4.» Informatica

Informatica®
10.2

ransformation Language
Reference

Informatica Transformation Language Reference
10.2
September 2017

© Copyright Informatica LLC 2009, 2019

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © 0SS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright® MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/Igpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edI-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http:/
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antir.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http:/forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sglite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/fag.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/

EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http:/jsoncpp.sourceforge.net/LICENSE; http://
jdbe.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/1z4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cdd|1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsgl.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe Walnes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2.IN'NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, please report them to us in writing at
Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2019-04-15

https://www.informatica.com/legal/patents.html

Table of Contents

Preface .. .o e e 10
Informatica Resources. 10
Informatica Network. L 10
Informatica Knowledge Base. 10
Informatica Documentation. 10
Informatica Product Availability Matrixes. 11
Informatica Velocity. e 11
Informatica Marketplace. e 11
Informatica Global Customer Support. 11

Chapter 1: The Transformation Language..............cccciviiiiinennenn... 12

The Transformation Language OVerview. i e e e 12
Transformation Language Components. 12
Internationalization and the Transformation Language. 13

EXPression Syntax. o o e 13
Expression Components. 13
Rules and Guidelines for Expression Syntax. 14

Adding Comments to EXpressions. e 15

Reserved Words. 16

Chapter 2: Constants..........ccoiiiiiiiiiiiiiiiii it iiiieieeeeeenenenenennns 17

DD_DELETE. . . . o e 17
Example. e 17

DD_INSERT. . . 17
Examples. e 18

DD _REJECT. . . e 18
EXamples. . . . e 18

DD_UPDATE. 18
EXamples. e 19

FALSE. . . o 19
Example. e 19

NULL. . e 19
Working with Null Values in Boolean Expressions. 20
Null Values in Comparison EXpressions. i 20
Null Values in Aggregate Functions. 20
Null Values in Filter Conditions. 20
Nulls with Operators. e 20

TRUE. . o 20
EXample. . . . e 21

4 Table of Contents

Chapter 3: Operators.c.ooiiiiiiiiiiii i iiiiieeieeeneeneneaceeananennns 22

Operator Precedence. e 22
Complex Operators. i e 23
Subscript Operator. e 24
Dot Operator. 25
Complex Operators for Nested Data Types.o ittt 27
Arithmetic Operators. e 31
String Operators. e 32
NUIS. .« 32
Example. . . . e 32
Comparison Operators. e 33
Logical Operators. e 34
NUllS. . 34
Chapter 4: Variables.cooiiiiiiiiii i 35
Built-in Variables. 35
SYSDATE. . . 35
Local Variables. 35

Dates OVerview. 36
Date/Time Datatype. 36
Julian Day, Modified Julian Day, and the Gregorian Calendar. 37
Datesinthe Year 2000. e 37
Dates in Relational Databases. 39
Datesin Flat Files. 39
Default Date Format. 39

Date Format Strings. 40

TO_CHAR Format Strings. e e e e 11
EXamples. . . . e 43

TO_DATE and IS_LDATE Format Strings. e e e e 44
Rules and Guidelines for Date Format Strings. 46
EXample. . . . e 46

Understanding Date Arithmetic. 48

Chapter 6: Functions.c.coiiiiiiiiiii ittt ie e ieeneenanaanns 49

Function Categories. e 52
Aggregate FUNCLIONS. 52
Aggregate Functionsand Nulls. e 54
Character Functions. 54
Complex Functions. e 55
Conversion Functions. 55

Table of Contents 5

6

Data Cleansing FUNCLIONS. e 56

Date Functions. 56

Encoding FUNCLiONS. e 57

Financial Functions. 57

Numeric Functions. 58

Scientific Functions. 58

Special FUNCLIONS. e 59

String FUNCLiONS. L . e 59

TestFunctions. 59

Window FUNCLIONS. 59
ABORT. . o o 60
ABS. 60
ADD_TO_DATE. . . . e 61
AES DECRYPT. . . o o 64
AES_ENCRYPT. . . o 65
ANY . e 66
ARRAY. .« o 67
ASCIL . 68
AVG. . 69
CAST . . 70
CEIL. « o 71
CHOOSE. o 72
CHR. . 73
CHRCODE. 74
COLLECT _LIST. . . o e e e 75
COMPRESS. . . . o 75
CONCAT. . . o 76
CONCAT _ARRAY. . . o 78
CONVERT_BASE. . . . o o e e e e e 78
COS. o 79
COSH. . . 80
COUNT . .« o e e 81
CRC32. . . 83
CREATE_TIMESTAMP_TZ. e e e e e e e e 84
CUME. . . 85
DATE_COMPARE. 86
DATE _DIFF. .« . 87
DEC_BASEGA. o 90
DECODE. . . . o 91
DECOMPRESS. o 93
ENC_BASEGA. o 93
ERROR. . . . 94

Table of Contents

FIRST .« o 96
FLOOR. . . o 97
FV 98
GET_DATE_PART. . . . 99
GET_TIMEZONE. e 101
GET_TIMESTAMP. .« . e 102
GREATEST. . . . 103
O 104
IN. 106
INDEXOF. .« . 107
INITCAP. .« e 108
INSTR. . . 109
ISNULL. . . e 112
IS D ATE. « . e 113
ISCNUMBER. . . . o 116
IS_SPACES. . . . 118
LAG. e 119
LAST . . 120
LAST DAY, 121
LEAD. . o e 122
LEAST. . 124
LENGTH. . . e 125
LN 126
LOG. . . 127
LOWER. .« 127
LPAD. . . 128
LT RIM. e 130
MAKE_DATE_TIME. 131
MAX (DAtes). ot 132
MAX (NUMDEIS). . . . o 133
MAX (SHING). © o o o o e e e e e e e e e e 135
M. . e 136
MEDIAN. . o e 136
METAPHONE. . . . 138
MIN (DAtes). o e 141
MIN (NUMDETS). o 143
MIN (STNG). « o v o v e e e e e e e e e e e 144
MOD. . . o 145
MOVINGAVG. . . . o e 146
MOVINGSUM. . . . 148
NPER. .« o e 149

Table of Contents

7

8

P . 151
POWER. .« 152
PV e 153
RANDD. . . e 154
RATE. o e 155
REG_EXTRACT. e e 155
REG_MATCH. 158
REG_REPLACE. e 159
REPLACECHR. 160
REPLACESTR. e 163
RESPEC. . . . o e 166
REVERSE. 167
ROUND (DALES). . . . o o v ot e e e e e e e e e e 168
ROUND (NUMbErS). 172
RPAD. . e 174
RTRIM. 175
SET _DATE _PART. . . e 177
SIGN. . L e 179
SIN. 180
SINH. 181
SIZE. . 182
SOUNDEX. .« . 183
SQL_LIKE. .« . 185
SQRT. L 186
STDDEV. . o 186
STRUCT. .« o 188
STRUCT _AS. . . o e 189
SUBSTR. . . . 190
SUM. 193
SYSTIMESTAMP. . . . 194
TAN. e 195
TANH. e 196
TO_BIGINT. . . . e 197
TO_CHAR (DAtes). . . . o ot e e 199
TO_CHAR (NUMDEIS). 203
TO_DATE. . . 204
TO_DECIMAL. . . . 208
TO_DECIMALSBS. . . . 209
TO_FLOAT. . e 210
TO_INTEGER. 211
TO_TIMESTAMPL_TZ. . . . e e 213

Table of Contents

TRUNC (DateS). . . . o o oot e e e e e e e e 214

TRUNC (NUMDbers). e e e e 217
UPPER. . . e 219
UUIDA. .« . 220
UUID_UNPARSE. e 220
VARIANCE. . . . 220
1T - P 222

Table of Contents

9

Preface

The Informatica Developer Transformation Language Reference is written for the developers who are
responsible for building mappings. The Informatica Developer Transformation Language Reference assumes
you have knowledge of SQL, relational database concepts, and the interface requirements for your supporting
applications.

Informatica Resources

10

Informatica Network

Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

Access all of your Informatica resources in one place.

e Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.
¢ View product availability information.

¢ Review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes

Product Availability Matrixes (PAMSs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

Preface 11

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

CHAPTER 1

The Transformation Language

This chapter includes the following topics:

The Transformation Language Overview, 12

Expression Syntax, 13

Adding Comments to Expressions, 15
Reserved Words, 16

The Transformation Language Overview

12

Informatica Developer provides a transformation language that includes SQL-like functions to transform
source data. Use these functions to write expressions.

Expressions modify data or test whether data matches conditions. For example, you might use the AVG
function to calculate the average salary of all the employees, or the SUM function to calculate the total sales
for a specific branch.

You can create a simple expression that only contains a port, such as ORDERS, or a numeric literal, such as
10. You can also write complex expressions that include functions nested within functions, or combine
different ports using the transformation language operators.

Transformation Language Components

The transformation language includes the following components to create simple or complex transformation
expressions:

Functions. Over 100 SQL-like functions allow you to change data in a mapping.

Operators. Use transformation operators to create transformation expressions to perform mathematical
computations, combine data, or compare data.

Constants. Use built-in constants to reference values that remain constant, such as TRUE.

Mapping parameters. Create mapping parameters for use within a mapping or mapplet to reference
values that remain constant throughout a mapping or mapplet run, such as a state sales tax rate.

Built-in and local variables. Use built-in variables to write expressions that reference values that vary,
such as the system date. You can also create local variables in transformations.

Return values. You can also write expressions that include the return values Lookup transformations.

Internationalization and the Transformation Language

Transformation language functions can handle character data in either ASCII or Unicode data movement
mode. Use Unicode mode to handle multibyte character data. The return values of the following functions and
transformations depend on the code page of the Data Integration Service and the data movement mode:

e INITCAP

e LOWER

e UPPER

e MIN (Date)

¢ MIN (Number)

e MIN (String)

¢ MAX (Date)

¢ MAX (Number)

e MAX (String)

e Any function that uses conditional statements to compare strings, such as IIF and DECODE
MIN and MAX also return values based on the sort order associated with the Data Integration Service code
page.

When you validate an invalid expression in the Expression Editor, a dialog box displays the expression with an
error indicator, “>>>>". This indicator appears to the left of and points to the part of the expression containing
the error. For example, if the expression a = b + ¢ contains an error at ¢, the error message displays:

a=">b+ >>>> ¢

Transformation language functions that evaluate character data are character-oriented, not byte-oriented. For
example, the LENGTH function returns the number of characters in a string, not the number of bytes. The
LOWER function returns a string in lowercase based on the code page of the Data Integration Service.

Expression Syntax

Although the transformation language is based on standard SQL, there are difference between the two
languages. For example, SQL supports the keywords ALL and DISTINCT for aggregate functions, but the
transformation language does not. On the other hand, the transformation language supports an optional filter
condition for aggregate functions, while SQL does not.

You can create an expression that is as simple as a port (such as ORDERS) or a numeric literal (such as 10).
You can also write complex expressions that include functions nested within functions, or combine different
columns using the transformation language operators.

Expression Components

Expressions can consist of any combination of the following components:
e Ports (input, input/output, variable)

e String literals, numeric literals

e Constants

e Functions

Expression Syntax 13

14

e Built-in and local variables
e Mapping parameters
e Operators

e Return values

Ports and Return Values

When you write an expression that includes a port or return value from an unconnected transformation, use
the reference qualifiers in the following table:

Reference Description
Qualifier
:.LKP Required when you create an expression that includes the return value from an unconnected

Lookup transformation. The general syntax is:
:LKP.lookup transformation(argumentl, argument2, ...)

The arguments are the local ports used in the lookup condition. The order must match the order
of the ports in the transformation. The datatypes for the local ports must match the datatype of
the Lookup ports used in the lookup condition.

String and Numeric Literals

You can include numeric or string literals.

Be sure to enclose string literals within single quotation marks. For example:
'Alice Davis'

String literals are case sensitive and can contain any character except a single quotation mark. For example,
the following string is not allowed:

'Joan's car'
To return a string containing a single quote, use the CHR function:
'Joan' || CHR(39) || 's car'

Do not use single quotation marks with numeric literals. Just enter the number you want to include. For
example:

.05
or

SSales Tax

Rules and Guidelines for Expression Syntax

Use the following rules and guidelines when you write expressions:

e You cannot include both single-level and nested aggregate functions in an Aggregator transformation.
¢ If you need to create both single-level and nested functions, create separate Aggregator transformations.
e You cannot use strings in numeric expressions.

For example, the expression 1 + '1' is not valid because you can only perform addition on numeric
datatypes. You cannot add an integer and a string.

e You cannot use strings as numeric parameters.

Chapter 1: The Transformation Language

For example, the expression SUBSTR (TEXT VAL, '1', 10) is not valid because the SUBSTR function
requires an integer value, not a string, as the start position.

e You cannot mix datatypes when using comparison operators.

For example, the expression 123.4 = '123.4" is not valid because it compares a decimal value with a
string.

e You can pass a value from a port, literal string or number, Lookup transformation, or the results of another
expression.

e Use the ports tab in the Expression Editor to enter a port name into an expression. If you rename a port in
a connected transformation, the Developer tool propagates the name change to expressions in the
transformation.

e Separate each argument in a function with a comma.

e Except for literals, the transformation language is not case sensitive.

o Except for literals, the Developer tool and Data Integration Service ignore spaces.

e The colon (:), comma (,), and period (.) have special meaning and should be used only to specify syntax.
e The Data Integration Service treats a dash (-) as a minus operator.

* If you pass a literal value to a function, enclose literal strings within single quotation marks. Do not use
quotation marks for literal numbers. The Data Integration Service treats any string value enclosed in
single quotation marks as a character string.

¢ When you pass a mapping parameter to a function within an expression, do not use quotation marks to
designate mapping parameters.

e Do not use quotation marks to designate ports.

¢ You can nest multiple functions within an expression except aggregate functions, which allow only one
nested aggregate function. The Data Integration Service evaluates the expression starting with the
innermost function.

Adding Comments to Expressions

The transformation language provides two comment specifiers to let you insert comments in expressions:

e Two dashes, as in:

-- These are comments
e Two slashes, as in:

// These are comments

The Data Integration Service ignores all text on a line preceded by these two comment specifiers. For
example, if you want to concatenate two strings, you can enter the following expression with comments in
the middle of the expression:
-- This expression concatenates first and last names for customers:
FIRST NAME -- First names from the CUST table
|| // Concat symbol

LAST NAME // Last names from the CUST table
// Joe Smith Aug 18 1998

The Data Integration Service ignores the comments and evaluates the expression as follows:

FIRST NAME || LAST NAME

Adding Comments to Expressions 15

You cannot continue a comment to a new line:

-- This expression concatenates first and last names for customers:
FIRST NAME -- First names from the CUST table

|| // Concat symbol

LAST NAME // Last names from the CUST table

Joe Smith Aug 18 1998

In this case, the Developer tool does not validate the expression, since the last line is not a valid expression.

If you do not want to embed comments, you can add them by clicking Comment in the Expression Editor.

Reserved Words

Some keywords in the transformation language, such as constants, operators, and built-in variables, are
reserved for specific functions. These include:

e :INFA

o LKP

e :MCR

e :TYPE

e AND

e DD_DELETE
e DD_INSERT
e DD_REJECT
e DD_UPDATE
e FALSE

e NOT

e NULL

e OR

e PROC_RESULT
e SPOUTPUT
e SYSDATE

e TRUE

Note: You cannot use a reserved word to name a port or local variable. You can only use reserved words
within transformation expressions. Reserved words have predefined meanings in expressions.

16 Chapter 1: The Transformation Language

CHAPTER 2

Constants

This chapter includes the following topics:
e DD_DELETE, 17

e DD_INSERT, 17

o DD_REJECT, 18

e DD_UPDATE, 18

e FALSE, 19

e NULL, 19

e TRUE, 20

DD_DELETE

Flags records for deletion in an update strategy expression. DD_DELETE is equivalent to the integer literal 2.

Note: Use the DD_DELETE constant in the Update Strategy transformation only. Use DD_DELETE instead of
the integer literal 2 to facilitate troubleshooting complex numeric expressions.

Example

The following expression marks items with an ID number of 1001 for deletion, and all other items for
insertion:

IIF(ITEM ID = 1001, DD DELETE, DD INSERT)
This update strategy expression uses numeric literals to produce the same result:
IIF(ITEM ID = 1001, 2, 0)

Note: The expression using constants is easier to read than the expression using numeric literals.

DD_INSERT

Flags records for insertion in an update strategy expression. DD_INSERT is equivalent to the integer literal 0.

Note: Use the DD_INSERT constant in the Update Strategy transformation only. Use DD_INSERT instead of the
integer literal 0 to facilitate troubleshooting complex numeric expressions.

17

Examples

The following examples modify a mapping that calculates monthly sales by salesperson, so you can examine
the sales of just one salesperson.

The following update strategy expression flags an employee’s sales for insertion, and rejects everything else:
IIF(EMPLOYEENAME = 'Alex', DD INSERT, DD REJECT)

This update strategy expression uses numeric literals to produce the same result:
IIF(EMPLOYEENAME = 'Alex', 0, 3)

Tip: The expression using constants is easier to read than the expression using numeric literals.

DD_REJECT

Flags records for rejection in an update strategy expression. DD_REJECT is equivalent to the integer literal 3.

Note: Use the DD_REJECT constant in the Update Strategy transformation only. Use DD_REJECT instead of
the integer literal 3 to facilitate troubleshooting complex numeric expressions.

Use DD_REJECT to filter or validate data. If you flag a record as reject, the Data Integration Service skips the
record and writes it to the session reject file.

Examples

The following examples modify a mapping that calculates the sales for the current month, so it includes only
positive values.

This update strategy expression flags records less than 0 for reject and all others for insert:
IIF(SALES > 0, DD _INSERT, DD REJECT)

This expression uses numeric literals to produce the same result:
IIF(SALES > 0, 0, 3)

The expression using constants is easier to read than the expression using numeric literals.

The following data-driven example uses DD_REJECT and IS_SPACES to avoid writing spaces to a character
column in a target table. This expression flags records that consist entirely of spaces for reject and flags all
others for insert:

ITF(IS _SPACES(CUST NAMES), DD REJECT, DD INSERT)

DD_UPDATE

Flags records for update in an update strategy expression. DD_UPDATE is equivalent to the integer literal 1.

Note: Use the DD_UPDATE constant in the Update Strategy transformation only. Use DD_UPDATE instead of
the integer literal 1 to facilitate troubleshooting complex numeric expressions.

18 Chapter 2: Constants

Examples

The following examples modify a mapping that calculates sales for the current month. The mapping loads
sales for one employee.

This expression flags records for Alex as updates and flags all others for rejection:
IIF(EMPLOYEENAME = 'Alex', DD UPDATE, DD REJECT)

This expression uses numeric literals to produce the same result, flagging Alex’s sales for update (1) and
flagging all other sales records for rejection (3):

IIF(EMPLOYEENAME = 'Alex', 1, 3)

The expression using constants is easier to read than the expression using numeric literals.

The following update strategy expression uses SYSDATE to find only those orders that have shipped in the
last two days and flag them for insertion. Using DATE_DIFF, the expression subtracts DATE_SHIPPED from
the system date, returning the difference between the two dates. Because DATE_DIFF returns a Double value,
the expression uses TRUNC to truncate the difference. It then compares the result to the integer literal 2. If
the result is greater than 2, the expression flags the records for rejection. If the result is 2 or less, it flags the
records for update. Otherwise, it flags them for rejection:

IIF(TRUNC(DATE DIFF(SYSDATE, ORDERS DATE SHIPPED, 'DD'), 0) > 2, DD REJECT,
DD UPDATE)

FALSE

Clarifies a conditional expression. FALSE is equivalent to the integer 0.

Example

NULL

The following example uses FALSE in a DECODE expression to return values based on the results of a
comparison. This is useful if you want to perform multiple searches based on a single search value:
DECODE (FALSE,
Varl = 22,'Variable 1 was 22!"',
Var2 = 49, 'Variable 2 was 49!"',
Varl < 23, 'Variable 1 was less than 23.',

Var2 > 30, 'Variable 2 was more than 30.',
'Variables were out of desired ranges.')

Indicates that a value is either unknown or undefined. NULL is not equivalent to a blank or empty string (for
character columns) or 0 (for numerical columns).

Although you can write expressions that return nulls, any column that has the NOT NULL or PRIMARY KEY
constraint will not accept nulls. Therefore, if the Data Integration Service tries to write a null value to a
column with one of these constraints, the database will reject the row and the Data Integration Service will
write it to the reject file. Be sure to consider nulls when you create transformations.

Functions can handle nulls differently. If you pass a null value to a function, it might return 0 or NULL, or it
might ignore null values.

FALSE 19

RELATED TOPICS:

e “Functions” on page 49

Working with Null Values in Boolean Expressions

Expressions that combine a null value with a Boolean expression produces results that are ANSI compliant.
For example, the Data Integration Service produces the following results:

e NULL AND TRUE = NULL
e NULL AND FALSE = FALSE

Null Values in Comparison Expressions

When you use a null value in an expression containing a comparison operator, the Data Integration Service
produces a null value. To check for null values in columns, you must use the ISNULL() in comparison
expressions.

