you can change it later. You can click Clear or you can
delete the lines between the Ports and the Operation area. To delete the lines, drag the pointer of the lines to
select them. Click Delete.

Map a Port
When you map a port to a node in the SOAP message, the Developer tool provides different results based on
the type of node to which you map the port.

The following table describes the results when you map a single port to different target nodes in the
Operation area:

Target Node Results

Atomic node When you map a single port to a node and the parent node does not have a location, the node
receives the location of the port. The parent node location receives the location of the input
group for the single port. When you map a single port to a node and the parent node already has
a location, you can change the location for the parent node and clear the location for the other
child nodes in the same level. The hierarchy level location changes to the group name of the
port.

Multiple-occurring
atomic node or
the primary key of
the multiple-
occurring atomic
node

When you map a single port to the multiple-occurring atomic node, the Developer tool sets the
location for the atomic node to the group of the selected port.

Complex node When you map a single port to a complex node, the Developer tool sets the location of the
complex node to the location of the group that contains the port. The Developer tool prompts you
for the single occurring atomic node to assign the port to.
If all single-occurring atomic nodes have a location, you cannot map the complex node.

Map a Group
When you map an input group to a node in the SOAP message, the Developer tool provides different results
based on the type of node that you map the port to.

The following table describes the results when you map a group to a node in the Operation area:

Target Node Results

Atomic node You cannot map a group to an atomic node.

Multiple-occurring atomic
node

You are prompted to choose a port in the input group to update the location for the node
and primary key.

Multiple-occurring
complex node

The Developer tool sets the location for the complex node to the location of the group.

76 Chapter 8: Generating Web Service SOAP Messages

Map Multiple Ports
When you map multiple ports to a node in the SOAP message, the Developer tool provides different results
based on the type of node you map the ports to. You can map multiple ports at the same time if you map
them from the same group.

The following table describes the results for the node when you map multiple ports to nodes:

Target Node Results

Single atomic
node

When you map multiple ports to a single node, you update the location for more than one single
atomic node in the Operation area. If the hierarchy does not have enough nodes in the level to
update, the Developer tool maps ports just for the available nodes.

Multiple-
occurring atomic
node

When you map multiple ports to multiple-occurring atomic node, you pivot the ports into multiple
occurrences of the node. The Developer tool creates instances of the node based on how many
ports you map. A message appears that describes the number of ports that you projected.

Multiple-
occurring
complex node

When you map multiple ports to a complex node, you must select which single-occurring nodes
atomic nodes to update. You pivot the ports into multiple occurrences of the node. The Developer
tool creates instances of the node based on how many ports you map.

Pivoting Multiple-Occurring Ports
You can map multiple input ports to a multiple-occurring node in the SOAP message. The Developer tool
pivots the input data into multiple nodes in the SOAP message.

To change the number of elements to pivot, choose Override existing pivoting in the Map Options dialog box.

If you remove one of the pivoted port instances from the Ports area, the Developer tool removes all instances
from the Operation area.

Pivoting Example

An input group might have the following rows:

Num Name Location emp_name1 emp_name2 emp_name3
101 HR New York Alice Tom Bob
102 Product California Carol TIm Dave

Each row contains a department number and three employees names.

Employee is a multiple-occurring node in the SOAP message hierarchy. You can map all instances of
Employee from the input row to the SOAP message hierarchy. Select all occurrences of Employee. Click Map.
The Map Options dialog box prompts you to choose a node from the list.

The Developer tool changes the Employee node to include the multiple name nodes in the SOAP message
hierarchy:

Department
 num
 name
 location
 Employee (unbounded)
 emp_name1
 emp_name2
 emp_name3

Pivoting Multiple-Occurring Ports 77

The SOAP message returns the following hierarchy:

<department>
 <num>101</num>
 <name>HR</name>
 <location>New York</location>
 <employee>
 <emp_name>Alice</name>
 </employee>
 <employee>
 <emp_name>Tom</name>
 </employee>
 <employee>
 <emp_name>Bob</name>
 </employee>
</department>

<department>
 <num>102</num>
 <name>Product</name>
 <location>California</location>
 <employee>
 <emp_name>Carol</name>
 </employee>
 <employee>
 <emp_name>Tim</name>
 </employee>
 <employee>
 <emp_name>Dave</name>
 </employee>
 </department>

Map Denormalized Data
You can map denormalized data and pass it to normalized nodes in a SOAP message.

When you map denormalized data, you pass data from one input group to multiple nodes in the SOAP
message hierarchy. You can create group relationships in the SOAP message similar to the following types of
relationships:

Linear Node Relationship

Node A is parent to Node B. Node B is a parent to Node C. Node C is the parent of Node D.

Hierarchical Node Relationship

Node A is a parent to Node B. Node A is also a parent to Node C. Node B and Node C are not related.

The following table shows input rows that contain denormalized division and department data:

Division Dept_Num Dept_Name Phone Employee_Num Employee_Name
01 100 Accounting 3580 2110 Amir
01 100 Accounting 3580 2113 Robert
01 101 Engineering 3582 2114 Stan
01 101 Engineering 3582 2115 Jim
02 102 Facilities 3583 2116 Jose

The input data contains unique employee numbers and names. The division and department data repeat for
each employee in the same department and division.

78 Chapter 8: Generating Web Service SOAP Messages

Linear Group Relationship

When you configure ports, you can configure a separate group for Division, Department, and Employee.
Division is a parent of Department, and Department is the parent of Employee. You can configure groups in
the following linear structure:

Division
 Division_Key
 Division_Num
 Division Name

 Department
 Department_Key
 Division_FKey
 Dept_Num
 Dept_Name
 Phone

 Employee
 Department_Fkey
 Employee_Num
 Employee_Name

The SOAP message contains unique instances of Division and Department although Division_Num and
Dept_Num repeat in the input data. Define the Division_Num as the primary key in the Division group. Define
Dept_Num as the primary key in the Department group.

Hierarchical Group Relationship

You can create a group hierarchy that contains the Division parent group and Department and Employee child
groups. Department and Employee do not have a primary key-foreign key relationship. Department and
Employee are children of Division. You can configure the groups in the following structure:

Division
 Division_Key
 Division_Num
 Division_Name

 Department
 Division_FKey
 Dept_Num
 Dept_Name

 Employee
 Division_FKey
 Employee_Num
 Employee_Name

Derived Types and Element Substitution
You can map input ports to derived complex types, anyType elements, and substitution groups in a SOAP
message. The SOAP message can include elements for the base type and the derived types.

In a type relationship, the base type is the type from which you derive another type. A derived type inherits
elements from the base type. An extended complex type is a derived type that inherits elements from a base
type and includes additional elements. A restricted complex type is a derived type that restricts some
elements from the base type.

Derived Types and Element Substitution 79

Generating Derived Types
When a WSDL or schema includes derived types, you must choose the types that you want to include in the
SOAP message.

For example, the WSDL defines a base type AddressType. The WSDL also contains a USAddressType and a
UKAddressType that are the derived AddressTypes.

Each type contains the following elements:

• AddressType: street, city

• USAddressType (extends AddressType): state, zipCode

• UKAddressType (extends AddressType): postalCode, country

When you choose a USAddressType in the Operation area, the Developer tool creates a group for the
USAddressType element in the SOAP message. The group includes the street and city from the base address
and the state and zipCode for the USAddress. Derived types that extend base types always include the
elements from the base type.

If you choose all of the available derived types for the SOAP messsage, the Developer tool creates groups
similar to the following in the SOAP hierarchy:

 Address
 Address: Address
 Street
 City

 Address:USAddressType
 Street
 City
 State
 ZipCode

 Address: UKAddressType
 Street
 City
 PostalCode
 Country

You need to define input port groups for Address, USAddress, and UKAddress.

Generating anyType Elements and Attributes
Some schema elements and attributes allow any type of data in a SOAP message.

The anytype element represents a choice of all globally known types. Before you map a port to an anyType
element in a SOAP message, choose an available complex type or xs:string. If the WSDL or schema does not
contain a complex type, the Developer tool replaces the anyType element type with xs:string.

To choose an element type in the Operation area, click Choose in the Type column for the anyType element.
A list of available complex types and xs:string appears.

The following element and attributes allow any type of data:

anyType element

Allows an element to be any datatype in the associated XML file.

anySimpleType element

Allows an element to be any simpleType in the associated XML file.

ANY content element

Allows an element to be any global element defined in the schema.

80 Chapter 8: Generating Web Service SOAP Messages

anyAttribute attribute

Allows an element to be any attribute already defined in the schema.

Generating Substitution Groups
Use substitution groups to replace one element with another in a SOAP message. Substitution groups work
similarly to derived types, except that the element definitions include a substitution group name.

For example, you might have a base type Address and the derived types USAddress and UKAddress:

xs:element name="Address" type="xs:string"/>
<xs:element name="USAddress" substitutionGroup="Address"/>
<xs:element name="UKAddress" substitutionGroup="Address"/>

When you configure the SOAP message hierarchy, you can choose which element to substitute for Address in
the SOAP message.

Generating XML Constructs in SOAP Messages
A WSDL or schema can contain choice, list, or union elements. Web service transformations can generate
SOAP messages that contain these elements.

Choice Element
A choice element restricts a child element to one of the elements in the <choice> declaration.

To map ports to a SOAP message that contains choice elements, create one input group that includes all the
elements in the choice construct. For example, an item description might be a dimension or a weight:

item: description, choice {dimension, weight}
When the description is a dimension, the description is a complex type that contains, length, width, and
height.

When the description is a weight, the description is a simple string type.

The input data has the following columns and rows:

description length width height weight
box 20cm 18cm 15cm NULL
coffee NULL NULL NULL 500g

The SOAP message contains an Item group that contains dimensions or weight descriptions:

Item
 Description
 Dimension
 Length
 Width
 Height
 Weight

The NULL values in the input data become missing elements in the XML output.

The SOAP message contains the following data:

<item>
 <desc>box</desc>
 <dimension>

Generating XML Constructs in SOAP Messages 81

 <length>20cm</length>
 <width>18cm</width>
 <height>15cm</height>
 </dimension>
</item>

<item>
 <desc>coffee</desc>
 <weight>500g</weight>
</item>

List Element
A list is an XML element that can contain multiple simple type values in the same element or attribute. The
Data Integration Service can process a list in the input data if the list is represented as consolidated string of
data.

If each item in the list is a separate element, such as ClassDates1, ClassDates2, and ClassDates3, the Data
Integration Service cannot process the items as a list. You can use an Expression transformation to combine
them into a string if you need to return a list in a SOAP message.

The following input rows contain a list element called ClassDates that contains days of the week:

CourseID Name ClassDates
Math 1 Beginning Algebra Mon Wed Fri
History 1 World History Tue Thu

The Data Integration Service can return a SOAP message with the following XML structure:

<class>
 <courseId>Math 1</courseId>
 <name>Beginning Algebra</name>
 <classDates>Mon Wed Fri</classDates>
</class>
<class>
 <courseId>History 1</courseId>
 <name>World History</name>
 <classDates>Tue Thu</classDates>
</class>

Union Element
The union element is a simple type that is a union of more than one type. When a SOAP message contains a
union element, you must map a single input port that contains the data in a string.

For example, the SOAP message contains an element called size. Size is a union of integer and string:

<xs:element name="size">
 <xs:simpleType>
 <xs:union memberTypes="size_no size_string" />
 </xs:simpleType>
</xs:element>

The input rows contain items with a description and size. An item can have a numeric size, such as 42. Or, an
item can have a size that is a string value, such as large, medium, or small.

The following table shows input rows with a numeric size and a string size:

Desc Size
shoes 42
shirt large

82 Chapter 8: Generating Web Service SOAP Messages

Create one port for the item size. Map the port as a string. The SOAP message contains the following
elements:

<item>
 <desc>shoes</desc>
 <size>42</size>
</item>

<item>
 <desc>shirt</desc>
 <size>large</size>
</item>

Generating XML Constructs in SOAP Messages 83

C h a p t e r 9

Web Service Consumer
Transformation

This chapter includes the following topics:

• Web Service Consumer Transformation Overview, 84

• WSDL Selection, 87

• Web Service Consumer Transformation Ports, 87

• Web Service Consumer Transformation Input Mapping, 89

• Web Service Consumer Transformation Output Mapping, 92

• Web Service Consumer Transformation Advanced Properties, 95

• Filter Optimizations, 99

• Creating a Web Service Consumer Transformation, 101

• Web Service Consumer Transformation Example, 103

Web Service Consumer Transformation Overview
The Web Service Consumer transformation connects to a web service as a web service client to access or
transform data. The Web Service Consumer transformation is a multiple-group transformation.

A web service uses open standards, such as SOAP, WSDL, and XML. SOAP is the communications protocol
for web services. The web service client request and the web service response are SOAP messages. A WSDL
is an XML schema that describes the protocols, formats, and signatures of the web service operations.

Web service operations include requests for information, requests to update data, or requests to perform
tasks. For example, the Web Service Consumer transformation sends a SOAP request to run a web service
operation called getCustomerOrders. The transformation passes a customer ID in the request. The web
service retrieves the customer and order information. The web service returns the information to the
transformation in a SOAP response.

The Web Service Consumer transformation connects to a web service using an endpoint URL defined in the
WSDL, in a web services connection, or in an endpoint URL input port. You enable security for web services in
a web services connection.

84

SOAP Messages
The Web Service Consumer transformation uses Simple Object Access Protocol (SOAP) to exchange
information with the web services provider and to request web services. SOAP defines the format for web
service request and response messages.

When you transform data with a Web Service Consumer transformation, the transformation generates a
SOAP request and connects to the web service. The transformation connects to the web service using an
endpoint URL defined in the WSDL object, in a web services connection, or in an endpoint URL input port. The
SOAP request contains the information that the web service requires to run the requested operation. The web
service operation returns data to the transformation in a SOAP response. The transformation maps data from
the SOAP response and returns the data in output ports.

The Web Service Consumer transformation encodes the SOAP message headers in ISO-8859-1.

The transformation can process SOAP messages with document/literal encoding. The document/literal style
requires an XML schema to describe the SOAP message. SOAP messages are formed from the XML. When a
SOAP message contains multiple-occurring elements, the groups of elements form levels in the XML
hierarchy. The groups are related when one level is nested within another.

A SOAP request message can contain hierarchical data. For example, the Web Service Consumer
transformation sends a request to add customer orders to a sales database. The transformation passes two
groups of data in a SOAP request message. One group contains a customer ID and name, and the other group
contains order information. The order information occurs multiple times.

A SOAP response message can contain hierarchical data. For example, the Web Service Consumer
transformation generates a SOAP request for customer orders. The web service returns an order header and
multiple-occurring order detail elements in the SOAP response.

WSDL Files
A WSDL file contains a description of the data to be passed to the web service so that the sender and the
receiver understand the data to exchange. You must import a WSDL file to the repository before you can
create a Web Service Consumer transformation.

The WSDL describes the operations to perform on the data and a binding to a protocol or transport, so that
the web service consumer can send the request message in the correct format. The WSDL describes the
network address to connect to the web service.

The WSDL includes information about how to encode SOAP request and response messages. SOAP encoding
determines the format of the SOAP message body. It describes the format for request and response
messages that the web service uses to communicate to the web service consumer. Web service developers
can use a variety of toolkits to create web services. Toolkits support different ways of encoding SOAP
messages.

The Web Service Consumer transformation supports the document/literal SOAP encoding style. You can use
WSDL 1.1 with the Web Service Consumer transformation. You cannot use WSDL attachments such as MIME,
DIME, and MTOM messages.

Operations
A web service contains an operation for each action supported by the web service.

For example, a web service can have an operation named getcustomerid that receives a customer name and
responds with the customer details. The operation input includes an element for the customer name. The
operation output includes elements for customer details based on the customer name.

Web Service Consumer Transformation Overview 85

When you configure a Web Service Consumer transformation, you define how the transformation maps data
to the operation input and how the transformation maps data from the operation output. You configure the
following information in the transformation:

Input mapping

Define how to map the transformation input ports to the web service operation input nodes. The
operation input defines the elements in the SOAP request for the operation.

Output mapping

Define how to map the web service operation output nodes to the transformation output ports. The
operation output defines the elements in a SOAP response for the operation.

Web Service Security
You enable security for web services in a web services connection. You can configure the following types of
security:

Web Service Security

The Data Integration Service can include a web service security header when it sends a SOAP request to
the web service provider. The web service security header contains authentication information so the
web service provider can authenticate the Data Integration Service.

The Web Service Consumer transformation supplies the user name token. The Data Integration Service
creates a separate security SOAP header in the SOAP request and passes the request to the web service
provider.

You can use the following types of web service security in a web services connection:

• PasswordText. The Data Integration Service does not change the password in the WS-Security SOAP
header.

• PasswordDigest. The Data Integration Service combines the password with a nonce and a time
stamp. The Data Integration Service applies a SHA hash on the password, encodes it in base64
encoding, and uses the encoded password in the SOAP header.

Transport layer security

Security implemented on top of the transport layer (TCP layer) of TCP/IP using Secure Sockets Layer
(SSL). Web services use Hypertext Transfer Protocol over SSL (HTTPS) as a web address for secure
message transport. Web Service Consumer transformations can use TLS 1.2, TLS 1.1, or TLS 1.0. You
can use the following authentication with transport layer security: HTTP authentication, proxy server
authentication, and SSL certificates.

SSL authentication

You can use SSL authentication when you connect through the HTTPS protocol.

You can use the following types of SSL authentication:

• One-way SSL authentication

• Two-way SSL authentication

HTTP authentication

You can use HTTP authentication when you connect through the HTTP protocol.

You can use the following HTTP authentication methods:

• Basic authentication

• Digest authentication

86 Chapter 9: Web Service Consumer Transformation

• NT LAN Manager (NTLM) authentication

WSDL Selection
Before you create a Web Service Consumer transformation, you must import a WSDL file into the model
repository. The WSDL defines the operation signature of the web service you want to run. When you import a
WSDL, the Developer tool creates a physical data object that you can reuse for other transformations.

A WSDL can define multiple operations. When you create a Web Service Consumer transformation, select
which operation you want to run. You can view the operation input and the operation output hierarchies in the
Web Service Consumer transformation. The hierarchies define the structure of the SOAP request message
and the SOAP response message.

You can also import a WSDL with one-way input operation. You must create dummy output ports when you
import a WSDL with one-way input operation.

Web Service Consumer Transformation Ports
When you view the transformation ports, show the ports if you do not need to view the operation hierarchy.
When you show the ports, you can define groups, define ports, and map nodes from the operation output to
the output ports.

The following figure shows the ports for a non-reusable Web Service Consumer transformation:

A Web Service Consumer transformation can have multiple input groups and multiple output groups. When
you create ports, create groups and add the ports to the groups. Define the ports in a group hierarchy based
on the structure of the operation input or operation output hierarchy. Add a key to relate a child group to a
parent group. All groups except the lowest group in the hierarchy must have primary keys. All groups in the
hierarchy except the root group must have foreign keys.

WSDL Selection 87

The transformation has a root input group named RequestInput. You must add a primary key to the root input
group. The key must be string, bigint, or integer.

You can add additional pass-through ports to the root input group. Pass-through ports pass data through the
transformation without modifying the data. The pass-through port can occur one time in the input data. You
can add the pass-through port to any output group. Associate the output port to the input port. The input
value that you pass through a SOAP request repeats in the output rows from the SOAP response.

You can also add HTTP headers, cookie ports, a dynamic URL port, and ports for web service security
authentication to the root input group. Data in the root group occurs one time.

To map an operation output node to an output port, click the field in the Location column and expand the
hierarchy in the Select Location dialog box. Then, choose a node from the hierarchy.

HTTP Header Input Ports
A web service might require additional HTTP headers. You can create input ports in the root input group to
pass the additional header information to the web service provider.

To add an HTTP header and an HTTP port, select the root input group and click the arrow next to the New
button. Then, click HTTP Header. Enter a header name and port name.

You can create multiple HTTP headers.

Other Input Ports
You can add predefined input ports to the Web Service Consumer transformation.

You can add the following predefined input ports:

Cookie port

You can configure the Web Service Consumer transformation to use cookie authentication. The remote
web service server tracks the web service consumer users based on the cookies. You can increase
performance when a mapping calls a web service multiple times.

When you project the cookie port to a web service request message, the web service provider returns a
cookie value in the response message. You can pass the cookie value to another transformation
downstream in the mapping or you can save the cookie value in a file. When you save the cookie value in
a file, you can configure the cookie as input to the Web Service Consumer transformation.

You can project the cookie output port to any of the Web Service Consumer transformation output
groups.

Endpoint URL port

The Web Service Consumer transformation connects to a web service using an endpoint URL. You can
define the endpoint URL in the WSDL file, in a web services connection, or in an endpoint URL input port.
When the transformation receives the URL dynamically in a port, the Data Integration Service overrides
the URL defined in the WSDL file or in the web services connection.

The Web Service Consumer transformation can have one URL port value for each web service request.
Add an Endpoint URL port to the root input group.

WS-Security ports

You enable web service security in a web services connection. When you enable web service security,
you must define the user name and password in a web services connection or in WS-Security input ports.

88 Chapter 9: Web Service Consumer Transformation

When you add WS-Security ports, you pass the user name and the password through input ports in the
transformation. When the transformation receives the user name and password dynamically in ports, the
Data Integration Service overrides the values defined in the web services connection.

Note: A web services connection has one user name and password for HTTP and WS-Security
authentication.

To add predefined input ports, click the root input group in the Ports area. Click the arrow next to the New
button and then click Other Ports. Choose the ports to add.

Web Service Consumer Transformation Input
Mapping

When you view the transformation ports, show the input mapping to view the operation input hierarchy. When
you show the input mapping, you can define input groups, define input ports, and map input ports to
operation input nodes.

The input mapping includes the following areas:

Ports

Create the transformation input groups and input ports in the Ports area.

Operation Input

The Operation Input area shows the nodes in the SOAP request message that the Web Service
Consumer transformation sends to the web service. The WSDL data object that you use to create the
transformation defines the operation input hierarchy.

The following figure shows the input mapping for a non-reusable Web Service Consumer transformation:

After you create input ports, map the input ports from the Ports area to the nodes in the Operation Input area.
When you map an input port to a node in the operation input, the location of the port appears in the Location
column in the Operation Input area.

The Developer tool maps nodes in the first level of the operation input to input ports when you choose to map
the first level of the input hierarchy. The Developer tool also creates the ports to perform the mapping. If the
first level of the hierarchy contains a multi-occurring parent node with one or more multi-occurring child
nodes, the Developer tool does not map the first level of the hierarchy.

Web Service Consumer Transformation Input Mapping 89

You can map XML data from one string or text input port to the entire SOAP request message. When you map
XML data to the entire SOAP request, you cannot map ports to nodes in the operation input.

You can choose to view the lines that connect the input ports to the nodes in the operation input.

Rules and Guidelines to Map Input Ports to Nodes
Review the following rules when you map input ports to nodes in the operation input hierarchy:

• You can map an input port to one node in the hierarchy. You can map the same port to any number of keys
in the hierarchy.

• The input port and the node must have compatible data types.

• You can map ports from one input group to multiple hierarchy levels in the operation input.

• You must map input ports to the keys in the operation input. Any port that you map to a key must be a
string, integer, or bigint datatype. Map data to the keys in all levels in the operation input above the
hierarchy level that you are including in the SOAP message. Include the foreign keys for all levels above
and including the level you are mapping.

Note: You do not have to map input ports to keys if you are mapping only the lowest level of the operation
input hierarchy.

• You can map multiple string, bigint, or integer input ports to a key in the Operation Input area to create a
composite key. When you click the Location field for a composite key, you can reorder the input ports or
remove one of the ports.

Customize View Options
You can change the operation input hierarchy to show keys in the Operation Input area. You can also show
grouping constructs that define how to order nodes.

Click the Customize View button () in the Operation Input area. Enable any of the following options:

Sequence, Choice, and All

Show a line that indicates whether an element definition is sequence, choice, or all.

Nodes in an all group must all be included in the SOAP message.

Nodes in a sequence group must be in the order specified in the WSDL.

At least one node in a choice group must appear in the SOAP message.

Keys

View the keys in the Operation Input area. The Operation Input area includes keys for each group. You
can add a key to an input port in the Ports area.

Mapping Input Ports to the Operation Input
When you show the transformation input mapping, you can define input groups, define input ports, and map
input ports to operation input nodes.

1. Open a Web Service Consumer transformation.

2. To show the transformation input mapping, use one of the following methods:

• For a reusable transformation, click the Overview view. Choose to show the input mapping.

• For a non-reusable transformation, click the Ports tab in the Properties view. Choose to show the
input mapping.

90 Chapter 9: Web Service Consumer Transformation

3. Define a primary key for the root input group.

4. To add an input group or port to the Ports area, use one of the following methods:

Option Description

Drag a node Drag a group node or a child node in the Operation Input area to an empty column in
the Ports area. If the node is a group node, the Developer tool adds a group without
ports.

Manually add a group or
port

To add a group, click the arrow next to the New button and then click Group. To add
a port, click the arrow next to the New button and then click Field.

Drag a port from another
transformation

In the editor, drag a port from another transformation to the Web Service Consumer
transformation.

Copy a port Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the copy and paste buttons in
the Developer tool.

Select Map first level of
hierarchy

Select Map first level of hierarchy. The Developer tool maps nodes in the first level
of the operation input to input ports and groups. The Developer tool also creates the
input ports and groups to perform the mapping.

5. If you manually create a port or you copy a port from another transformation, click the Location column
in the Operation Input area and choose a port from the list.

6. To map input ports as a composite key, use one of the following methods:

Option Description

Drag input ports Select two or more input ports and drag them to a key in the operation input
hierarchy.

Select input ports from the
Select Location dialog box

Click the Location column of a key in the operation input hierarchy and then
select the input ports.

7. To clear the locations of nodes, use one of the following methods:

Option Description

Click Clear Select one or more nodes in the Operation Input area and click Clear.

Delete the lines that connect
ports to nodes

Select one or more lines that connect the input ports to the nodes in the
operation input and press Delete.

8. If the associated WSDL data object includes anyType elements, any elements, anyAttribute attributes,
derived type elements, or substitution groups, choose objects in the Operation Input area. In the Type
column for a node, click Choose and then choose one or more types, elements, or attributes from the
list.

9. To map XML data from a string or text input port to the complete SOAP request, right-click the port and
select Map as XML.

Web Service Consumer Transformation Input Mapping 91

Web Service Consumer Transformation Output
Mapping

When you view the transformation ports, show the output mapping to view the operation output hierarchy.
When you show the output mapping, you can define output groups, define output ports, and map operation
output nodes to output ports.

The output mapping includes the following areas:

Operation Output

The Operation Output area shows the nodes in the SOAP response message that the web service returns
to the Web Service Consumer transformation. The WSDL data object that you use to create the
transformation defines the operation output hierarchy.

Ports

Create the transformation output groups and ports in the Ports area.

The following figure shows the output mapping for a non-reusable Web Service Consumer transformation:

After you create output ports, map the nodes from the Operation Output area to the ports in the Ports area.
When you map a node from the operation output to an output port, the location of the node appears in the
Location column in the Ports area.

The Developer tool maps nodes in the first level of the operation output to output ports when you choose to
map the first level of the output hierarchy. The Developer tool also creates the ports to perform the mapping.
If the first level of the hierarchy contains a multi-occurring parent node with one or more multi-occurring child
nodes, the Developer tool does not map the first level of the hierarchy.

You can choose to display the output ports in a hierarchy. Each child group appears under the parent group.
You can also choose to view the lines that connect the nodes in the operation output to the output ports.

If the associated WSDL data object is deleted from the repository, the Developer tool retains the location of
the operation nodes in the output mapping. When you show the output mapping, the Ports area still displays
the location of the operation nodes in the Location column for the output ports. If you associate another
WSDL with the transformation, the Developer tool checks whether each location is valid. The Developer tool
clears the location of operation nodes in the Ports area of the output mapping if the location is no longer
valid.

92 Chapter 9: Web Service Consumer Transformation

Rules and Guidelines to Map Nodes to Output Ports
Review the following rules when you map nodes in the operation output hierarchy to output ports:

• The operation output node and the output port must have compatible datatypes.

• You cannot map a node to more than one output port in a group.

• Each output port must have a valid location, unless the port is a pass-through port.

• If you drag a multiple-occurring child node to an empty output port, you must relate the group to other
output groups. When you select a group, the Developer tool creates keys to relate the groups.

• When you drag a multiple-occurring element into a group that contains the parent element, you can
configure the number of child element occurrences to include. Or, you can replace the parent group with
the multiple-occurring child group in the transformation output.

Mapping the SOAP Message as XML
You can map the complete SOAP message as XML instead of returning the data to separate output ports.

When you map the SOAP message as XML, the Data Integration Service returns the complete SOAP message
in one port. Do not create output ports.

To map the complete message, right-click the root group in the Operation Output area. Select Map as XML.

The Developer tool creates a string output port. The precision is 65535 bytes.

Customize View Options
You can change the operation output hierarchy to show the cookie ports, pass-through ports, and keys in the
Operation Output area. You can also show grouping constructs that define how to order nodes.

Click the Customize View button in the Operation Output area. Enable any of the following options:

Sequence, Choice, and All

Show a line that indicates whether an element definition is sequence, choice, or all.

Nodes in an all group must all be included in the SOAP message.

Nodes in a sequence group must be in the order specified in the WSDL.

At least one node in a choice group must appear in the SOAP message.

Keys

View the keys in the Operation Output area. The Operation Output area includes keys for each group.
You can add a key to an output port in the Ports area.

Pass-through Ports

The Operation Output area shows the pass-through ports. Pass-through ports are ports that pass data
through the transformation without changing the data. You can project pass-through ports from the
operation output to any of the Web Service Consumer transformation output groups. A pass-through port
receives data one time, so the port is at the root level in the SOAP messages.

Cookie Ports

Shows the cookie port. When you configure cookie authentication, the remote web service server tracks
the web service consumer users based on the cookies. When you project a web service cookie in the
request message, the web service returns a cookie in the response message. You can project the cookie
from the operation output to any of the Web Service Consumer transformation output groups.

Web Service Consumer Transformation Output Mapping 93

Mapping the Operation Output to Output Ports
When you show the transformation output mapping, you can define output groups, define output ports, and
map operation output nodes to output ports.

1. Open a Web Service Consumer transformation.

2. To show the transformation output mapping, use one of the following methods:

• For a reusable transformation, click the Overview view. Choose to show the output mapping.

• For a non-reusable transformation, click the Ports tab in the Properties view. Choose to show the
output mapping.

3. To add an output group or port to the Ports area, use one of the following methods:

Option Description

Drag a node Drag a group node or a child node in the Operation Output area to an empty column
in the Ports area. If the node is a group node, the Developer tool adds a group
without ports.

Manually add a group or
port

To add a group, click the arrow next to the New button and then click Group. To add
a port, click the arrow next to the New button and then click Field.

Drag a port from another
transformation

In the editor, drag a port from another transformation to the Web Service Consumer
transformation.

Copy a port Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the copy and paste buttons in
the Developer tool.

Select Map first level of
hierarchy

Select Map first level of hierarchy. The Developer tool maps nodes in the first level
of the operation output to output ports and groups. The Developer tool also creates
the output ports and groups to perform the mapping.

4. If you manually create a port or you copy a port from another transformation, click the Location column
in the Ports area and choose a node from the list.

5. To clear the locations of ports, use one of the following methods:

Option Description

Click Clear Select one or more ports in the Ports area and click Clear.

Delete the lines that connect
nodes to ports

Select one or more lines that connect the nodes in the operation output to the
output ports and press Delete.

6. If the associated WSDL data object includes anyType elements, any elements, anyAttribute attributes,
derived type elements, or substitution groups, choose objects in the Operation Output area. In the Type
column for a node, click Choose and then choose one or more types, elements, or attributes from the
list.

7. To map the complete SOAP response message as XML, right-click the root group in the Operation
Output area and select Map as XML.

94 Chapter 9: Web Service Consumer Transformation

Web Service Consumer Transformation Advanced
Properties

The Web Service Consumer transformation advanced properties include the tracing level, generic fault ports,
web services connection, and concurrent web service request messages.

You can define the following advanced properties for the Web Service Consumer transformation on the
Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

SOAP Action

Overrides the SOAP action value defined in the WSDL with a constant value for the Web Service
Consumer transformation.

Enable Generic SOAP Fault Handling

Returns fault messages that are not defined in the WSDL. Creates output ports in a GenericFault output
group to handle fault codes and messages.

The following table describes the fault output ports for SOAP 1.1 and SOAP 1.2:

Fault Output Port for
SOAP 1.1

Fault Output Port for
SOAP 1.2

Description

Fault Code Code* Returns a fault identification code.

Fault String Reason* Returns an explanation of the error in a fault
message.

Fault Detail Detail Returns custom information that the web service
provider passes to the Web Service Consumer
transformation in a generic fault message.

Fault Actor Role Returns information about the object that caused
the fault to happen.

- Node Returns the URI of the SOAP node that generated
the fault.

* The Code and Reason output ports are hierarchical.

Note: You can expand the Code fault output port to extract the SubCode fault output port upto one level.

Enable HTTP Error Handling

Returns any HTTP error from the web service. Creates an HTTP error output port in the GenericFault
output group.

Treat Fault as Error

Adds fault messages to the mapping log. When a fault occurs, the Data Integration Service increments
the error count for the mapping. Disable this property to allow early selection and push-into optimization.
Default is enabled.

Web Service Consumer Transformation Advanced Properties 95

Connection

Identifies the web services connection object to connect to the web service. Create the web services
connection in the Developer tool. Edit the web services connection in the Developer tool or the
Administrator tool. When you configure a web services connection, configure the endpoint URL, the type
of security that the web service requires, and a connection timeout period.

The Web Service Consumer transformation connects to a web service using an endpoint URL. You can
define the endpoint URL in the WSDL file, in a web services connection, or in an endpoint URL input port.

Use the following guidelines to determine when to configure a web services connection:

• Configure a connection if you want to use an endpoint URL that differs from the URL in the WSDL file
and if you are not using an endpoint URL input port.

• Configure a connection if the web service you connect to requires web service security, HTTP
authentication, or SSL certificates.

• Configure a connection if you want to change the default connection timeout period.

Note: You can associate a WSDL data object in the repository with a web services connection. The
associated connection becomes the default connection for each Web Service Consumer transformation
that you create from that WSDL.

Enable Compression

Enables coding of SOAP requests with the GZIP compression method and enables decoding of SOAP
responses with GZIP or deflate.

XML Schema Validation

Validates the SOAP response message at run time. Select Error on Invalid XML or No Validation.

Sorted Input

Enables the Data Integration Service to generate output without processing all of the input data. Enable
sorted input when the input data is sorted by the keys in the operation input hierarchy.

Push-into Optimization

Enables push-into optimization. Click the Open button in the Push-Into Optimization property to select
filter ports that receive filter values. For each filter port, choose the output port that contains the filtered
column in the web service response.

Has Side Effects

Checkbox that indicates that the web service performs any function besides returning rows. The Web
Service Consumer transformation has a side effect if the web service, in addition to returning a rows,
modifies an object or interacts with other objects or functions. The web service might modify a
database, add to a total, raise an exception, write an email, or call other web services with side effects.
Disable the Has Side Effects property in order to allow push-into optimization or early selection
optimization. Default is enabled.

Enable Concurrency

Enables the Web Service Consumer transformation to create multiple concurrent connections to a web
service so that it can send multiple web service requests in parallel. When you enable the Web Service
Consumer transformation to create multiple concurrent connections to the web service, you can set the
total memory consumption limit and the number of concurrent connection limits.

96 Chapter 9: Web Service Consumer Transformation

The following table describes the options:

Options Description

Enable concurrency Creates multiple concurrent connections to a web service.

Concurrency Connection Limit The number of concurrent web service connections. Default is 20.

Total Concurrency Memory Limit (in MB) The total memory allocation limit for all the concurrent
connections. Default is 100 MB.

Web Service Error Handling
You can configure the Web Service Consumer transformation to pass SOAP faults and HTTP errors
downstream in a mapping. You can increment the error count when a fault occurs. Configure web service
error handling in the transformation advanced properties.

A web service returns either a response message or it returns a fault. A fault is an error. The web service can
generate different faults based on the errors that occur.

The Web Service Consumer transformation can return the following types of faults:

SOAP faults

SOAP errors that the WSDL defines. Configure output error ports that return the faults in the web service
response message. For a SOAP 1.1 binding, the Data Integration Service returns the fault message, fault
code, fault string, and fault actor elements for the fault. For a SOAP 1.2 binding, the Data Integration
Service returns the fault message, code, reason, node, and role elements for the fault.

Generic SOAP faults

The web service generates generic SOAP faults at run time. The fault elements are different for a SOAP
1.1 binding and a SOAP 1.2 binding. The WSDL does not define generic SOAP faults. Generic SOAP faults
include authentication failures and SOAP request errors.

HTTP errors

The Developer tool adds the HTTP fault output port when you enable HTTP error handling in the
transformation. The Data Integration Service returns HTTP errors from the web service in a single string
port. An HTTP error includes an error code and a message.

If the SOAP response from the web service has XML data that is not valid, the Web Service Consumer
transformation returns an error.

You can configure whether to treat SOAP faults as errors. When you enable Treat Fault as Error and a SOAP
fault occurs, the Data Integration Service increments the error count for the mapping. The fault appears in the
message log.

Message Compression
When you enable SOAP message compression, the Web Service Consumer transformation compresses web
service request messages and receives compressed web service response messages.

The Web Service Consumer transformation encodes the SOAP request with GZip compression. The
transformation accepts a response message encoded with the GZip or the deflate compression.

When the Data Integration Service receives the response from the web service, it checks the Content-
Encoding HTTP header in the SOAP message and it decodes the message.

The default is no compression encoding. The web service does not compress the SOAP response.

Web Service Consumer Transformation Advanced Properties 97

The following table shows the headers in the request and response messages when compression is on or off:

Compression Header

On Content-Encoding header: GZip
Accept-Encoding header: GZip, deflate

Off Empty Content-Encoding header
Empty Accept-Encoding header

Sometimes a web service encodes a response message with a default compression. The Web Service
Consumer transformation decodes the message if it is GZip or deflate encoded. The Web Service Consumer
transformation logs a message to the mapping log if the web service encodes the response message
unexpectedly.

Enable compression in the transformation advanced properties.

Concurrency
You can enable the Web Service Consumer transformation to create multiple concurrent connections to a
web service so that it can send multiple web service requests in parallel.

For example, while querying bank information, you can configure the Web Service Consumer transformation
for concurrency so that multiple rows are sent in parallel. If there are 20 input rows, you can send 20 requests
concurrently for faster processing.

When you enable concurrency in the Web Service Consumer transformation, you can configure the total
memory consumption limit.

When you enable concurrency in the Web Service Consumer transformation, you can configure the number of
concurrent web service connections.

Rules and Guidelines for Concurrency
Use the following rules and guidelines while using concurrency:

• Concurrency supports sorted input rows as multiple concurrent connections to a web service. Ordered
output rows are not supported.

• Use concurrency if the data set is more than 100 rows.

• It is advisable not to increase the number of concurrent web service connections. The number of
concurrent web service connections is linked to the number of sockets used by the operating system.
Increasing the number of sockets is expensive.

• Use systems that have multi-core processors with a minimum of 100 MB of RAM for optimal performance
while using the concurrency feature.

• Concurrency memory limit represents the memory consumed by concurrent work flows while invoking
web services.

• When you enable concurrency in the Web Service Consumer transformation, you can configure the
memory consumption limit. Ensure that the memory consumption is not more than the physical RAM on
the server.

98 Chapter 9: Web Service Consumer Transformation

Best Practices for Concurrency
For optimal performance while using concurrency, adhere to the following best practices:

• Avoid changing the default values of the total concurrency memory limit and concurrency connection
limit.

• Avoid using concurrency for data sets of less than 100 rows.

• Avoid pass-through ports in the mapping while using concurrency.

Filter Optimizations
Filter optimization increases performance by reducing the number of rows that pass through the mapping.
The Data Integration Service can apply the early selection optimization or push-into optimization.

When the Data Integration Service applies a filter optimization method, it moves a filter as close to the source
as possible in a mapping. If the Data Integration Service cannot move a filter before a transformation in a
mapping, it might be able to push the filter logic into a transformation.

Enabling Early Selection Optimization with the Web Service
Consumer Transformation

Enable early selection optimization for the Web Service Consumer transformation if the transformation does
not have side effects and it does not treat faults as errors.

1. Open the Web Service Consumer transformation Advanced Properties view.

2. Clear Treat Fault as Error.

3. Clear Has Side Effects.

Push-Into Optimization with the Web Service Consumer
Transformation

You can configure push-into optimization with the Web Service Consumer transformation when the
transformation is in a virtual table in an SQL data service.

The mapping calls the web service to retrieve a set of data or a subset of the data based on the statements in
the end-user SQL query. The end-user SQL query contains an optional filter condition.

With push-into optimization, the Web Service Consumer transformation receives the filter value in a filter
port. The filter port is an unconnected input port that you identify as a filter port when you configure push-
into optimization. The filter port has a default value that ensures that the web service returns all rows if the
end-user query contains no filter. The filter port is not a pass-through port.

Note: The filter field must be part of the root group in the web service request.

When you configure a filter port, you identify an output port in the Web Service Consumer transformation that
receives the column data from the web service response. For example, if the filter port is an input port named
EmployeeID, the output port from the response might be a port named EmployeeNum. The Developer tool
needs to associate the input filter port and an output port in order to push the filter logic from the virtual table
read to the web service consumer request. The input ports for a web service request are usually different
than the output ports from the web service response.

Filter Optimizations 99

The filter field cannot be a pass-through port. When you configure a filter port, the default value of the port
changes to the value of the filter condition, so the pass-though output port value changes. A filter based on
the output pass-through port returns unexpected results.

You can push multiple filter expressions to the Web Service Consumer transformation. Each filter condition
must be the following format:

<Field> = <Constant>

The filter conditions must be joined by AND. You cannot join the conditions with an OR.

Push-Into Optimization with Web Service Consumer Transformation Example
An SQL data service returns orders for all customers or it returns orders for a specific customer based on the
SQL query it receives from the user.

The data service contains a logical data object with the following components:

Customer table

An Oracle database table that contains customer information.

Web Service Consumer transformation

A transformation that calls a web service to retrieve the latest orders for customers. The Web Service
Consumer transformation has input ports for customerID and orderNum. The transformation has pass-
through ports that contain customer data that it receives from the Customer table. The orderNum port is
the filter port and is not connected. orderNum has the default value "*". When the web service receives
this value in the web service request, it returns all orders.

Orders virtual table

A virtual table that receives the customer and order data from the web service. The end-user queries this
table. Orders contains a customer column, orderID column, and customer and order data.

The end-user passes the following SQL query to the SQL data service:

SELECT * from OrdersID where customer = 23 and orderID = 56

The Data Integration Service splits the query to optimize the mapping. The Data Integration Service uses
early selection optimization and moves the filter logic, customer = 23, to the Customer table read. The Data
Integration Service uses push-into optimization and pushes the filter logic, orderID = 56, into the Web
Service Consumer transformation filter port. The Web Service Consumer transformation retrieves ordersID 56
for customer 23.

Enabling Push-Into Optimization with the Web Service Consumer
Transformation
Enable push-into optimization for the Web Service Consumer transformation if the transformation does not
have side effects and it does not treat faults as errors.