To return rows that do not contain null values, use the ISNULL function instead of the constant !=. For
example, use NOT ISNULL (Field A).

The following expression results in a null value, and the Filter transformation does not return any rows:
Field A!=NULL.

You can also configure the Lookup transformation to treat null values as high or low in comparison
operations. Use the Null Ordering property in the lookup source to configure how the Data Integration Service
handles null values in comparison expressions in the Lookup transformation.

Null Values in Aggregate Functions

The Data Integration Service treats null values as nulls in aggregate functions. If you pass an entire port or
group of null values, the function returns NULL.

Null Values in Filter Conditions

If a filter condition evaluates to NULL, the function does not select the record. If the filter condition evaluates
to NULL for all records in the selected port, the aggregate function returns NULL (except COUNT, which
returns 0). You can use filter conditions with aggregate functions and the CUME, MOVINGAVG, and
MOVINGSUM functions.

Nulls with Operators

Any expression that uses operators (except the string operator |) and contains a null value always evaluates
to NULL. For example, the following expression evaluates to NULL:

8 * 10 - NULL

To test for nulls, use the ISNULL function.

TRUE

Returns a value based on the result of a comparison. TRUE is equivalent to the integer 1.

20 Chapter 2: Constants

Example

The following example uses TRUE in a DECODE expression to return values based on the results of a
comparison. This is useful if you want to perform multiple searches based on a single search value:

DECODE (TRUE,

Varl = 22,'Variable 1 was 22!"',

Var?2 49, 'Variable 2 was 49!"',

Varl 23, 'Variable 1 was less than 23.',
Var2 > 30, 'Variable 2 was more than 30.',
'Variables were out of desired ranges.')

Al

TRUE 21

CHAPTER 3

Operators

This chapter includes the following topics:

e Operator Precedence, 22

e Complex Operators, 23

e Arithmetic Operators, 31

e String Operators, 32

e Comparison Operators, 33

e Logical Operators, 34

Operator Precedence

The transformation language supports the use of multiple operators and the use of operators within nested
expressions.

If you write an expression that includes multiple operators, the Data Integration Service evaluates the
expression in the following order:

1. Complex operators

Arithmetic operators

2

3. String operators

4. Comparison operators
5. Logical operators

The Data Integration Service evaluates operators in the order they appear in the following table. It evaluates
operators in an expression with equal precedence to all operators from left to right.

The following table lists the precedence for all transformation language operators:

Operator Meaning

L1 . Subscript, dot.

() Parentheses.
+,-, NOT Unary plus and minus and the logical NOT operator.
*, 1% Multiplication, division, modulus.

22

Operator Meaning

+, - Addition, subtraction.

Il Concatenate.

<, <=, > >= Less than, less than or equal to, greater than, greater than or equal to.
=, <>, 1=, A= Equal to, not equal to, not equal to, not equal to.

AND Logical AND operator, used when specifying conditions.

OR Logical OR operator, used when specifying conditions.

The transformation language also supports the use of operators within nested expressions. When
expressions contain parentheses, the Data Integration Service evaluates operations inside parentheses
before operations outside parentheses. Operations in the innermost parentheses are evaluated first.

For example, depending on how you nest the operations, the equation 8 + 5 - 2 * 8 returns different values:

Equation Return Value
8+5-2*8 -3
8+(5-2)*8 32

Complex Operators

Use complex operators to access elements in a complex data type. You can access elements in an array or
struct data type.

You can use complex operators in mappings that run on the Spark engine.

The following table lists the complex operators in the transformation language:

Operator | Meaning

[] Subscript operator.
Use a subscript operator to access one or more elements in an array.

Dot operator.

Use a dot operator to access an element in a struct. You can also use a dot operator in an array of structs
to access elements in each struct.

When you use a dot operator in an array of structs, it returns the elements of the same name within each
struct as an array. To access elements in a nested array or struct, you can use a combination of complex
operators.

Complex Operators 23

24

Subscript Operator

Use a subscript operator to access one or more elements in an array. You can access a specific element or a
range of elements in an array.

Syntax

To access a specific element in an array, use the following syntax:
array[index]

To access a range of elements in an array, use the following syntax:
array[start index , end index]

The following table describes the arguments in the syntax:

Argument | Description

array Array. The array from which you want to access one or more elements.
You can enter any valid transformation expression that evaluates to an array.

index Integer. The position of the element that you want to access. For example, an index of 0 indicates the
first element in an array.

start_index | Integer. The starting index in a range of elements that you want to access. The subscript operator
includes the element that the starting index represents.

end_index Integer. The ending index in a range of elements that you want to access. The subscript operator
excludes the element that the ending index represents.

You can use an expression for the index that returns an integer value. If the expression returns a negative
value, the index is considered to be 0.

If the specified index is greater than the size of the array minus 1, the index accesses the final element in the
array.

Return Value

If you specify an index, the expression returns the element in the array. The return type is the same as the
data type of the element in the specified array.

If you specify two indices separated by a comma, such as [i, 3], the expression returns an array of the
elements from i to §-1. If i is greater than j or the size of the array, the expression returns an empty array.
The type configuration of the subarray that the expression returns is the same as the type configuration of
the specified array.

Nulls
If the index in the subscript is greater than the size of the array, the subscript operator returns a NULL value.

If the index is NULL, the subscript operator returns a NULL value. If you specify multiple indices such as
[i,9] and either i or § is NULL, the expression returns NULL.

If the array is NULL, the subscript operator returns a NULL value.
Examples

You have the following array with string elements:

drinks = [‘milk’, ‘coffee’, ‘tea’, ‘chai’]

Chapter 3: Operators

The following expressions use a subscript operator to access string elements from the array:

Input Value RETURN VALUE
drinks[0] 'milk'

drinks[2] 'tea'
drinks[NULL] NULL

drinks[1, 3] ['coffee', 'tea']
drinks[2,NULL] NULL

drinks[3,1] []

Dot Operator

Use a dot operator to access an element in a struct. You can also use a dot operator in an array of structs to
access elements from each struct in the array.

Syntax

To access an element in a struct, use the following syntax:
struct.element

To access an element in an array of structs, use the following syntax:
array of structs.element

The following table describes the arguments in the syntax:

Argument Description

struct Struct. The struct from which you want to access an element. You can enter any valid
transformation expression that evaluates to a struct.

array_of_structs | Array with struct elements. The array from which you want to access elements in each struct. You
can enter any valid transformation expression that evaluates to an array.

element The name of the struct element that you want to access.

Return Value

If you use the dot operator on a struct, the expression returns the element in the struct. The return type is the
same as the data type of the element in the specified struct.

If you use the dot operator on an array of structs, the expression returns an array that contains the specified
element in each struct.

Nulls
If the element in the struct has a NULL value, the expression returns NULL.

If the struct is NULL, the expression returns NULL.

Complex Operators 25

Examples
You have the following struct:

location{
street: NULL
city : 'NEWYORK'
state: 'NY'
zip : 12345

}

The following expressions use a dot operator to access elements in the struct:

Input Value RETURN VALUE
location.street NULL
location.city 'NEWYORK'
location.state 'NY'
location.zip 12345

You can also use a dot operator to access elements in an array of structs.

For example, you have the following array with three elements of type struct and each struct has three
elements:

employee info array = [

derrick struct{
name: 'Derrick'
city: NULL
state: 'NY'

} 14

kevin struct{
name: 'Kevin'
city: 'Redwood City'
state: 'CA'

I

lauren struct({
name: 'Lauren'

city: 'Woodcliff Lake'
state: NULL

]

The following expressions use a dot operator to access the string elements in each struct of the array:

Input Value RETURN VALUE

employee info array.name ['Derrick', 'Kevin', 'Lauren']

employee info array.city [NULL, 'Redwood City', 'Woodcliff Lake']
employee info array.state ['NY','CA',NULL]

26 Chapter 3: Operators

Complex Operators for Nested Data Types

A nested data type contains elements of complex data types. Use a combination of complex operators to
access elements in nested data types.

When an array or a struct contains elements of type array or struct, use a combination of complex operators
to access the elements. You can access elements in multidimensional arrays, arrays with struct elements,
structs with array elements, and structs with struct elements.

Multidimensional Array

A multidimensional array is an array of arrays, which can have up to five levels of nesting. You can use
subscript operators to access arrays at any level or specific elements in an array at the innermost level.

You can use subscript operators to return the following values:

¢ A specific element in an array at the innermost level.
e One or more arrays at any level.
e A subset of one or more arrays at any level.

To access a specific element in an array at the innermost level, you use more than one subscript operator.
The number of dimensions in a multidimensional array determines the number of subscript operators to use.
Each subscript operator must contain one index value. The data type of the return value is the same as the
data type of the elements in the array.

For example, in a two-dimensional array, you use two subscript operators. The first subscript operator
determines which one-dimensional array to access. The second subscript operator determines which
element to access within the array.
The following two-dimensional array contains three arrays and each array contains elements of type string:
menu array = |
['milk', 'coffee', "tea','chai'],
['ham', 'turkey',NULL],
['caesar', 'cobb', '"greek', 'chipotle']
]
The following expressions use two subscript operators to access a specific element from each one-
dimensional array within the menu_array:

Input Value RETURN VALUE
menu_array[0] [1] 'coffee!
menu_array[2] [3] 'chipotle'
menu_array[1][2] NULL

The following expressions use a single subscript operator to return one-dimensional arrays in the

menu_array:

Input Value RETURN VALUE

menu_array[0] ['milk', 'coffee', 'tea', 'chai']

Complex Operators 27

28

Input Value RETURN VALUE
menu_array([0,2] [
['milk', 'coffee', 'tea', 'chai'],
['ham', "turkey',NULL]
]

menu_array([1,0] []

menu_array [NULL, 2] NULL

The following expressions use two subscript operators to return a subset of arrays within the menu_array:

Input Value RETURN VALUE
menu_array[0][0,2] ['milk', 'coffee']
menu_array[2] [0, 3] ['caesar', 'cobb', 'greek']

menu_array[0,2][0,3] [
['milk', 'coffee', 'tea'],
["ham', 'turkey',NULL]
1

Array with Struct Elements

An array with struct elements is an array of structs. Use a combination of subscript and dot operators to
access an element in a struct that is within an array.

To access an element in a struct within an array, use a subscript operator followed by a dot operator. You can
also reverse the order of the operators. Return values are the same regardless of the order of the operators.
Based on the order of the complex operators, the element is accessed as follows:

You use a subscript operator followed by a dot operator.

The subscript operator first accesses the indexed element in the array and returns a struct. Then, the dot
operator accesses an element within the struct.

You use a dot operator followed by a subscript operator.

The dot operator locates elements with the same name from each of the structs and returns an array.
Then, the subscript operator accesses an element within the array.

For example, you have the following array, employee info array:

employee info array = |
derrick struct{
name: 'Derrick'
city: NULL
state: 'NY'
}I

kevin struct{
name: 'Kevin'
city: 'Redwood City'
state: 'CA'

b

lauren struct{
name: 'Lauren'
city: 'Woodcliff Lake'
state: NULL

Chapter 3: Operators

}
]

The following expressions use a subscript operator followed by a dot operator on the array
employee info array:

Input Value RETURN VALUE
employee info array[0].name 'Derrick’
employee info array[l].city 'Redwood City'
employee info array[2].state NULL

When you use a dot operator first, the dot operator returns an array with elements of the same name from
each struct. For example, the following expressions show the return value when you use a dot operator:

Input Value RETURN VALUE

employee info array.name ['Derrick', 'Kevin', 'Lauren']

employee info array.city [NULL, 'Redwood City', 'Woodcliff Lake']
employee info array.state ['"NY','CA',NULL]

Then, the subscript operator accesses an element in the returned array. The following expressions use a dot
operator followed by a subscript operator:

Input Value RETURN VALUE
employee info array.name[0] 'Derrick’
employee info array.city[1] 'Redwood City'
employee info array.state[2] NULL

Note that the return values are the same whether you use a subscript operator or a dot operator first. For
example, the expressions employee info array[0].name and employee info array.name[0] have the same
return value 'Derrick’.

Struct with Array Elements

To access elements in an array that is within a struct, use a dot operator followed by a subscript operator.
The dot operator first accesses the specified array element in a struct. Then, the subscript operator accesses
elements in the array based on the index value.

For example, you have the following struct with the array elements drinks, sandwiches, and salads.

menu_struct{

drinks: ['milk','coffee', 'tea','chai']
sandwiches: ['ham', 'turkey',NULL]
salads: ['caesar', 'cobb', 'greek','chipotle']

}

When you use the expression menu_struct.drinks[0], the dot operator first accesses the array element
drinks. Then, the subscript operator accesses the element at position 0 in the array drinks:
['milk', 'coffee', 'tea', 'chai']. The return value is milk.

Complex Operators 29

30

The following expressions use a dot operator followed by a subscript operator to access elements from the
arrays in the struct menu_struct:

Input Value RETURN VALUE
menu_struct.drinks[l} 'coffee'
menu_struct.sandwiches[2] NULL
menu_struct.salads[3] 'chipotle’
menu_struct.drinks[0, 3] ['milk', 'coffee', "tea']

Struct with Struct Elements

A struct that contains one or more levels of structs is a nested struct. You can use dot operators to access
structs at any level or specific elements in a struct at the innermost level.

You can use dot operators to return the following values:
e A specified element in a struct at the innermost level.

e One or more structs at any level.

To access a specific element in a struct at the innermost level, you use more than one dot operator. The
number of levels in a nested struct determines the number of dot operators to use. The data type of the
return value is the same as the data type of the element in the struct. For example, in a nested struct of two
levels, you use two dot operators. The first dot operator accesses the specified child struct element in a
parent struct. Then, the second dot operator accesses elements in the child struct.

The following example uses a struct employee info_ struct that contains two child structs
home_ address_info and department info
employee info struct({
emp name: 'Derrick'
home address info{
city: 'New York'
state: NULL
department info({
NULL
}

}

The following expressions use dot operators to access elements from the struct employee info struct:

Input Value RETURN VALUE
employee info struct.emp name 'Derrick’

employee info struct.home address info {
city: 'New York'
state: NULL
}

employee info struct.department info NULL

Chapter 3: Operators

Input Value RETURN VALUE
employee info struct.home address info.city 'New York'

employee info struct.home address_info.state NULL

Arithmetic Operators

Use arithmetic operators to perform mathematical calculations on numeric data.

The following table lists the arithmetic operators in order of precedence in the transformation language:

Operator Meaning

+, - Unary plus and minus. Unary plus indicates a positive value. Unary minus indicates a negative
value.

* 1, % Multiplication, division, modulus. A modulus is the remainder after dividing two integers. For

example, 13 % 2 = 1 because 13 divided by 2 equals 6 with a remainder of 1.

+, - Addition, subtraction.

The addition operator (+) does not concatenate strings. To concatenate strings, use the string
operator ||. To perform arithmetic on date values, use the date functions.

If you perform arithmetic on a null value, the function returns NULL.

When you use arithmetic operators in an expression, all of the operands in the expression must be numeric.
For example, the expression 1 + '1' is not valid because it adds an integer to a string. The expression
1.23 + 4 / 2isvalid because all of the operands are numeric.

Note: The transformation language provides built-in date functions that let you perform arithmetic on date/
time values.

Arithmetic Operators 31

RELATED TOPICS:

e “Understanding Date Arithmetic” on page 48

String Operators

Use the || string operator to concatenate two strings. The || operator converts operands of any datatype
(except Binary) to String datatypes before concatenation:

Input Value Return Value
‘alpha’ || 'betical’ alphabetical
‘alpha’ || 2 alpha2
‘alpha’ || NULL alpha

The || operator includes leading and trailing blanks. Use the LTRIM and RTRIM functions to trim leading and
trailing blanks before concatenating two strings.

Nulls

The || operator ignores null values. However, if both values are NULL, the || operator returns NULL.

Example

The following example shows an expression that concatenates employee first names and employee last
names from two columns. This expression removes the spaces from the end of the first name and the
beginning of the last name, concatenates a space to the end of each first name, then concatenates the last

name:
LTRIM(RTRIM(EMP FIRST) || ' ' || LTRIM(EMP LAST))
EMP_FIRST EMP LAST RETURN VALUE
' Alfred' ' Rice ' Alfred Rice
' Bernice' ' Kersins' Bernice Kersins
NULL ' Proud'’ Proud
' Curt' NULL Curt
NULL NULL NULL

Note: You can also use the CONCAT function to concatenate two string values. The || operator, however,
produces the same results in less time.

32 Chapter 3: Operators

Comparison Operators

Use comparison operators to compare character or numeric strings, manipulate data, and return a TRUE (1)
or FALSE (0) value.

The following table lists the comparison operators in the transformation language:

Operator Meaning

= Equal to.

> Greater than.

< Less than.

>= Greater than or equal to.
<= Less than or equal to.
<> Not equal to.

I= Not equal to.

= Not equal to.

Use the greater than (>) and less than (<) operators to compare numeric values or return a range of rows
based on the sort order for a primary key in a particular port.

When you use comparison operators in an expression, the operands must be the same datatype. For
example, the expression 123.4 > “123' is not valid because the expression compares a decimal with a string.
The expressions 123.4 > 123 and ‘a’ I= ‘b’ are valid because the operands are the same datatype.

If you compare a value to a null value, the result is NULL.
If a filter condition evaluates to NULL, the Integration Service returns NULL.
Comparing Complex Data Types

You can use the equal to (=) and not equal to (!=) operators to compare complex data types such as arrays or
structs.

For two arrays to be equivalent, the following conditions must apply:
e The array elements must be of the same data type.

e The arrays must be the same size.

e The entry at each index must be the same.

For example, you have the following arrays:

A= [1, 2, 3]
B [1, 2, 3]

You can make the following comparison:
A =B

RETURN VALUE: TRUE (1)
Both arrays are the same size and the entry at each index is the same such that A[0]=B[0], A[1]=B[1], and
A[2]=B[2].

Comparison Operators 33

When you compare two structs, the structs are equivalent if they meet the following conditions:

e The corresponding struct elements must be of the same data type.

e The structs must have the same data.

If these conditions are satisfied, the two structs are equivalent even if the struct elements have different

names.

For example, you have the following structs:

structl {
name: 'Paul’
zip:10004

}

struct2 {
firstname:'Paul’
zipl:10004

}

You can make the following comparison:
structl = struct2

RETURN VALUE: TRUE (1)

Logical Operators

Use logical operators to manipulate numeric data. Expressions that return a numeric value evaluate to TRUE
for values other than 0, FALSE for 0, and NULL for NULL.

The following table lists the logical operators in the transformation language:

Operator

Meaning

NOT

Negates result of an expression. For example, if an expression evaluates to TRUE, the operator
NOT returns FALSE. If an expression evaluates to FALSE, NOT returns TRUE.

AND

Joins two conditions and returns TRUE if both conditions evaluate to TRUE. Returns FALSE if one
condition is not true.

OR

Connects two conditions and returns TRUE if any condition evaluates to TRUE. Returns FALSE if
both conditions are not true.

Nulls

Expressions that combine a null value with a Boolean expression produce results that are ANSI compliant.
For example, the Data Integration Service produces the following results:

e NULL AND TRUE = NULL
e NULL AND FALSE = FALSE

34 Chapter 3: Operators

CHAPTER 4

Variables

This chapter includes the following topics:

e Built-in Variables, 35

e Local Variables, 35

Built-in Variables

The transformation language provides the built-in variable SYSDATE that returns the system date. You can
use SYSDATE in an expression. For example, you can use SYSDATE in a DATE_DIFF function.

SYSDATE

Local

SYSDATE returns the current date and time up to seconds on the node that process data for each row
passing through the transformation. SYSDATE is stored as a transformation date/time datatype value.

Example

The following expression uses SYSDATE to find orders that have shipped in the last two days and flag them
for insertion. Using DATE_DIFF, the Data Integration Service subtracts DATE_SHIPPED from the system date,
returning the difference between the two dates. Because DATE_DIFF returns a double value, the expression
truncates the difference. It then compares the result to the integer literal 2. If the result is greater than 2, the
expression flags the rows for rejection. If the result is 2 or less, it flags them for insertion.

ITF(TRUNC(DATE DIFF(SYSDATE, DATE SHIPPED, 'DD'),
0) > 2, DD REJECT, DD_INSERT

Variables

If you use local variables in a mapping, use them in any transformation expression in the mapping. For
example, if you use a complex tax calculation throughout a mapping, you might want to write the expression
once and designate it as a variable. This increases performance since the Data Integration Service performs
the calculation only once.

Local variables are useful when used with stored procedure expressions to capture multiple return values.

35

CHAPTER 5

Dates

This chapter includes the following topics:

e Dates Overview, 36

e Date Format Strings, 40
e TO_CHAR Format Strings, 41
e TO_DATE and IS_DATE Format Strings, 44

e Understanding Date Arithmetic, 48

Dates Overview

36

The transformation language provides a set of date functions and built-in date variables to perform
transformations on dates. With the date functions, you can round, truncate, or compare dates, extract one
part of a date, or perform arithmetic on a date. You can pass any value with a date datatype to a date
function.