1. Open the Web Service Consumer transformation Advanced Properties view.

2. Clear Treat Fault as Error.

3. Clear Has Side Effects.

4. Click the Open button in the Push-Into Optimization property.

5. Choose the filter port name in the Optimized Input dialog box.
You can choose multiple filter ports.

6. Click the Output column.

100 Chapter 9: Web Service Consumer Transformation

7. For each filter port, choose the output port that contains the filtered column in the web service response.

8. Enter a default value for each filter port.

Note: You cannot configure a default value for a Web Service Consumer port unless it is a filter port.

Creating a Web Service Consumer Transformation
You can create a reusable or non-reusable Web Service Consumer transformation. Reusable transformations
can exist in multiple mappings. Non-reusable transformations exist within a single mapping.

You can create Web Service Consumer transformations for a SOAP 1.1 binding and a SOAP 1.2 binding from
a single WSDL object.

1. To create a transformation, use one of the following methods:

Option Description

Reusable Select a project or folder in the Object Explorer view. Click File > New > Transformation. Select
the Web Service Consumer transformation and click Next.

Non-reusable In a mapping or mapplet, drag a Web Service Consumer transformation from the Transformation
pallette to the editor.

The New Web Service Consumer Transformation dialog box appears.

2. Browse and select a WSDL data object to define the web service request and response messages.

If the WSDL is not in the repository, you can import the WSDL from the New Web Service Consumer
Transformation dialog box.

3. Browse and select an operation from the WSDL.

You can choose an operation that has a SOAP 1.1 binding or SOAP 1.2 binding.

4. Click Next.

Creating a Web Service Consumer Transformation 101

The Map Ports to the Operation Input screen appears. The Ports area shows the transformation input
groups and input ports. The Operation Input area shows the request message hierarchy.

5. Define the input groups and input ports and map the input ports to operation input nodes.

6. Click Next.

The Map Ports from the Operation Output screen appears. The Operation Output area shows the
response message hierarchy. The Ports area shows the transformation output groups and output ports.

7. Define the output groups and output ports, and map the operation output nodes to the output ports.

8. Click Finish.

9. Click the Advanced view to configure the transformation properties and the web services connection.

102 Chapter 9: Web Service Consumer Transformation

Web Service Consumer Transformation Example
Your organization needs to expose order information for the RT100 product line to the sales organization.
The sales team needs to query the order summary and order details on a daily basis.

Create a logical data object that exposes the daily order information in virtual tables. The read mapping
contains a Web Service Consumer transformation that returns the latest RT100 orders. The Web Service
Consumer transformation consumes a web service that returns the daily order summary and order detail
information for the RT100 product line.

Input File
The input file is a flat file that contains the product line number.

Create a physical data object to define the input file. The file has one field, Product_Line. The field value is
RT100. Define the location of the physical data object in the Runtime Properties view.

Logical Data Object Model
A business analyst in your organization creates a logical data model that describes the order summary and
order detail table structures. The logical data model contains the Order_Summary and Order_Detail logical
data objects.

The analyst creates a schema in a modeling tool that defines the logical data model. You import the logical
data model from the schema and create the Order_Summary and Order_Detail logical data objects.

Logical Data Object Mapping
The logical data object mapping describes how to access data through the logical data object.

The read mapping contains the following objects:

Product_Line

Input flat file that contains the product line number.

Exp_Curr_Date transformation

Expression transformation that returns the current date and a primary key for the Web Service Consumer
transformation root level input group.

Web Service Consumer Transformation Example 103

WSC_Order transformation

Web Service Consumer transformation that consumes a web service to retrieve order information. The
transformation passes the product line and current date to the web service in the request message. The
transformation receives order information from the web service in the response message.

Order_Summary table

A logical data object that contains order information such as Order_No, Customer_Id, Qty, and
Order_Date.

Order_Detail table

A logical data object that contains order detail information such as Order_No, Product_Id, Qty, and
Status.

Orders_Fault

Output flat file that receives generic fault messages.

Web Service Consumer Transformation
The Web Service Consumer transformation receives a product line, date, and a sequence number as input.
The transformation consumes the Get_Order_Info web service operation to retrieve the order information.

When you create the Web Service Consumer transformation, choose a WSDL data object that describes the
request and response web service messages. A web service message contains hierarchical groups of XML
elements. An element can contain other elements. Some elements occur multiple times. Create the
transformation from the Order_Info WSDL object in the repository.

Configure the transformation input ports and map the ports to the operation input hierarchy. Map nodes from
the operation output hierarchy to the output ports. Define the web services connection and run-time
properties.

Transformation Input Mapping
When you show the input mapping on the Ports view, you can define input ports and map them to nodes in
the operation input.

The transformation Ports area has a root group and an Order group. The root group is the Request input
group. Add one port to the Request input group to represent the primary key.

The Order group has the Select_Date and Select_Product_Line input ports.

Map the input ports to the Order_Date and Product_Line nodes in the Operation Input area.

The Operation Input area defines the request message that the Web Service Consumer transformation
passes to the web service. The nodes appear in the Operation Input area by default.

Transformation Output Mapping
When you show the output mapping on the Ports view, you can define the output ports by mapping nodes
from the operation output to the transformation output groups.

The web service returns the following hierarchy in a web service response message:

Response
 Orders
 Order
 Key_Order
 Order_ID
 Order_Date

104 Chapter 9: Web Service Consumer Transformation

 Customer_ID
 Total_Qty
 Order_Details
 Order_Detail
 Product_ID
 Description
 Qty
 Status

The web service returns multiple orders. Order is a multiple-occurring node in the Orders level. For each
order, the web service can return multiple order details. Order_Detail is a multiple-occurring node in the
Order_Details level.

Note: The Developer tool adds the Key_Order node in the user interface. You can map the key to output
groups to define relationships between groups. For this example, the Order_ID is the primary key in Order, and
it is the foreign key in Order_Details.

Create the following output groups in the Ports area:

Order
 Order_ID
 Order_Date
 Customer_ID
 Total_Qty
Order_Detail
 Order_ID
 Product_ID
 Description
 Qty
 Status

The Data Integration Service writes a row from the Order group whenever the value of Order_ID changes.

The Data Integration Service writes a row from the Order_Detail group whenever the values of Order_ID and
Product_ID change.

Transformation Advanced Properties
Configure the following advanced properties for the Web Service Consumer transformation:

Enable Generic SOAP Fault Handling

Adds output ports that receive SOAP fault messages.

Connection

Choose a web services connection to access the web service.

Enable Compression

The Web Service Consumer transformation compresses the web messages with GZIP.

Web Service Consumer Transformation Example 105

C h a p t e r 1 0

REST Web Services
This chapter includes the following topics:

• REST Web Services Overview, 106

• REST Web Service Process, 107

• Web Service Consumer Transformation Process, 107

• REST Web Service Resources, 108

• Resource Mappings, 111

• REST Web Service Output Transformation, 113

• Request Messages, 115

• Response Message Formats, 117

• Response Data Preview, 118

REST Web Services Overview
An Informatica REST web service processes an HTTP request for data and returns a response that is a JSON
file or an XML file.

An external application, web browser, or a REST Web Service Consumer transformation can connect to a
REST web service and send a request. The REST web service processes the request and sends a response
back to the client.

For example, a web service client sends a request to run a web service operation. The web service client
passes a customer ID in the request. The web service retrieves the customer and the order information from
an orders table. The web service returns the information to the client in a JSON file.

Create an Informatica REST web service by defining the data service in the Developer tool. You can also
deploy a data object as a REST web service.

An Informatica REST web service has the following components:

Resource

A resource includes the mapping that the REST web service runs and the definition of the response
message that the web service returns. The resource also includes a resource ID, which is a key field in
the output data. You can create a resource from a data object or you can manually define a resource.
The Developer tool creates the resource if you deploy an object as a REST web service. A web service
can have multiple resources.

106

Request message

A request from a web service client to the web service to perform a task. An Informatica web service can
perform an HTTP GET method. The request message is a string that contains the name of the web
service, the name and network location of the resource to perform the task, and the parameters to filter
the output.

Resource mapping

The mapping that returns the data to return to the web service client. You can create a default or a
custom resource mapping. A default resource mapping contains a Read transformation and an Output
transformation with the same ports. A custom mapping might contain other transformations with the
Read transformation and an Output transformation. A custom resource mapping might have a Read
transformation with different ports than the Output transformation.

Response message

A JSON or XML file that contains the data to return to the web service client. The response message can
contain a hierarchy of elements and multiple-occurring data.

REST Web Service Process
REST web services process requests from a web service client such as an external application, a web
browser, or a REST Web Service Consumer transformation.

The following process describes how the Data Integration Service processes web service requests from web
service clients:

1. The Data Integration Service receives a request from a web service client.

2. The REST Web Service Module of the Data Integration Service processes the request by running a
resource mapping to retrieve rows from a data object.

3. The Data Integration Service filters the output rows if the request contains filter parameters.

4. The REST Web Service Module sends a response message to the web service client.

Web Service Consumer Transformation Process
An external application or a Web Service Consumer transformation can connect to a web service as a web
service client.

The following process describes how a Web Service Consumer transformation sends a requests and receives
a response from a web service:

1. The Web Service Consumer transformation generates a request and connects to the web service with a
connection object.

2. The Web Service Consumer transformation receives the a response from the web service.

3. The Web Service Consumer transformation extracts data from the response and returns the data in
transformation output ports.

REST Web Service Process 107

REST Web Service Resources
A resource contains the definition of the REST response message and the data access method to return the
response. When you create an Informatica REST web service, you can manually define the resource or you
can create a resource from a data object.

You can create a resource from a relational data object or a flat file data object. When you create a resource
from a data object, the Developer tool creates a default resource mapping with a Read transformation and an
Output transformation. The Output transformation contains the same ports as the Read transformation.

You can manually define the structure of the output response message. When you manually create a
resource, you define the elements in the response message. Then you define the mapping that returns the
data to the response message.

A REST web service can have multiple resources. Each resource has a resource mapping to retrieve the data
and a definition of the output response. You can choose the resources to view in the Resources tab. Right-
click in the editor and select Show Resources.

The following image shows the Select Resources dialog box:

You can view the components of a resource on the Resources tab.

108 Chapter 10: REST Web Services

The following image shows the components of a resource on the Resources tab of the REST web service:

The resource contains the following components:

Key

An index to the data in the response message. A web service client can request data for a specific key.
You can set any simple type element as a key in the output.

Definition

The elements in the output response message. You can view the elements by expanding the definition in
the resource or by navigating to the Schema view of the Resources properties.

Resource Mappings

The mapping that retrieves the data, transforms it, and returns it in a response message. By default, a
resource mapping contains a Read transformation and an Output transformation. You can add any
transformation to the mapping. View the resource mapping by clicking the link in the resource.

REST Web Service Resources 109

REST Web Service Schema View
View or modify the structure of the REST resource definition on the Schema view of the Resources
properties.

The following image shows the Schema view:

You can select the Design or the Source view of the schema. Choose the Source view to view the schema in
XML format.

Use the Design view to change the elements in the schema or the element types. You can change the order of
the elements. You can change the key in the Design view. You can also define a multiple-occurring field.
Enter the minimum and maximum number of times a field must occur. You can select Unbounded to create a
multiple-occurring field that can occur and unlimited number of times.

When you change the format of the schema, the changes appear in the Output transformation. You might
have to update the ports in the Output transformation.

Data Object Synchronization
When the resource contains a default mapping, the Developer tool can synchronize a resource definition with
a data object.

When the resource key is different from the primary key in the data object, the Developer tool cannot
synchronize the resource definition with the data object.

Resource Keys
You can define a key in the resource definition. When you define a key, the Data Integration Service indexes
the column in the output data. A web service client can request specific output rows by key.

When you create a resource from a data object, the Developer tool uses a primary key from the data object as
the resource key by default. If the primary key contains multiple columns, the Developer tool delimits the
column data with "+" to create the primary keys.

110 Chapter 10: REST Web Services

You can configure the Developer tool to use a different output column as a primary key than the primary key
of the source.

When you manually create a resource, the resource key must be an element with a simple type.

Resource Mappings
A resource mapping is a mapping that reads a data object and returns data to the REST response message.
An Informatica resource mapping performs a GET method. The mapping does not parse a web service
request message.

A resource mapping does not contain a Filter transformation or a Lookup transformation to filter data for
client requests. If the web service request message contains a filter query, the Data Integration Service filters
the data after the mapping retrieves it. The Data Integration Service caches the data in the response
message when the Result Set Caching property is enabled for the Data Integration Service in the
Administrator tool. When the web service request contains filter parameters, the Data Integration Service
filters rows from the cache.

When you define a resource mapping, create one of the following types of resource mappings:

Default resource mapping

A default resource mapping contains a Read transformation and an Output transformation. The mapping
does not contain other transformations. The mapping returns all the rows in a data object without
changing them. To create a default resource mapping, create the web service from a data object or
deploy a data object as a web service.

Custom resource mapping

A custom resource mapping is any mapping that is not a default mapping. A custom resource mapping
might contain a Read transformation with different columns than the Output transformation. A custom
resource mapping might contain transformations between the Read transformation and the Output
transformation in the mapping. The transformations can add columns or change the columns in the
pipeline.

For example, the resource mapping might contain an Expression transformation that combines two
columns and returns a third column. Or, the resource mapping might contain a transformation that
returns multiple-occurring rows. You can create a custom resource mapping when you manually create a
resource. You can also change a default mapping by changing the Read transformation or adding more
transformations to the mapping.

Default Resource Mappings
A default resource mapping contains a Read transformation and an Output transformation. Create a default
resource mapping when you create a web service from a data object and you do not change it.

When you create a resource from a data object, the wizard creates a default resource mapping that includes
a Read transformation and an Output transformation. The Read transformation reads the data object that you
created the resource from. The Output transformation contains the same columns as the Read
transformation in a default resource mapping.

Resource Mappings 111

The following image shows a default resource mapping that returns all the columns from a Customers data
object:

The resource mapping does not contain a Filter transformation or a Lookup transformation to filter the data.
However, a REST web service client can send a request with filter parameters to a web service that has a
default resource mapping. The Data Integration Service filters the data from the output data that the resource
mapping generates.

Custom Resource Mappings
A custom resource mapping can contain a Read transformation with different ports than the Output
transformation. A custom resource mapping can contain more transformations than the Read transformation
and the Output transformation.

You can create a custom resource mapping by modifying a default resource mapping or by manually creating
a REST web service.

The following image shows a custom resource mapping:

The mapping contains the following transformations:

Read transformation

Reads a file of orders. Each order contains the customer ID. Customer ID can occur multiple times.

Sorter transformation

Sorts the orders by customer ID.

Aggregator transformation

Sums the total order amount for each customer.

Output transformation

Returns the total amount of the orders by customer.

To create this custom resource mapping, manually define the REST web service resource definition. When
you manually define the resource definition, you define the elements in the response message. For this
example, the response message contains just the customer ID and the total order amount.

112 Chapter 10: REST Web Services

After you define the resource definition, the Developer tool creates a resource mapping that contains an
Output transformation. You then add the Read transformation and the other transformations to the mapping.

The customer ID in the previous image is the key. A web service client might request the number of orders for
a specific customer. The Data Integration Service filters the output data by the key. The mapping does not
contain a Filter transformation.

REST Web Service Output Transformation
The Output transformation creates the REST web service response message from groups of relational data in
the operation mapping. The Developer tool creates an Output transformation when you define a REST web
service.

When you create a REST web service, the Developer tool creates the Output transformation based on the
resource definition that you defined. The Developer tool creates input ports for the transformation based on
the response message structure. The Output transformation contains a mapping that maps input ports to
nodes in the response message.

You can change the elements in the output message hierarchy by changing the schema. You can change the
input ports in the transformation to correspond to the schema changes.

View the REST response message hierarchy on the Output transformation Ports tab. You can choose to view
the transformation ports or view the a mapping between the transformation input ports and the response
message hierarchy.

When you show the ports, you can manually add groups and ports or you can copy ports from other
transformations into the Output transformation. You can use keyboard shortcuts or you can use the copy and
the paste buttons in the Developer tool.

When you show the output mapping, you can define input groups, define input ports, and map input ports to
response message elements. The left side of the tab is the Ports area and the right side of the tab is the
Output area. The Output area shows the response message hierarchy. Define input groups and ports in the
Ports area. When you map the input ports from the Ports area to nodes in the Output area, the input port
location appears in the Location column in the Output area.

When you show the output mapping, you can choose to view the lines that connect the input ports to the
nodes in the operation input.

REST Web Service Output Transformation 113

The following image shows a simple output mapping in an Output transformation:

In the previous image, the transformation receives one group of ports for a customer. It returns single-
occurring elements.

The Developer tool maps input ports to nodes in the first level of the operation output when you choose to
map the first level of the hierarchy. The Map First Level Hierarchy option is enabled by default. The
Developer tool also creates the input ports that it requires to map the data. If the first level of the hierarchy
contains a multi-occurring parent node with one or more multi-occurring child nodes, the Developer tool does
not create the ports or map the first level of the hierarchy.

Multiple-Occurring Data in the REST Output Transformation
The REST Output transformation can receive multiple groups of data and return multiple levels of output data
in the response message. Each group of data in the response message is linked by a key.

The following image shows an output mapping that returns multiple orders for a customer:

The Ports area of the output mapping has two groups: Customer_Order and Orders. Each group contains a
customer number. The customer number becomes the key to link customer data and order data in the
response message.

The primary key in the resource definition is Customer_No. Customer_No is a key in Customer_Order. It is a
foreign key in Orders. The primary key must contain unique values. When the Data Integration Service
processes multiple-occurring orders, it can return all the orders for one customer based on the key. The
primary key and the foreign key do not appear in the response message.

The Output area of the output mapping contains the response message. You must link an input port to each
key in the output.

114 Chapter 10: REST Web Services

Note: When the REST Output transformation receives duplicate primary key values, the preview fails with an
error.

Request Messages
A web service client sends a request message in a URI string to the web service. The URI identifies the host
port, web service name, and the resource to access in a web service. The request message can contain query
parameters to filter the web service output for specific rows.

When the URI does not include identifiers or parameters, the REST web service returns a list of all the rows
from the data object in the REST web service response. The web service returns a JSON file or an XML file
that contains all the customer rows.

The following example shows a request that returns a list of all customers:

http://myhost:8095/DataIntegrationService/RESTSERVICE/Rsrc_CUSTOMER/CUSTOMER

The following text shows a JSON response message:

{"CUSTOMERS": {"CUSTOMER": [
 {
 "C_ACCTBAL": 9331.13,
 "C_ADDRESS": "38 Summit Drive",
 "C_COMMENT": "Call immediately if delay",
 "C_CUSTKEY": {
 "@url": "http:\u002F\u002FHostName:8095\u002FDataIntegrationService
\u002FRestService\u002FRsrc_CUSTOMER\u002FCUSTOMER\u002F63",
 "$": 63
 },
 "C_MKTSEGMENT": "AUTOMOBILE",
 "C_NAME": "Customer#000000063",
 "C_NATIONKEY": 21,
 "C_PHONE": "31-952-552-9584"
 },
 {
 "C_ACCTBAL": -646.64,
 "C_ADDRESS": "44 Ocean Avenue",
 "C_COMMENT": "Has dangerous animal in the house",
 "C_CUSTKEY": {
 "@url": "http:\u002F\u002FHostName:8095\u002FDataIntegrationService
\u002FRestService\u002FRsrc_CUSTOMER\u002FCUSTOMER\u002F64",
 "$": 64
 },
 "C_MKTSEGMENT": "BUILDING",
 "C_NAME": "Customer#000000064",
 "C_NATIONKEY": 3,
 "C_PHONE": "13-558-731-7204"
 }
]}}

Filter Data in Resource Mappings
When the request message contains query parameters, the Data Integration Service filters the output data
with the query parameter values.

The Data Integration Service can filter the output rows in a default resource mapping and in a custom
resource mapping.

You can include the following conditions in a request message query:

<> = != >= <=

Request Messages 115

To configure parameters in the URI, include the following clause:

?filtercondition=<column name> <operand><value>

For example, the following request message searches for all customer rows that have a "BUILDING" market
segment value:

http://myServer:8095/DataIntegrationService/RESTSERVICE/REST_Web_Service/CUSTOMER/?
filterCondition=C_MKTSEGMENT='BUILDING'

If the column data type is a string, enclose the search value in a single quote ('). If the column data type is
numeric, do not enclose the search value in quotes.

For example, the following request includes a search parameter that is numeric:

http://myServer:8095/DataIntegrationService/RESTSERVICE/REST_Web_Service/CUSTOMER/?
filterCondition=C_ACCTBAL=9331.13

The REST web service returns the customer with an account balance of 9331.13.

The following text shows the REST response message in XML format:

<CUSTOMERs>
<tns:CUSTOMER xmlns:tns="http:////www.informatica.com">
<tns:C_CUSTKEY url="http://myServer:8095/DataIntegrationService/RestService/
REST_Web_Service/CUSTOMER/63">63</tns:C_CUSTKEY>
<tns:C_NAME>Customer#000000063</tns:C_NAME>
<tns:C_ADDRESS>IXRSpVWWZraKII</tns:C_ADDRESS>
<tns:C_NATIONKEY>21</tns:C_NATIONKEY>
<tns:C_PHONE>31-952-552-9584</tns:C_PHONE>
<tns:C_ACCTBAL>9331.13</tns:C_ACCTBAL>
<tns:C_MKTSEGMENT>AUTOMOBILE</tns:C_MKTSEGMENT>
<tns:C_COMMENT>Apply discount</tns:C_COMMENT>
</tns:CUSTOMER>
</CUSTOMERs>

If you have multiple parameters to include in the query, join the parameters with 'AND'.

http://usw1mj02ee4j:8095/DataIntegrationService/RESTSERVICE/REST_Web_Service0/CUSTOMER/?
filterCondition=C_ACCTBAL=9331.13 AND C_NATIONKEY='21'

If a column data type is a Date/Time, you can convert the parameter string from the URI to a Date/Time
format and specify the format of the parameter string.