Use date variables to capture the current date on the node hosting the Data Integration Service.
The transformation language also provides the following sets of format strings:

+ Date format strings. Use with date functions to specify the parts of a date.
e TO_CHAR format strings. Use to specify the format of the return string.

e TO_DATE and IS_DATE format strings. Use to specify the format of a string you want to convert to a date
or test.

Date/Time Datatype

Informatica uses generic datatypes to transform data from different sources. These transformation
datatypes include a Date/Time datatype that supports datetime values up to the nanosecond. Informatica
stores dates internally in binary format.

Date functions accept datetime values only. To pass a string to a date function, first use TO_DATE to convert
it to a datetime value. For example, the following expression converts a string port to datetime values and
then adds one month to each date:

ADD TO DATE(TO DATE(STRING PORT, 'MM/DD/RR'), 'MM', 1)

You can use dates between 1 A.D. and 9999 A.D in the Gregorian calendar system.

Julian Day, Modified Julian Day, and the Gregorian Calendar

You can use dates in the Gregorian calendar system only. Dates in the Julian calendar are called Julian dates
and are not supported in Informatica. This term should not be confused with Julian Day or with Modified
Julian Day.

You can manipulate Modified Julian Day (MJD) formats using the J format string. The MJD for a given date is
the number of days to that date since Jan 1 4713 B.C. 00:00:00 (midnight). By definition, MJD includes a time
component expressed as a decimal, which represents some fraction of 24 hours. The J format string does
not convert this time component.

For example, the following TO_DATE expression converts strings in the SHIP_DATE_MJD_STRING port to
date values in the default date format:

TO DATE (SHIP DATE MJD STR, 'J')

SHIP_DATE_MJD_STR RETURN_VALUE
2451544 Dec 31 1999 00:00:00.000000000
2415021 Jan 1 1900 00:00:00.000000000
SHIP_DATE MJD_STR RETURN_VALUE
2451544 Dec 31 1999 00:00:00.000000000
2415021 Jan 1 1900 00:00:00.000000000

Because the J format string does not include the time portion of a date, the return values have the time set to
00:00:00.000000000.

You can also use the J format string in TO_CHAR expressions. For example, use the J format string in a
TO_CHAR expression to convert date values to MJD values expressed as strings. For example:

TO_CHAR(SHIP DATE, 'J'")

SHIP DATE RETURN_VALUE
Dec 31 1999 23:59:59 2451544
Jan 1 1900 01:02:03 2415021

Note: The Data Integration Service ignores the time portion of the date in a TO_CHAR expression.

Dates in the Year 2000

All transformation language date functions support the year 2000. Informatica Developer supports dates
between 1 A.D. and 9999 A.D.

Dates Qverview 37

38

RR Format String

The transformation language provides the RR format string to convert strings with two-digit years to dates.
Using TO_DATE and the RR format string, you can convert a string in the format MM/DD/RR to a date. The RR
format string converts data differently depending on the current year.

e Current Year Between 0 and 49. If the current year is between 0 and 49 (such as 2003) and the source
string year is between 0 and 49, the Data Integration Service returns the current century plus the two-digit
year from the source string. If the source string year is between 50 and 99, the Integration Service returns
the previous century plus the two-digit year from the source string.

e Current Year Between 50 and 99. If the current year is between 50 and 99 (such as 1998) and the source
string year is between 0 and 49, the Data Integration Service returns the next century plus the two-digit
year from the source string. If the source string year is between 50 and 99, the Data Integration Service
returns the current century plus the specified two-digit year.

The following table summarizes how the RR format string converts to dates:

Current year Source year RR Format String Returns

0-49 0-49 Current century

0-49 50-99 Previous century

50-99 0-49 Next century

50-99 50-99 Current century
Example

The following expression produces the same return values for any current year between 1950 and 2049:

TO DATE(ORDER DATE, 'MM/DD/RR')

ORDER_DATE RETURN_VALUE
'04/12/98" 04/12/1998 00:00:00.000000000
'11/09/01" 11/09/2001 00:00:00.000000000

Difference Between the YY and RR Format Strings

Informatica Developer also provides a YY format string. Both the RR and YY format strings specify two-digit
years. The YY and RR format strings produce identical results when used with all date functions except
TO_DATE. In TO_DATE expressions, RR and YY produce different results.

The following table shows the different results each format string returns:

String Current Year TO_DATE(String, ‘MM/DD/RR’) TO_DATE(String, ‘MM/DD/YY’)
04/12/98 1998 04/12/1998 00:00:00.000000000 04/12/1998 00:00:00.000000000
11/09/01 1998 11/09/2001 00:00:00.000000000 11/09/1901 00:00:00.000000000

Chapter 5: Dates

String Current Year TO_DATE(String, ‘MM/DD/RR’) TO_DATE(String, ‘MM/DD/YY’)

04/12/98 2003 04/12/1998 00:00:00.000000000 04/12/2098 00:00:00.000000000

11/09/01 2003 11/09/2001 00:00:00.000000000 11/09/2001 00:00:00.000000000

For dates in the year 2000 and beyond, the YY format string produces less meaningful results than the RR
format string. Use the RR format string for dates in the twenty-first century.

Dates in Relational Databases

In general, dates stored in relational databases contain a date and time value. The date includes the month,
day, and year, while the time might include the hours, minutes, seconds, and sub-seconds. You can pass
datetime data to any of the date functions.

Dates in Flat Files

Use the TO_DATE function to convert strings to datetime values. You can also use IS_DATE to check if a
string is a valid date before converting it with TO_DATE. The transformation language date functions accept
date values only. To pass a string to a date function, you must first use the TO_DATE function to convert it to

a

transformation Date/Time datatype.

Default Date Format

The Data Integration Service uses a default date format to store and manipulate strings that represent dates.
To specify the default date format, enter a date format in the DateTime Format String attribute in the data
viewer configuration. By default, the date format is MM/DD/YYYY HH24:MI:SS.US.

Because Informatica stores dates in binary format, the Data Integration Service uses the default date format
when you perform the following actions:

Convert a date to a string by connecting a date/time port to a string port. The Data Integration Service
converts the date to a string in the date format defined in the data viewer configuration.

Convert a string to a date by connecting a string port to a date/time port. The Data Integration Service
expects the string values to be in the date format defined by the data viewer configuration. If an input
value does not match this format, or if it is an invalid date, the Data Integration Service skips the row. If
the string is in this format, the Data Integration Service converts the string to a date value.

Use TO_CHAR(date, [format_string]) to convert dates to strings. If you omit the format string, the Data
Integration Service returns the string in the date format defined in the data viewer configuration. If you
specify a format string, the Data Integration Service returns a string in the specified format.

Use TO_DATE(date, [format_string]) to convert strings to dates. If you omit the format string, the Data
Integration Service expects the string in the date format defined in the data viewer configuration. If you
specify a format string, the Data Integration Service expects a string in the specified format.

The default date format of MM/DD/YYYY HH24:MI:SS.US consists of:

Month (January = 01, September = 09)

Day (of the month)

Year (expressed in four digits, such as 1998)

Hour (in 24-hour format, for example, 12:00:00AM = 0, 1:00:00AM = 1, 12:00:00PM = 12, 11:00:00PM = 23)

Minutes

Dates Qverview 39

e Seconds

e Microseconds

Date Format Strings

You can evaluate input dates using a combination of format strings and date functions. Date format strings
are not internationalized and must be entered in predefined formats as listed in the following table.

The following table summarizes the format strings to specify a part of a date:

Format String

Description

D, DD, DDD, DAY, DY, J

Days (01-31). Use any of these format strings to specify the entire day portion of a date.
For example, if you pass 12-APR-1997 to a date function, use any of these format
strings specify 12.

HH, HH12, HH24

Hour of day (0-23), where 0 is 12 AM (midnight). Use any of these formats to specify the
entire hour portion of a date. For example, if you pass the date 12-APR-1997 2:01:32
PM, use HH, HH12, or HH24 to specify the hour portion of the date.

M

Minutes (0-59).

MM, MON, MONTH

Month (01-12). Use any of these format strings to specify the entire month portion of a
date. For example, if you pass 12-APR-1997 to a date function, use MM, MON, or
MONTH to specify APR.

MS Milliseconds (0-999).

NS Nanoseconds (0-999999999).
SS, SSSS Seconds (0-59).

us Microseconds (0-999999).

Y, YY, YYY, YYYY, RR

Year portion of date (0001 to 9999). Use any of these format strings to specify the
entire year portion of a date. For example, if you pass 12-APR-1997 to a date function,
use Y, YY, YYY, or YYYY to specify 1997.

Note: The format string is not case sensitive. It must always be enclosed within single quotation marks.

The following table describes date functions that use date format strings to evaluate input dates:

Function Description
ADD_TO_DATE The part of the date you want to change.
DATE_DIFF The part of the date to use to calculate the difference between two dates.

GET_DATE_PART

The part of the date you want to return. This function returns an integer value based on
the default date format.

IS_DATE

The date you want to check.

40 Chapter 5: Dates

Function Description

ROUND The part of the date you want to round.
SET_DATE_PART The part of the date you want to change.
SYSTIMESTAMP The timestamp precision.

TO_CHAR (Dates) The character string.

TO_DATE The character string.

TRUNC (Dates) The part of the date you want to truncate.

TO_CHAR Format Strings

The TO_CHAR function converts a Date/Time datatype to a string with the format you specify. You can
convert the entire date or a part of the date to a string. You might use TO_CHAR to convert dates to strings,
changing the format for reporting purposes.

TO_CHAR is generally used when the target is a flat file or a database that does not support a Date/Time

datatype.

The following table summarizes the format strings for dates in the function TO_CHAR:

Format Description

String

AM, A.M.,, Meridian indicator. Use any of these format strings to specify AM and PM hours. AM and PM return the

PM. P.M. same values as A.M. and P.M.

D Day of week (1-7), where Sunday equals 1.

DAY Name of day, including up to nine characters (for example, Wednesday).

DD Day of month (01-31).

DDD Day of year (001-366, including leap years).

DY Abbreviated three-character name for a day (for example, Wed).

HH, HH12 Hour of day (01-12).

HH24 Hour of day (00-23), where 00 is 12AM (midnight).

J Modified Julian Day. Converts the calendar date to a string equivalent to its Modified Julian Day value,
calculated from Jan 1, 4713 00:00:00 B.C. It ignores the time component of the date. For example, the
expression TO_CHAR(SHIP_DATE, ‘J") converts Dec 31 1999 23:59:59 to the string 2451544,

MI Minutes (00-59).

TO_CHAR Format Strings

41

Format
String

Description

MM

Month (01-12).

MONTH

Name of month, including up to nine characters (for example, January).

MON

Abbreviated three-character name for a month (for example, Jan).

MS

Milliseconds (0-999).

NS

Nanoseconds (0-999999999).

Quarter of year (1-4), where January to March equals 1.

RR

Last two digits of a year. The function removes the leading digits. For example, if you use ‘RR’ and pass
the year 1997, TO_CHAR returns 97. When used with TO_CHAR, ‘RR’ produces the same results as, and
is interchangeable with, ‘'YY.” However, when used with TO_DATE, ‘RR’ calculates the closest
appropriate century and supplies the first two digits of the year.

SS

Seconds (00-59).

SSSSS

Seconds since midnight (00000 - 86399). When you use SSSSS in a TO_CHAR expression, the Data
Integration Service only evaluates the time portion of a date. For example, the expression
TO_CHAR(SHIP_DATE, ‘MM/DD/YYYY SSSSS’) converts 12/31/1999 01:02:03 to 12/31/1999 03723.

us

Microseconds (0-999999).

Last digit of a year. The function removes the leading digits. For example, if you use ‘Y’ and pass the
year 1997, TO_CHAR returns 7.

YY

Last two digits of a year. The function removes the leading digits. For example, if you use ‘'YY' and pass
the year 1997, TO_CHAR returns 97.

YYY

Last three digits of a year. The function removes the leading digits. For example, if you use ‘'YYY’ and
pass the year 1997, TO_CHAR returns 997.

YYYY

Entire year portion of date. For example, if you use ‘YYYY' and pass the year 1997, TO_CHAR returns
1997.

Week of month (1-5), where week 1 starts on the first day of the month and ends on the seventh, week 2
starts on the eighth day and ends on the fourteenth day. For example, Feb 1 designates the first week
of February.

wWw

Week of year (01-53), where week 01 starts on Jan 1 and ends on Jan 7, week 2 starts on Jan 8 and
ends on Jan 14, and so on.

Punctuation that displays in the output. You might use these symbols to separate date parts. For
example, you create the following expression to separate date parts with a period: TO_CHAR(DATES,
‘MM.DD.YYYY").

42 Chapter 5: Dates

Format Description
String

“text” Text that displays in the output. For example, if you create an output port with the expression:
TO_CHAR(DATES, ‘MM/DD/YYYY “Sales Were Up™) and pass the date Apr 1 1997, the function returns
the string ‘04/01/1997 Sales Were Up'. You can enter multibyte characters that are valid in the
repository code page.

Use double quotation marks to separate ambiguous format strings, for example D“"DDD. The empty
quotation marks do not appear in the output.

Note: The format string is not case sensitive. It must always be enclosed within single quotation marks.

Examples

The following examples show the J, SSSSS, RR, and YY format strings. See the individual functions for more
examples.

Note: The Data Integration Service ignores the time portion of the date in a TO_CHAR expression.

J Format String

Use the J format string in a TO_CHAR expression to convert date values to MJD values expressed as strings.
For example:

TO_CHAR(SHIP DATE, 'J'")

SHIP_DATE RETURN_VALUE
Dec 31 1999 23:59:59 2451544
Jan 1 1900 01:02:03 2415021

SSSSS Format String

You can also use the format string SSSSS in a TO_CHAR expression. For example, the following expression
converts the dates in the SHIP_DATE port to strings representing the total seconds since midnight:

TO_CHAR(SHIP_ DATE, 'SSSSS')

SHIP_DATE RETURN_VALUE
12/31/1999 01:02:03 3723
09/15/1996 23:59:59 86399

TO_CHAR Format Strings 43

RR Format String

The following expression converts dates to strings in the format MM/DD/YY:

TO CHAR(SHIP DATE, 'MM/DD/RR')

SHIP DATE RETURN_VALUE
12/31/1999 01:02:03 12/31/99
09/15/1996 23:59:59 09/15/96
05/17/2003 12:13:14 05/17/03

YY Format String

In TO_CHAR expressions, the YY format string produces the same results as the RR format string. The
following expression converts dates to strings in the format MM/DD/YY:

TO _CHAR(SHIP DATE, 'MM/DD/YY')

SHIP DATE RETURN_VALUE
12/31/1999 01:02:03 12/31/99
09/15/1996 23:59:59 09/15/96
05/17/2003 12:13:14 05/17/03

TO_DATE and IS_DATE Format Strings

44

The TO_DATE function converts a string with the format you specify to a datetime value. TO_DATE is
generally used to convert strings from flat files to datetime values. TO_DATE format strings are not
internationalized and must be entered in the predefined formats.

Note: TO_DATE and IS_DATE use the same set of format strings.

When you create a TO_DATE expression, use a format string for each part of the date in the source string.
The source string format and the format string must match. The date separator need not match for date
validation to take place. If any part does not match, the Data Integration Service does not convert the string,
and it skips the row. If you omit the format string, the source string must be in the date format specified in
the data viewer configuration.

IS_DATE indicates whether a value is a valid date. A valid date is any string in the date format specified in the
data viewer configuration. If the strings that you want to test are not in the specified date format, use the
format of the strings listed in "TO_DATE and IS_DATE Format Strings" table. If the format of a string does not
match the specified format or if the string does not represent a valid date, the function returns FALSE (0). If
the format of the string matches the specified format of the string and is a valid date, the function returns
TRUE (1). IS_DATE format strings are not internationalized and must be entered in one of the formats listed
in the following table.

Chapter 5: Dates

The following table lists the format strings for the functions TO_DATE and IS_DATE:

Table 1. TO_DATE and IS_DATE Format Strings

Format String

Description

AM, a.m., PM, p.m.

Meridian indicator. Use any of these format strings to specify AM and PM hours. AM
and PM return the same values as do a.m. and p.m.

DAY Name of day, including up to nine characters (for example, Wednesday). The DAY
format string is not case sensitive.
DD Day of month (1-31).
DDD Day of year (001-366, including leap years).
DY Abbreviated three-character name for a day (for example, Wed). The DY format string is
not case sensitive.
HH, HH12 Hour of day (1-12).
HH24 Hour of day (0-23), where 0 is 12AM (midnight).
J Modified Julian Day. Convert strings in MJD format to date values. It ignores the time
component of the source string, assigning all dates the time of 00:00:00.000000000.
For example, the expression TO_DATE('2451544’, 'J") converts 2451544 to Dec 31 1999
00:00:00.000000000.
MI Minutes (0-59).
MM Month (1-12).
MONTH Name of month, including up to nine characters (for example, August). Case does not
matter.
MON Abbreviated three-character name for a month (for example, Aug). Case does not
matter.
MS Milliseconds (0-999).
NS Nanoseconds (0-999999999).
RR Four-digit year (for example, 1998, 2034). Use when source strings include two-digit
years Use with TO_DATE to convert two-digit years to four-digit years.
Current Year Between 50 and 99. If the current year is between 50 and 99 (such as
1998) and the year value of the source string is between 0 and 49, the Data
Integration Service returns the next century plus the two-digit year from the source
string. If the year value of the source string is between 50 and 99, the Data
Integration Service returns the current century plus the specified two-digit year.
- Current Year Between 0 and 49. If the current year is between 0 and 49 (such as
2003) and the source string year is between 0 and 49, the Data Integration Service
returns the current century plus the two-digit year from the source string. If the
source string year is between 50 and 99, the Data Integration Service returns the
previous century plus the two-digit year from the source string.
SS Seconds (0-59).

TO_DATE and IS_DATE Format Strings 45

Format String Description

SSSSS Seconds since midnight. When you use SSSSS in a TO_DATE expression, the Data
Integration Service only evaluates the time portion of a date.

For example, the expression TO_DATE(DATE_STR, ‘MM/DD/YYYY SSSSS’) converts
12/31/1999 3783 to 12/31/1999 01:02:03.

us Microseconds (0-999999).

Y The current year on the node running the Data Integration Service with the last digit of
the year replaced with the string value.

YY The current year on the node running the Data Integration Service with the last two
digits of the year replaced with the string value.

YYY The current year on the node running the Data Integration Service with the last three
digits of the year replaced with the string value.

YYYY Four digits of a year. Do not use this format string if you are passing two-digit years.
Use the RR or YY format string instead.

Rules and Guidelines for Date Format Strings

Use the following rules and guidelines when you work with date format strings:

e The format of the TO_DATE string must match the format string. If it does not, the Data Integration
Service might return inaccurate values or skip the row. For example, if you pass the string 20200512’,
representing May 12, 2020, to TO_DATE, you must include the format string YYYYMMDD. If you do not
include a format string, the Data Integration Service expects the string in the date format specified in the
data viewer configuration. Likewise, if you pass a string that does not match the format string, the Data
Integration Service returns an error and skips the row. For example, if you pass the string 2020120 to
TO_DATE and include the format string YYYYMMDD, the Data Integration Service returns an error and
skips the row because the string does not match the format string.

¢ The format string must be enclosed within single quotation marks.

o The Data Integration Service uses the default date time format specified in the session. Default is
MM/DD/YYYY HH24:MI:SS.US. The format string is not case sensitive.

Example

The following examples illustrate the J, RR, and SSSSS format strings. See the individual functions for more
examples.

46 Chapter 5: Dates

J Format String

The following expression converts strings in the SHIP_DATE_MJD_STRING port to date values in the default

date format:

TO DATE (SHIP DATE MJD STR, 'J')

SHIP_DATE MJD_STR RETURN_VALUE
2451544 Dec 31 1999 00:00:00.000000000
2415021 Jan 1 1900 00:00:00.000000000

Because the J format string does not include the time portion of a date, the return values have the time set to

00:00:00.000000000.

RR Format String

The following expression converts a string to a four-digit year format. The current year is 1998:

TO DATE(DATE STR, 'MM/DD/RR')

DATE_STR RETURN VALUE
04/01/98 04/01/1998 00:00:00.000000000
08/17/05 08/17/2005 00:00:00.000000000

YY Format String

The following expression converts a string to a four-digit year format. The current year is 1998:

TO DATE(DATE STR, 'MM/DD/YY')

DATE_STR RETURN VALUE
04/01/98 04/01/1998 00:00:00.000000000
08/17/05 08/17/1905 00:00:00.000000000

Note: For the second row, RR returns the year 2005, but YY returns the year 1905.

SSSSS Format String

The following expression converts strings that include the seconds since midnight to date values:

TO DATE(DATE STR, 'MM/DD/YYYY SSSSS')

DATE_STR RETURN_VALUE
12/31/1999 3783 12/31/1999 01:02:03.000000000
09/15/1996 86399 09/15/1996 23:59:59.000000000

TO_DATE and IS_DATE Format Strings

47

Understanding Date Arithmetic

The transformation language provides built-in date functions so you can perform arithmetic on datetime
values as follows:

o ADD_TO_DATE. Add or subtract a specific portion of a date.
o DATE_DIFF. Subtract two dates.
e SET_DATE_PART. Change one part of a date.

You cannot use numeric arithmetic operators (such as + or -) to add or subtract dates.

The transformation language recognizes leap years and accepts dates between Jan. 1, 0001
00:00:00.000000000 A.D. and Dec. 31, 9999 23:59:59.999999999 A.D.

Note: The transformation language uses the transformation Date/Time datatype to specify date values. You
can only use the date functions on datetime values.

48 Chapter 5: Dates

CHAPTER 6

Functions

This chapter includes the following topics:
e Function Categories, 52
e ABORT, 60

* ABS, 60

e ADD_TO_DATE, 61

e AES_DECRYPT, 64

e AES_ENCRYPT, 65

* ANY, 66

e ARRAY, 67

e ASCII, 68

« AVG, 69

e CAST, 70

e CEIL, 71

e CHOOSE, 72

* CHR,73

e CHRCODE, 74

e COLLECT_LIST, 75

e COMPRESS, 75

o CONCAT, 76

o CONCAT_ARRAY, 78
e CONVERT_BASE, 78
* COS, 79

e COSH, 80

e COUNT, 81

e CRC32, 83

e CREATE_TIMESTAMP_TZ, 84
e CUME, 85

o DATE_COMPARE, 86
e DATE_DIFF, 87

o DEC_BASE64, 90

e DECODE, 91

o DECOMPRESS, 93

o ENC_BASE®64, 93

e ERROR, 94

e EXP,95

e FIRST, 96

e FLOOR, 97

e Fv,98

e GET_DATE_PART, 99
e GET_TIMEZONE, 101
e GET_TIMESTAMP, 102
e GREATEST, 103
 IIF, 104

* IN, 106

e |INDEXOF, 107

e INITCAP, 108

e INSTR, 109

e |ISNULL, 112

e |IS_DATE, 113

e IS_NUMBER, 116

e |IS_SPACES, 118

e LAG, 119

e LAST, 120

e LAST_DAY, 121

e LEAD, 122

e LEAST, 124

e LENGTH, 125

e LN, 126

e LOG, 127

e LOWER, 127

e LPAD, 128

e LTRIM, 130

o MAKE_DATE_TIME, 131

e MAX (Dates), 132
e MAX (Numbers), 133

o MAX (String), 135
e MD5, 136

« MEDIAN, 136

e METAPHONE, 138

¢ MIN (Dates), 141
e MIN (Numbers), 143

50 Chapter 6: Functions

MIN (String), 144
MOD, 145
MOVINGAVG, 146
MOVINGSUM, 148
NPER, 149
PERCENTILE, 150
PMT, 151

POWER, 152

PV, 153

RAND, 154

RATE, 155
REG_EXTRACT, 155
REG_MATCH, 158
REG_REPLACE, 159
REPLACECHR, 160
REPLACESTR, 163
RESPEC, 166
REVERSE, 167
ROUND (Dates), 168
ROUND (Numbers), 172

RPAD, 174
RTRIM, 175
SET_DATE_PART, 177
SIGN, 179

SIN, 180

SINH, 181

SIZE, 182

SOUNDEX, 183
SQL_LIKE, 185

SQRT, 186

STDDEV, 186

STRUCT, 188
STRUCT_AS, 189
SUBSTR, 190

SUM, 193
SYSTIMESTAMP, 194
TAN, 195

TANH, 196
TO_BIGINT, 197
TO_CHAR (Dates), 199

51

e TO_CHAR (Numbers), 203
e TO_DATE, 204

e TO_DECIMAL, 208

e TO_DECIMAL3S8, 209

e TO_FLOAT, 210

e TO_INTEGER, 211

e TO_TIMESTAMP_TZ, 213
e TRUNC (Dates), 214

e TRUNC (Numbers), 217

e UPPER, 219

e UUID4, 220

o UUID_UNPARSE, 220

o VARIANCE, 220

Function Categories

The transformation language provides the following types of functions:
e Aggregate

e Character

e Complex

e Conversion

e Data Cleansing
e Date

e Encoding

¢ Financial

e Numerical

e Scientific

e Special

e String

e Test

e Variable

e Window

Aggregate Functions

Aggregate functions return summary values for non-null values in selected ports. With aggregate functions
you can:

e Calculate a single value for all rows in a group.

e Return a single value for each group in an Aggregator transformation.

52 Chapter 6: Functions

The transformation language includes the following aggregate functions:

Apply filters to calculate values for specific rows in the selected ports.

Use operators to perform arithmetic within the function.

Calculate two or more aggregate values derived from the same source columns in a single pass.

ANY

AVG
COLLECT_LIST
COUNT

FIRST

LAST

MAX (Date)
MAX (Number)
MAX (String)
MEDIAN

MIN (Date)
MIN (Number)
MIN (String)
PERCENTILE
STDDEV

SUM
VARIANCE

If you configure the Data Integration Service to run in Unicode mode, MIN and MAX return values according to

the sort order of the code page you specify in the mapping configuration.

You can use aggregate functions in Aggregator transformations. You can nest only one aggregate function
within another aggregate function. The Data Integration Service evaluates the innermost aggregate function

expression and uses the result to evaluate the outer aggregate function expression. You can set up an
Aggregator transformation that groups by ID and nests two aggregate functions as follows:

where the dataset contains the following values:

ID

SUM(AVG(earnings)

EARNINGS

32

45

100

65

75

76

21

Function Categories

53

ID EARNINGS
3 45

3 99

The return value is 186. The Data Integration Service groups by ID, evaluates the AVG expression, and returns
three values. Then it adds the values with the SUM function to get the result.

You can also use aggregate functions as window functions in an Expression transformation. To use an
aggregate function as a window function when you run a mapping on the Spark engine, you must configure
the transformation for windowing. If you use an aggregate function as a window function, the Expression
transformation becomes active.

Aggregate Functions and Nulls

When you configure the Data Integration Service, you can choose how you want to handle null values in
aggregate functions. You can have the Data Integration Service treat null values in aggregate functions as
NULL or 0.

By default, the Data Integration Service treats null values as NULL in aggregate functions. If you pass an
entire port or group of null values, the function returns NULL. You can optionally configure the Data
Integration Service if you pass an entire port of null values to an aggregate function to return 0.

Filter Conditions
Use a filter condition to limit the rows returned in a search.

A filter limits the rows returned in a search. You can apply a filter condition to all aggregate functions and to
CUME, MOVINGAVG, and MOVINGSUM. The filter condition must evaluate to TRUE, FALSE, or NULL. If the
filter condition evaluates to NULL or FALSE, the Data Integration Service does not select the row.

You can enter any valid transformation expression. For example, the following expression calculates the
median salary for all employees who make more than $50,000:

MEDIAN (SALARY, SALARY > 50000)

You can also use other numeric values as the filter condition. For example, you can enter the following as the
complete syntax for the MEDIAN function, including a numeric port:

MEDIAN(PRICE, QUANTITY > 0)

In all cases, the Data Integration Service rounds a decimal value to an integer (for example, 1.5t0 2, 1.2 to 1,
0.35 to 0) for the filter condition. If the value rounds to 0, the filter condition returns FALSE. If you do not
want to round up a value, use the TRUNC function to truncate the value to an integer:

MEDIAN(PRICE, TRUNC(QUANTITY) > 0)

If you omit the filter condition, the function selects all rows in the port.

Character Functions

The transformation language includes the following character functions:

e ASCII
e CHR
e CHRCODE

54 Chapter 6: Functions

e CONCAT

e INITCAP

e [INSTR

e LENGTH

e LOWER

e LPAD

e LTRIM

¢ METAPHONE
e REPLACECHR
e REPLACESTR
e RPAD

e RTRIM

e SOUNDEX

e SUBSTR

e UPPER

The character functions MAX, MIN, LOWER, UPPER, and INITCAP use the code page of the Data Integration
Service to evaluate character data.

Complex Functions

A complex function is a type of pre-defined function in which the value of the input or the return type is of a
complex data type, such as an array, map, or struct. You can use complex functions in mappings that run on
the Spark engine.

The transformation language includes the following complex functions:
e ARRAY

e CAST

e COLLECT_LIST

e CONCAT_ARRAY

e RESPEC

e SIZE

e STRUCT

e STRUCT_AS

Conversion Functions

The transformation language includes the following conversion functions:
e TO_BIGINT

e TO_CHAR(Number)

e TO_DATE

e TO_DECIMAL

e TO_FLOAT

e TO_INTEGER

Function Categories 55

Data Cleansing Functions

The transformation language includes a group of functions to eliminate data errors. You can complete the
following tasks with data cleansing functions:

e Test input values.

e Convert the datatype of an input value.
e Trim string values.

e Replace characters in a string.

e Encode strings.

e Match patterns in regular expressions.

The transformation language includes the following data cleansing functions:

e GREATEST

e IN

e INSTR

e IS_DATE

e |S_NUMBER
e |IS_SPACES

e |SNULL

e LEAST

e LTRIM

e METAPHONE
e REG_EXTRACT
e REG_MATCH

e REG_REPLACE
e REPLACECHR
e REPLACESTR
e RTRIM

e SQL_LIKE

e SOUNDEX

e SUBSTR

e TO_BIGINT

e TO_CHAR

e TO_DATE

e TO_DECIMAL
e TO_FLOAT

e TO_INTEGER

Date Functions

The transformation language includes a group of date functions to round, truncate, or compare dates, extract
one part of a date, or perform arithmetic on a date.

56 Chapter 6: Functions

You can pass any value with a date datatype to any of the date functions. However, if you want to pass a

string to a date function, you must first use the TO_DATE function to convert it to a transformation Date/Time
datatype.

The transformation language includes the following date functions:

ADD_TO_DATE
DATE_COMPARE
DATE_DIFF
GET_DATE_PART
IS_DATE
LAST_DAY
MAKE_DATE_TIME
MAX

MIN

ROUND(Date)
SET_DATE_PART
SYSTIMESTAMP
TO_CHAR(Date)
TRUNC(Date)

Several of the date functions include a format argument. You must specify one of the transformation
language format strings for this argument. Date format strings are not internationalized.

The Date/Time transformation datatype supports dates with precision to the nanosecond.

RELATED TOPICS:

e “Date Format Strings” on page 40

Encoding Functions

The transformation language includes the following functions for data encryption, compression, encoding,

and checksum:

Financial Functions

The transformation language includes the following financial functions:

AES_DECRYPT
AES_ENCRYPT
COMPRESS
CRC32
DEC_BASE64
DECOMPRESS
ENC_BASE64
MD5

FV

Function Categories

57

o NPER
e PMT
e PV

e RATE

Numeric Functions

The transformation language includes the following numeric functions:
e ABS

e CEIL

e CONV

¢ CUME

e EXP

e FLOOR

e LN

e LOG

¢ MAX

e MIN

e MOD

e MOVINGAVG
e MOVINGSUM
e POWER

e RAND

e ROUND

e SIGN

e SQRT

e TRUNC

Scientific Functions

The transformation language includes the following scientific functions:
e COS

e COSH

e SIN

e SINH

e TAN

e TANH

58 Chapter 6: Functions

Special Functions

The transformation language includes the following special functions:

e ABORT
DECODE

e ERROR

o |IF

e LOOKUP

e UUID4

e UUID_UNPARSE

Generally, you use special functions in Expression, Filter, and Update Strategy transformations. You can nest
other functions within special functions. You can also nest a special function in an aggregate function.

String Functions

The transformation language includes the following string functions:
e CHOOSE

e INDEXOF

¢ MAX

e MIN

e REVERSE

Test Functions

The transformation language includes the following test functions:

e ISNULL

e |S_DATE

¢ IS_NUMBER
e IS_SPACES

Window Functions

The transformation language includes a group of window functions that perform calculations on a set of
rows that are related to the current row. The functions calculate a single return value for every input row. You
can use window functions in mappings that run on the Spark engine.

The transformation language includes the following window functions:

e LAG
e LEAD

You can use window functions in Expression transformations. If you use a window function in an Expression
transformation, the transformation is active.

Function Categories 59

ABORT

ABS

Stops the mapping run, and issues a specified error message to the log. When the Data Integration Service
encounters an ABORT function, it stops transforming data at that row. It processes any rows read before the
mapping run aborts. The Data Integration Service writes to the target up to the aborted row and then rolls
back all uncommitted data to the last commit point.

Use ABORT to validate data. Generally, you use ABORT within an IIF or DECODE function to set rules for
aborting a session.

Use the ABORT function for both input and output port default values. You might use ABORT for input ports
to keep null values from passing into a transformation. You can also use ABORT to handle any kind of
transformation error, including ERROR function calls within an expression. The default value overrides the
ERROR function in an expression. If you want to ensure the session stops when an error occurs, assign
ABORT as the default value.

If you use ABORT in an expression for an unconnected port, the Data Integration Service does not run the
ABORT function.

Syntax
ABORT (string)

The following table describes the argument for this command:

Argument | Required/ | Description
Optional

string Required String. The message you want to display in the log when the mapping run stops. The string
can be any length. You can enter any valid transformation expression.

Return Value
NULL.

Returns the absolute value of a numeric value.
Syntax
ABS (numeric value)

The following table describes the argument for this command:

Argument Required/ | Description
Optional

numeric_value | Required Numeric datatype. Passes the values for which you want to return the absolute values.
You can enter any valid transformation expression.

60 Chapter 6: Functions

Return Value

Positive numeric value. ABS returns the same datatype as the numeric value passed as an argument. If you
pass a Double, it returns a Double. Likewise, if you pass an Integer, it returns an Integer.

NULL if you pass a null value to the function.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Example

The following expression returns the difference between two numbers as a positive value, regardless of
which number is larger:

ABS(PRICE - COST)

PRICE COST RETURN VALUE
250 150 100

52 48 4

169.95 69.95 100

59.95 NULL NULL

70 30 40

430 330 100

100 200 100

ADD_TO_DATE

Adds a specified amount to one part of a datetime value, and returns a date in the same format as the date
you pass to the function. ADD_TO_DATE accepts positive and negative integer values. Use ADD_TO_DATE to
change the following parts of a date:

Year. Enter a positive or negative integer in the amount argument. Use any of the year format strings: Y,
YY, YYY, or YYYY. The following expression adds 10 years to all dates in the SHIP_DATE port:

ADD TO DATE (SHIP DATE, 'YY', 10)
Month. Enter a positive or negative integer in the amount argument. Use any of the month format strings:
MM, MON, MONTH. The following expression subtracts 10 months from each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'MONTH', -10)
Day. Enter a positive or negative integer in the amount argument. Use any of the day format strings: D, DD,
DDD, DY, and DAY. The following expression adds 10 days to each date in the SHIP_DATE port:
ADD TO DATE(SHIP_DATE, 'DD', 10)
Hour. Enter a positive or negative integer in the amount argument. Use any of the hour format strings: HH,
HH12, HH24. The following expression adds 14 hours to each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'HH', 14)

ADD_TO_DATE 61

62

e Minute. Enter a positive or negative integer in the amount argument. Use the MI format string to set the
minute. The following expression adds 25 minutes to each date in the SHIP_DATE port:

ADD TO DATE(SHIP DATE, 'MI', 25)
e Seconds. Enter a positive or negative integer in the amount argument. Use the SS format string to set the
second. The following expression adds 59 seconds to each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'SS', 59)
* Milliseconds. Enter a positive or negative integer in the amount argument. Use the MS format string to set
the milliseconds. The following expression adds 125 milliseconds to each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'MS', 125)

e Microseconds. Enter a positive or negative integer in the amount argument. Use the US format string to
set the microseconds. The following expression adds 2,000 microseconds to each date in the SHIP_DATE
port:

ADD TO DATE(SHIP DATE, 'US', 2000)

* Nanoseconds. Enter a positive or negative integer in the amount argument. Use the NS format string to
set the nanoseconds. The following expression adds 3,000,000 nanoseconds to each date in the
SHIP_DATE port:

ADD_TO DATE(SHIP DATE, 'NS', 3000000)
Syntax
ADD TO DATE(date, format, amount)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. Passes the values you want to change. You can enter any valid

transformation expression.

format Required A format string specifying the portion of the date value you want to change. Enclose
the format string within single quotation marks, for example, 'mm'. The format
string is not case sensitive.

amount Required An integer value specifying the amount of years, months, days, hours, and so on by
which you want to change the date value. You can enter any valid transformation
expression that evaluates to an integer.

Return Value

Date in the same format as the date you pass to this function.
NULL if a null value is passed as an argument to the function.
Examples

The following expressions all add one month to each date in the DATE_SHIPPED port. If you pass a value that
creates a day that does not exist in a particular month, the Data Integration Service returns the last day of the
month. For example, if you add one month to Jan 31 1998, the Data Integration Service returns Feb 28 1998.

Chapter 6: Functions

Also note, ADD_TO_DATE recognizes leap years and adds one month to Jan 29 2000:

ADD TO DATE(DATE SHIPPED, 'MM', 1)
ADD TO DATE(DATE SHIPPED, 'MON', 1)
ADD TO DATE(DATE SHIPPED, 'MONTH', 1)

DATE_SHIPPED

Jan 12 1998 12:00:30AM
Jan 31 1998 6:24:45PM
Jan 29 2000 5:32:12AM
Oct 9 1998 2:30:12PM

NULL

RETURN VALUE

Feb 12 1998 12:00:30AM
Feb 28 1998 6:24:45PM
Feb 29 2000 5:32:12AM (Leap Year)

Nov 9 1998 2:30:12PM

NULL

The following expressions subtract 10 days from each date in the DATE_SHIPPED port:

ADD_TO DATE (
ADD TO DATE (
ADD TO DATE (
ADD_TO_ DATE (
ADD TO DATE (

DATE_SHIPPED

DATE SHIPPED,
DATE SHIPPED,
DATE SHIPPED,
DATE SHIPPED,
DATE SHIPPED,

Jan

Jan

Mar

Oct

Mar

1 1997 12:00:30AM

31 1997 6:24:45PM

9 1996 5:32:12AM

9 1997 2:30:12PM

3 1996 5:12:20AM

NULL

'D', -10)

'DD', -10)

'DDD', -10)

'DY', -10)

'DAY', -10)
RETURN VALUE
Dec 22 1996 12:00AM
Jan 21 1997 6:24:45PM
Feb 29 1996 5:32:12AM (Leap Year)
Sep 30 1997 2:30:12PM
Feb 22 1996 5:12:20AM
NULL

The following expressions subtract 15 hours from each date in the DATE_SHIPPED port:

ADD_TO DATE(DATE SHIPPED,
ADD TO DATE(DATE SHIPPED,
ADD_TO DATE (DATE SHIPPED,

DATE_SHIPPED

Jan 1 1997 12:00:30AM
Jan 31 1997 6:24:45PM
Oct 9 1997 2:30:12PM

Mar 3 1996 5:12:20AM

"HH', -15)
"HH12', -15)
"HH24', -15)

RETURN VALUE

Dec 31 1996 9:00:30AM

Jan 31 1997 3:24:45AM

Oct 8 1997 11:30:12PM

Mar 2 1996 2:12:20PM

ADD_TO_DATE

63

DATE_SHIPPED

Mar 1 1996 5:32:12AM

NULL

Working with Dates

RETURN VALUE

Feb 29 1996 2:32:12PM (Leap Year)

NULL

Use the following tips when working with ADD_TO_DATE:

e You can add or subtract any part of the date by specifying a format string and making the amount
argument a positive or negative integer.

* If you pass a value that creates a day that does not exist in a particular month, the Data Integration
Service returns the last day of the month. For example, if you add one month to Jan 31 1998, the Data
Integration Service returns Feb 28 1998.

e You can nest TRUNC and ROUND to manipulate dates.

e You can nest TO_DATE to convert strings to dates.

o ADD_TO_DATE changes only one portion of the date, which you specify. If you modify a date so that it
changes from standard to daylight savings time, you need to change the hour portion of the date.

AES_DECRYPT

Returns decrypted data to string format. The Data Integration Service uses Advanced Encryption Standard
(AES) algorithm with 128-bit encoding. The AES algorithm is a FIPS-approved cryptographic algorithm.

64

Syntax

AES DECRYPT

(value, key)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Binary datatype. Value you want to decrypt.
key Required String datatype. Precision of 16 characters or fewer. You can use mapping variables
for the key. Use the same key to decrypt a value that you used to encrypt it.

Return Value

Decrypted binary value.

NULL if the input value is a null value.