For example, the following statement converts the parameter string to Date/Time format:

?filterCondition= O_ORDERDATE=TO_DATE('1994-11-17 00:00:00.000000000','YYYY-MM-DD
HH24:MI:SS.NS')

Search By Key
You can configure a REST web service query on a resource key. When the request includes a key value, you
do not have to reference the column name in the query.

Use the following format to search for the number 64 in the resource key for a resource called CUSTOMER:

http://myServer:8095/DataIntegrationService/RESTSERVICE/REST_Web_Service/CUSTOMER/64
The URI includes a resource name and a resource key value:

/CUSTOMER/64

The query does not need to reference the name of the column that is the key.

116 Chapter 10: REST Web Services

When you query by resource key, the web service can retrieve the customer by a URI associated with the key.
You can view the URI for the specific row in the response message key value. In the following example, the
key is C_CUSTKEY and the key value is 64:

<tns:CUSTOMER xmlns:tns="http:////www.informatica.com">
<tns:C_CUSTKEY url="http://my Server:8095/DataIntegrationService/RestService/
REST_Web_Service/CUSTOMER/64">64</tns:C_CUSTKEY>
<tns:C_NAME>Customer#000000064</tns:C_NAME>
<tns:C_ADDRESS>MbCeGY20kaKK3oalJD,OT</tns:C_ADDRESS>
<tns:C_NATIONKEY>3</tns:C_NATIONKEY>
<tns:C_PHONE>13-558-731-7204</tns:C_PHONE>
<tns:C_ACCTBAL>-646.64</tns:C_ACCTBAL>
<tns:C_MKTSEGMENT>BUILDING</tns:C_MKTSEGMENT>
<tns:C_COMMENT>
Customer has an angry dog in the yard
</tns:C_COMMENT>
</tns:CUSTOMER>

Response Message Formats
You can configure a REST web service to return a response message in JSON or XML format.

In the response messages, the C_CUSTKEY field is the resource key. The C_CUSTKEY field contains the key
value and the URL to that an application can use to access the customer by the specific key in the output
data.

In the JSON format, the URL, the backslash is unicode encoded as \u002f.

The resource key value in the URL might also contain encoded values due to the following reasons:

• The key value contains a URL address such as http://www.informatica.com.

• The key value contains a percent sign (%) such as 20%.

• They key value contains a space.

The following text is a response message in JSON format:

{"CUSTOMERS": {"CUSTOMER": [
 {
 "C_ACCTBAL": 9331.13,
 "C_ADDRESS": "IXRSpVWWZraKII",
 "C_COMMENT": "Good customer",
 "C_CUSTKEY": {
 "@url": "http:\u002F\u002FHostName:8095\u002FDataIntegrationService
\u002Simple_Web_Service\u002FRsrc_CUSTOMER\u002FCUSTOMER\u002F63",
 "$": 63
 },
 "C_MKTSEGMENT": "AUTOMOBILE",
 "C_NAME": "Customer#000000063",
 "C_NATIONKEY": 21,
 "C_PHONE": "31-952-552-9584"
 }
]}}

The following text is a response message in XML format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<tns:CUSTOMER xmlns:tns="http:////www.informatica.com">
 <tns:C_CUSTKEY url="Simple_Web_Service/CUSTOMER/63">63</tns:C_CUSTKEY>
 <tns:C_NAME>Customer#000000063 </tns:C_NAME>
 <tns:C_ADDRESS>IXRSpVWWZraKII </tns:C_ADDRESS>
 <tns:C_NATIONKEY>21</tns:C_NATIONKEY>
 <tns:C_PHONE>31-952-552-9584</tns:C_PHONE>
 <tns:C_ACCTBAL>9331.13</tns:C_ACCTBAL>

Response Message Formats 117

 <tns:C_MKTSEGMENT>AUTOMOBILE</tns:C_MKTSEGMENT>
 <tns:C_COMMENT>Good
customer
</tns:C_COMMENT>
</tns:CUSTOMER>

You can set the format for the response message. Change the response message format on the Advanced
tab of the resource mapping Properties view. Select JSON or XML for the Format Type.

The following image shows the Advanced tab of the resource mapping Properties view:

Response Data Preview
You can test a web service in the Data Viewer view of the Developer tool. You can filter the data by resource
key or you can configure an expression to filter the data.

The following image shows the Data Viewer view:

Configure the following input settings to filter the response message in the Data Viewer view:

Data Access Method

Thehe resource mapping to run. A web service can contain multiple resource mappings.

Resource Identifier

A key value to search with. The Developer tool identifies the name of the resource key.

118 Chapter 10: REST Web Services

Filter Condition

A filter expression that you can configure in an Expression editor. The expression can reference multiple
output columns. If the output contains hierarchical data, the filter condition must reference elements
from the parent group. You can enter a filter condition and a resource identifier at the same time.

Response Data Preview 119

C h a p t e r 1 1

How to Create a REST Web
Service

This chapter includes the following topics:

• Create a REST Web Service , 120

• How to Manually Create A REST Web Service , 121

• Step 1. Create the REST Web Service Resource, 121

• Step 2. Define the Resource Mapping, 124

• Step 3. Configure the Output Mapping, 128

• Step 4. Test the Mapping in the Data Viewer View, 129

• Step 5. Deploy the Application , 131

• Step 6. Query the Web Service from a Browser, 133

• How to Create a REST Web Service From a Data Object, 135

• How to Deploy a Data Object as a REST Web Service, 138

Create a REST Web Service
You can deploy a data object as a REST web service or you can define the web service with a wizard.

Before you create a web service, determine the elements that you want to include in the response message.
Use one of the following methods to create the web service based on the response message structure:

Create the web service manually.

Manually create the web service if the response message contains data that the resource mapping must
calculate or format. Manually create the web service if the mapping has multiple sources. When the
response message contains hierarchical data or multiple-occurring data, you must manually define the
structure.

Create the web service from a data object.

If the response message contains data that is from one data object, you can create the resource
definition based on the data object. You can choose specific columns from the data object and you can
change the resource mapping after you create the web service.

Deploy a data object as a web service.

Deploy a data object as a web service if the response message can contain all the columns from a data
object.

120

How to Manually Create A REST Web Service
You can manually define the columns in a REST web service resource. When you manually define the
resource, the Developer tool creates a resource mapping with an Output transformation that defines the
response message. The Developer tool does not create a Read transformation in the resource mapping. You
must add a Read transformation to the mapping after you define the resource. Manually create the resource
when the response message structure is different from the source data.

Use the following steps to create the REST web service:

1. Create the REST web service resource.

2. Define the resource mapping that retrieves the data.

3. Configure the REST Output transformation mapping to map data from input ports to elements in the
output hierarchy.

4. Test the mapping.

5. Deploy the application to a Data Integration Service.

6. Access the web service from a browser.

Example REST Web Service
Hypostores has a REST web service that returns all the orders for a customer. A salesman can send a
request for the orders from a web browser to the web service. The request contains one or more customer
numbers. The web service returns each customer name and a list of all the orders for the customer in a JSON
file.

The REST web service contains a mapping that reads a Customers table to retrieve the customer name. The
mapping contains a Lookup transformation. The Lookup transformation retrieves all the orders for each
customer from an Orders table. The mapping contains a REST Output transformation that returns a
hierarchical JSON file. The JSON file structure has customer number and customer name in a parent group.
The JSON file contains a child group for the orders within customer. The group contains multiple occurring
orders. Each order has an order number, price, and order date.

Step 1. Create the REST Web Service Resource
A REST web service resource contains the definition of the REST web service response message and a data
access method to return the response. When you create an Informatica REST web service, you can define the
resource from a data object or you can manually define the resource.

For this example, you manually create the resource because the response message format is hierarchical and
it contains multiple-occurring data. You cannot create the resource from a data object in the repository.

Creating the REST Web Service Resource
When you create the web service resource, you define the structure of the response message.

1. In the Developer tool, click File > New > Data Service.

2. Select REST Web Service and click Next.

3. Enter Orders_Web_Service as the web service name. Click Next.

How to Manually Create A REST Web Service 121

4. In the REST Resource dialog box, click Create From Empty.

A default resource appears.

5. In the Name field, change the name of the resource from Resource to Orders_Resource.

6. On the Definition panel, click New > Element.

7. Enter the following elements:

Name Type Key Min Occurs Max Occurs
Customer_Key string Yes 1 1
Customer_Name string 1 1
Orders string 1 unbounded

8. Select the Orders element and click New > Child.

9. Enter the following child elements beneath Orders:

Name Type Key Min Occurs Max Occurs
Order_Key integer 1 1
Order_Price decimal 1 1
Order_Date integer 1 1

10. Verify that the Get HTTP method is enabled.

122 Chapter 11: How to Create a REST Web Service

11. Click Finish.

The following image shows the elements in Orders_Resource:

Step 1. Create the REST Web Service Resource 123

Step 2. Define the Resource Mapping
After you define the resource, the Developer tool creates a resource mapping that contains a REST Output
transformation. The REST Output transformation structure defines the response message that the web
service returns to the client. Add a Read transformation and a Lookup transformation to the mapping.

The following image shows the resource mapping to create:

The mapping contains the following objects:

Read_Customer

The Read_Customer transformation reads the customer table. The transformation returns all the
customer rows in the table.

Orders_Lookup

The Lookup transformation retrieves the orders for each customer.

Output

The REST Output transformation receives customer information from the Read_Customer
transformation. It receives order information from the Orders_Lookup transformation. The REST Output
transformation generates a hierarchical JSON file that lists the orders for each customer.

Note: The resource mapping does not contain a Filter transformation to limit the customers to retrieve from
the customer table.

The Data Integration Service filters the output data based on any filter in the client request.

124 Chapter 11: How to Create a REST Web Service

Defining the Resource Mapping
The Developer tool creates a resource mapping that contains the REST Output transformation that you
created. Define a Read transformation and a Lookup transformation in the resource mapping.

1. In the Resources tab, expand the Resource Mappings link in the Orders_Resource.

The following image shows the Orders_Resource link in the Orders_Resource:

2. Click the Orders_ResourceGetMapping link in the Orders_Resource.

The mapping appears in the editor.

3. Add the Customer data object to the mapping as a Read transformation.

4. Click the REST Output transformation.

5. On the REST Output transformation Properties tab, click the Ports view.

6. Change the precision of the Customer_Key to 15 and the precision of the Customer_Name to 25.

Step 2. Define the Resource Mapping 125

7. Connect the Customer Key and the Customer Name ports from Read_Customer to the REST Output
transformation.

The following image shows the links between the Read_Customer transformation and the REST Output
transformation:

8. To add the Lookup transformation, right-click in the mapping and click Add Transformation.

9. Select the Lookup transformation.

10. Choose Relational Data Object Lookup and click Next.

11. In the New Lookup Transformation dialog box, browse for and select the Orders physical data object.
Choose to return all rows.

12. Click Finish.

The Lookup transformation appears in the resource mapping.

13. Click the Lookup transformation in the mapping to select it.

14. In the Lookup transformation Properties view, select the Ports tab.

126 Chapter 11: How to Create a REST Web Service

15. Add a port called Customer_In. The port is a string with a precision of 15. You do not need to enable it
for output.

16. In the Lookup transformation Properties view, click the Lookup tab.

17. Enter the following lookup condition:

O_CUSTKEY = Customer_In

18. In the mapping canvas, link the C_CUSTKEY port from Read_Customer to the Customer_In port of the
Lookup transformation.

19. Link the following output ports from the Lookup transformation to ports in the REST Output
transformation:

Lookup Transformation Output Transformation

O_ORDERKEY Order_Key

O_TOTALPRICE Order_Price

O_ORDERDATE Order_Date

Step 2. Define the Resource Mapping 127

Step 3. Configure the Output Mapping
The REST Output transformation receives data from the Customer and Orders transformations and it returns
a JSON file.

In the Orders_Resource mapping, the REST Output transformation contains two groups of output data. The
parent group contains customer information and it occurs once for each customer. The child group contains
the orders. The orders group is multiple-occurring.

When the REST Output transformation contains more than one group of ports, the Developer tool creates
keys to link the groups. The Developer tool creates a primary key in each group. The Developer tool creates a
foreign key for each child group. The foreign key in the Orders group contains the customer number for each
order.

When you view the ports in the REST Output transformation, you do not see the keys. The keys do not have
ports. However, you must link data to the keys to define the key values. To view the keys, show the output
mapping in the Ports view of the REST Output transformation Properties tab. The Ports view shows the input
ports or the output mapping depending on which option you choose to show.

The following image shows the Output Mapping view:

The Developer tool creates the following keys in the output:

Key Name Description

Key_Orders_Resource The primary key for the Orders_Resource group.

Key_Orders The primary key for the Orders group.

FKey_Orders_Resource The foreign key to link the Orders group to the Orders_Resource group.

You must link input ports to the output keys or the mapping is not valid.

Note: You can link a port to more than one element on the Output panel. However, you cannot link a field from
one group on the Ports panel to an element in more than one group on the Output panel. All fields in the
same Ports group must link to elements in the same Output group.

128 Chapter 11: How to Create a REST Web Service

Configuring the Output Mapping
To create a primary-key foreign-key relationship between customers and orders, each group must contain the
customer number.

1. Add a Customer_Fkey port below Order_Date in the Orders group of the REST Output transformation.

The Customer_Fkey port receives a customer number. You need to add this port to receive a customer
number in the Orders group and to populate the foreign key. The customer number does not appear with
each order in the output.

2. Link the Customer_Key from the Ports panel to the Key_Orders_Resource on the Output panel. To create
a link, click the Customer_Key to select it, then select the Key_Orders_Resource. Click the Map icon on
the Ports panel to create the link.

Note: You cannot drag a port to create a link.

3. Select the Order_Key port and the Key_Orders element. Click Map to create the link.

Order_Key must have links to the Key_Orders element and the Order_Key element.

4. Select the Customer_Fkey port and the Fkey_Orders_Resource element. Click Map to create the link.

The following image shows the output mapping with the links to the keys:

Step 4. Test the Mapping in the Data Viewer View
You can run the REST resource mapping in the Data Viewer view. You can filter the output data by resource
ID or by a filter condition in the Data Viewer view.

You can filter the data by entering values for elements from the Orders_Resource group. The elements are
Customer_Key or Customer_Name. You cannot filter output data using elements from the Orders group. The
Orders group is a child group.

You can filter the output data by the resource identifier, or you can enter a filter condition. The resource
identifier is the key, which is the Customer_Key element. The filter condition is an expression that you enter in
an expression editor. Use a filter condition to filter output data when you are not searching by key.

If you do not enter a resource identifier or a filter condition, the mapping returns all rows in the Data Viewer
view.

Filtering the Output by Resource ID
You can enter a resource ID to select output data by key values. The resource ID is the key that you selected
when you created the resource. The resource ID is Customer_Key in this example.

1. In the Data Viewer view, enter a valid customer number in the Resource Identifier Value column.

Step 4. Test the Mapping in the Data Viewer View 129

2. Click Run.

The output contains data for the customer that you entered.
The following image shows the output for customer number 10:

Filtering the Output by Filter Condition
You can enter a filter condition to select output data by specific values.

1. In the Data Viewer view, click the selection arrow in the filter condition Value column.

The Expression editor appears.

2. Click the Query Ports tab.

A list of ports appears:

3. Select a query port and create a filter expression.

You must enclose the search value in single quotes.

4. Click Validate to validate the expression.

5. If the expression is valid, click OK.

The expression appears as the filter condition in the Data Viewer view.

130 Chapter 11: How to Create a REST Web Service

6. In the Data Viewer view, click Run.

The orders for customer name Cust638 appear on the Output panel.

The following image shows the results on the Output panel:

Step 5. Deploy the Application
Deploy the web service as an application to a Data Integration Service. You must deploy the application to
enable a web service client to connect to the web service.

After you deploy the web service, you can view the application in the Administrator tool.

Step 5. Deploy the Application 131

Deploying the Application
Deploy the application to a Data Integration Service.

1. In the Object Explorer view, right-click Orders_Web_Service and click Deploy:

2. Accept the default name and location. Click Next.

132 Chapter 11: How to Create a REST Web Service

3. Choose the domain and the Data integration Service to deploy the application to.

4. Click Finish to deploy the application.

Step 6. Query the Web Service from a Browser
Query the REST web service from a browser.

After you deploy the web service to a Data Integration Service, the web service appears as an application in
the Administrator tool. You can view the URL to access the web service on the application General Properties
panel.

Step 6. Query the Web Service from a Browser 133

The following image shows the REST URL on the General Properties panel for the web service:

Querying the Web Service
You can query the web service by including a resource ID in the URL or by including a filter expression in the
URL.

1. In the Administrator tool, click the REST URL on the web service application General Properties panel.

The Data Integration Service lists the resources in the web service.
The following image shows the resource in the Orders_Web_Service:

2. Click the Orders_Resource link.

The web service returns all the output data from the resource mapping.

3. To search for a specific customer, add the resource name and the resource ID to the end of the URL in
the browser. The link is http://psrl817.informatica.com:8195/DataIntegrationService/
RestService/Orders_Web_Service/Orders_Resource/10.

134 Chapter 11: How to Create a REST Web Service

The following image shows the results of a query that searches for customer number 10 in the
Orders_Resource:

4. To search by customer name instead of by the key, include a filter condition in the URL instead of the
resource ID:

http://psrl817.informatica.com:8195/DataIntegrationService/RestService/
Orders_Web_Service/Orders_Resource/?filterCondition=Customer_Name='Cust628'

How to Create a REST Web Service From a Data
Object

You can create a REST web service from a data object in the Model repository. The Developer tool creates a
default mapping that contains a Read transformation and an Output transformation. You can select the data
object columns to include in the REST web service resource.

1. Click File > New > Data Service.

2. On the Select a Wizard dialog box, choose REST Web Service. Click Next.

3. On the REST Web Service dialog box, enter a name for the web service. Default name is
REST_Web_Service. Click Next.

4. On the REST Resource dialog box, click New > Create from data object.

5. Select a data object from the list of data objects in the Model repository and click OK.

The REST Resource dialog box shows the REST resource from the data object you chose.

6. Select which columns to include in the resource. Select the primary key for the resource.

By default, all columns are selected. You can uncheck the columns that you do not want to include in the
resource. By default the GET method is selected. Do not clear this option.

How to Create a REST Web Service From a Data Object 135

The following image shows the REST resource dialog box:

7. Click Finish to create the web service.

The REST web service Resources view appears in the Developer tool.

The following image shows the Resources view in the Developer tool:

136 Chapter 11: How to Create a REST Web Service

8. You can expand the components in the Resources view to view the key, the columns in the definition,
and a link to the resource mapping.

The following image shows the resource key, the definition columns, and the link to the resource
mappings:

9. Click the resource mapping link to view the resource mapping.

The following image shows the default resource mapping:

10. Add transformations to the mapping if necessary.

11. To test the web service, navigate to the Data Viewer view.

How to Create a REST Web Service From a Data Object 137

12. In the Input Settings, choose the resource mapping to test in the Data Access Value field.

13. To filter the output by key, enter a key to search for in the Resource Identifier field.

14. To filter the output by other elements, enter a filter condition. Click the value field to open the Expression
editor.

You can enter multiple expressions in the Expression editor.

The following image shows the Input Settings in the Data Viewer view:

15. Click Run to view the output.

The output is JSON or XML based on the web service configuration.

16. Deploy the web service to a Data Integration Service.

How to Deploy a Data Object as a REST Web Service
You can deploy a relational data object or a flat file data object as a REST web service.

1. In the Object Explorer, right-click the data object to access in the web service.

2. Click Deploy > Deploy as REST web service.

The Deploy Application dialog box appears.

3. Enter a name for the application and click Next. Do not add any object.

138 Chapter 11: How to Create a REST Web Service

The Deployment Method dialog box appears.

4. Choose the Data Integration Service to deploy the application to.

The following image shows the Deployment Method dialog box:

5. Click Next.

The REST Web Service dialog box appears.

6. Enter a name for the web service.

The following image shows the REST Web Service dialog box:

7. Click Next to choose columns to include in the resource or to add more resources. Click Finish to create
a resource that includes all the columns in the data object.

If you click Next, the REST Resource dialog box appears.

8. On the REST Resource dialog box, enter a name for the resource and select the columns to include in the
definition.

How to Deploy a Data Object as a REST Web Service 139

By default, all columns are selected. Do not clear any field. The deployed web service requires a default
mapping.
The following image shows the REST Resource dialog box:

9. Click Finish to deploy the web service.

Do not add resources or change the resource definition.

10. To add more resources to the web service, click New.

You can create a resource from a data object or you can manually enter the columns in the resource.

140 Chapter 11: How to Create a REST Web Service

C h a p t e r 1 2

REST Web Service Consumer
Transformation

This chapter includes the following topics:

• REST Web Service Consumer Transformation Overview, 141

• REST Web Service Consumer Transformation Configuration, 143

• HTTP Methods, 144

• REST Web Service Consumer Transformation Ports, 147

• REST Web Service Consumer Transformation Input Mapping, 150

• REST Web Service Consumer Transformation Output Mapping, 152

• REST Web Service Consumer Transformation Advanced Properties, 154

• REST Web Service Consumer Transformation Creation, 155

• Parsing a JSON Response Message that Contains Arrays, 156

REST Web Service Consumer Transformation
Overview

The REST Web Service Consumer Transformation is an active transformation that connects to a REST web
service as a web service client to access or transform data. Use a REST Web Service Consumer
transformation to connect to a REST web service. The REST Web Service Consumer transformation can send
a request to a REST web service and receive a response from a REST web service.