Chapter 6: Functions

Example

The following example returns decrypted social security numbers. In this example, the Data Integration
Service derives the key from the first three numbers of the social security number using the SUBSRT function:

AES DECRYPT (SSN_ENCRYPT, SUBSTR(SSN,1,3))

SSN_ENCRYPT DECRYPTED VALUE
07FB945926849D2B1641E708C85E4390 832-17-1672
9153ACAB89D65A4B81AD2ABF151B099D 832-92-4731
AF6B5E4E39F974B3F3FB0OF22320CC60B 832-46-7552
992D6A5DY1E7F59D03B940A4B1CBBCBE 832-53-6194
992D6A5DI1IETF59D03B940A4B1CBBCBE 832-81-9528

AES_ENCRYPT

Returns data in encrypted format. The Data Integration Service uses Advanced Encryption Standard (AES)
algorithm with 128-bit encoding. The AES algorithm is a FIPS-approved cryptographic algorithm.

Use this function to prevent sensitive data from being visible to everyone. For example, to store social
security numbers in a data warehouse, use the AES_ENCRYPT function to encrypt the social security
numbers to maintain confidentiality.

Syntax
AES ENCRYPT (value, key)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required String datatype. Value you want to encrypt.
key Required String datatype. Precision of 16 characters or fewer. You can use mapping variables
for the key.

Return Value
Encrypted binary value.

NULL if the input is a null value.

AES_ENCRYPT 65

ANY

Example

The following example returns encrypted values for social security numbers. In this example, the Data
Integration Service derives the key from the first three numbers of the social security number using the
SUBSTR function:

AES ENCRYPT (SSN, SUBSTR(SSN,1,3))

SSN ENCRYPTED VALUE
832-17-1672 07FB945926849D2B1641E708C85E4390
832-92-4731 9153ACAB89ID65A4BB1AD2ABF151B099D
832-46-7552 AF6BSE4E39F974B3F3FB0F22320CC60B
832-53-6194 992D6A5DI1ETF59D03B940A4B1CBBCBE
832-81-9528 992D6A5DI1ETF59D03B940A4B1CBBCBE
Tip

If the target does not support binary data, use AES_ENCRYPT with the ENC_BASE64 function to store the
data in a format compatible with the database.

Returns any row in the selected port. Optionally, you can apply a filter to limit the rows the Data Integration
Service reads. You can nest only one other aggregate function within ANY.

Syntax
ANY (value [, filter condition])

The following table describes the arguments for this function:

Argument Required/ Description
Optional
value Required Any data type except Binary. Passes the values for which you want to return any

row. You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Any row in a port. Returns a different row each time.

NULL if all values passed to the function are NULL, or if no rows are selected. For example, the filter
condition evaluates to FALSE or NULL for all rows.

66 Chapter 6: Functions

Example

The following expression returns any row in the ITEM_NAME port with a price greater than $10.00:

ANY (ITEM NAME, ITEM PRICE > 10)

ITEM NAME ITEM PRICE
Flashlight 35.00
Navigation Compass 8.05
Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00

Vest 31.00

RETURN VALUE:Flashlight

ANY and Complex Data Types
You can use ANY to return a row in a complex port of type array or struct.
For example, you have the following array:
emp phones =
[205-128-6478, 722-515-2889]
[107-081-0961, 718-051-8116]
[344-894-6463, 861-411-8361]
[107-031-0961, NULL]
You can use the following expression to return any row in the array port:
ANY (emp_phones)

RETURN VALUE: [205-128-6478, 722-515-2889]

ARRAY

Generates an array with elements based on the specified arguments.

Syntax
ARRAY (array elementl as any [, array element2] ...)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
array_element1 | Required Any data type. The element that you want to add to the array. You can enter

any valid transformation expression.

array_element2 | Optional Same data type as the array_element1.

ARRAY

67

ASCII

If you use the ARRAY function in an output expression for an array port, the data type of the function
arguments must match the data type of the array elements specified in the type configuration for the array

port.

Return Value

Array.

The data type of the arguments determines the data type of the array elements. For example, if you pass
string arguments, the function generates an array of string elements.

Examples

The following expression generates an array of string elements.

ARRAY (work phone, home phone)

work phone

205-128-6478
107-081-0961
344-894-6463

107-031-0961

home_phone

722-515-2889
718-051-8116
861-411-8361

NULL

RETURN VALUE

[205-128-6478,722-515-2889]

[107-081-0961,718-051-8116]

[344-894-6463,861-411-8361]

[107-031-0961,NULL]

When the Data Integration Service uses ASCII mode, the ASCII function returns the numeric ASCII value of the
first character of the string passed to the function.

When the Data Integration Service uses Unicode mode, the ASCII function returns the numeric Unicode value
of the first character of the string passed to the function. Unicode values fall in the range 0 to 65,535.

You can pass a string of any size to ASCII, but it evaluates only the first character in the string. Before you
pass any string value to ASCII, you can parse out the specific character you want to convert to an ASCII or
Unicode value. For example, you might use RTRIM or another string-manipulation function. If you pass a
numeric value, ASCII converts it to a character string and returns the ASCII or Unicode value of the first
character in the string.

This function is identical in behavior to the CHRCODE function. If you use ASCII in existing expressions, they
will still work correctly. However, when you create new expressions, use the CHRCODE function instead of the
ASCII function.

Syntax
ASCII (string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Character string. Passes the value you want to return as an ASCII value. You can
enter any valid transformation expression.

68 Chapter 6: Functions

Return Value

Integer. The ASCII or Unicode value of the first character in the string.
NULL if a value passed to the function is NULL.

Example

The following expression returns the ASCII or Unicode value for the first character of each value in the ITEMS
port:

ASCII(ITEMS)

ITEMS RETURN VALUE
Flashlight 70
Compass 67
Safety Knife 83
Depth/Pressure Gauge 68
Regulator System 82

AVG

Returns the average of all values in a group of rows. Optionally, you can apply a filter to limit the rows you
read to calculate the average. You can nest only one other aggregate function within AVG, and the nested
function must return a Numeric datatype.

Syntax
AVG(numeric value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the values for which you want to calculate an average.

You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL or if no rows are selected. For example, the filter condition
evaluates to FALSE or NULL for all rows.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

AVG 69

Nulls

If a value is NULL, AVG ignores the row. However, if all values passed from the port are NULL, AVG returns
NULL.

Group By

AVG groups values based on group by ports you define in the transformation, returning one result for each
group.

If there is not a group by port, AVG treats all rows as one group, returning one value.
Example

The following expression returns the average wholesale cost of flashlights:

AVG(WHOLESALE COST, ITEM NAME='Flashlight')

ITEM NAME WHOLESALE COST
Flashlight 35.00
Navigation Compass 8.05

Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00
Flashlight 31.00

RETURN VALUE: 31.66

Tip
You can perform arithmetic on the values passed to AVG before the function calculates the average. For
example:

AVG(QTY * PRICE - DISCOUNT)

CAST

70

Renames the elements and changes the data type of each element for the given struct value based on the
data type in the specified complex data type definition.

Syntax

CAST (:Type.type definition library.type definition, struct value)

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional
:Type.type_definition_library.type_definition | Required The complex data type definition that represents the

schema of the struct data.

Use the reference qualifier : Type to reference the type
definition library that contains the complex data type
definition.

struct_value Required The struct value for which you want to change the data
type of the struct elements. You can enter any valid
transformation expression that evaluates to a struct.

The data type of the struct value and the data type in the complex data type definition must be compatible.
Return Value

Struct.

Examples

The following expression changes the data types of the elements in the struct port h2_sales based on the
data types in the complex data type definition h1_sales_def.

CAST (:Type.type definition library.hl sales def, h2 sales)

hl sales_def h2_sales RETURN VALUE

{ { {
ql total : bigint g3_total : int gl total : bigint
q2_total : double g4 total : int g2_total : double

CEIL

Returns the smallest integer greater than or equal to the numeric value passed to this function. For example,
if you pass 3.14 to CEIL, the function returns 4. If you pass 3.98 to CEIL, the function returns 4. Likewise, if
you pass -3.17 to CEIL, the function returns -3.

Syntax
CEIL(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric data type. You can enter any valid transformation expression.

Return Value

Numeric value.

CEIL 71

Double value if you pass a numeric value with declared precision greater than 38.
NULL if a value passed to the function is NULL.
Example

The following expression returns the price rounded to the next integer:

CEIL(PRICE)
PRICE RETURN VALUE
39.79 40
125.12 126
74.24 75
NULL NULL
-100.99 -100

Tip: You can perform arithmetic on the values passed to CEIL before CEIL returns the next integer value. For
example, if you want to multiply a numeric value by 10 before you calculated the smallest integer greater than
the modified value, you might write the function as follows:

CEIL(PRICE * 10)

CHOOSE

72

Chooses a string from a list of strings based on a given position. You specify the position and the value. If
the value matches the position, the Data Integration Service returns the value.

Syntax
CHOOSE (index, stringl [, string2, ..., stringN])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
index Required Numeric datatype. Enter a number based on the position of the value you want to
match.
string Required Any character value.

Return Value

The string that matches the position of the index value.
NULL if no string matches the position of the index value.
Example

The following expression returns the string ‘flashlight’ based on an index value of 2:

CHOOSE(2, 'knife', 'flashlight', 'diving hood')

Chapter 6: Functions

CHR

The following expression returns NULL based on an index value of 4:
CHOOSE(4, 'knife', 'flashlight', 'diving hood'

CHOOSE returns NULL because the expression does not contain a fourth argument.

When the Data Integration Service uses ASCII mode, CHR returns the ASCII character corresponding to the
numeric value you pass to this function. ASCII values fall in the range 0 to 255. You can pass any integer to
CHR, but only ASCII codes 32 to 126 are printable characters.

When the Data Integration Service uses Unicode mode, CHR returns the Unicode character corresponding to
the numeric value you pass to this function. Unicode values fall in the range 0 to 65,535.

Syntax
CHR(numeric value

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. The value you want to return as an ASCII or Unicode
character. You can enter any valid transformation expression.

Return Value

ASCII or Unicode character. A string containing one character.
NULL if a value passed to the function is NULL.

Example

The following expression returns the ASCII or Unicode character for each numeric value in the ITEM_ID port:

CHR(ITEM ID)

ITEM ID RETURN VALUE
65 A

122 z

NULL NULL

88 X

100 d

71 G

Use the CHR function to concatenate a single quote onto a string. The single quote is the only character that
you cannot use inside a string literal. Consider the following example:

'Joan' || CHR(39) || 's car'

CHR 73

The return value is:

Joan's car

CHRCODE

74

When the Data Integration Service uses ASCIl mode, CHRCODE returns the numeric ASCII value of the first
character of the string passed to the function. ASCII values fall in the range 0 to 255.

When the Data Integration Service uses Unicode mode, CHRCODE returns the numeric Unicode value of the
first character of the string passed to the function. Unicode values fall in the range 0 to 65,535.

Normally, before you pass any string value to CHRCODE, you parse out the specific character you want to
convert to an ASCII or Unicode value. For example, you might use RTRIM or another string-manipulation
function. If you pass a numeric value, CHRCODE converts it to a character string and returns the ASCII or
Unicode value of the first character in the string.

This function is identical in behavior to the ASCII function. If you currently use ASCII in expressions, it will still
work correctly. However, when you create new expressions, use the CHRCODE function instead of the ASCII
function.

Syntax
CHRCODE (string

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Character string. Passes the values you want to return as ASCII or Unicode values.
You can enter any valid transformation expression.

Return Value

Integer.

NULL if a value passed to the function is NULL.
Example

The following expression returns the ASCII or Unicode value for the first character of each value in the ITEMS
port:

CHRCODE (ITEMS)

ITEMS RETURN VALUE
Flashlight 70
Compass 67
Safety Knife 83
Depth/Pressure Gauge 68
Regulator System 82

Chapter 6: Functions

COLLECT_LIST

Returns an array with elements based on the argument. The data type of the argument determines the data
type of the array. COLLECT_LIST is an aggregate function.

Syntax
COLLECT LIST(value as any)

The following table describes the arguments for this command:

Argument | Required/ Description
Optional
value Required Any data type. The values that you want to aggregate into a hierarchical data of type
array. You can enter any valid transformation expression.

Return Value
Array.
Group By

COLLECT_LIST groups values based on group by ports you define in the transformation, returning one result
for each group.

If there is no group by port, COLLECT_LIST treats all rows as one group, returning one value.

Examples

The following expression returns an array with the elements in the PRODUCT_NAME.
COLLECT LIST (PRODUCT NAME)

PRODUCT_NAME

Flashlight

Compass

Pressure Gauge

Vest

RETURN VALUE: [Flashlight,Compass,Pressure Gauge,Vest]

COMPRESS

Compresses data using the zlib 1.2.1 compression algorithm. Use the COMPRESS function before you send
large amounts of data over a wide area network.

Syntax

COMPRESS (value)

COLLECT_LIST 75

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required String datatype. Data that you want to compress.

Return Value

Compressed binary value of the input value.
NULL if the input is a null value.

Example

Your organization has an online order service. You want to send customer order data over a wide area
network. The source contains a row that is 10 MB. You can compress the data in this row using COMPRESS.
When you compress the data, you decrease the amount of data the Data Integration Service writes over the
network. As a result, you may increase performance.

CONCAT

76

Concatenates two strings. CONCAT converts all data to text before concatenating the strings. Alternatively,
use the || string operator to concatenate strings. Using the || string operator instead of CONCAT improves
Data Integration Service performance.

Syntax
CONCAT(first string, second string)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
first_string Required Any datatype except Binary. The first part of the string you want to concatenate.

You can enter any valid transformation expression.

second_string Required Any datatype except Binary. The second part of the string you want to
concatenate. You can enter any valid transformation expression.

Return Value

String.

NULL if both string values are NULL.

Nulls

If one of the strings is NULL, CONCAT ignores it and returns the other string.

If both strings are NULL, CONCAT returns NULL.

Chapter 6: Functions

Example

The following expression concatenates the names in the FIRST_NAME and LAST_NAME ports:

CONCAT (FIRST NAME, LAST NAME)

FIRST NAME
John

NULL

Bobbi
Jason

Dan

Greg

NULL

100

CONCAT does not add spaces to separate strings. If you want to add a space between two strings, you can

LAST NAME
Baer
Campbell
Apperley
Wood
Covington
NULL

NULL

200

RETURN VALUE

JohnBaer

Campbell

BobbiApperley

JasonWood

DanCovington

Greg

NULL

100200

write an expression with two nested CONCAT functions. For example, the following expression first

concatenates a space on the end of the first name and then concatenates the last name:

CONCAT (CONCAT(FIRST NAME, ' '), LAST NAME)
FIRST NAME LAST_NAME RETURN VALUE
John Baer John Baer
NULL Campbell
Bobbi Apperley Bobbi Apperley
Jason Wood Jason Wood
Dan Covington Dan Covington
Greg NULL Greg
NULL NULL NULL

Campbell (includes leading blank)

Use the CHR and CONCAT functions to concatenate a single quote onto a string. The single quote is the only
character you cannot use inside a string literal. Consider the following example:

CONCAT ('Joan', CONCAT(CHR(39), 's car'))

The return value is:

Joan's car

CONCAT

77

CONCAT_ARRAY

Concatenates string elements in an array based on a separator that you specify and returns a string.

Syntax
CONCAT ARRAY (' ', array)

The following table describes the arguments for this command:

Argument | Required/ Description
Optional
" Required Each string element is separated by the separator you specify. For example, ',

separates the values with a comma.

array Required An array with elements of string type. The array that you want to concatenate.

Return Value

String

Nulls

If one of the string elements is NULL, CONCAT_ARRAY ignores it and returns the other string.
If all the string elements are NULL, CONCAT_ARRAY returns an empty string.

Examples

The following expression concatenates the string elements in the array.

CONCAT ARRAY(':', Name)
Name RETURN VALUE
[‘John’, ‘Baer’] ‘John:Baer’
[‘Bobbi’, ‘Apperley’] ‘Bobbi:Apperley’
[‘Jason’, ‘'] ‘Jason:'’
[‘Greg’ ,NULL] ‘Greg’
[NULL, NULL] v

CONVERT_BASE

Converts a non-negative numeric string from one base value to another base value.
Syntax

CONVERT BASE (value, source base, dest base)

78 Chapter 6: Functions

COS

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required String datatype. Value you want to convert from one base to another base.

Maximum is 9,233,372,036,854,775,806.

source_base Required Numeric datatype. Current base value of the data you want to convert. Minimum
base is 2. Maximum base is 36.

dest_base Required Numeric datatype. Base value you want to convert the data to. Minimum base is 2.

Maximum base is 36.

Return Value

Numeric value.

Example

The following example converts 2222 from the decimal base value 10 to the binary base value 2:
CONVERT BASE("2222", 10, 2)

The Data Integration Service returns 100010101110.

Returns the cosine of a numeric value (expressed in radians).
Syntax
COS(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by pi

divided by 180). Passes the values for which you want to calculate a cosine. You
can enter any valid transformation expression.

Return Value
Double value.

NULL if a value passed to the function is NULL.

CcosS

79

Example

The following expression returns the cosine for all values in the Degrees port:

COS(DEGREES * 3.14159265359 / 180)

DEGREES

90

70

30

18

89

NULL

RETURN VALUE

1.0

0.342020143325593

0.866025403784421

0.996194698091745

0.951056516295147

0.0174524064371813

NULL

Tip: You can perform arithmetic on the values passed to COS before the function calculates the cosine. For
example, you can convert the values in the port to radians before calculating the cosine, as follows:

COS(ARCS * 3.14159265359 / 180)

COSH

80

Returns the hyperbolic cosine of a numeric value (expressed in radians).

Syntax

COSH(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by pi

divided by 180). Passes the values for which you want to calculate the hyperbolic
cosine. You can enter any valid transformation expression.

Return Value

Double value.

NULL if a value passed to the function is NULL.

Chapter 6: Functions

Example
The following expression returns the hyperbolic cosine for the values in the Angles port:

COSH(ANGLES)

ANGLES RETURN VALUE

1.0 1.54308063481524
2.897 9.0874465864177
3.66 19.4435376920294
5.45 116.381231106176
0 1.0

0.345 1.06010513656773
NULL NULL

Tip: You can perform arithmetic on the values passed to COSH before the function calculates the hyperbolic
cosine. For example:

COSH (MEASURES.ARCS / 360)

COUNT

Returns the number of rows that have non-null values in a group. Optionally, you can include the asterisk (*)
argument to count all input values in a transformation. You can nest only one other aggregate function within
COUNT. You can apply a condition to filter rows before counting them.

Syntax

COUNT(value [, filter condition])
or

COUNT(* [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the values you want to count. You can enter

any valid transformation expression.

* Optional Use to count all rows in a transformation.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

COUNT 81

82

Return Value

Integer.

0 if all values passed to this function are NULL (unless you include the asterisk argument).
Nulls

If all values are NULL, the function returns 0.

If you apply the asterisk argument, this function counts all rows, regardless if a column in a row contains a
null value.

If you apply the value argument, this function ignores columns with null values.
Group By

COUNT groups values based on group by ports you define in the transformation, returning one result for each
group. If there is no group by port COUNT treats all rows as one group, returning one value.

Examples

The following expression counts the items with less than 5 quantity in stock, excluding null values:

COUNT (ITEM NAME, IN STOCK < 5)

ITEM NAME IN_STOCK
Flashlight 10

NULL 2
Compass NULL
Regulator System 5

Safety Knife 8
Halogen Flashlight 1

RETURN VALUE: 1

In this example, the function counted the Halogen flashlight but not the NULL item. The function counts all
rows in a transformation, including null values, as illustrated in the following example:

COUNT(*, QTY < 5)

ITEM NAME QTY
Flashlight 10
NULL 2
Compass NULL
Regulator System 5
Safety Knife 8

Chapter 6: Functions

ITEM NAME QTY
Halogen Flashlight 1

RETURN VALUE: 2

In this example, the function counts the NULL item and the Halogen Flashlight. If you include the asterisk
argument, but do not use a filter, the function counts all rows that pass into the transformation. For example:

COUNT (*)

ITEM NAME QTY
Flashlight 10
NULL 2
Compass NULL
Regulator System 5
Safety Knife 8
Halogen Flashlight 1

RETURN VALUE: 6

COUNT and Complex Data Types
You can use COUNT to count the number of rows in a complex port of type array or struct.

For example, you have the following array:
emp phones =
[205-128-6478, 722-515-2889]
[107-081-0961, 718-051-8116]

[344-894-6463, 861-411-8361]
[107-031-0961, NULL]

You can use the following expression to count the number of rows in the array port:
COUNT (emp_phones)

RETURN VALUE: 4

CRC32

Returns a 32-bit Cyclic Redundancy Check (CRC32) value. Use CRC32 to find data transmission errors. You
can also use CRC32 if you want to verify that data stored in a file has not been modified.

If you use CRC32 to perform a redundancy check on data in ASCIl mode and Unicode mode, the Data
Integration Service might generate different results on the same input value. If you use CRC32 to perform a
redundancy check on data on different operating systems, the Data Integration Service might generate
different results on the same input value.