The REST Web Service Consumer transformation connects to a web service through a URL that you define in
the transformation or in an HTTP connection. You can also use an HTTPS connection. REST Web Service
Consumer transformations can use TLS 1.2, TLS 1.1, or TLS 1.0.

A REST web service contains an HTTP method for each action that the web service supports. When the Data
Integration Service connects to a REST web service, it can send a request to get, post, put, or delete data. The
request can act upon individual resources or collections of resources. After the Data Integration Service
sends a request message, it receives a response message from the web service.

The request and the response messages contain XML or JSON data with elements that can form a hierarchy.
When a request or a response message contains multiple-occurring elements, groups of elements form
levels in the XML or JSON hierarchy. Groups are related when one level is nested within another.

141

In the REST Web Service Consumer transformation, the method input and method output define the structure
of the request and the response messages. The method input and method output include mappings that
define how to map the message elements to the input and output ports.

The REST Web Service Consumer transformation supports proxy server. You can also connect to a Microsoft
SharePoint application with the REST Web Service Consumer transformation.

Example

An online store defines resources for a products database. The database identifies each product by part
number.

Web service clients access the product details through a REST web service. The web service uses the
following URL:

http://www.HypoStores.com/products/ProductDetails

You need to retrieve details about a specific product, such as the description and the unit price, and pass the
details to a transformation downstream in a mapping. Create a REST Web Service Consumer transformation
to retrieve details about a product and pass them to another transformation..

The following table shows the transformation details that you configure:

Transformation Detail Value

HTTP method Get

Base URL http://www.HypoStores.com/products/ProductDetails

Input argument port Part_No

Output ports Description, Unit_Price

Method output <The structure of the response message.>

The method output includes an output mapping that defines how the elements in the response message map
to the output ports.

When the Data Integration Service sends the request to the web service, it appends the value in the argument
port to the base URL. For example, to retrieve details about part 0716, the Data Integration Service uses the
following URL:

http://www.HypoStores.com/products/ProductDetails?Part_No=0716

When the Data Integration Service receives a response, it converts the product description and the unit price
in the response message to data for the output ports.

You can also pass Part_No as a parameter and substitute the value mid-stream when you run the mapping.

REST Web Service Consumer Transformation Process
The REST Web Service Consumer transformation creates a request message based on the data in the input
ports and the method input. It converts elements in the response message to data for the output ports based
on the method output.

The input ports of the REST Web Service Consumer transformation contain relational data from upstream
transformations in a mapping. The Data Integration Service uses the method input to convert data from the
input ports to elements in the request message.

142 Chapter 12: REST Web Service Consumer Transformation

To connect to the web service, the Data Integration Service reads the base URL that you configure in the
transformation properties or the HTTP connection. It identifies the resource that you want to get, post, put, or
delete by appending values from the URL ports or argument ports to the base URL.

When the Data Integration Service receives a response, it passes the data in the response message to the
output ports of the transformation. The Data Integration Service passes data based on how you configure the
method output. The output ports contain relational data. The Data Integration Service sends the data in the
output ports to downstream transformations in the mapping or to the target.

REST Web Service Consumer Transformation
Configuration

When you create a REST Web Service Consumer transformation, you select the HTTP method and define the
method input and output. If you select the Get method, you do not define method input.

The input elements in the HTTP request message map to input ports. The output elements in the HTTP
response message map to output ports. The Developer tool creates ports for the first level elements.

When you configure the transformation, you complete the following tasks:

1. Select the HTTP method.

2. Configure ports to represent elements in the header and body of the request and response messages.

3. Configure the input mapping.

4. Configure the output mapping.

5. Configure advanced properties such as the connection and the base URL for the web service.

If the REST web service requires authentication, create an HTTP connection object.

Message Configuration
The Data Integration Service generates request messages and interprets response messages based on the
method input and output and on the ports that you configure in the REST Web Service Consumer
transformation.

Input ports represent different parts of the request message. You can add input ports that identify the
resource that you want to retrieve or change. You can also add input ports that represent HTTP headers,
cookie information, and elements in the request message.

Output ports represent elements in the response message that you want to send to downstream
transformations or to the target in a mapping. You can add output ports that represent HTTP headers, cookie
information, the response code, and elements in the response message.

Resource Identification
To identify the resource in an HTTP request, the Data Integration Service appends values in specific input
ports to the base URL. You define the base URL in the HTTP connection or in the transformation properties.
Use URL or argument ports to identify a particular resource.

Use URL ports when the web service identifies a resource through a unique string of characters.

For example, the HypoStores REST web service identifies parts by the part number through the following URL:

http://www.HypoStores.com/products/ProductDetails/<Part_No>

REST Web Service Consumer Transformation Configuration 143

To identify a part, define the following transformation details:

1. Set the base URL to the following URL:

http://www.HypoStores.com/products/ProductDetails
2. Define a URL port, and pass the part number to the transformation through the URL port.

If the mapping passes part number 500 to the URL port, the Data Integration Service uses the following URL
in the request message:

http://www.HypoStores.com/products/ProductDetails/500

Use argument ports when the web service identifies the location of a resource through arguments.

For example, you want to pass a part number to the HypoStores REST web service through the "Part_No"
argument.

To identify a part, define the following transformation details:

1. Set the base URL to the following URL:

http://www.HypoStores.com/products/ProductDetails
2. Create an argument port with argument name "Part_No," and pass the part number to the transformation

through the argument port.

If the mapping passes part number 600 to the argument port, the Data Integration Service uses the following
URL in the request message:

http://www.HypoStores.com/products/ProductDetails?Part_No=600

Create multiple argument ports to define multiple arguments. The Data Integration Service separates each
argument with an ampersand character (&).

For example, you want to retrieve employee details from a REST web service and pass the employee first
name and last name through the "First_Name" and "Last_Name" arguments. Create argument ports with the
argument names "First_Name" and "Last_Name." If the mapping passes the name "John Smith" to the
transformation, the Data Integration Service uses a URL like the following in the request message:

http://www.HypoStores.com/employees/EmpDetails?First_Name=John&Last_Name=Smith

If you do not specify a URL or an argument port, the Data Integration Service uses the base URL from the
transformation properties or HTTP connection to identify the resource. The base URL in the HTTP connection
overrides the base URL in the transformation.

HTTP Methods
When you create a REST Web Service Consumer transformation, you select the HTTP method that the Data
Integration Service uses in the request message. You cannot change the HTTP method after you create the
transformation.

You configure the transformation to use one of the following HTTP methods:

Get

Retrieves a resource or a collection of resources from the web service. For example, you can retrieve a
table of products or retrieve information about one product.

Post

Sends data to a web service. Use the Post method to create a resource or collection of resources. For
example, you can add the details of a new store transaction.

144 Chapter 12: REST Web Service Consumer Transformation

Put

Replaces a resource or a collection of resources. If the data does not exist, the Put method posts the
data. For example, you can update a customer shipping address.

Delete

Deletes a resource or a collection of resources. For example, you can delete the record of an employee
that no longer works for an organization.

HTTP Get Method
The Data Integration Service uses the HTTP Get method to retrieve data from a REST web service. Use the
Get method to retrieve a resource or a collection of resources.

When you configure the REST Web Service Consumer transformation to use the Get method, you configure
the input ports, the method output, and the output ports. You do not configure method input.

Example

You want to retrieve the description and price for part number 500 in the HypoStores products database. The
web service uses the following URL to identify a part:

http://www.HypoStores.com/products/ProductDetails?Part_No=<Part_No>

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input port that you might define:

Port Type Argument Name Input Value

Argument Part_No 500

The following table shows the output ports that you might define:

Port Type Port Name Return Value

Output Part_Desc …<desc>ACME ball point pens, 12-pk, black, 0.7 mm</desc>…

Output Price_USD …<price>9.89</price>…

HTTP Post Method
The Data Integration Service uses the HTTP Post method to send data to a REST web service. The web
service determines the actual function that the Post method performs. You might use the Post method to
create a resource or a collection of resources.

When you configure the REST Web Service Consumer transformation to use the Post method, you configure
the input ports, the method input, the method output, and the output ports.

Example

You want to post new part 501 to the HypoStores products database. The web service uses the following URL
for part 501:

http://www.HypoStores.com/products/ProductDetails/501

HTTP Methods 145

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input ports that you might define:

Port Type Port Name Input Value

URL URL_Part_No 501

Input Part_Desc ACME ball point pens, 12-pk, black, 0.5 mm

Input Price_USD 9.89

The following table shows the output ports that you might define:

Port Type Port Name Return Value

Output Response <Response returned by the web service>

HTTP Put Method
The Data Integration Service uses the HTTP Put method to update data through a REST web service. Use the
Post method to update a resource or a collection of resources. If the data does not exist, the Data Integration
Service creates the resource or collection of resources.

When you configure the REST Web Service Consumer transformation to use the Put method, you configure
the input ports, the method input, the method output, and the output ports.

Example

You want to update the unit price for part 501 in the HypoStores products database. The web service uses
the following URL for part 501:

http://www.HypoStores.com/products/ProductDetails/501

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input ports that you might define:

Port Type Port Name Input Value

URL URL_Part_No 501

Input Price_USD 9.99

The following table shows the output ports that you might define:

Port Type Port Name Return Value

Output Response <Response returned by the web service>

146 Chapter 12: REST Web Service Consumer Transformation

HTTP Delete Method
The Data Integration Service uses the HTTP Delete method to remove data through a REST web service. Use
the Delete method to remove a resource or a collection of resources.

When you configure the REST Web Service Consumer transformation to use the Delete method, you configure
the input ports, the method input, the method output, and the output ports.

Example

You want to delete part number 502 from the HypoStores products database. The web service uses the
following URL to identify a part:

http://www.HypoStores.com/products/ProductDetails?Part_No=<Part_No>

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input port that you might define:

Port Type Argument Name Input Value

Argument Part_No 502

The following table shows output ports that you might define:

Port Type Port Name Return Value

Output Response <Response returned by the web service>

REST Web Service Consumer Transformation Ports
A REST Web Service Consumer transformation can have multiple input ports and multiple output ports. You
create ports in groups based on the structure of the XML or JSON hierarchy.

When you view the transformation ports, show the ports if you do not need to view the XML or JSON
hierarchy. When you show the ports, you can define groups, define ports, and map elements from the method
input and output to input and output ports.

A REST Web Service Consumer transformation can have multiple input groups and multiple output groups.
When you create ports, create groups and add the ports to the groups. Define the ports in a group hierarchy
based on the structure of the input or output hierarchy in the XML or JSON . Add a key to relate a child group
to a parent group.

All groups except the lowest group in the hierarchy must have primary keys. All groups in the hierarchy
except the root group must have foreign keys.

The transformation has a root input group named RequestInput. You must add a primary key to the root input
group. The key must be string, bigint, or integer. You can configure any port in the root input group as a pass-
through port.

To map an element to a port, click the field in the Location column and expand the hierarchy in the Select
Location dialog box. Then, choose an element from the hierarchy.

REST Web Service Consumer Transformation Ports 147

Input Ports
Input ports represent data from an upstream transformation or source that you want to pass to the web
service. You can configure multiple input ports. Each input port maps to an element in the request message.

To add an input port, select an input group, click the arrow next to the New button, and select Field.

Output Ports
Output ports represent elements in the response message that you want to pass to a downstream
transformation or to the target. You can configure multiple output ports. Each output port maps to an
element in the response message.

To add an output port, select an output group, click the arrow next to the New button, and select Field.

Pass-through Ports
Pass-through ports pass data through the transformation without changing the data. You can configure any
port in the root input group as a pass-through port.

To add a pass-through port, add a port to the root input group. Then right-click the port and select Map.

Argument Ports
Argument ports allow you to identify a resource when the URL for the resource takes an argument. Add
argument ports to the root input group.

An argument port has a port name and an argument name. If an argument name contains a character that is
not allowed in a port name, enter an argument name that differs from the port name. For example, you want
to pass the argument "Cust-ID" to the web service, but the Data Integration Service does not allow the dash
character (-) in port names. Enter "Cust-ID" as the argument name, but enter "CustID" as the port name.

The Data Integration Service appends the argument names and values for each argument port to the base
URL as name=value pairs. You can configure multiple argument ports. The Data Integration Service separates
multiple arguments in the request with an ampersand character (&).

For example:

http://www.HypoStores.com/customers/CustDetails?Last_Name=Jones&First_Name=Mary

If you define argument ports and URL ports in the transformation, the Data Integration Service appends the
URL port values to the base URL, followed by the argument names and values.

To add an argument port, right-click on the root input group and select New > Argument Ports. Enter the
argument name and the port name.

URL Ports
URL ports allow you to identify a resource through a static URL. To identify a resource, the Data Integration
Service appends the value of the URL port to the base URL.

For example:

http://www.HypoStores.com/products/ProductDetails/<URL_port_value>

Add URL ports to the root input group.

You can configure multiple URL ports. The Data Integration Service separates the values in each URL port
with a slash character (/). If you define URL ports and argument ports in the transformation, the Data

148 Chapter 12: REST Web Service Consumer Transformation

Integration Service appends the URL port values to the base URL, followed by the argument names and
values.

To add a URL port, right-click on the root input group and select New > URL Ports.

HTTP Header Ports
HTTP header ports represent HTTP headers in the request message. You can configure multiple HTTP
header ports.

To pass header information to the web service in the request, add the port to the root input group. You can
configure one HTTP header port for the root input group. If you add an HTTP header to the root input group,
you can configure it as a pass-through port.

An HTTP header port has a port name and an HTTP header name. If an HTTP header name contains a
character that is not allowed in a port name, enter an HTTP header name that differs from the port name. For
example, you want to pass the header name "Content-Type" to the web service, but the Data Integration
Service does not allow the dash character (-) in port names. Enter "Content-Type" as the HTTP header name,
but enter "ContentType" as the port name.

To add an HTTP header port, right-click on the root input group and select New > HTTP Header. Enter a
header name and port name.

Cookie Ports
You can configure the REST Web Service Consumer transformation to use cookie authentication. The remote
web server tracks the web service consumer users based on the cookies. You can increase performance
when a mapping calls a web service multiple times.

To pass cookie information to the web service in the request, add the port to the root input group. You can
configure one cookie port for the root input group. If you add a cookie port to the root input group, you can
configure it as a pass-through port.

To extract cookie information from the response, add a cookie port to an output group. You can configure
one cookie port for each output group.

When you project the cookie port to a web service request message, the web service provider returns a
cookie value in the response message. You can pass the cookie value to another transformation downstream
in the mapping, or you can save the cookie value in a file. When you save the cookie value in a file, you can
configure the cookie as input to the REST Web Service Consumer transformation.

To add a cookie port, right-click on the root input group and select New > Other Ports. Then, select Cookie,
and click OK.

Output XML Ports
Output XML ports represent responses from the web service. Output XML ports are string ports.

Add an output XML port to an output group. You can configure one output XML port for each output group.

right-click on the root input group and select New > Other Ports. Then, select Output XML, and click OK.

REST Web Service Consumer Transformation Ports 149

Response Code Ports
Response code ports represent the HTTP response codes from the web service. Response code ports are
integer ports.

Add a response code port to an output group. You can configure one response code port for each output
group.

To add a response code port, select an output group, right-click on the root input group and select New >
Other Ports. Then, select Response Code, and click OK. .

REST Web Service Consumer Transformation Input
Mapping

When you view the transformation ports, show the input mapping to view the method input hierarchy. When
you show the input mapping, you can define input groups, define input ports, and map input ports to method
input elements.

The input mapping includes the following areas:

Ports

Create the transformation input groups and input ports in the Ports area.

Method Input

The Method Input area shows the elements in the request message that the REST Web Service
Consumer transformation sends to the web service. If you use a schema object to create the
transformation, the schema object defines the method input hierarchy.

After you create input ports, map the input ports from the Ports area to the elements in the Method Input
area. When you map an input port to an element in the method input, the location of the port appears in the
Location column in the Method Input area.

The Developer tool maps elements in the first level of the method input to input ports when you choose to
map the first level of the input hierarchy. The Developer tool also creates the ports to perform the mapping. If
the first level of the hierarchy contains a multiple occurring parent element with one or more multiple
occurring child elements, the Developer tool does not map the first level of the hierarchy.

You can choose to view the lines that connect the input ports to the elements in the method input.

Rules and Guidelines to Map Input Ports to Elements
Review the following rules when you map input ports to elements in the method input hierarchy:

• You can map an input port to one element in the hierarchy. You can map the same port to any number of
keys in the hierarchy.

• The input port and the element must have compatible datatypes.

• You can map ports from one input group to multiple hierarchy levels in the method input.

• You must map input ports to the keys in the method input. Any port that you map to a key must be of
string, integer, or bigint datatype. Map data to the keys in all levels in the method input above the
hierarchy level that you are including in the request message. Include the foreign keys for all levels above
and including the level you are mapping.

150 Chapter 12: REST Web Service Consumer Transformation

Note: You do not have to map input ports to keys if you are mapping only the lowest level of the method
input hierarchy.

• You must map the RequestInput root element to the child element of Rest_Consumer_input group for
method input definition.

• You can map multiple string, bigint, or integer input ports to a key in the Method Input area to create a
composite key. When you click the Location field for a composite key, you can reorder the input ports or
remove one of the ports.

• If the web service produces a JSON document, ensure that xmlRoot is the first node in the response
hierarchy. If xmlRoot is not the first node for a web service with JSON response, null values may appear.

Mapping Input Ports to the Method Input
When you show the transformation input mapping, you can define input groups, define input ports, and map
input ports to method input elements.

1. Open a REST Web Service Consumer transformation.

2. In the Ports view, show the input mapping.

3. Define a primary key for the root input group.

4. To add an input group or port to the Ports area, use one of the following methods:

Method Description

Drag an element. Drag a group or a child element from the Method Input area to an empty column in
the Ports area. If you drag a group to the Ports area, the Developer tool adds a
group without ports.

Manually add a group or
port.

To add a group, click the arrow next to the New button, and then click Group. To add
a port, click the arrow next to the New button, and then click Field.

Drag a port from another
transformation.

In the editor, drag a port from another transformation to the REST Web Service
Consumer transformation.

Copy a port. Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the Copy and Paste buttons in
the Developer tool.

Select Map first level of
hierarchy.

The Developer tool maps elements in the first level of the method input to input
ports and groups. The Developer tool also creates the input ports and groups to
perform the mapping.

5. If you manually create a port or you copy a port from another transformation, click the Location column
in the Method Input area and choose a port from the list.

6. To map input ports as a composite key, use one of the following methods:

Method Description

Drag input ports. Select two or more input ports, and drag them to a key in the method input
hierarchy.

Select input ports from the
Select Location dialog box.

Click the Location column of a key in the method input hierarchy and then
select the input ports.

REST Web Service Consumer Transformation Input Mapping 151

7. To clear the locations of elements, use one of the following methods:

Method Description

Click Clear. Select one or more elements in the Method Input area and click Clear.

Delete the lines that connect
ports to elements.

Select one or more lines that connect the input ports to the elements in the
method input, and press Delete.

REST Web Service Consumer Transformation Output
Mapping

When you view the transformation ports, show the output mapping to view the method output hierarchy.
When you show the output mapping, you can define output groups, define output ports, and map method
output elements to output ports.

The output mapping includes the following areas:

Method Output

The Method Output area shows the elements in the response message that the web service returns to
the REST Web Service Consumer transformation. If you use a schema object to create the
transformation, the schema object defines the method output hierarchy.

Ports

Create the transformation output groups and ports in the Ports area.

After you create output ports, map the elements from the Method Output area to the ports in the Ports area.
When you map an element from the method output to an output port, the location of the element appears in
the Location column in the Ports area.

The Developer tool maps elements in the first level of the method output to output ports when you choose to
map the first level of the output hierarchy. The Developer tool also creates the ports to perform the mapping.
If the first level of the hierarchy contains a multiple occurring parent element with one or more multiple
occurring child elements, the Developer tool does not map the first level of the hierarchy.

You can choose to display the output ports in a hierarchy. Each child group appears under the parent group.
You can also choose to view the lines that connect the elements in the method output to the output ports.

If the associated schema object is deleted from the repository, the Developer tool retains the location of the
method elements in the output mapping. When you show the output mapping, the Ports area still displays the
location of the method elements in the Location column for the output ports. If you associate another
schema with the transformation, the Developer tool checks whether each location is valid. The Developer tool
clears the location of method elements in the Ports area of the output mapping if the location is no longer
valid.

Rules and Guidelines to Map Elements to Output Ports
Review the following rules when you map elements in the method output hierarchy to output ports:

• The method output element and the output port must have compatible datatypes.

• You cannot map an element to more than one output port in a group.

152 Chapter 12: REST Web Service Consumer Transformation

• Each output port must have a valid location, unless the port is a pass-through port.

• If you drag a multiple-occurring child element to an empty output port, you must relate the group to other
output groups. When you select a group, the Developer tool creates keys to relate the groups.

• When you drag a multiple-occurring element into a group that contains the parent element, you can
configure the number of child element occurrences to include. Or, you can replace the parent group with
the multiple-occurring child group in the transformation output.

• If the web service produces a JSON document, ensure that xmlRoot is the first node in the response
hierarchy. If xmlRoot is not the first node for a web service with JSON response, null values may appear in
the output ports.

Customize View Options
You can change the method output hierarchy to show the cookie ports, pass-through ports, and keys in the
Method Output area. You can also show grouping constructs that define how to order elements.

Click Customize View in the Method Output area. Enable any of the following options:

Sequence, Choice, and All

Show a line that indicates whether an element definition is sequence, choice, or all.

Elements in a sequence group must be in the order specified in the hierarchy.

At least one element in a choice group must appear in the response message.

Elements in an all group must all be included in the response message.

Keys

View the keys in the Method Output area. The Method Output area includes keys for each group. You can
add a key to an output port in the Ports area.