CRC32 83

Note: CRC32 can return the same output for different input strings. If you want to generate keys in a mapping,
use a Sequence Generator transformation. If you use CRC32 to generate keys in a mapping, you might
receive unexpected results.
Syntax

CRC32(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required String or Binary datatype. Passes the values you want to perform a redundancy check

on. Input value is case sensitive. The case of the input value affects the return value.
For example, CRC32(informatica) and CRC32 (Informatica) return different values.

Return Value
32-bit integer value.

Example

You want to read data from a source across a wide area network. You want to make sure the data has been
modified during transmission. You can compute the checksum for the data in the file and store it along with
the file. When you read the source data, the Data Integration Service can use CRC32 to compute the
checksum and compare it to the stored value. If the two values are the same, the data has not been modified.

CREATE_TIMESTAMP_TZ

84

Construct a Timestamp with Time Zone data type from the timestamp and time zone values.
The output port must be timestampWithTZ for CREATE_TIMESTAMP_TZ expressions.
Syntax

CREATE TIMESTAMP TZ (timestamp value, timezone value)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
timestamp_val Required Date/Time datatype. You can enter any valid transformation expression.
ue
timezone_value | Required Must be a string data type. The string must be a character string. Passes the values
you want to create for time zone. You can enter any valid transformation expression
as defined in the time zone file present in the install location.

Return Value
Returns a timestamp with time zone data type.

NULL if the input is a null value.

Chapter 6: Functions

Example

INPUT VALUE RETURN VALUE

1947-08-05 10:45:00.221111000 AM, 'America/ '1947-08-05 10:45:00.221111000 AM America/
Los_Angeles' Los_Angeles'

1947-08-05 10:45:00.221111000 AM, *1947-08-05 10:45:00.221111000 AM -08:00"'
'-08:00"

CUME

Returns a running total. A running total means CUME returns a total each time it adds a value. You can add a
condition to filter rows out of the row set before calculating the running total.

Use CUME and similar functions (such as MOVINGAVG and MOVINGSUM) to simplify reporting by calculating
running values.

Syntax
CUME (numeric value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the values for which you want to calculate a running

total. You can enter any valid transformation expression. You can create a nested
expression to calculate a running total based on the results of the function as
long as the result is a numeric value.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls

If a value is NULL, CUME returns the running total for the previous row. However, if all values in the selected
port are NULL, CUME returns NULL.

CUME 85

Examples

The following sample rowset might result from using the CUME function:

CUME (PERSONAL_ SALES)

PERSONAL SALES RETURN VALUE
40000 40000

80000 120000

40000 160000

60000 220000

NULL 220000

50000 270000

Likewise, you can add values before calculating a running total:

CUME (CA_SALES + OR SALES)

CA_SALES OR_SALES RETURN VALUE
40000 10000 50000

80000 50000 180000

40000 2000 222000

60000 NULL 222000

NULL NULL 222000

50000 3000 275000

DATE_COMPARE

86

Returns an integer indicating which of two dates is earlier. DATE_COMPARE returns an integer value rather
than a date value.

Syntax

DATE COMPARE (datel, dateZ)

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date1 Required Date/Time datatype. The first date you want to compare. You can enter any valid

transformation expression as long as it evaluates to a date.

date2 Required Date/Time datatype. The second date you want to compare. You can enter any valid
transformation expression as long as it evaluates to a date.

Return Value

-1 if the first date is earlier.

0 if the two dates are equal.

1 if the second date is earlier.

NULL if one of the date values is NULL.
Example

The following expression compares each date in the DATE_PROMISED and DATE_SHIPPED ports, and returns
an integer indicating which date is earlier:

DATE COMPARE (DATE PROMISED, DATE SHIPPED)

DATE_PROMISED DATE_SHIPPED RETURN VALUE
Jan 1 1997 Jan 13 1997 -1

Feb 1 1997 Feb 1 1997 0

Dec 22 1997 Dec 15 1997 1

Feb 29 1996 Apr 12 1996 -1 (Leap year)
NULL Jan 6 1997 NULL

Jan 13 1997 NULL NULL

DATE_DIFF

Returns the length of time between two dates. You can request the format to be years, months, days, hours,
minutes, seconds, milliseconds, microseconds, or nanoseconds. The Data Integration Service subtracts the
second date from the first date and returns the difference.

The Data Integration Service calculates the DATE_DIFF function based on the number of months instead of
the number of days. It calculates the date differences for partial months with the days selected in each
month. To calculate the date difference for the partial month, the Data Integration Service adds the days used
within the month. It then divides the value with the total number of days in the selected month.

The Data Integration Service gives a different value for the same period in the leap year period and a non-leap
year period. The difference occurs when February is part of the DATE_DIFF function. The DATE_DIFF divides
the days with 29 for February for a leap year and 28 if it is not a leap year.

DATE_DIFF 87

For example, you want to calculate the number of months from September 13 to February 19. In a leap year
period, the DATE_DIFF function calculates the month of February as 19/29 months or 0.655 months. In a non-
leap year period, the DATE_DIFF function calculates the month of February as 19/28 months or 0.678
months. The Data Integration Service similarly calculates the difference in the dates for the remaining
months and the DATE_DIFF function returns the totaled value for the specified period.

Note: Some databases might use a different algorithm to calculate the difference in dates.
Syntax
DATE DIFF(datel, date2, format)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date1 Required Date/Time datatype. Passes the values for the first date you want to compare. You

can enter any valid transformation expression.

date2 Required Date/Time datatype. Passes the values for the second date you want to compare.
You can enter any valid transformation expression.

format Required Format string specifying the date or time measurement. You can specify years,
months, days, hours, minutes, seconds, milliseconds, microseconds, or
nanoseconds. You can specify only one part of the date, such as ‘'mm'. Enclose the
format strings within single quotation marks. The format string is not case
sensitive. For example, the format string 'mm' is the same as ‘MM', 'Mm' or 'mM".

Return Value

Double value. If date1 is later than date2, the return value is a positive number. If date1 is earlier than date2,
the return value is a negative number.

0 if the dates are the same.
NULL if one (or both) of the date values is NULL.
Examples

The following expressions return the number of hours between the DATE_PROMISED and DATE_SHIPPED
ports:
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'HH')

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'HH12')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'HH24')

DATE_PROMISED DATE SHIPPED RETURN VALUE
Jan 1 1997 12:00:00AM Mar 29 1997 12:00:00PM -2100
Mar 29 1997 12:00:00PM Jan 1 1997 12:00:00AM 2100
NULL Dec 10 1997 5:55:10PM NULL
Dec 10 1997 5:55:10PM NULL NULL

88 Chapter 6: Functions

DATE_PROMISED
Jun 3 1997 1:13:46PM

Feb 19 2004 12:00:00PM

DATE_SHIPPED
Aug 23 1996 4:20:16PM

Feb 19 2005 12:00:00PM

RETURN VALUE

6812.89166666667

-8784

The following expressions return the number of days between the DATE_PROMISED and the DATE_SHIPPED
ports:

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'D')

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'DD')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'DDD')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'DY')
DATE DIFF(DATE_ PROMISED, DATE SHIPPED, 'DAY')

DATE_PROMISED

Jan 1 1997 12:00:00AM
Mar 29 1997 12:00:00PM
NULL

Dec 10 1997 5:55:10PM
Jun 3 1997 1:13:46PM

Feb 19 2004 12:00:00PM

DATE_ SHIPPED

Mar 29 1997 12:00:00PM
Jan 1 1997 12:00:00AM

Dec 10 1997 5:55:10PM

NULL

Aug 23 1996 4:20:16PM

Feb 19 2005 12:00:00PM

RETURN VALUE

-87.5

87.5

NULL

NULL

283.870486111111

-366

The following expressions return the number of months between the DATE_PROMISED and DATE_SHIPPED

ports:

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MM')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MON')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MONTH')

DATE_PROMISED

Jan 1 1997 12:00:00AM
Mar 29 1997 12:00:00PM
NULL

Dec 10 1997 5:55:10PM
Jun 3 1997 1:13:46PM

Feb 19 2004 12:00:00PM

DATE_SHIPPED

Mar 29 1997 12:00:00PM
Jan 1 1997 12:00:00AM
Dec 10 1997 5:55:10PM
NULL

Aug 23 1996 4:20:16PM

Feb 19 2005 12:00:00PM

RETURN VALUE

-2.91935483870968

2.91935483870968

NULL

NULL

9.3290162037037

-12

The following expressions return the number of years between the DATE_PROMISED and DATE_SHIPPED

ports:

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'Y')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'YY')

DATE_DIFF 89

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'YYY')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'YYYY')

DATE PROMISED DATE_SHIPPED RETURN VALUE

Jan 1 1997 12:00:00AM Mar 29 1997 12:00:00PM -0.24327956989247
Mar 29 1997 12:00:00PM Jan 1 1997 12:00:00AM 0.24327956989247
NULL Dec 10 1997 5:55:10PM NULL

Dec 10 1997 5:55:10PM NULL NULL

Jun 3 1997 1:13:46PM Aug 23 1996 4:20:16PM 0.77741801697531
Feb 19 2004 12:00:00PM Feb 19 2005 12:00:00PM -1

The following expressions return the number of months between the DATE_PROMISED and DATE_SHIPPED
ports:
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MM')

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MON')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MONTH')

DATE _PROMISED DATE_SHIPPED LEAP YEAR VALUE NON-LEAP YEAR VALUE
(in Months) (in Months)

Sept 13 Feb 19 -5.237931034 -5.260714286

NULL Feb 19 NULL N/A

Sept 13 NULL NULL N/A

DEC_BASE64

90

Decodes a base 64 encoded value and returns a string with the binary data representation of the data. If you
encode data using ENC_BASEG64, and you want to decode data using DEC_BASE64, you must run the mapping
using the same data movement mode. Otherwise, the output of the decoded data may differ from the original
data.

Syntax
DEC BASE64 (value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required String datatype. Data that you want to decode.

Return Value

Binary decoded value.

Chapter 6: Functions

NULL if the input is a null value.

Return values differ if the mapping runs in Unicode mode versus ASCIlI mode.

DECODE

Searches a port for a value you specify. If the function finds the value, it returns a result value, which you
define. You can build an unlimited number of searches within a DECODE function.

If you use DECODE to search for a value in a string port, you can either trim trailing blanks with the RTRIM
function or include the blanks in the search string.

Syntax

DECODE (value, first search, first result [, second search, second result]...[,default

The following table describes the arguments for this command:

)

Argument Required/
Optional

Description

value Required

Any datatype except Binary. Passes the values you want to search. You can enter
any valid transformation expression.

search Required

Any value with the same datatype as the value argument. Passes the values for
which you want to search. The search value must match the value argument. You
cannot search for a portion of a value. Also, the search value is case sensitive.

For example, if you want to search for the string 'Halogen Flashlight' in a particular
port, you must enter 'Halogen Flashlight, not just 'Halogen'. If you enter 'Halogen’,

the search does not find a matching value. You can enter any valid transformation
expression.

result Required

Any datatype except Binary. The value you want to return if the search finds a
matching value. You can enter any valid transformation expression.

default Optional

Any datatype except Binary. The value you want to return if the search does not find
a matching value. You can enter any valid transformation expression.

Return Value

First_result if the search finds a matching value.

Default value if the search does not find a matching value.

NULL if you omit the default argument and the search does not find a matching value.

Even if multiple conditions are met, the Data Integration Service returns the first matching result.

If the data contains multibyte characters and the DECODE expression compares string data, the return value
depends on the code page and data movement mode of the Data Integration Service.

DECODE and Datatypes

When you use DECODE, the datatype of the return value is always the same as the datatype of the result with

the greatest precision.

DECODE

91

92

For example, you have the following expression:

DECODE (CONST_NAME

'Five', 5,

'Pythagoras', 1.414213562,

'Archimedes', 3.141592654,

'Pi', 3.141592654)
The return values in this expression are 5, 1.414213562, and 3.141592654. The first result is an Integer, and
the other results are Decimal. The Decimal datatype has greater precision than Integer. This expression
always writes the result as a Decimal.

When you run a mapping in high precision mode, if at least one result is Double, the datatype of the return
value is Double.

You cannot create a DECODE function with both string and numeric return values.

For example, the following expression is invalid:
DECODE (CONST NAME
'Five', 5,

'Pythagoras', '1.414213562"',

'Archimedes', '3.141592654"',
'Pi', 3.141592654)

When you validate the expression above, you receive the following error message:
Function cannot resolve operands of ambiguously mismatching datatypes.
Examples
You might use DECODE in an expression that searches for a particular ITEM_ID and returns the ITEM_NAME:

DECODE (ITEM ID, 10, 'Flashlight',
14, 'Regulator',

20, 'Knife',

40, 'Tank',

'NONE')
ITEM_ID RETURN VALUE
10 Flashlight
14 Regulator
17 NONE
20 Knife
25 NONE
NULL NONE
40 Tank

DECODE returns the default value of NONE for items 17 and 25 because the search values did not match the
ITEM_ID. Also, DECODE returns NONE for the NULL ITEM_ID.

The following expression tests multiple columns and conditions, evaluated in a top to bottom order for TRUE
or FALSE:

DECODE (TRUE,
Varl = 22, 'Variable 1 was 22!',
Var2 = 49, 'Variable 2 was 49!',
Varl < 23, 'Variable 1 was less than 23.',

Chapter 6: Functions

Var2 > 30, 'Variable 2 was more than 30.',
'Variables were out of desired ranges.')

Varl Var2 RETURN VALUE

21 47 Variable 1 was less than 23.

22 49 Variable 1 was 22!

23 49 Variable 2 was 49!

24 27 Variables were out of desired ranges.
25 50 Variable 2 was more than 30.

DECOMPRESS

Decompresses data using the zlib 1.2.1 compression algorithm. Use the DECOMPRESS function on data that
has been compressed with the COMPRESS function or a compression tool that uses the zlib 1.2.1 algorithm.
If the mapping that decompresses the data uses a different data movement mode than the mapping that
compressed the data, the output of the decompressed data may differ from the original data.

Syntax
DECOMPRESS (value, precision)

The following table describes the arguments for this command:

Argument Required/ Description

Optional
value Required Binary datatype. Data that you want to decompress.
precision Optional Integer datatype.

Return Value
Decompressed binary value of the input value.

NULL if the input is a null value.

ENC_BASE64

Encodes data by converting binary data to string data using Multipurpose Internet Mail Extensions (MIME)
encoding. Encode data when you want to store data in a database or file that does not allow binary data. You
can also encode data to pass binary data through transformations in string format. The encoded data is
approximately 33% longer than the original data. It displays as a set of random characters.

Syntax

ENC_BASE64 (value)

DECOMPRESS 93

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Binary or String datatype. Data that you want to encode.

Return Value
Encoded value.

NULL if the input is a null value.

ERROR

Causes the Data Integration Service to skip a row and issue an error message, which you define. The error
message displays in the log. The Data Integration Service does not write these skipped rows to the reject file.

Use ERROR in Expression transformations to validate data. Generally, you use ERROR within an IIF or DECODE
function to set rules for skipping rows.

Use the ERROR function for both input and output port default values. You might use ERROR for input ports to
keep null values from passing into a transformation.

Use ERROR for output ports to handle any kind of transformation error, including ERROR function calls within
an expression. When you use the ERROR function in an expression and in the output port default value, the
Data Integration Service skips the row and logs both the error message from the expression and the error
message from the default value. If you want to ensure the Data Integration Service skips rows that produce
an error, assign ERROR as the default value.

If you use an output default value other than ERROR, the default value overrides the ERROR function in an
expression. For example, you use the ERROR function in an expression, and you assign the default value,
1234, to the output port. Each time the Data Integration Service encounters the ERROR function in the
expression, it overrides the error with the value ‘1234’ and passes ‘1234’ to the next transformation. It does
not skip the row, and it does not log an error in the log.

Syntax
ERROR(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required String value. The message you want to display when the Integration Service skips a
row based on the expression containing the ERROR function. The string can be any
length.

Return Value

String.

94 Chapter 6: Functions

EXP

Example

The following example shows how to reference a mapping that calculates the average salary for employees
in all departments of the organization, but skip negative values. The following expression nests the ERROR

function in an IIF expression so that if the Data Integration Service finds a negative salary in the Salary port, it

skips the row and displays an error:

IIF(SALARY < 0, ERROR ('Error. Negative salary found. Row skipped.', EMP SALARY)

SALARY RETURN VALUE

10000 10000

-15000 'Error. Negative salary found. Row skipped.'
NULL NULL

150000 150000

1005 1005

Returns e raised to the specified power (exponent), where e=2.71828183. For example, EXP(2) returns

7.38905609893065. You might use this function to analyze scientific and technical data rather than business

data. EXP is the reciprocal of the LN function, which returns the natural logarithm of a numeric value.
Syntax
EXP(exponent

The following table describes the argument for this command:

Argument Required/ Description
Optional
exponent Required Numeric datatype. The value to which you want to raise e. The exponent in the
equation e*value. You can enter any valid transformation expression.

Return Value

Double value.

NULL if a value passed as an argument to the function is NULL.
Example

The following expression uses the values stored in the Numbers port as the exponent value:

EXP(NUMBERS)

NUMBERS RETURN VALUE

10 22026.4657948067

EXP

95

NUMBERS RETURN VALUE

-2 0.135335283236613
8.55 5166.754427176
NULL NULL

FIRST

96

Returns the first value found within a port or group. Optionally, you can apply a filter to limit the rows the Data
Integration Service reads. You can nest only one other aggregate function within FIRST.

Syntax
FIRST(value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the values for which you want to return the

first value. You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
First value in a group.

NULL if all values passed to the function are NULL or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Nulls

If a value is NULL, FIRST ignores the row. However, if all values passed from the port are NULL, FIRST returns
NULL.

Group By

FIRST groups values based on group by ports you define in the transformation, returning one result for each
group.

If there is no group by port, FIRST treats all rows as one group, returning one value.

Chapter 6: Functions

Examples
The following expression returns the first value in the ITEM_NAME port with a price greater than $10.00:

FIRST(ITEM NAME, ITEM PRICE > 10)

ITEM NAME ITEM PRICE
Flashlight 35.00
Navigation Compass 8.05
Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00
Flashlight 31.00

RETURN VALUE: Flashlight

The following expression returns the first value in the ITEM_NAME port with a price greater than $40.00:

FIRST(ITEM NAME, ITEM PRICE > 40)

ITEM NAME ITEM PRICE
Flashlight 35.00
Navigation Compass 8.05
Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00
Flashlight 31.00

RETURN VALUE: Regulator System

FLOOR

Returns the largest integer less than or equal to the numeric value you pass to this function. For example, if
you pass 3.14 to FLOOR, the function returns 3. If you pass 3.98 to FLOOR, the function returns 3. Likewise, if
you pass -3.17 to FLOOR, the function returns -4.

Syntax

FLOOR(numeric value)

FLOOR 97

FV

98

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. You can enter any valid transformation expression as long as
it evaluates to numeric data.

Return Value

Integer if you pass a numeric value with declared precision between 0 and 28.
Double if you pass a numeric value with declared precision greater than 28.
NULL if a value passed to the function is NULL.

Example

The following expression returns the largest integer less than or equal to the values in the PRICE port:

FLOOR(PRICE)

PRICE RETURN VALUE
39.79 39

125.12 125

74.24 74

NULL NULL

-100.99 -101

Tip: You can perform arithmetic on the values you pass to FLOOR. For example, to multiply a numeric value
by 10 and then calculate the largest integer that is less than the product, you might write the function as
follows:

FLOOR(UNIT PRICE * 10)

Returns the future value of an investment, where you make periodic, constant payments and the investment
earns a constant interest rate.

Syntax

FV(rate, terms, payment [, present value, type])

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional
rate Required Numeric. Interest rate earned in each period. Expressed as a decimal number.

Divide the percent rate by 100 to express it as a decimal number. Must be
greater than or equal to 0.

terms Required Numeric. Number of periods or payments. Must be greater than 0.

payment Required Numeric. Payment amount due per period. Must be a negative number

present value Optional Numeric. Current value of the investment. If you omit this argument, FV uses 0.
type Optional Integer. Timing of the payment. Enter 1 if payment is at the beginning of period.

Enter 0 if payment is at the end of period. Default is 0. If you enter a value other
than 0 or 1, the Data Integration Service treats the value as 1.

Return Value
Numeric.

Example

You deposit $2,000 into an account that earns 9% annual interest compounded monthly (monthly interest of
9%/12, or 0.75%). You plan to deposit $250 at the beginning of every month for the next 12 months. The
following expression returns $5,337.96 as the account balance at the end of 12 months:

FV(0.0075, 12, -250, -2000, TRUE)
Notes

To calculate interest rate earned in each period, divide the annual rate by the number of payments made in a
year. The payment value and present value are negative because these are amounts that you pay.

GET_DATE_PART

Returns the specified part of a date as an integer value. Therefore, if you create an expression that returns
the month portion of the date, and pass a date such as Apr 1 1997 00:00:00, GET_DATE_PART returns 4.

Syntax

GET DATE PART(date, format

GET_DATE_PART 99

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. You can enter any valid transformation expression.
format Required A format string specifying the portion of the date value you want to return. Enclose

format strings within single quotation marks, for example, 'mm’. The format string is
not case sensitive. Each format string returns the entire part of the date based on
the date format specified in the mapping.

For example, if you pass the date Apr 1 1997 to GET_DATE_PART, the format strings
Y, YY 'YYY, or 'YYYY! all return 1997.

Return Value

Integer representing the specified part of the date.
NULL if a value passed to the function is NULL.
Examples

The following expressions return the hour for each date in the DATE_SHIPPED port. 12:00:00AM returns 0
because the default date format is based on the 24 hour interval:
GET DATE PART(DATE SHIPPED, 'HH')

GET DATE PART(DATE SHIPPED, 'HHIZ2')
GET DATE PART(DATE SHIPPED, 'HH24')

DATE_SHIPPED RETURN VALUE
Mar 13 1997 12:00:00AM 0

Sep 2 1997 2:00:01AM 2

Aug 22 1997 12:00:00PM 12

June 3 1997 11:30:44PM 23

NULL NULL

The following expressions return the day for each date in the DATE_SHIPPED port:

GET DATE PART(DATE SHIPPED, 'D')
GET DATE PART(DATE SHIPPED, 'DD')
GET DATE PART(DATE SHIPPED, 'DDD')
GET DATE PART(DATE SHIPPED, 'DY')
GET DATE PART(DATE SHIPPED, 'DAY')

DATE_SHIPPED RETURN VALUE
Mar 13 1997 12:00:00AM 13

June 3 1997 11:30:44PM 3

Aug 22 1997 12:00:00PM 22

NULL NULL

100 Chapter 6: Functions

The following expressions return the month for each date in the DATE_SHIPPED port:

GET DATE PART(DATE SHIPPED, 'MM')
GET DATE PART(DATE SHIPPED, 'MON')
GET DATE PART(DATE SHIPPED, 'MONTH')

DATE_SHIPPED

RETURN VALUE

Mar 13 1997 12:00:00AM 3
June 3 1997 11:30:44PM 6
NULL NULL

The following expression return the year for each date in the DATE_SHIPPED port:

GET_DATE PART(DATE SHIPPED, 'Y')
GET DATE PART (DATE SHIPPED, 'YY')
GET DATE PART(DATE SHIPPED, 'YYY')
GET DATE PART(DATE SHIPPED, 'YYYY')

DATE_SHIPPED

RETURN VALUE

Mar 13 1997 12:00:00AM 1997
June 3 1997 11:30:44PM 1997
NULL NULL

GET_TIMEZONE

Returns the time zone value from a given timestamp with time zone column.
For example:

String TimeZone = GET TIMEZONE (timestampWithTZ);

The output port must be of the String data type for the GET_TIMEZONE expressions.

Syntax
GET TIMEZONE (timestamp with timezone value)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
timestamp_wit | Required Must be a timestamp with time zone data type. You can enter any valid

h_timezone_val
ue

transformation expression.

Return Value
Returns a String data type containing the time zone region name or a time zone offset.

NULL if the input is a null value.

GET_TIMEZONE

Example

INPUT VALUE RETURN VALUE
‘1947-08-05 10:45:00.221111111 AM America/Los_Angeles’ ‘AMERICA/LOS ANGELES'
'1947-08-05 10:45:00.221111111 AM -08:00" ‘-08:00"

GET_TIMESTAMP

102

Returns the date/time value for a timestampWithTZ input type. The date/time returned will be in the
requested time zone, which can be provided as the second argument. If the time zone value is not specified
in the second argument, the function returns the timestamp part of the input timestampWithTZ value.

For example:
GET TIMESTAMP (Timestamp with Time Zone,“+08:30")

The first argument, timestamp with time zone has (+05:30) as the time zone value. The function returns the
timestamp in the time zone specified as the second argument, (+08:30).

The output port must be date/time for GET_TIMESTAMP expressions.
Syntax
GET_TIMESTAMP (timestamp with timezone_value, [timezone_value])

The following table describes the arguments for this command:

Argument Required/ Description
Optional

timestamp_wit | Required Must be a timestamp with time zone data type. You can enter any valid

h_timezone_val transformation expression.

ue

timezone_value | Optional Must be a string data type. The string must be a character string. Passes the values
you want to display for time zone based on which the function can return the
timestamp. You can enter any valid transformation expression. If you do not specify
the time zone, the function returns the timestamp part of the first argument.

Return Value
Returns the timestamp value in time zone offset or region specified.
If the time zone value is not passed, the function returns the timestamp part of the first argument.

NULL if the input is a null value.

Chapter 6: Functions

Example

INPUT VALUE

RETURN VALUE

'1996-01-05 10:45:00.221111111 Returns the timestamp value in time zone offset of

AM America/Los_Angeles’,

'+05:30" '+05:30"':

71996-01-06 12:15:00.221111111 AM’

'1996-01-05 10:45:00.221111111 Returns the timestamp value in the ‘GMT’ time zone:

AM America/Los Angeles’,

'GMT’ '1996-01-05 06:45:00.221111111 PM'

'1996-01-05 10:45:00.221111111 As the time zone value is not passed as the second input
AM America/Los Angeles’

GREATEST

parameter, the timestamp is returned:
*1996-01-05 10:45:00.221111111 AM’

Returns the greatest value from a list of input values. Use this function to return the greatest string, date, or
number. By default, the match is case sensitive.

Syntax

GREATEST (

valuel,

[value2, ..., valueN,] CaseFlag

The following table describes the arguments for this command:

Argument Required/ Description
Optional

value Required Any data type except Binary. Data type must be compatible with other values. Value
you want to compare against other values. You must enter at least one value
argument.

If the value is numeric, and other input values are numeric, all values use the
highest precision possible. For example, if some values are Integer data type and
others are Double data type, the Data Integration Service converts the values to
Double.

CaseFlag Optional Must be an integer. Specify a value when the input value argument is a string value.
Determines whether the arguments in this function are case sensitive. You can enter
any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.
Default is case sensitive.

Return Value

valuel if it is the greatest of the input values, value2 if it is the greatest of the input values, and so on.

NULL if any of the arguments is null.

GREATEST 103

IIF

104

Example

The following expression returns the greatest quantity of items ordered:

GREATEST (QUANTITY1, QUANTITY2, QUANTITY3)

QUANTITIY1 QUANTITY2 QUANTITY3 RETURN VALUE
150 756 217 756
NULL
5000 97 17 5000
120 1724 965 1724

Returns one of two values you specify, based on the results of a condition.
Syntax
IIF(condition, valuel [,value2])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
condition Required The condition you want to evaluate. You can enter any valid transformation

expression that evaluates to TRUE or FALSE.

valuel Required Any datatype except Binary. The value you want to return if the condition is TRUE.
The return value is always the datatype specified by this argument. You can enter
any valid transformation expression, including another IIF expression.

value2 Optional Any datatype except Binary. The value you want to return if the condition is FALSE.

You can enter any valid transformation expression, including another IIF expression.

Unlike conditional functions in some systems, the FALSE (value2) condition in the IIF function is not required.
If you omit value2, the function returns the following when the condition is FALSE:

e 0if valueT is a Numeric datatype.
e Empty string if valueT is a String datatype.
e NULL if value1 is a Date/Time datatype.

Chapter 6: Functions

For example, the following expression does not include a FALSE condition and value1 is a string datatype so
the Data Integration Service returns an empty string for each row that evaluates to FALSE:

IIF(SALES > 100, EMP_NAME)

SALES EMP_NAME RETURN VALUE

150 John Smith John Smith

50 Pierre Bleu ''" (empty string)
120 Sally Green Sally Green

NULL Greg Jones ''" (empty string)

Return Value
value1 if the condition is TRUE.
value2 if the condition is FALSE.

For example, the following expression includes the FALSE condition NULL so the Data Integration Service
returns NULL for each row that evaluates to FALSE:

IIF(SALES > 100, EMP NAME, NULL)

SALES EMP NAME RETURN VALUE
150 John Smith John Smith
50 Pierre Bleu NULL

120 Sally Green Sally Green
NULL Greg Jones NULL

If the data contains multibyte characters and the condition argument compares string data, the return value
depends on the code page and data movement mode of the Data Integration Service.

[IF and Datatypes

When you use IIF, the datatype of the return value is the same as the datatype of the result with the greatest
precision.

For example, you have the following expression:
IIF(SALES < 100, 1, .3333)

The TRUE result (1) is an integer and the FALSE result (.3333) is a decimal. The Decimal datatype has greater
precision than Integer, so the datatype of the return value is always a Decimal.

When you run a mapping in high precision mode and at least one result is Double, the datatype of the return
value is Double.

[IF and Complex Data Types
You can use IIF to return an array or a struct, or elements from the array or struct.

For example, you have the following array:

names = ['John', 'Kevin', 'Laura']

IIF 105

IN

106

You can use the following expression to return one of the values in the array:
IIF(SIZE (names) > 2, names[2], names[0])

RETURN VALUE: 'Laura'
Special Uses of IIF

Use nested IIF statements to test multiple conditions. The following example tests for various conditions and
returns 0 if sales is 0 or negative:

IIF(SALES > 0, IIF(SALES < 50, SALARYl, IIF(SALES < 100, SALARY2, IIF(SALES < 200,
SALARY3, BONUS))), 0)

You can make this logic more readable by adding comments:

IIF(SALES > 0,
--then test to see if sales is between 1 and 49:
IIF(SALES < 50,

--then return SALARY1
SALARY1,

--else test to see if sales is between 50 and 99:
IIF(SALES < 100,

--then return
SALARY?2,

--else test to see if sales is between 100 and 199:
IIF(SALES < 200,

--then return
SALARY3,

--else for sales over 199, return
BONUS)
)
)

--else for sales less than or equal to zero, return
0)

Use IIF in update strategies. For example:
IIF(ISNULL(ITEM NAME), DD REJECT, DD INSERT)
Alternative to IIF

Use "“DECODE" on page 91 instead of IIF in many cases. DECODE may improve readability. The following
shows how you use DECODE instead of IIF using the first example from the previous section:

DECODE (TRUE,
SALES > 0 and SALES < 50, SALARYL,
SALES > 49 AND SALES < 100, SALARY2,
SALES > 99 AND SALES < 200, SALARY3,
SALES > 199, BONUS)

You can often use a Filter transformation instead of IIF to maximize performance.

Matches input data to a list of values. By default, the match is case sensitive.

Syntax

IN(valueToSearch, valuel, [value2, ..., valueN,] CaseFlag

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional
valueToSearch Required Can be a string, date, or numeric value. Input value you want to match against a

comma-separated list of values.

value Required Can be a string, date, or numeric value depending on the type specified for the
valueToSearch argument. Comma-separated list of values you want to search for.
Values can be ports in a transformation. There is no maximum number of values
you can list.

CaseFlag Optional Must be an integer.
Specify a value when the valueToSearch argument is a string value.

Determines whether the arguments in this function are case sensitive. You can
enter any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.
Default is case sensitive.

Return Value

TRUE (1) if the input value matches the list of values.

FALSE (0) if the input value does not match the list of values.
NULL if the input is a null value.

Example

The following expression determines if the input value is a safety knife, chisel point knife, or medium titanium
knife. The input values do not have to match the case of the values in the comma-separated list:

IN(ITEM NAME, ‘Chisel Point Knife’, ‘Medium Titanium Knife’, ‘Safety Knife’, 0

ITEM NAME RETURN VALUE

Stabilizing Vest 0 (FALSE)

Safety knife 1 (TRUE)

Medium Titanium knife 1 (TRUE)
NULL

INDEXOF

Finds the index of a value among a list of values. By default, the match is case sensitive.

Syntax

INDEXOF (valueToSearch, stringl [, string2, ..., sStringN,] [CaseFlag])

INDEXOF 107

The following table describes the arguments for this command:

Argument Required/ Description
Optional
valueToSearch Required String datatype. Value you want to search for in the list of strings.
string Required String datatype. Comma-separated list of values you want to search against.

Values can be in string format. There is no maximum number of values you can
list. The value is case sensitive, unless you set CaseFlag to 0.

CaseFlag Optional Must be an integer. Specify a value when the valueToSearch argument is a string
value. Determines whether the arguments in this function are case sensitive. You
can enter any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.

Return Value

1 if the input value matches string1, 2 if the input value matches string2, and so on.
0 if the input value is not found.

NULL if the input is a null value.

Example

The following expression determines if values from the ITEM_NAME port match the first, second, or third
string:

INDEXOF (ITEM NAME, ‘diving hood’, ‘flashlight’, ‘safety knife’

ITEM NAME RETURN VALUE
Safety Knife 0
diving hood 1
Compass 0
safety knife 3
flashlight 2

Safety Knife returns a value of 0 because it does not match the case of the input value.

INITCAP

108

Capitalizes the first letter in each word of a string and converts all other letters to lowercase. Words are
delimited by white space (a blank space, formfeed, newline, carriage return, tab, or vertical tab) and
characters that are not alphanumeric. For example, if you pass the string .. THOMAS’, the function returns
Thomas.

Chapter 6: Functions

Syntax
INITCAP(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Any datatype except Binary. You can enter any valid transformation expression.

Return Value

String. If the data contains multibyte characters, the return value depends on the code page and data
movement mode of the Data Integration Service.

NULL if a value passed to the function is NULL.
Example

The following expression capitalizes all names in the FIRST_NAME port:

INITCAP(FIRST NAME)

FIRST NAME RETURN VALUE
ramona Ramona
18-albert 18-Albert
NULL NULL

? ! SAM ?!Sam

THOMAS Thomas
PierRe Pierre

INSTR

Returns the position of a character set in a string, counting from left to right.

Syntax

INSTR(string, search value [,start [,occurrence [,comparison type 1]])

INSTR

109

110

The following table describes the arguments for this command:

Argument

Required/
Optional

Description

string

Required

The string must be a character string. Passes the value you want to evaluate. You
can enter any valid transformation expression. The results of the expression must
be a character string. If not, INSTR converts the value to a string before evaluating
it.

search_value

Required

Any value. The search value is case sensitive. The set of characters you want to
search for. The search_value must match a part of the string. For example, if you
write INSTR ('Alfred Pope', 'Alfred Smith') the function returns 0.

You can enter any valid transformation expression. If you want to search for a
character string, enclose the characters you want to search for in single quotation
marks, for example 'abc'.

start

Optional

Must be an integer value. The position in the string where you want to start the
search. You can enter any valid transformation expression.

The default is 1, meaning that INSTR starts the search at the first character in the
string.

If the start position is 0, INSTR searches from the first character in the string. If the
start position is a positive number, INSTR locates the start position by counting
from the beginning of the string. If the start position is a negative number, INSTR
locates the start position by counting from the end of the string. If you omit this
argument, the function uses the default value of 1.

occurrence

Optional

A positive integer greater than 0. You can enter any valid transformation
expression. If the search value appears more than once in the string, you can
specify which occurrence you want to search for. For example, you would enter 2 to
search for the second occurrence from the start position.

If you omit this argument, the function uses the default value of 1, meaning that
INSTR searches for the first occurrence of the search value. If you pass a decimal,
the Data Integration Service rounds it to the nearest integer value. If you pass a
negative integer or 0, the session fails.

comparison_type

Optional

The string comparison type, either linguistic or binary, when the Data Integration
Service runs in Unicode mode. When the Data Integration Service runs in ASCII
mode, the comparison type is always binary.

Linguistic comparisons take language-specific collation rules into account, while
binary comparisons perform bitwise matching. For example, the German sharp s
character matches the string “ss” in a linguistic comparison, but not in a binary
comparison. Binary comparisons run faster than linguistic comparisons.

Must be an integer value, either 0 or 1:
- 0: INSTR performs a linguistic string comparison.
- 1:INSTR performs a binary string comparison.

Default is 0.

Return Value

Integer if the search is successful. Integer represents the position of the first character in the search_value,
counting from left to right.

0 if the search is unsuccessful.

NULL if a value passed to the function is NULL.

Chapter 6: Functions

Examples

The following expression returns the position of the first occurrence of the letter ‘a’, starting at the beginning

of each company name. Because the search_value argument is case sensitive, it skips the ‘A’ in ‘Blue Fin
Aqua Center’, and returns the position for the ‘a’ in ‘Aqua’:

INSTR(COMPANY, 'a')

COMPANY RETURN VALUE
Blue Fin Aqua Center 13

Maco Shark Shop 2

Scuba Gear 5

Frank's Dive Shop 3

VIP Diving Club 0

The following expression returns the position of the second occurrence of the letter ‘a’, starting at the
beginning of each company name. Because the search_value argument is case sensitive, it skips the ‘A’ in
‘Blue Fin Aqua Center’, and returns 0:

INSTR(COMPANY, 'a', 1, 2)

COMPANY RETURN VALUE
Blue Fin Aqua Center 0
Maco Shark Shop 8
Scuba Gear 9
Frank's Dive Shop 0
VIP Diving Club 0

The following expression returns the position of the second occurrence of the letter ‘a’ in each company
name, starting from the last character in the company name. Because the search_value argument is case
sensitive, it skips the ‘A’ in 'Blue Fin Aqua Center’, and returns 0:

INSTR(COMPANY, 'a', -1, 2)

COMPANY RETURN VALUE
Blue Fin Aqua Center 0
Maco Shark Shop 2
Scuba Gear 5
Frank's Dive Shop 0
VIP Diving Club 0

INSTR

111

The following expression returns the position of the first character in the string ‘Blue Fin Aqua Center’

(starting from the last character in the company name):

INSTR(COMPANY, 'Blue Fin Aqua Center', -1, 1)

COMPANY RETURN VALUE
Blue Fin Aqua Center 1
Maco Shark Shop 0
Scuba Gear 0
Frank's Dive Shop 0
VIP Diving Club 0

Using Nested INSTR

You can nest the INSTR function within other functions to accomplish more complex tasks.

The following expression evaluates a string, starting from the end of the string. The expression finds the last

(rightmost) space in the string and then returns all characters to the left of it:

SUBSTR(CUST NAME,1,INSTR(CUST NAME,' ' ,-1,1))

CUST_NAME RETURN VALUE
PATRICIA JONES PATRICIA
MARY ELLEN SHAH MARY ELLEN

The following expression removes the character '# from a string:

SUBSTR(CUST ID, 1, INSTR(CUST ID, '#')-1) || SUBSTR(CUST ID, INSTR(CUST ID,
CUST_1ID RETURN VALUE
ID#33 ID33
#A3577 A3577
SS #712403399 SS 712403399

ISNULL

112

Returns whether a value is NULL. ISNULL evaluates an empty string as FALSE.
Note: To test for empty strings, use LENGTH.
Syntax

ISNULL(value)

Chapter 6: Functions

l#l)+1

)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the rows you want to evaluate. You can enter
any valid transformation expression.

Return Value

TRUE (1) if the value is NULL.

FALSE (0) if the value is not NULL.

Example

The following example checks for null values in the items table:

ISNULL(ITEM NAME)

ITEM NAME
Flashlight

NULL

Regulator system

RETURN VALUE
0 (FALSE)
1 (TRUE)
0 (FALSE)

0 (FALSE) Empty string is not NULL

ISNULL and Complex Data Types

You can use ISNULL to check whether an array or a struct has a null value.

The following expressions check for the null values in the following complex data types:

Complex Data Type

NULL array =
NULL struct =
num_array = [1,
num array = [1,

num_struct({

number: int
rank: int

IS_DATE

Returns whether a string value is a valid date. A valid date is any string in the date portion of the date time

NULL

NULL

Input Value RETURN VALUE
ISNULL (NULL array) 1 (TRUE)
ISNULL (NULL_struct) 1 (TRUE)
ISNULL (num_array) 0 (FALSE)
ISNULL (num_array) 0 (FALSE)
ISNULL (num_struct) 0 (FALSE)

format specified in the session. If the string you want to test is not in this date format, use the TO_DATE

IS_DATE

113

114

format string to specify the date format. If the strings passed to IS_DATE do not match the format string
specified, the function returns FALSE (0). If the strings match the format string, the function returns TRUE (1).

IS_DATE evaluates strings and returns an integer value.
The output port for an IS_DATE expression must be String or Numeric datatype.
You might use IS_DATE to test or filter data in a flat file before writing it to a target.

Use the RR format string with IS_DATE instead of the YY format string. In most cases, the two format strings
return the same values, but there are some unique cases where YY returns incorrect results. For example, the
expression IS_DATE(‘02/29/00’, ‘YY') is internally computed as IS_DATE(02/29/1900 00:00:00), which returns
false. However, the Data Integration Service computes the expression IS_DATE('02/29/00’, ‘RR’) as
IS_DATE(02/29/2000 00:00:00), which returns TRUE. In the first case, year 1900 is not a leap year, so there is
no February 29th.

Note: IS_DATE uses the same format strings as TO_DATE.