Pass-through Ports

The Method Output area shows the pass-through ports. Pass-through ports are ports that pass data
through the transformation without changing the data. You can project pass-through ports from the
method output to any of the REST Web Service Consumer transformation output groups. A pass-through
port receives data one time, so the port is at the root level in the response messages.

Mapping the Method Output to Output Ports
When you show the transformation output mapping, you can define output groups, define output ports, and
map method output elements to output ports.

1. Open a REST Web Service Consumer transformation.

2. In the Ports view, show the output mapping.

3. To add an output group or port to the Ports area, use one of the following methods:

Method Description

Drag an element. Drag a group or a child element in the Method Output area to an empty column in the
Ports area. If you drag a group to the Ports area, the Developer tool adds a group
without ports.

REST Web Service Consumer Transformation Output Mapping 153

Method Description

Manually add a group or
port.

To add a group, click the arrow next to the New button and then click Group. To add
a port, click the arrow next to the New button, and then click Field.

Drag a port from another
transformation.

In the editor, drag a port from another transformation to the REST Web Service
Consumer transformation.

Copy a port. Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the Copy and Paste buttons in
the Developer tool.

4. If you manually create a port or you copy a port from another transformation, click the Location column
in the Ports area, and choose an element from the list.

5. To clear the locations of ports, use one of the following methods:

Method Description

Click Clear. Select one or more ports in the Ports area, and click Clear.

Delete the lines that connect
elements to ports.

Select one or more lines that connect the elements in the method output to the
output ports, and press Delete.

REST Web Service Consumer Transformation
Advanced Properties

Configure properties that help determine how the Data Integration Service processes data for the REST Web
Service Consumer transformation.

Configure the following properties on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Connection

Identifies the HTTP connection object to connect to the web service. Create and edit the HTTP
connection in the Developer tool. When you configure an HTTP connection, configure the base URL, the
type of security that the web service requires, and a connection timeout period.

The REST Web Service Consumer transformation connects to a web service using a URL. You can define
the URL in the transformation properties or in the HTTP connection.

Configure an HTTP connection in the following circumstances:

• You do not use a URL input port.

• The web service requires HTTP authentication or SSL certificates.

• You want to change the default connection timeout period.

XML Schema Validation

Validates the response message at run time. Select Error on Invalid XML or No Validation.

154 Chapter 12: REST Web Service Consumer Transformation

Sorted Input

Enables the Data Integration Service to generate output without processing all of the input data. Enable
sorted input when the input data is sorted by the keys in the XML input hierarchy.

URL

The base URL for the REST web service. The base URL in the HTTP connection overrides this value.

Format

The format of the web service response. Select XML or JSON depending on the web service response..

REST Web Service Consumer Transformation
Creation

You can create a reusable or non-reusable REST Web Service Consumer transformation. Reusable
transformations can exist in multiple mappings. Non-reusable transformations exist within a single mapping.

When you create a REST Web Service Consumer transformation, you can define the elements and XML
hierarchy manually or you can import the elements and hierarchy from a schema object. The schema object
can be an XML file or a text file.

Creating a REST Web Service Consumer Transformation
When you create a REST Web Service Consumer transformation, you select a method and define the method
input and the method output based on the method that you choose.

1. To create a REST Web Service Consumer transformation, use one of the following methods:

Method Description

Reusable Select a project or folder in the Object Explorer view. Click File > New > Transformation. Select
the REST Web Service Consumer transformation and click Next.

Non-reusable In a mapping or mapplet, drag a REST Web Service Consumer transformation from the
transformation palette to the mapping or mapplet editor.

2. Enter the transformation name, and select the location and the HTTP method.

3. Click Next.

4. To define the method input, use one of the following methods:

Method Description

Create as empty Define the XML elements and hierarchy manually.

Create from an element in a Schema Object Import the XML elements and hierarchy from a schema object.

The Method input definition area shows the transformation input groups and input ports. The Input
mapping area shows the request message hierarchy.

5. Define the input groups and input ports, and map the input ports to input elements.

6. Click Next.

REST Web Service Consumer Transformation Creation 155

7. To define the method output, select Create as empty or Create from an element in a Schema Object.

The Method output definition area shows the transformation input groups and input ports. The Output
mapping area shows the request message hierarchy.

8. Define the output groups and output ports, and map the elements to output ports.

9. Click Finish.

Parsing a JSON Response Message that Contains
Arrays

When the element is a child element of complex type and the maximum occurrence of this element is
unbounded, the schema is not valid. The JSON parser restricts you from extracting multiple instances of an
element.

The maximum occurrence of child elements under complex type must be 0 or 1 with the order indicator as
choice for the complex type in a schema. When you change the maximum occurrence as 1 to validate the
schema, you can extract one instance of the element at a time.

You can use the maximum occurrence as unbounded in the choice order indicator of a complex type in the
schema.

Example JSON Response Message
You have the following schema where the complex type element xmlRoot has element name Likes whose
maximum occurrence is unbounded:

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="xmlRoot">
 <xs:complexType>
 <xs:all>
 <xs:element type="xs:byte" name="Age"/>
 <xs:element type="xs:string" name="FirstName"/>
 <xs:element type="xs:string" name="Likes" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element type="xs:string" name="FamilyName"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:schema>

You can change the JSON response in the following format:

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="xmlRoot">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element type="xs:byte" name="Age"/>
 <xs:element type="xs:string" name="FirstName"/>
 <xs:element type="xs:string" name="Likes" />
 <xs:element type="xs:string" name="FamilyName"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>

<xs:choice maxOccurs="unbounded"> allows the contents to be repeated one or more times, in any order.

156 Chapter 12: REST Web Service Consumer Transformation

Unnamed Arrays in a Response Message
A REST Web Service Consumer transformation supports unnamed arrays only in a response message but not
in a request message. To parse an unnamed array schema defined in the Method Output Definition, the
parent element of complexType or simple type array elements must be of name xmlRooot.

In a Rest Web Service Consumer transformation, you must define xmlRoot as the child element of the
xmlRoot element with maximum occurs set to unbounded and the elements in unnamed array as child
elements of the xmlRoot element.

The following image shows the defined method output for the unnamed array:

Parsing a JSON Response Message that Contains Arrays 157

C h a p t e r 1 3

REST Web Service Consumer
Transformation Use Cases

This chapter includes the following topics:

• How to Configure a REST Web Service Consumer Transformation to Receive Data, 159

• How to Use a Schema to Create a REST Web Service Consumer Transformation, 165

• How to Generate a Custom URL in the REST Web Service Consumer Transformation, 175

158

How to Configure a REST Web Service Consumer
Transformation to Receive Data

Use the REST Web Service Consumer transformation to receive unparsed or parsed data from a web service.
When you specify the response message, you can choose to receive the original message or you can choose
to parse the message by specifying pre-defined fields to represent the message elements.

How to Receive Unparsed Data from the Web Service
Complete the following steps to create the transformation:

1. In the Developer tool mapping editor, scroll down in the mapping palette to locate the REST Web Service
Consumer transformation and drag it to the mapping.

The New REST Web Service Consumer Transformation wizard appears.

2. Enter a name for the transformation.

3. Next to HTTP Method, select Get.

When you use the Get method, you do not configure an input mapping.

4. Click Next.

The wizard displays a message that input is not applicable when using the Get method.

5. Click Next.

6. Select Create as empty.

7. Next to Show, select Output mapping.

How to Configure a REST Web Service Consumer Transformation to Receive Data 159

The following image shows the options in the wizard:

8. Drag the output group from the Method output definition area on the left to the Ports area on the right.

9. Click Finish.

10. Navigate to the Ports tab of the REST Web Service Consumer transformation.

11. Highlight the output group.

12. Select New in the top right corner of the Ports tab and select Other ports. Check the box next to Output
XML and click OK.

160 Chapter 13: REST Web Service Consumer Transformation Use Cases

The Output XML port is nested under the output group as shown in the following image:

13. Navigate to the Advanced tab.

14. To connect to the web service, configure the URL property with the base URL.

15. If you use an HTTP connection, enter the connection name for the property Connection. The HTTP
Connection overrides the base URL configured for the property URL.

16. Enter the format of the request and response messages. Configure the Input Format and Output Format
with XML or JSON.

The following image shows where you configure the advanced properties:

17. Run Data Viewer or run the mapping.

The following image shows an example of a response in the Output XML port:

How to Receive Parsed Data from the Web Service
You can parse a message that you receive from the web service. When you parse the message, the REST Web
Service Consume transformation receives data according to the structure that you specify for the response
message in the method output definition.

How to Configure a REST Web Service Consumer Transformation to Receive Data 161

For example, you might want to parse the following JSON response message:

{"name":"infa","message":"hello"}
To parse this response message, complete the following steps when you configure the transformation:

1. In the Developer tool mapping editor, scroll down in the mapping palette to locate the REST Web Service
Consumer transformation and drag it to the mapping.

The New REST Web Service Consumer Transformation wizard appears.

2. Enter a name for the transformation.

3. Next to HTTP Method, select Get.

When you use the Get method, you do not configure an input mapping.

4. Click Next.

The wizard displays a message that input is not applicable when using the Get method.

5. Click Next.

6. Select Create as empty.

7. Next to Show, select Output mapping.

8. Design the method output definition based on the response message that you expect to receive.

162 Chapter 13: REST Web Service Consumer Transformation Use Cases

The following image shows how the method output definition might appear:

Although the transformation receives a JSON response from the web service, the Data Integration
Service automatically adds a root element named xmlRoot to the JSON response. When you configure
the method output definition for a JSON response, configure the same root element xmlRoot.

9. Select Output mapping.

10. Configure the output mapping by dragging ports from the Method output definition area to the Ports
area.

How to Configure a REST Web Service Consumer Transformation to Receive Data 163

The following image shows an example of the output mapping:

11. Click Finish.

12. Select the transformation and navigate to the Advanced tab.

164 Chapter 13: REST Web Service Consumer Transformation Use Cases

13. Configure the Output Format with JSON.

The following image shows how the transformation might appear when it is integrated in a mapping:

The following image shows the response that might appear when you run the mapping:

How to Use a Schema to Create a REST Web Service
Consumer Transformation

Use a schema to create a REST Web Service Consumer transformation if the transformation contains many
elements that are difficult to configure manually. Import a schema that contains all the elements that you
want to include the request and response messages of the transformation.

How to Handle Request and Response Messages in XML Format
You have an XML file that contains an element hierarchy that you want to use to create the request message
that the REST Web Service Consumer transformation sends to a web service. The XML file includes data that
you can use to identify a person at your organization such as their ID, name, e-mail, and country. These
elements might appear in the XML file in the following way:

<Person><ID>sample</ID><Name>sample</Name><Email>sample</Email><Country>sample</
Country></Person>

You have another XML file that contains an element hierarchy that you want to use to create the response
message. The XML file includes data on the type of greeting that you want to use to address each person.
The greeting includes data on the individual's ID and the greeting content. These elements might appear in
the XML file in the following way:

<Greeting><ID>sample</ID><Content>sample</Content></Person>
To use the element hierarchy in these XML files in a REST Web Service Consumer transformation, first import
the XML files as schema objects in the Developer tool, then use the schema objects to define the method
input and the method output when you create the REST Web Service Consumer transformation.

How to Use a Schema to Create a REST Web Service Consumer Transformation 165

Step 1. Create Schemas from the XML Files.
Complete the following steps to create a schema object for the method input. Repeat these steps to create a
schema object for the method output.

1. In the Developer tool, click File > New > Schema to open the schema wizard.

2. Select Create from sample file.

3. Click Browse.

4. Navigate to the XML file and click Open.

5. Enter a name for the schema and verify the project location. If required, browse to a new location.

6. Click Next to view the schema elements.

166 Chapter 13: REST Web Service Consumer Transformation Use Cases

7. Click Finish.

You can use the schema object that you created to define the method input in the transformation.

8. Repeat steps 1-7 to create a schema object for the method output.

Step 2. Create the REST Web Service Consumer Transformation.
Create the transformation. Use the schemas to define the method input and method output.

1. In the Developer tool mapping editor, scroll down in the mapping palette to locate the REST Web Service
Consumer transformation and drag it into the mapping.

2. Enter a name for the transformation.

3. Select an HTTP method. For this example, select the HTTP method Post.

4. Click Next to define the method input.

How to Use a Schema to Create a REST Web Service Consumer Transformation 167

5. Select Create from an element in a Schema Object.

6. Click Browse.

7. Select the parent element in the schema. In this example, the schema used for the method input
contains the parent element Person.

168 Chapter 13: REST Web Service Consumer Transformation Use Cases

8. Click OK.

9. Select Input mapping.

10. Map the elements under RequestInput in the Ports area to Rest_Consumer_Input in the Method input
definition area. Remember to map the key from the Ports area to the Method input definition area.

11. To define the method output, click Next in the transformation wizard.

12. Select Create from an element in a Schema Object.

13. Select the parent element in the schema. In this example, the schema that we use for the method output
contains the parent element greeting.

How to Use a Schema to Create a REST Web Service Consumer Transformation 169

14. Map the elements under Rest_Consumer_Output in the Method output definition area to the Ports area.
You are not required to map the key.

15. Click Finish.

The following image shows how the transformation might appear in the mapping workflow:

16. Select the REST Web Service Consumer transformation in the mapping editor.

17. Navigate to the Properties view and select the Advanced tab.

170 Chapter 13: REST Web Service Consumer Transformation Use Cases

18. Configure the advanced properties. To enter a base URL, configure the property URL or enter an HTTP
connection in the property Connection.

How to Parse Request and Response Messages in JSON Format
To set up the REST Web Service Consumer transformation to parse a JSON response, set the log level to
Verbose Data in the Developer tool preferences. Open the verbose data log and copy the response to an XML
file. Import the XML file as a schema object and use the schema to create the transformation. After you
create the transformation, configure the transformation to receive a JSON response.

Step 1. Set the Log Level to Verbose Data.
To set the log level to Verbose Data, complete the following steps:

1. In the Developer tool, click Window > Preferences.

2. On the left-hand side of the Preferences window, click Run Configurations > Mapping.

3. On the right-hand side, select the Advanced tab.

4. For the property Override tracing level, select Verbose Data.

5. Open the verbose data log.

6. Search for HTTP Response BODY: <?xml

7. Copy the data between <xmlRoot> and </xmlRoot> and save the data as an XML file.

8. Import the XML file as a schema object in the Developer tool.

How to Use a Schema to Create a REST Web Service Consumer Transformation 171

Step 2. Use the Schema to Create a REST Web Service Consumer
Transformation.
To use the schema to parse the data that the REST Web Service Consumer transformation receives, complete
the following steps:

1. In the Developer tool mapping editor, scroll down in the mapping palette to locate the REST Web Service
Consumer transformation and drag it into the mapping.

2. Enter a name for the transformation.

3. Select an HTTP method.

4. Click Next.

5. To define the method input, select Create as empty or Create from an element in a Schema Object.
When you define the method input, you define the method input definition and the input mapping.

6. Click Next.

7. To define the method output, select Create from an element in a Schema object

8. Click Browse.

9. Select the element xmlRoot.

The following image shows how the element xmlRoot might appear:

10. Configure the output mapping. If a parent element contains child elements, you must map the child
elements manually. Drag the parent and child element groups from the Method output definition area to
the Ports area.

172 Chapter 13: REST Web Service Consumer Transformation Use Cases

You might have a mapping that looks like the following image:

11. Configure the REST Web Service Consumer transformation properties. For the property Output Format,
specify JSON.

How to Use a Schema to Create a REST Web Service Consumer Transformation 173

12. Run the transformation.

The following image shows an example of a response that you might receive:

Note that the data in the response is parsed to form groups that consist of a parent element and nested
child elements.

174 Chapter 13: REST Web Service Consumer Transformation Use Cases

How to Generate a Custom URL in the REST Web
Service Consumer Transformation

The REST Web Service Consumer transformation connects to a web service using a base URL. You can
customize the base URL by defining URL ports or argument ports.

Configure URL ports to create a dynamic URL, or configure argument ports to use the URL to filter the
resource that you access in the web service. The Data Integration Service appends the values in the URL or
argument ports to the base URL.

How to Use URL Ports to Build a Dynamic URL
Use URL ports to build a dynamic URL in the REST Web Service Consumer transformation. You can build a
dynamic URL such as https://sample.com/1/posts or https://sample.com/2/posts by defining a URL port
in the transformation.

To configure a dynamic URL after you create the REST Web Service Consumer transformation, complete the
following steps:

1. Select the REST Web Service Consumer transformation.

2. Navigate to the Properties view and select the Advanced tab.

3. To configure the base URL, complete one of the following steps:

• To configure the URL property, enter the base URL.

• To configure the Connection property, select the HTTP connection.

4. Navigate to the Ports tab.

5. Highlight the RequestInput group and select New. Select URL Ports from the drop-down menu.

The following image shows the URL port nested under RequestInput:

6. Edit the name of the URL port.

For this example, rename the URL port to number.

How to Generate a Custom URL in the REST Web Service Consumer Transformation 175

7. Create another URL port for posts. Rename the port to posts.

8. To build a dynamic URL such as https://sample.com/1/posts or https://sample.com/2/posts, link
ports from an upstream mapping object to the URL ports in the REST Web Service Consumer
transformation. Link a number port to the URL port number and link a string port to the URL port posts.

How to Use Argument Ports to Generate URL Parameters
You can use argument ports to generate parameters in the URL to filter the data that you request from the
web service. For example, if you use the Get method, you cannot configure a method input definition or an
input mapping, but you still want to use a filter in the Get request. You can use argument ports to create a
filter in the request message. Build a URL such as https://sample.com?arg1=val1&arg2=val2 by using
argument ports to generate the URL parameters.

To configure an argument port after you create the REST Web Service Consumer transformation, complete
the following steps:

1. Select the REST Web Service Consumer transformation.

2. Navigate to the Properties view and select the Advanced tab.

3. To configure the base URL, complete one of the following steps:

• To configure the URL property, enter the base URL.

• To configure the Connection property, select the HTTP connection.

4. Navigate to the Ports tab.

5. Highlight the RequestInput group and select New. Select Argument Ports from the drop-down menu.

6. Enter values for Argument Name and Port Name.

If the port name contains characters that the Data Integration Service cannot process, change the port
name.

176 Chapter 13: REST Web Service Consumer Transformation Use Cases

The following image shows the argument port nested under RequestInput:

7. Repeat steps 3 and 4 to add a second argument port.

The second argument port appears under the first argument port:

The argument port values are appended to the URL in the format http://sample.com?
arg1=val1&arg2=val2. The port name is not used in the URL. The Data Integration Service uses the port
name to identify the argument ports.

8. To use the argument ports arg1 and arg2 as parameters in the base URL, link ports from an upstream
mapping object to the argument ports in the REST Web Service Consumer transformation.

The ports linked from an upstream object define val1 and val2 in the URL https://sample.com?
arg1=val1&arg2=val2.

How to Generate a Custom URL in the REST Web Service Consumer Transformation 177

C h a p t e r 1 4

REST and SOAP Web Service
Administration

This chapter includes the following topics:

• Web Service Administration Overview, 178

• Web Service Properties Configuration , 179

• Web Service Security Management, 183

• Web Services on a Grid, 187

• Web Service Logs, 187

• Web Service Monitoring, 188

Web Service Administration Overview
You can administer a REST or SOAP web service in the Administrator tool. You can configure web service
security, configure the web service, view web service logs, and monitor web service requests. You must have
the appropriate privileges in order to perform these tasks.

After you deploy a web service to a Data Integration Service, you can perform the following tasks:

• Configure web service security. Enable web service security and assign permissions on web services.

• Configure the web service properties and the web service operation properties.

• Configure the Data Integration Service to run web service jobs on a grid.

• View the web service logs. View Data Integration Service logs for a web service. View the web service run-
time logs in the web service run-time logs directory.

• Monitor the web service. Use the Administrator tool or the Monitoring tool to monitor web service
requests.

178

Web Service Properties Configuration
In the Administrator tool, you can configure the web service properties for each web service that you deploy
to Data Integration Service.

Edit the properties of a web service from the Applications view of the Data Integration Service in the
Administrator tool. Expand the application name and select either a web service or a REST web service. The
properties appear in the Properties view.

The following image shows the Applications view of the Data Integration Service:

You can also edit properties for a SOAP web service operation or a REST web service resource. Select the
operation name or the resource name to view the properties.

Web Service Properties
REST web service and SOAP web service properties include read-only general properties and properties that
the Data Integration Service uses when it runs a web service.

When you expand a web service or a REST web service in the top panel of the Applications view, you can
access web service operations or resource in the web service.

The Applications view displays read-only general properties for the web services, web service operations, or
web services resources. Properties that appear in the view depend on the object type.

The following table describes the read-only general properties for each type of web service and the web
service operations or resources:

Property Description

Name Name of the selected object. Appears for all objects.

Description Short description of the selected object. Appears for all objects.

Type Type of the selected object. Appears for all object types.

Location The location of the selected object. This includes the domain and Data Integration Service name.
Appears for all objects.

URL URL used to connect to the web service. Appears for web services.

Web Service Properties Configuration 179

The following table describes the configurable web service properties for web services:

Property Description

Startup Type Determines whether the web service is enabled to run when the application starts or when you
start the web service.

Trace Level Level of error messages written to the run-time web service log. Choose one of the following
message levels:
- OFF. The DTM process does not write messages to the web service run-time logs.
- SEVERE. SEVERE messages include errors that might cause the web service to stop running.
- WARNING. WARNING messages include recoverable failures or warnings. The DTM process

writes WARNING and SEVERE messages to the web service run-time log.
- INFO. INFO messages include web service status messages. The DTM process writes INFO,

WARNING and SEVERE messages to the web service run-time log.
- FINE. FINE messages include data processing errors for the web service request. The DTM

process writes FINE, INFO, WARNING and SEVERE messages to the web service run-time log.
- FINEST. FINEST message are used for debugging. The DTM process writes FINEST, FINE,

INFO, WARNING and SEVERE messages to the web service run-time log.
- ALL. The DTM process writes FINEST, FINE, INFO, WARNING and SEVERE messages to the web

service run-time log.
Default is INFO.

Request Timeout Maximum number of milliseconds that the Data Integration Service runs an operation mapping
before the web service request times out. Default is 3,600,000.

Maximum
Concurrent
Requests

Maximum number of requests that a web service can process at one time. Default is 10.

Sort Order Sort order that the Data Integration Service to sort and compare data when running in Unicode
mode.

Enable Transport
Layer Security

Indicates that the web service must use HTTPS. If the Data Integration Service is not configured
to use HTTPS, the web service will not start.

The following table contains properties unique to REST web services:

Property Description

Is Authentication
Required

Enables basic authentication for the REST web service. Basic authentication requires a user
name and a password from web service requests. Default is disabled.

Input Precision Maximum number of characters that the Data Integration Service parses in the request
message. The web service request fails when the request message exceeds the input
precision. Default is 10,000.

Output Precision Maximum number of characters that the Data Integration Service generates for the response
message. The Data Integration Service truncates the response message when the response
message exceeds the output precision. Default is 3,000.

180 Chapter 14: REST and SOAP Web Service Administration

The following table contains properties unique to SOAP web services:

Property Description

Enable WS-
Security

Enables the Data Integration Service to validate the user credentials and verify that the user has
permission to run each web service operation. SOAP web services only.

Optimization
Level

The optimizer level that the Data Integration Service applies to the object. Enter the numeric value
that is associated with the optimizer level that you want to configure. You can enter one of the
following numeric values:
- 0. The Data Integration Service does not apply optimization.
- 1. The Data Integration Service applies the early projection optimization method.
- 2. The Data Integration Service applies the early projection, early selection, push-into, and

predicate optimization methods.
- 3. The Data Integration Service applies the cost-based, early projection, early selection, push-

into, predicate, and semi-join optimization methods.

DTM Keep Alive
Time

Number of milliseconds that the DTM instance stays open after it completes the last request. Web
service requests that are issued against the same operation can reuse the open instance. Use the
keep alive time to increase performance when the time required to process the request is small
compared to the initialization time for the DTM instance. If the request fails, the DTM instance
terminates.
Must be an integer. A negative integer value means that the DTM Keep Alive Time for the Data
Integration Service is used. 0 means that the Data Integration Service does not keep the DTM
instance in memory. Default is -1.

SOAP Output
Precision

Maximum number of characters that the Data Integration Service generates for the response
message. The Data Integration Service truncates the response message when the response
message exceeds the SOAP output precision. Default is 200,000.

SOAP Input
Precision

Maximum number of characters that the Data Integration Service parses in the request message.
The web service request fails when the request message exceeds the SOAP input precision.
Default is 200,000.

Web Service Operation and Resource Properties
Configure the settings that the Data Integration Service uses when it runs a web service operation or a web
service resource.

The following tables describes the configurable property for a SOAP web service operation or a REST web
service resource:

Property Description

Result Set Cache Expiration Period The number of milliseconds that the result set cache is available for use.
If set to -1, the cache never expires. If set to 0, result set caching is
disabled. Changes to the expiration period do not apply to existing
caches. If you want all caches to use the same expiration period, purge
the result set cache after you change the expiration period. Default is 0.

Web Service Result Set Caching
Result set caching enables the Data Integration Service to use cached results for web service requests. Users
that run identical queries in a short period of time may want to use result set caching to decrease the runtime
of identical queries.

Web Service Properties Configuration 181

When you configure result set caching, the Data Integration Service caches the results of the DTM process
associated with each web service request. The Data Integration Service caches the results for the expiration
period that you configure. When an external client makes the same query or request before the cache expires,
the Data Integration Service returns the cached results. If a cache does not exist or has expired, the Data
Integration Service starts a DTM instance to process the request.

When the amount of data in the cache exceeds the maximum cache size memory, the Data Integration
Service stores the result set in an encrypted cache file at <Informatica_install_dir>/tomcat/bin/
disTemp/<Service_Name>/<Node_Name>/.

The Data Integration Service stores the result set cache for web services by user when the web service uses
WS-Security. The Data Integration Service stores the cache by the user name that is provided in the username
token of the web service request. When the Data Integration Service caches the results by user, the Data
Integration Service only returns cached results to the user that sent the web service request.

Use the following steps to configure result set caching in the Administrator tool:

1. Configure the result set cache properties in the Data Integration Service Process properties.

The following table describes the result set cache properties:

Property Description

Maximum Total Disk Size Maximum number of bytes allowed for the total result set cache storage. Default
is zero.

Maximum Per Cache
Memory Size

Maximum number of bytes to allocate for a single result set cache instance in
memory. Default is zero.

Maximum Total Memory
Size

Maximum number of bytes allocated for the total result set cache storage in
memory. Default is zero.

Maximum Number of
Caches

Maximum number of result set cache instances allowed for the Data Integration
Service. Default is zero.

2. Configure the cache expiration period in the SOAP web service operation properties or the REST web
service resource properties.
The result set cache expiration period if the number of milliseconds that the result set is available to
use. If set to -1, the cache never expires. If set to zero, result set caching is disabled. Changes to the
expiration period do not apply to existing caches. To set all caches to use the same expiration period,
purge the result set cache after you change the expiration period. Default is zero.

3. To enable the Data Integration Service to cache the results by user, enable WS-Security in the web
service properties.

To disable result set caching for a web service request when the web service operation is configured to
cache the result set, include the following syntax in the HTTP header of the SOAP request:
WebServiceOptions.disableResultSetCache=true

182 Chapter 14: REST and SOAP Web Service Administration

Web Service Security Management
An HTTP client filter, transport layer security, and message layer security can provide secure data transfer
and authorized data access for a web service. When you configure message layer security, the Data
Integration Service can pass credentials to connections.

You can configure the following security option for a REST web service:

Is Authentication Required

Enables basic authentication for the REST web service. Basic authentication requires that each web
service request includes a user name and a password to the domain. Enable the property from the Data
Integration Service in the Administrator tool. ClickApplications > ApplicationName REST Web Service >
isAuthenticationRequired. When authentication is required, each GET request requires a user name and
password before the REST web service returns a response. Default is disabled.

You can configure the following security options for a SOAP web service:

HTTP Client Filter

If you want the Data Integration Service to accept requests based on the host name or IP address of the
web service client, use the Administrator tool to configure an HTTP client filter. By default, a web service
client running on any machine can send requests.

Message Layer Security

If you want the Data Integration Service to authenticate user credentials in SOAP requests, use the
Administrator tool to enable WS-Security and configure web service permissions. The Data Integration
Service can validate user credentials that are provided as a user name token in the SOAP request. If the
user name token is not valid, the Data Integration Service rejects the request and sends a system-
defined fault to the web service client. If a user does not have permission to execute the web service
operation, the Data Integration Service rejects the request and sends a system-defined fault to the web
service client.

Transport Layer Security (TLS)

If you want the web service and web service client to communicate using an HTTPS URL, use the
Administrator tool to enable transport layer security (TLS) for a web service. The Data Integration
Service that the web service runs on must also use the HTTPS protocol. An HTTPS URL uses SSL to
provide a secure connection for data transfer between a web service and a web service client.

Pass-Through Security

If an operation mapping requires connection credentials, the Data Integration Service can pass
credentials from the user name token in the SOAP request to the connection. To configure the Data
Integration Service to pass credentials to a connection, use the Administrator tool to configure the Data
Integration Service to use pass-through security for the connection and enable WS-Security for the web
service.

Note: You cannot use pass-through security when the user name token includes a hashed or digested
password.

Web Service Permissions
Permissions control the level of access that a user has to a REST web service or a SOAP web service when a
web service requires user authentication. Use the Administrator tool to configure permissions for a REST web
service or a SOAP web service. You can also set permissions for a resource or an operation.

To assign permissions, select the web service, resource, or operation from the Applications view for the Data
Integration Service. Click User Permissions or Group Permissions.

Web Service Security Management 183

An administrator assigns web service permissions to the following types of users and groups:

• Web service consumer. A native domain user that sends a request to the web service and receives a
response from the web service. The user must have execute permission on the web service.

• Web service administrator. A user that can log into the Administrator tool, edit the web service properties,
and grant permissions to other users.

• Web service operator. A user that can log into the Administrator tool, monitor a web service, and start or
stop a web service.

You can assign the following permissions to users and groups:

• Grant permission. Users can manage permissions on the web service objects using the Administrator tool
or using the infacmd command line program.

• Execute permission. Users can send web service requests and receive web service responses.

The following table describes the permissions for each SOAP web service object:

Object Grant Permission Execute Permission

SOAP Web
service

Grant and revoke permission on the web
service and all web service operations
within the web service.

Send web service requests and receive web
service responses from all web service
operations within the web service.

SOAP Web
service operation

Grant, revoke, and deny permission on the
web service operation.

Send web service requests and receive web
service responses from the web service
operation.

The following table describes the permissions for each REST web service object:

Object Grant Permission Execute Permission

REST web
service

Grant and revoke permission on the REST
web service and all web service resources
within the web service.

Send web service requests and receive web service
responses from all web service resources in the
REST web service.

REST resource Grant, revoke, and deny permission the REST
web service resource.

Send web service requests and receive web service
responses from the REST web service resource.

UserName Token in a SOAP Request
Web service clients must include a user name token header in the SOAP request when a web service requires
user authentication. When a web service does not require user authentication, the Data Integration Service
ignores the user name token header provided in the SOAP request.

The user name token element in a SOAP request can have one of the following password types:

• Plain text

• Hashed

• Digested

Note: You cannot use LDAP authentication when the user name token includes a hashed or digested
password.

Include the user password in the Password element of the UsernameToken element. The Password element
has a Type attribute to indicate the type of password security used.

184 Chapter 14: REST and SOAP Web Service Administration

Plain Text Password
Include a plain text password in the user name token header of a SOAP request when the user password
does not need to be encrypted. The Data Integration Service can process plain text passwords in the
UsernameToken element.

When the password is plain text, the UsernameToken element includes the following child elements:

Username element

Contains a user name in the Native security domain or any LDAP security domain. The default security
domain is the Native security domain. If the user name belongs to the Native security domain, the
Username element does not require the name of the security domain. If the user name belongs to an
LDAP security domain, the user name must be preceded by the name of the security domain and a slash
(/).

Password element

Contains the password in plain text. Set the Type attribute of the Password element to "PasswordText."

The following sample SOAP header shows an example of a UsernameToken element with a plain text
password:

<soap:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-14" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>Administrator</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">Administrator</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</soap:Header>

Hashed Password
Include a hashed password in the user name token header of a SOAP request when the user password must
be encrypted. The Data Integration Service can process hashed passwords in the UsernameToken element.

When you use a hashed password, the UsernameToken element includes the following child elements:

Username element

Contains a user name in the Native security domain.

Password element

Contains a hashed password. The password must be hashed with the MD5 or SHA-1 hash function and
encoded to Base64. Set the Type attribute of the Password element to "PasswordText."

The following sample SOAP header shows an example of a UsernameToken element with a hashed
password:

<soap:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-14" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>Administrator</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">Ntm58Cxf7SBOQAz3OlsTq1nv-D7</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</soap:Header>

Web Service Security Management 185

Digested Password
Include a digested password in the user name token header of a SOAP request when the user password is an
encrypted password that is hashed with a nonce value and a time stamp. The Data Integration Service can
process digested passwords in the UsernameToken element.

When you use a digested password, the UsernameToken element includes the following child elements:

Username element

Contains a user name that can be found in the Native security domain.

Password element

Contains a digested password. The password is the value generated from hashing the password
concatenated with the nonce value of the Nonce element and the time stamp in the Created element.
The password must be hashed with the SHA-1 hash function and encoded to Base64. For digested
password security, set the Type attribute of the Password element to "PasswordDigest."

Nonce element

Contains a nonce value, which is a random value that can be used only once. By default, it is valid for 300
seconds after the time that the request is created, as indicated by the value in the Created element. The
client application must send the request within the time that the nonce value is valid. For example, the
Created value indicates that the request was created at 10:00 a.m. The request is valid from 10:00 a.m.
to 10:05 a.m. If the client application sends the request to the web service before 10:00 a.m. or after
10:05 a.m., then the request and the nonce value are not valid and the request will fail.

Created element

Contains a time stamp value that indicates the time when the request was created. The time stamp uses
the UTC format, yyyy-MM-dd'T'HH:mm:ss.SSS'Z'. For example: 2008-08-11T18:06:32.425Z.

The digested password uses the standard OASIS password digest algorithm:

Password_Digest = Base64 (SHA-1 (nonce + created + password))
You can use any tool to generate the nonce value, time stamp, and the digested password.

The following sample SOAP header shows an example of a UsernameToken element with a digested
password:

<soap:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-14" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>Administrator</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordDigest">Ntm58Cxf7SBOQAz3OlsTq1nv-D7</wsse:Password>
 <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#Base64Binary">zWELHdoAzNjQQ9xzlIwFZA==</
wsse:Nonce>
 <wsu:Created>2010-10-15T20:56:18.633Z</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>
</soap:Header>

186 Chapter 14: REST and SOAP Web Service Administration

Web Services on a Grid
The Data Integration Service can run a web service on a grid.

When a Data Integration Service grid runs web service requests, the service runs jobs in the Data Integration
Service process. All nodes in the grid must have both the service and compute roles.

When you enable a Data Integration Service that runs on a grid, one service process starts on each node with
the service role in the grid. The Data Integration Service designates one service process as the master
service process, and designates the remaining service processes as worker service processes. When a
worker service process starts, it registers itself with the master service process so that the master is aware
of the worker.

The worker service processes run the web service jobs. The master service process also acts as a worker
service process and completes jobs.

When you submit a web service request, the Data Integration Service uses an external HTTP load balancer to
distribute the request to a worker service process. When you submit multiple requests against web services,
the Data Integration Service uses round robin to dispatch each query to a worker service process.

Configure a Grid that Runs Jobs in the Service Process
When a Data Integration Service grid runs web service requests, an administrator configures the Data
Integration Service to run jobs in the service process. An administrator configures the Data Integration
Service in the Administrator tool.

An administrator creates a grid for the web service jobs and assigns the Data Integration Service to the grid.
The administrator configures the Data Integration Service to run jobs in the service process and configures
load balancing. The administrator can also configure Data Integration process properties on each node and
the compute properties for the execution Data Transformation Manager (DTM).

Web Service Logs
You can view web service logs in the Data Integration Service logs and in the web service run-time logs.

The Data Integration Service logs can contain web service messages such as, a web service status change or
an error that prevents the web service from running. View the Data Integration Service logs on the Logs tab in
the Administrator tool.

When the DTM process of the Data Integration Service runs the web service operation mapping, messages
about the web service operation mapping appear in the web service run-time logs. The DTM process of the
Data Integration Service creates a log file for each web service request. View the web service run-time logs in
the ws directory within the Data Integration Service process log location. By default, view the web service run-
time logs in the following directory: <InformaticaInstallationDir>/tomcat/bin/disLogs/ws

Web Service Trace Levels
In the Administrator tool, configure the Trace Level property to indicate the trace level of the messages that
the DTM process writes to the web service run-time logs. You can configure the HTTP header in a web
service request to override the trace level set for the web service.

Each web service request generates run-time logs based on the web service trace level configuration. To
override the web service trace level for a web service request, include the following entry in the HTTP header

Web Services on a Grid 187

of the web service SOAP request: WebServiceOptions.traceLevel= <trace_level>. For example, to use the
HTTP header to set the trace level to FINE, use the following text: WebServiceOptions.traceLevel= fine

Web Service Monitoring
To monitor a REST web service or a SOAP web service, view its properties, run-time statistics, run-time
reports, and information about each web service request.

You can monitor a web service in the following locations:

• Monitoring tool. In the Developer tool, click the Menu button in the Progress view and select Monitor
Jobs. Select the Data Integration Service that runs the web service and click OK. The Monitoring tool
opens.

• Administrator tool. To monitor web services in the Administrator tool, click the Monitor tab.

When you monitor a web service, you can view summary statistics or execution statistics for the service.

The Summary Statistics view displays graphical information about web service distribution and state. When
you select a time range, and expand the Requests and Connections panel, the Summary Statistics shows web
service requests for that time range. You can view request details or summaries of the requests . View a
graphical distribution or a tabular summary. The Summary Statistics view displays statistics using data that
is stored in the Model repository. You must configure a Model repository in the Monitoring Configuration
before you can view Summary Statistics.

The Execution Statistics view displays information about specific web services that are deployed in an
application. You can view the following statistics about a SOAP web service or a REST web service:

• Total number of requests.

• Completed requests.

• Aborted requests. Requests that aborted when the Data Integration Service was recycled or disabled in
abort mode.

• Failed requests.

To view the properties of a web service, expand an application in the Navigator and select the Web Services
folder or the Rest Services folder. A list of web services appears in the contents panel. The contents panel
shows properties about each web service, such as the name, description, and state.

When you select a web service, the details panel shows the following views:

• Properties view. The Properties view shows general properties and run-time statistics for a web service.

• Reports view. The Reports view shows monitoring reports about the selected web service.

• Operations view. The Operations view shows the name and description of each operation included in the
web service. The view also displays properties, requests, and reports about each operation.

• Requests view. The Requests view shows properties about each web service request, such as request ID,
user name, state, start time, elapsed time, and end time. You can filter the list of requests.

Properties View for a Web Service
The Properties view shows general properties and run-time statistics for a web service.

When you select a web service in the contents panel of the Properties view, you can view the general
properties and monitoring statistics.

188 Chapter 14: REST and SOAP Web Service Administration

General Properties for a Web Service

You can view general properties about the web service, such as the name and type of object.

Statistics for a Web Service

You can view run-time statistics about web service requests during a specific time period. The Statistics
section shows the number of completed, failed, and total web service requests.

Reports View for a Web Service
The Reports view shows monitoring reports about the selected web service.

When you monitor a web service, the Reports view shows reports about the web service. For example, you
can view the Most Active WebService Client IP report to determine the IP addresses that received the most
number of web service requests during a specific time period.

Operations View for a REST or SOAP Web Service
The Operations view shows the name and description of each operation or resource included in the web
service. The view also displays properties, requests, and reports about each operation.

When you select a web service operation in the contents panel, the details panel shows the Properties view,
Requests view, and Reports view.

Properties View

The Properties view shows general properties and statistics about the selected web service operation or
resource. General properties include the operation or resource name and type of object. The view also
shows statistics about the web service operation during a particular time period. Statistics include the
number of completed, failed, and total web service requests.

Requests View

The Requests view shows properties about each web service operation, such as request ID, user name,
state, start time, elapsed time, and end time. You can filter the list of requests. You can also view logs
for the selected web service request.

Reports View for a SOAP Web Service

The Reports view shows reports about SOAP web service operations.

Requests View for a Web Service
The Requests view shows properties about each web service request, such as request ID, user name, state,
start time, elapsed time, and end time. You can filter the list of requests.

When you select a web service request in the contents panel, you can view logs about the request in the
details panel. The details panel shows general properties and statistics about the selected web service
request. Statistics include the number of completed, failed, and total web service requests.

You can also abort a web service request from the Requests view. To abort a web service request, select the
workflow request and click Actions > Abort Selected Request in the contents panel.

Web Service Monitoring 189

A p p e n d i x A

Datatype Compatibility
This appendix includes the following topics:

• Data Type Reference Overview, 190

• XML and Transformation Datatypes, 191

• Decimal, 193

Data Type Reference Overview
When you create a mapping, you create a set of instructions for the Data Integration Service to read data
from a source, transform it, and write it to a target. The Data Integration Service transforms data based on
dataflow in the mapping, starting at the first transformation in the mapping, and the data type assigned to
each port in a mapping.

The Developer tool displays two types of data types:

Native data types

Native data types are specific to the relational table or flat file used as a physical data object. Native
data types appear in the physical data object column properties.

Transformation data types

Transformation data types are set of data types that appear in the transformations. They are internal
data types based on ANSI SQL-92 generic data types, which the Data Integration Service uses to move
data across platforms. Transformation data types appear in all transformations in a mapping.

Transformation data types include the following data types:

• Primitive data type. Represents a single data value in a single column position.

• Complex data type. Represents multiple data values in a single column position. Use complex data
types in mappings that run on the Spark engine to process hierarchical data in complex files.

When the Data Integration Service reads source data, it converts the native data types to the comparable
transformation data types before transforming the data. When the Data Integration Service writes to a target,
it converts the transformation data types to the comparable native data types.

When you specify a multibyte character set, the data types allocate additional space in the database to store
characters of up to three bytes.

190

XML and Transformation Datatypes
XML datatypes map to transformation datatypes that the Data Integration Service uses to move data across
platforms.

The Data Integration Service supports all XML datatypes specified in the W3C May 2, 2001 Recommendation.
However, the Data Integration Service may not support the entire XML value range. For more information
about XML datatypes, see the W3C specifications for XML datatypes at the following location:
http://www.w3.org/TR/xmlschema-2.

The following table compares XML datatypes to transformation datatypes:

Datatype Transformation Range

anyURI String 1 to 104,857,600 characters

base64Binary Binary 1 to 104,857,600 bytes

boolean String 1 to 104,857,600 characters

byte Integer -2,147,483,648 to 2,147,483,647

date Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the nanosecond)

dateTime Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the nanosecond)

decimal Decimal Precision 1 to 28, scale 0 to 28

double Double Precision of 15 digits

duration String 1 to 104,857,600 characters

ENTITIES String 1 to 104,857,600 characters

ENTITY String 1 to 104,857,600 characters

float Double Precision of 15 digits

gDay String 1 to 104,857,600 characters

gMonth String 1 to 104,857,600 characters

gMonthDay String 1 to 104,857,600 characters

gYear String 1 to 104,857,600 characters

gYearMonth String 1 to 104,857,600 characters

hexBinary Binary 1 to 104,857,600 bytes

ID String 1 to 104,857,600 characters

IDREF String 1 to 104,857,600 characters

IDREFS String 1 to 104,857,600 characters

XML and Transformation Datatypes 191

http://www.w3.org/TR/xmlschema-2

Datatype Transformation Range

int Integer -2,147,483,648 to 2,147,483,647

integer Integer -2,147,483,648 to 2,147,483,647

language String 1 to 104,857,600 characters

long Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Name String 1 to 104,857,600 characters

NCName String 1 to 104,857,600 characters

negativeInteger Integer -2,147,483,648 to 2,147,483,647

NMTOKEN String 1 to 104,857,600 characters

NMTOKENS String 1 to 104,857,600 characters

nonNegativeInteger Integer -2,147,483,648 to 2,147,483,647

nonPositiveInteger Integer -2,147,483,648 to 2,147,483,647

normalizedString String 1 to 104,857,600 characters

NOTATION String 1 to 104,857,600 characters

positiveInteger Integer -2,147,483,648 to 2,147,483,647

QName String 1 to 104,857,600 characters

short Integer -2,147,483,648 to 2,147,483,647

string String 1 to 104,857,600 characters

time Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the nanosecond)

token String 1 to 104,857,600 characters

unsignedByte Integer -2,147,483,648 to 2,147,483,647

unsignedInt Integer -2,147,483,648 to 2,147,483,647

unsignedLong Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

unsignedShort Integer -2,147,483,648 to 2,147,483,647

192 Appendix A: Datatype Compatibility

Decimal
When a web service operation mapping contains an Input or Output transformation with a Decimal data type
of precision greater than 28 digits, the Data Integration Service converts the Decimal data type to the Double
data type.

Decimal 193

I n d e x

A
abstract property

schema object 26
advanced properties

REST Web Service Consumer transformation 154
Web Service Consumer transformation 95

Advanced tab
Output transformation 53

all group
viewing in REST Web Service Consumer transformation 153
viewing in Web Service Consumer transformation 90, 93

any elements
Web Service Consumer transformation 89, 92

anyAttribute attributes
Web Service Consumer transformation 89, 92

anyType
map ports 80

anyType elements
parsing 67
Web Service Consumer transformation 89, 92

attribute properties
schema object 29

attributeFormDefault
schema object 30

authentication
UsernameToken 184

B
base property

schema object 28
basic authentication

REST web services 183
binding

WSDL file element 85
block property

schema object 27

C
certificates

adding untrusted certificates 23, 35
certificate properties 23, 35
managing certificates 23, 34
untrusted certificates 23, 34

choice elements
description 81
parsing SOAP messages 70
viewing in REST Web Service Consumer transformation 153
viewing in Web Service Consumer transformation 90, 93

code
web service fault handling 58

collapse whitespace property
schema object 28

complex type
advanced properties 29

composite keys
REST Web Service Consumer transformation 150
Web Service Consumer transformation 89

concurrent web service request messages
enabling in Web Service Consumer transformation 95

connection
REST web services 154
web services 95

cookie authentication
REST Web Service Consumer transformation 149
Web Service Consumer transformation 88

creating
fault transformation 56

creating a REST web service
creating from a data object 135
deploying a data object 138

custom resource mapping
description 112

customize view options
description 62

D
data access method

REST web service preview 118
Data Integration Service grid

web services 187
data types

overview 190
datatypes

XML 191
denormalized input

web service ports 78
denormalized output

SOAP message parsing 66
derived type elements

Web Service Consumer transformation 89, 92
derived types

parsing SOAP messages 68
web services 80

detail element
web service fault handling 58

dynamic URL
Web Service Consumer transformation 88

E
early selection optimization

Web Service Consumer transformation 99

194

elementFormDefault
schema object 30

elements
creating 46
union 82

endpoint URL
REST Web Service Consumer transformation 148
Web Service Consumer transformation 88

enumeration property
schema object 26

F
fault actor

web service fault handling 58
fault code

web service fault handling 58
fault elements

SOAP 1.1 58
SOAP 1.2 58

fault string
web service fault handling 58

fault transformation
creating 56
generic fault 56
predefined fault 56

Fault transformation
configuring in a web service 57
customize view options 62
description 55
map the first level of the hierarchy 56
map to output as XML 55
mapping rules and guidelines 56
Ports tab 56

filter port
Web Service Consumer transformation 99

fixed value property
schema object 26

G
generated keys

web service output groups 65
generated prefix

changing for namespace 25
generic fault

web service fault handling 61
generic fault output

enabling in Web Service Consumer transformation 95
generic SOAP faults

Web Service Consumer transformation 97
GZip

compressing SOAP messages 97

H
header

description 16
HTTP POST 47

headers
creating 47

How to
creating a REST web service from a data object 135
deploying a data object as a REST web service 138

HTTP connection
REST web services 154

HTTP error output
enabling in Web Service Consumer transformation 95

HTTP header
adding to REST Web Service Consumer transformation 149
adding to Web Service Consumer transformation 88

HTTP POST
header 47

HTTP response code
REST Web Service Consumer transformation 150

I
inherit by property

schema object 29
inherit from property

schema object 29
input mapping

REST Web Service Consumer transformation 150
Web Service Consumer transformation 89

Input Ports area
generating SOAP messages 72

Input transformation
configuring in a web service 51
customize view options 62
description 50
map the first level of the hierarchy 50
map to input as XML 50
mapping rules and guidelines 50
Ports tab 50

isAuthenticationRequired
REST web services 183

K
keys

SOAP message hierarchy 74

L
list elements

description 82
parsing SOAP messages 70

Location column
web service transformation 73

M
Map First Level Hierarchy

description 113
map the first level of the hierarchy

Fault Transformation 56
Input Transformation 50
Output Transformation 52

map to input as XML
Input transformation 50

map to output as XML
Fault transformation 55
Output transformation 52

maximum length
schema object 26

maximum occurs
schema object 26

Index 195

member types
schema object 28

minimum length
schema object 26

minimum occurs
schema object 26

N
namespace

changing generated prefix 25
namespaces

schema object 25
nillible property

schema object 26
node

web service fault handling 58

O
operation

WSDL file element 85
operation area

web service transformations 73
operation fault

description 16
operation input

description 16
Operation Input area

customizing Web Service Consumer transformation 90
operation mapping

Fault transformation 55
Input transformation 50
Output transformation 52
overview 48
testing 62

operation output
description 16

Operation Output area
customizing Web Service Consumer transformation 93

operations
description 16

output mapping
multiple groups 114
REST Web Service Consumer transformation 152
REST web services 113
Web Service Consumer transformation 92

Output transformation
Advanced tab 53
configuring in a web service 53
customize view options 62
description 52
map the first level of the hierarchy 52
map to output as XML 52
mapping rules and guidelines 53
Ports tab 52

override SOAP action
Web Service Consumer transformation 95

P
password

hashed 185
plain text 185

pattern property
schema object 26

pivoted data
SOAP messages 77

pivoted output
SOAP message parsing 67

ports
denormalized web service input 78
map to SOAP messages 75

Ports tab
Fault transformation 56
Input transformation 50
Output transformation 52

predefined faults
creating 47
web service fault handling 60

push-into optimization
Web Service Consumer transformation 99

Q
Qname elements

parsing SOAP messages 69

R
reason

web service fault handling 58
request message

REST web services 115
resource

REST web services 106
resource identifier

filter in data preview 118
resource key

referencing in request URI 116
REST web services 110
searching by 116

resource mapping
Advanced tab 117
custom 112
default 111
description 106

resource mappings
REST web service 111

resources
REST web services 108

response code
REST Web Service Consumer transformation 150

response message
REST web services 117

REST and SOAP
compared 14

REST Web Service Consumer transformation
advanced properties 154
argument port 175
argument ports 148
configuration 143
connection property 154
cookie ports 149
creating 155
custom URL 175
customizing output mapping view 153
Delete method 147
Get method 145
HTTP header ports 149

196 Index

REST Web Service Consumer transformation (continued)
HTTP methods 144
input mapping 150
input mapping rules 150
input ports 148
internet media type 154
JSON schema 171
mapping elements to ports 147
mapping input 141
mapping input ports 151
mapping output 141
mapping output ports 153
message configuration 143
non-reusable 155
output mapping 152
output mapping rules 152
output ports 148
output XML ports 149
overview 141
parsed 159
parsed data 161
pass-through ports 148
ports 147
Post method 145
process 142
proxy server support 141
Put method 146
RequestInput port 147
resource identification 143
response code ports 150
reusable 155
schema 165, 171
security 86
setting base URL 154
sorted input 154
tracing level 154
transport layer security 86
unparsed 159
unparsed data 159
URL port 175
URL ports 148
XML schema 165
XML schema validation 154

REST web services
creating a web service 120
custom mappings 112
Data Viewer view 118
default mapping 111
multiple-occurring data 114
Output transformation 113
overview 106, 115
processes 107
query by resource key 116
request message format 115
resource keys 110
resource mappings 111
response message formats 117
Schema view 110
synchronizing resources 110

result set caching
configuring 181
web service operation properties 181

role
web service fault handling 58

S
schema files

adding to schema objects 25
editing 33
removing from schema objects 25
setting a default editor 33

schema object
elements advanced properties 27
abstract property 26
attribute properties 29
attributeFormDefault 30
block property 27
complex elements 29
complex elements advanced properties 29
editing a schema file 31
element properties 26
elementFormDefault 30
file location 30
importing 31
inherit by property 29
inherit from property 29
namespaces 25
overview 24
Overview view 24
schema files 25
setting a default editor 33
simple type 28
substitution group 27
synchronization 31

Schema object
Schema view 25

Schema view
REST web service 110
Schema object 25
simple type advanced properties 28

security
UsernameToken 184
web service security 183

sequence group
viewing in REST Web Service Consumer transformation 153

service
WSDL file element 85

side effects
Web Service Consumer transformation 99

simple type
schema object 28

SImple Type view
schema object 28

SOAP 1.1
fault elements 58

SOAP 1.2
fault elements 58

SOAP action
overriding in Web Service Consumer transformation 95

SOAP and REST
compared 14

SOAP compression
Web Service Consumer transformation 97

SOAP hierarchy
relationship to input ports 73

SOAP message
keys 74

SOAP message parsing
denormalized output 66
derived types 68
description 63
normalized output 65

Index 197

SOAP message parsing (continued)
pivoted output 67
Qname elements 69
union element 70

SOAP messages
map choice elements 81
map list elements 82
map multiple input ports 77
map multiple-occurring nodes 65
map ports 75
map ports to union elements 82
overview 85
parsing anyType elements 67
parsing choice elements 70
parsing list elements 70
parsing substitution groups 69
pivoting data 77

SOAP web service
creating overview 36
development 18

substitution group
schema object 27

substitution groups
parsing SOAP messages 69
Web Service Consumer transformation 89, 92
web services 81

synchronize resource
REST web services 110

system-defined fault
web service fault handling 60

T
trace level

web service 187
transport layer security

REST Web Service Consumer transformation 86
Web Service Consumer transformation 86

treat fault as error
enabling in Web Service Consumer transformation 95

U
union element

parsing SOAP messages 70
union elements

description 82
UsernameToken

hashed password 185
password digest 186
password types 184
plain text password 185

V
variety property

schema object 28

W
web service

components 16
configuring a Fault transformation 57
configuring an Input transformation 51

web service (continued)
configuring an Output transformation 53
configuring result set caching 181
creating a header 47
creating elements 46
creating from WSDL 40
creating predefined faults 47
creating without a WSDL 41
deployment 18
derived types 80
fault handling 58
generic fault 61
Input transformation 50
logs 187
manually creating 41
map ports to anyTypes 80
monitoring 188
operation properties 181
operations 16
overview view 37
permission types 183
permissions 183
predefined faults 60
process 14
properties 179
property configuration 179
resource properties 181
security 183
SOAP examples 18
substitution groups 81
system-defined fault 60
trace level 187
WSDL 17
WSDL association 40
WSDL URL 17
WSDL view 39

web service consumer
process 15, 107

Web Service Consumer transformation
adding HTTP headers 88
advanced properties 95
concurrent web service request messages 95
cookie authentication 88
creating 101
dynamic web service URL 88
dynamic WS-Security name 88
early selection optimization 99
enabling generic fault output 95
enabling HTTP error output 95
enabling push-into optimization 100
endpoint URL 88
error handling 97
filter optimization 99
generic SOAP faults 97
input mapping 89
mapping input ports 89
mapping output nodes 92
operations 85
output mapping 92
overview 84
push-into optimization 99
security 86
SOAP compression 97
SOAP messages 85
transport layer security 86
viewing keys 90, 93

web service security
authentication 183

198 Index

web service security (continued)
authorization 183
HTTP client filter 183
HTTPS 183
isAuthenticationRequired 183
message layer security 183
pass-through security 183
permissions 183
transport layer security 183

web service transformations
Location column 73

web services
Data Integration Service grid 187
overview 13

web services connections
overview 95

WS-Security user name
dynamic port 88

WSDL
association with web service 40

WSDL (continued)
create a web service from a WSDL 40
description 17

WSDL data objects
advanced view 21
creating 21
importing 20
overview view 21
schema view 20
synchronization 22

WSDL file
binding element 85
operation element 85
port element 85
service element 85

WSDL URL
description 17

Index 199

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Web Services
	Web Services Overview
	REST and SOAP Web Service Differences
	Web Service Process
	Web Service Consumer Transformation Process

	Chapter 2: SOAP Web Services
	SOAP Web Service Components
	Operations
	WSDL
	SOAP

	Developing SOAP Web Services
	SOAP Web Service Examples

	Chapter 3: WSDL Data Object
	WSDL Data Object Overview
	WSDL Data Object Overview View
	WSDL Data Object Advanced View
	Importing a WSDL Data Object
	WSDL Synchronization
	Synchronizing a WSDL Data Object

	Certificate Management
	Informatica Developer Certificate Properties
	Adding Certificates to Informatica Developer

	Chapter 4: Schema Object
	Schema Object Overview
	Schema Object Overview View
	Schema Files

	Schema Object Schema View
	Namespace Properties
	Element Properties
	Simple Type Properties
	Complex Type Properties
	Attribute Properties

	Schema Object Advanced View
	Creating a Schema Object
	Schema Updates
	Schema Synchronization
	Schema File Edits

	Certificate Management
	Informatica Developer Certificate Properties
	Adding Certificates to Informatica Developer

	Chapter 5: How to Create a SOAP Web Service
	Create a SOAP Web Service Overview
	Types and Elements
	Web Service Overview View
	Web Service WSDL View
	Create a Web Service from a WSDL Data Object
	Step 1. Create a Web Service from a WSDL Data Object
	Step 2. Add an Operation to a Web Service
	Associating a WSDL Data Object with a Web Service

	Create a SOAP Web Service Manually
	Step 1. Creating a Web Service Manually
	Step 2. Creating an Operation
	Step 3. Create an Element
	Step 4. Create a Predefined Fault
	Step 5. Create a Header

	Chapter 6: Operation Mappings
	Operation Mappings Overview
	Operation Mapping General Tab
	Operation Mapping Operation Tab
	Operation Mapping Advanced Tab
	Input Transformation
	Input Transformation Ports Tab
	Rules and Guidelines to Map the Operation Input to Ports
	Configuring the Input Transformation

	Output Transformation
	Output Transformation Ports Tab
	Output Transformation Advanced Tab
	Rules and Guidelines to Map Ports to the Operation Output
	Configuring the Output Transformation

	Fault Transformation
	Fault Transformation Ports Tab
	Fault Transformation Advanced Tab
	Rules and Guidelines to Map Ports to the Operation Fault
	Creating a Fault Transformation
	Configuring the Fault Transformation

	Fault Handling
	System-Defined Faults
	Predefined Faults
	Generic Faults

	Test Operation Mappings
	Testing Operation Mappings

	Customized View Options

	Chapter 7: Parsing Web Service SOAP Messages
	Parsing Web Service SOAP Message Overview
	Transformation User Interface
	Multiple-Occurring Output Configuration
	Normalized Relational Output
	Generated Keys
	Denormalized Relational Output
	Pivoted Relational Output

	Parsing anyType Elements
	Parsing Derived Types
	Parsing QName Elements
	Parsing Substitution Groups
	Parsing XML Constructs in SOAP Messages
	Choice Element
	List Element
	Union Element

	Chapter 8: Generating Web Service SOAP Messages
	Generating Web Service SOAP Messages Overview
	Transformation User Interface
	Input Ports Area
	Operation Area

	Port and Hierarchy Level Relationships
	Keys
	Map Ports
	Map a Port
	Map a Group
	Map Multiple Ports

	Pivoting Multiple-Occurring Ports
	Map Denormalized Data
	Derived Types and Element Substitution
	Generating Derived Types
	Generating anyType Elements and Attributes
	Generating Substitution Groups

	Generating XML Constructs in SOAP Messages
	Choice Element
	List Element
	Union Element

	Chapter 9: Web Service Consumer Transformation
	Web Service Consumer Transformation Overview
	SOAP Messages
	WSDL Files
	Operations
	Web Service Security

	WSDL Selection
	Web Service Consumer Transformation Ports
	HTTP Header Input Ports
	Other Input Ports

	Web Service Consumer Transformation Input Mapping
	Rules and Guidelines to Map Input Ports to Nodes
	Customize View Options
	Mapping Input Ports to the Operation Input

	Web Service Consumer Transformation Output Mapping
	Rules and Guidelines to Map Nodes to Output Ports
	Mapping the SOAP Message as XML
	Customize View Options
	Mapping the Operation Output to Output Ports

	Web Service Consumer Transformation Advanced Properties
	Web Service Error Handling
	Message Compression
	Concurrency

	Filter Optimizations
	Enabling Early Selection Optimization with the Web Service Consumer Transformation
	Push-Into Optimization with the Web Service Consumer Transformation

	Creating a Web Service Consumer Transformation
	Web Service Consumer Transformation Example
	Input File
	Logical Data Object Model
	Logical Data Object Mapping
	Web Service Consumer Transformation

	Chapter 10: REST Web Services
	REST Web Services Overview
	REST Web Service Process
	Web Service Consumer Transformation Process
	REST Web Service Resources
	REST Web Service Schema View
	Data Object Synchronization
	Resource Keys

	Resource Mappings
	Default Resource Mappings
	Custom Resource Mappings

	REST Web Service Output Transformation
	Multiple-Occurring Data in the REST Output Transformation

	Request Messages
	Filter Data in Resource Mappings
	Search By Key

	Response Message Formats
	Response Data Preview

	Chapter 11: How to Create a REST Web Service
	Create a REST Web Service
	How to Manually Create A REST Web Service
	Example REST Web Service

	Step 1. Create the REST Web Service Resource
	Creating the REST Web Service Resource

	Step 2. Define the Resource Mapping
	Defining the Resource Mapping

	Step 3. Configure the Output Mapping
	Configuring the Output Mapping

	Step 4. Test the Mapping in the Data Viewer View
	Filtering the Output by Resource ID
	Filtering the Output by Filter Condition

	Step 5. Deploy the Application
	Deploying the Application

	Step 6. Query the Web Service from a Browser
	Querying the Web Service

	How to Create a REST Web Service From a Data Object
	How to Deploy a Data Object as a REST Web Service

	Chapter 12: REST Web Service Consumer Transformation
	REST Web Service Consumer Transformation Overview
	REST Web Service Consumer Transformation Process

	REST Web Service Consumer Transformation Configuration
	Message Configuration
	Resource Identification

	HTTP Methods
	HTTP Get Method
	HTTP Post Method
	HTTP Put Method
	HTTP Delete Method

	REST Web Service Consumer Transformation Ports
	Input Ports
	Output Ports
	Pass-through Ports
	Argument Ports
	URL Ports
	HTTP Header Ports
	Cookie Ports
	Output XML Ports
	Response Code Ports

	REST Web Service Consumer Transformation Input Mapping
	Rules and Guidelines to Map Input Ports to Elements
	Mapping Input Ports to the Method Input

	REST Web Service Consumer Transformation Output Mapping
	Rules and Guidelines to Map Elements to Output Ports
	Customize View Options
	Mapping the Method Output to Output Ports

	REST Web Service Consumer Transformation Advanced Properties
	REST Web Service Consumer Transformation Creation
	Creating a REST Web Service Consumer Transformation

	Parsing a JSON Response Message that Contains Arrays
	Example JSON Response Message
	Unnamed Arrays in a Response Message

	Chapter 13: REST Web Service Consumer Transformation Use Cases
	How to Configure a REST Web Service Consumer Transformation to Receive Data
	How to Receive Unparsed Data from the Web Service
	How to Receive Parsed Data from the Web Service

	How to Use a Schema to Create a REST Web Service Consumer Transformation
	How to Handle Request and Response Messages in XML Format
	How to Parse Request and Response Messages in JSON Format

	How to Generate a Custom URL in the REST Web Service Consumer Transformation
	How to Use URL Ports to Build a Dynamic URL
	How to Use Argument Ports to Generate URL Parameters

	Chapter 14: REST and SOAP Web Service Administration
	Web Service Administration Overview
	Web Service Properties Configuration
	Web Service Properties
	Web Service Operation and Resource Properties
	Web Service Result Set Caching

	Web Service Security Management
	Web Service Permissions
	UserName Token in a SOAP Request

	Web Services on a Grid
	Configure a Grid that Runs Jobs in the Service Process

	Web Service Logs
	Web Service Trace Levels

	Web Service Monitoring
	Properties View for a Web Service
	Reports View for a Web Service
	Operations View for a REST or SOAP Web Service
	Requests View for a Web Service

	Appendix A: Datatype Compatibility
	Data Type Reference Overview
	XML and Transformation Datatypes
	Decimal

	Index