Syntax
IS DATE(value [, format])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Must be a string datatype. Passes the rows you want to evaluate. You can enter any

valid transformation expression.

format Optional Enter a valid TO_DATE format string. The format string must match the parts of the
string argument. For example, if you pass the string ‘Mar 15 1997 12:43:10AM’, you
must use the format string '"MON DD YYYY HH12:MI:SSAM'. If you omit the format
string, the string value must be in the date format specified in the mapping
configuration.

Return Value

TRUE (1) if the row is a valid date.

FALSE (0) if the row is not a valid date.

NULL if a value in the expression is NULL or if the format string is NULL.

Warning: The format of the IS_DATE string must match the format string, including any date separators. If it
does not, the Data Integration Service might return inaccurate values or skip the record.

Examples

The following expression checks the INVOICE_DATE port for valid dates:
IS _DATE(INVOICE DATE)

This expression returns data similar to the following:

INVOICE DATE RETURN VALUE
NULL NULL

'180" 0 (FALSE)
'04/01/98" 0 (FALSE)

Chapter 6: Functions

INVOICE DATE RETURN VALUE

'04/01/1998 00:12:15.7008" 1 (TRUE)
'02/31/1998 12:13:55.9204" 0 (FALSE) (February does not have 31 days)
'John Smith' 0 (FALSE)

The following IS_DATE expression specifies a format string of 'YYYY/MM/DD’:
IS _DATE(INVOICE DATE, 'YYYY/MM/DD')

If the string value does not match this format, IS_DATE returns FALSE:

INVOICE DATE RETURN VALUE

NULL NULL

'180" 0 (FALSE)

'04/01/98" 0 (FALSE)

'1998/01/12" 1 (TRUE)

'1998/11/21 00:00:13" 0 (FALSE)

'1998/02/31" 0 (FALSE) (February does not have 31 days)
'John Smith' 0 (FALSE)

The following example shows how you use IS_DATE to test data before using TO_DATE to convert the strings
to dates. This expression checks the values in the INVOICE_DATE port and converts each valid date to a date
value. If the value is not a valid date, the Data Integration Service returns ERROR and skips the row.

This example returns a Date/Time value. Therefore, the output port for the expression needs to be Date/
Time:

IIF(IS DATE (INVOICE DATE, 'YYYY/MM/DD'), TO DATE(INVOICE DATE), ERROR('Not a valid
date'))

INVOICE DATE RETURN VALUE

NULL NULL

'180" 'Not a valid date'

'04/01/98" 'Not a valid date'

'1998/01/12" 1998/01/12

'1998/11/21 00:00:13" 'Not a valid date’

'1998/02/31" 'Not a valid date'

'John Smith' 'Not a valid date’

IS_DATE 115

IS_NUMBER

Returns whether a string is a valid number. A valid number consists of the following parts:

e Optional space before the number
e Optional sign (+/-)
e One or more digits with an optional decimal point

e Optional scientific notation, such as the letter ‘e’ or ‘E’ (and the letter ‘d’ or ‘D’ on Windows) followed by an
optional sign (+/-), followed by one or more digits
e Optional white space following the number
The following numbers are all valid:
'100 '
! +100"
'-100"
'-3.45e+32"'
'+3.45E-32"
'+3.45d+32" (Windows only)

'+3.45D-32" (Windows only)
'.6804"

The output port for an IS_NUMBER expression must be a String or Numeric datatype.
You might use IS_NUMBER to test or filter data in a flat file before writing it to a target.
Syntax

IS _NUMBER(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Must be a String datatype. Passes the rows you want to evaluate. You can enter any
valid transformation expression.

Return Value

TRUE (1) if the row is a valid number.
FALSE (0) if the row is not a valid number.
NULL if a value in the expression is NULL.
Examples

The following expression checks the ITEM_PRICE port for valid numbers:

IS NUMBER(ITEM PRICE)

ITEM PRICE RETURN VALUE

'123.00" 1 (True)

'-3.45e+3" 1 (True)

'-3.45D-3" 1 (True - Windows only)

116 Chapter 6: Functions

ITEM PRICE
'-3.45d-3"

'3.45E-"

'+123abc!
'123"
'123 '
'ABC'
'-ABC'

NULL

RETURN VALUE

0 (False - UNIX only)

0 (False)
0 (False)
0 (False)
0 (False)
1 (True)
1 (True)
0 (False)
0 (False)
NULL

Incomplete number

Consists entirely of blanks

Empty string

Leading white blanks

Trailing white blanks

Use IS_NUMBER to test data before using one of the numeric conversion functions, such as TO_FLOAT. For
example, the following expression checks the values in the ITEM_PRICE port and converts each valid number

to a double-precision floating point value. If the value is not a valid number, the Data Integration Service

returns 0.00:

IIF(IS _NUMBER (ITEM PRICE), TO FLOAT(ITEM PRICE), 0.00)

ITEM PRICE
'123.00"
'-3.45e+3"

'3.45E-3"

'+123abc!
' 123ABC'
'ABC'
'-ABC'

NULL

RETURN VALUE

123

-3450

0.00345

0.00

0.00

0.00

0.00

0.00

0.00

NULL

Consists entirely of blanks

Empty string

IS_NUMBER

117

IS_SPACES

118

Returns whether a string value consists entirely of spaces. A space is a blank space, a formfeed, a newline, a
carriage return, a tab, or a vertical tab.

IS_SPACES evaluates an empty string as FALSE because there are no spaces. To test for an empty string, use
LENGTH.

Syntax
IS SPACES(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Must be a string datatype. Passes the rows you want to evaluate. You can enter any
valid transformation expression.

Return Value

TRUE (1) if the row consists entirely of spaces.

FALSE (0) if the row contains data.

NULL if a value in the expression is NULL.

Example

The following expression checks the ITEM_NAME port for rows that consist entirely of spaces:

IS_SPACES(ITEM NAME)

ITEM NAME RETURN VALUE
Flashlight 0 (False)

1 (True)
Regulator system 0 (False)
NULL NULL

' 0 (FALSE) (Empty string does not contain spaces.)

Tip: Use IS_SPACES to avoid writing spaces to a character column in a target table. For example, if you have
a transformation that writes customer names to a fixed length CHAR(5) column in a target table, you might
want to write ‘00000’ instead of spaces. You would create an expression similar to the following:

IIF(IS_SPACES(CUST NAMES), '00000', CUST NAMES)

Chapter 6: Functions

LAG

Returns the value that is an offset number of rows before the current row in an Expression transformation.
Use this function to compare values in the current row with values in a previous row when you run a mapping
on the Spark engine in the Hadoop environment.

A lag value appears before the current row in a set of data.

When you use LAG in a transformation, you must configure the transformation for windowing. Windowing
properties define how the data is partitioned and ordered.

Syntax
LAG (column name, offset, default

The following table describes the arguments for this command:

Argument Required/ Description
Optional
column_name Required The target column or expression that the

function operates on.

offset Required Integer data type. The number of rows before
the current row to obtain a value from.

default Optional The default value to be returned in case the
offset is outside the bounds of the partition or
table. Default is NULL.

Return Value

The data type of the specified column_name.

Default if the return value is outside the bounds of the specified partition.
NULL if default is omitted or set to NULL.

Examples

The following expression returns the date that the previous order was placed:

LAG (ORDER DATE, 1, NULL)

ORDER_DATE ORDER_ID RETURN VALUE
2017/09/25 1 NULL
2017/09/26 2 2017/09/25
2017/09/27 3 2017/09/26
2017/09/28 4 2017/09/27
2017/09/29 5 2017/09/28
2017/09/30 6 2017/09/29

The lag value of the first row is outside the partition, so the function returned the default value of NULL.

LAG 119

In the following example, your organization receives GPS pings from vehicles that include trip and event IDs
and a time stamp. You want to calculate the time difference between each ping.

The following expression calculates the time difference between the current row and the previous row for
two separate trips:

DATE DIFF(EVENT TIME, LAG (EVENT TIME, 1, NULL), 'ss')

You partition the data by trip ID and order by event ID.

TRIP_ID EVENT_ID EVENT TIME RETURN VALUE
101 1 2017-05-03 12:00:00 NULL

101 2 2017-05-03 12:00:34 34

101 3 2017-05-03 12:02:00 86

102 1 2017-05-03 12:00:00 NULL

102 2 2017-05-03 12:01:56 116

102 3 2017-05-03 12:02:00 4

The lag values of the first and fourth row are outside the specified partition, so the function returned two
default NULL values.

LAST

120

Returns the last row in the selected port. Optionally, you can apply a filter to limit the rows the Data
Integration Service reads. You can nest only one other aggregate function within LAST.

Syntax
LAST (value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the values for which you want to return the

last row. You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Last row in a port.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Chapter 6: Functions

Example
The following expression returns the last row in the ITEMS_NAME port with a price greater than $10.00:

LAST(ITEM NAME, ITEM PRICE > 10)

ITEM NAME ITEM PRICE
Flashlight 35.00
Navigation Compass 8.05
Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00

Vest 31.00

RETURN VALUE:Vest

LAST_DAY

Returns the date of the last day of the month for each date in a port.
Syntax
LAST DAY (date)

The following table describes the argument for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. Passes the dates for which you want to return the last day of
the month. You can enter any valid transformation expression that evaluates to a
date.

Return Value

Date. The last day of the month for that date value you pass to this function.
NULL if a value in the selected port is NULL.

Null

If a value is NULL, LAST_DAY ignores the row. However, if all values passed from the port are NULL,
LAST_DAY returns NULL.

Group By

LAST_DAY groups values based on group by ports you define in the transformation, returning one result for
each group. If there is no group by port, LAST_DAY treats all rows as one group, returning one value.

LAST_DAY 121

LEAD

Examples

The following expression returns the last day of the month for each date in the ORDER_DATE port:

LAST DAY (ORDER DATE)

ORDER DATE RETURN VALUE

Apr 1 1998 12:00:00AM Apr 30 1998 12:00:00AM

Jan 6 1998 12:00:00AM Jan 31 1998 12:00:00AM

Feb 2 1996 12:00:00AM Feb 29 1996 12:00:00AM (Leap year)
NULL NULL

Jul 31 1998 12:00:00AM Jul 31 1998 12:00:00AM

You can nest TO_DATE to convert string values to a date. TO_DATE always includes time information. If you
pass a string that does not have a time value, the date returned will include the time 00:00:00.

The following example returns the last day of the month for each order date in the same format as the string:

LAST DAY (TO DATE(ORDER DATE, 'DD-MON-YY'))

ORDER_DATE RETURN VALUE

'18-NOV-98"' Nov 30 1998 00:00:00

'28-APR-98" Apr 30 1998 00:00:00

NULL NULL

'18-FEB-96" Feb 29 1996 00:00:00 (Leap year)

Returns the value that is an offset number of rows after the current row in an Expression transformation. Use
this function to compare values in the current row with values in a future row when you run a mapping on the
Spark engine in the Hadoop environment.

A lead value appears after the current row in a set of data.

Note: When you use LEAD in a transformation, you must configure the transformation for windowing.
Windowing properties define how the data is partitioned and ordered.

122 Chapter 6: Functions

Syntax
LEAD (column name, offset, default

The following table describes the arguments for this command:

Argument Required/ Description
Optional
column_name Required The target column or expression that the

function operates on.

offset Required Integer data type. The number of rows after
the current row to obtain a value from.

default Optional The default value to be returned in case the
offset is outside the bounds of the partition or
table. Default is NULL.

Return Value

The data type of the specified column_name.

Default if the return value is outside the bounds of the specified partition.
NULL if default is omitted or set to NULL.

Examples

The following expression returns, for each employee, the date the next employee was hired:

LEAD (HIRE DATE, 1, NULL)

EMPLOYEE HIRE DATE RETURN VALUE
Hynes 2012/12/07 2014/05/18
Williams 2014/05/18 2015/07/24
Pritchard 2015/07/24 2015/12/24
Snyder 2015/12/24 2016/11/15
Troy 2016/11/15 2017/08/10
Randolph 2017/08/10 NULL

There is no lead value available for the last row, so the function returned the default value of NULL.

The following expression returns the difference in sales quota values between the first quarter to the third
quarter of two calendar years:

LEAD (Sales Quota, 2, 0) - Sales Quota

You partition the data by year and order by quarter.

YEAR QUARTER SALES_QUOTA QUOTA_DIFF

2016 1 300 7700

LEAD 123

YEAR QUARTER SALES_QUOTA QUOTA_DIFF

2016 2 7000 0
2016 3 8000 0
2017 1 5000 4000
2017 2 400 0
2017 3 9000 0

The lead values of the second and third quarter are outside the specified partition, so the function returned a
value of "0."

LEAST

Returns the smallest value from a list of input values. By default, the match is case sensitive.
Syntax
LEAST(valuel, [value2, ..., valueN,] CaseFlag)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Datatype must be compatible with other values. Value
you want to compare against other values. You must enter at least one value
argument.

If the value is Numeric, and other input values are of other numeric datatypes, all
values use the highest precision possible. For example, if some values are of the
Integer datatype and others are of the Double datatype, the Data Integration Service
converts the values to Double.

CaseFlag Optional Must be an integer. Specify a value when the input value argument is a string value.
Determines whether the arguments in this function are case sensitive. You can enter
any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.
Default is case sensitive.

Return Value
valueTl if it is the smallest of the input values, value2 if it is the smallest of the input values, and so on.

NULL if any of the arguments is null.

124 Chapter 6: Functions

Example

The following expression returns the smallest quantity of items ordered:

LEAST (QUANTITY1, QUANTITY2, QUANTITY3)

QUANTITIY1 QUANTITY2 QUANTITY3 RETURN VALUE
150 756 217 217
NULL
5000 97 17 17
120 1724 965 120

LENGTH

Returns the number of characters in a string, including trailing blanks.
Syntax
LENGTH(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required String datatype. The strings you want to evaluate. You can enter any valid
transformation expression.

Return Value

Integer representing the length of the string.
NULL if a value passed to the function is NULL.
Example

The following expression returns the length of each customer name:

LENGTH(CUSTOMER NAME)

CUSTOMER NAME RETURN VALUE
Bernice Davis 13

NULL NULL

John Baer 9

Greg Brown 10

LENGTH

125

LN

126

Tips for LENGTH

Use LENGTH to test for empty string conditions. If you want to find fields in which customer name is empty,
use an expression such as:

IIF(LENGTH(CUSTOMER NAME) = 0, 'EMPTY STRING')

To test for a null field, use ISNULL. To test for spaces, use IS_SPACES.

Returns the natural logarithm of a numeric value. For example, LN (3) returns 1.098612. You usually use this
function to analyze scientific data rather than business data.

This function is the reciprocal of the function EXP.

Syntax
LN(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. It must be a positive number, greater than 0. Passes the

values for which you want to calculate the natural logarithm. You can enter any
valid transformation expression.

Return Value

Double value.

NULL if a value passed to the function is NULL.
Example

The following expression returns the natural logarithm for all values in the NUMBERS port:

LN (NUMBERS)

NUMBERS RETURN VALUE

10 2.302585092994

125 4.828313737302

0.96 -0.04082199452026

NULL NULL

-90 Error. (The Integration Service does not write row.)
0 Error. (The Integration Service does not write row.)

Note: The Data Integration Service displays an error and does not write the row when you pass a negative
number or 0. The numeric_value must be a positive number greater than 0.

Chapter 6: Functions

LOG

Returns the logarithm of a numeric value. Most often, you use this function to analyze scientific data rather
than business data.

Syntax
LOG(base, exponent

The following table describes the arguments for this command:

Argument Required/ Description
Optional
base Required The base of the logarithm. Must be a positive numeric value other than 0 or 1. Any

valid transformation expression that evaluates to a positive number other than 0 or
1.

exponent Required The exponent of the logarithm. Must be a positive numeric value greater than 0. Any
valid transformation expression that evaluates to a positive number greater than 0.

Return Value

Double value.

NULL if a value passed to the function is NULL.
Example

The following expression returns the logarithm for all values in the NUMBERS port:

LOG(BASE, EXPONENT)

BASE EXPONENT RETURN VALUE

15 1 0

.09 10 -0.956244644696599

NULL 18 NULL

35.78 NULL NULL

-9 18 Error. (Data Integration Service does not write the row.)
0 5 Error. (Data Integration Service does not write the row.)
10 -2 Error. (Data Integration Service does not write the row.)

The Data Integration Service displays an error and does not write the row if you pass a negative number, 0, or
1 as a base value, or if you pass a negative value for the exponent.

LOWER

Converts uppercase string characters to lowercase.

LOG 127

Syntax

LOWER(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Any string value. The argument passes the string values that you want to return as

lowercase. You can enter any valid transformation expression that evaluates to a
string.

Return Value

Lowercase character string. If the data contains multibyte characters, the return value depends on the code
page and data movement mode of the Integration Service.

NULL if a value in the selected port is NULL.

Example

The following expression returns all first names to lowercase:

LOWER (FIRST NAME)

FIRST NAME
antonia
NULL
THOMAS
PierRe

BERNICE

LPAD

128

RETURN VALUE
antonia

NULL

thomas
pierre

bernice

Adds a set of blanks or characters to the beginning of a string to set the string to a specified length.

Syntax

LPAD(first string, length [,second string])

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional
first_string Required Can be a character string. The strings you want to change. You can enter any

valid transformation expression.

length Required Must be a positive integer literal. This argument specifies the length you want
each string to be.

second_string Optional Can be any string value. The characters you want to append to the left-side of the
first_string values. You can enter any valid transformation expression. You can
enter a specific string literal. However, enclose the characters you want to add to
the beginning of the string within single quotation marks, as in ‘abc’. This
argument is case sensitive. If you omit the second_string, the function pads the
beginning of the first string with blanks.

Return Value

String of the specified length.

NULL if a value passed to the function is NULL or if length is a negative number.
Examples

The following expression standardizes numbers to six digits by padding them with leading zeros:

LPAD(PART NUM, 6, '0'")

PART NUM RETURN VALUE
702 000702
1 000001
0553 000553
484834 484834

LPAD counts the length from left to right. If the first string is longer than the length, LPAD truncates the string
from right to left. For example, LPAD(‘alphabetical’, 5, ‘x’) returns the string ‘alpha’.

If the second string is longer than the total characters needed to return the specified length, LPAD uses a
portion of the second string:

LPAD(ITEM NAME, 16, '*..*')

ITEM NAME RETURN VALUE

Flashlight *,.** Flashlight
Compass *., L F* L F*Compass
Regulator System Regulator System
Safety Knife *..*Safety Knife

LPAD 129

LTRIM

Removes blanks or characters from the beginning of a string. You can use LTRIM with IIF or DECODE in an
Expression or Update Strategy transformation to avoid spaces in a target table.

If you do not specify a trim_set parameter in the expression:
¢ In UNICODE mode, LTRIM removes both single- and double-byte spaces from the beginning of a string.

¢ In ASCII mode, LTRIM removes only single-byte spaces.

If you use LTRIM to remove characters from a string, LTRIM compares the trim_set to each character in the
string argument, character-by-character, starting with the left side of the string. If the character in the string
matches any character in the trim_set, LTRIM removes it. LTRIM continues comparing and removing
characters until it fails to find a matching character in the trim_set. Then it returns the string, which does not
include matching characters.

Syntax
LTRIM(string [, trim set])

The following table describes the arguments for this command:

Arguments Required/ Description
Optional
string Required Any string value. Passes the strings you want to modify. You can enter any valid

transformation expression. Use operators to perform comparisons or concatenate
strings before removing characters from the beginning of a string.

trim_set Optional Any string value. Passes the characters you want to remove from the beginning of
the first string. You can enter any valid transformation expression. You can also
enter a character string. However, you must enclose the characters you want to
remove from the beginning of the string within single quotation marks, for example,
‘abc'. If you omit the second string, the function removes any blanks from the
beginning of the string.

LTRIM is case sensitive. For example, if you want to remove the 'A’' character from
the string 'Alfredo’, you would enter 'A’, not 'a'.

Return Value

String. The string values with the specified characters in the trim_set argument removed.

NULL if a value passed to the function is NULL. If the trim_set is NULL, the function returns NULL.
Example

The following expression removes the characters ‘S’ and ‘.’ from the strings in the LAST_NAME port:

LTRIM(LAST NAME, 'S.'")

LAST_NAME RETURN VALUE
Nelson Nelson
Osborne Osborne

NULL NULL

130 Chapter 6: Functions

LAST_NAME RETURN VALUE

S. MacDonald MacDonald
Sawyer awyer

H. Bender H. Bender
Steadman teadman

LTRIM removes ‘S.’ from S. MacDonald and the ‘S’ from both Sawyer and Steadman, but not the period from
H. Bender. This is because LTRIM searches, character-by-character, for the set of characters you specify in
the trim_set argument. If the first character in the string matches the first character in the trim_set, LTRIM
removes it. Then LTRIM looks at the second character in the string. If it matches the second character in the
trim_set, LTRIM removes it, and so on. When the first character in the string does not match the
corresponding character in the trim_set, LTRIM returns the string and evaluates the next row.

In the example of H. Bender, H does not match either character in the trim_set argument, so LTRIM returns
the string in the LAST_NAME port and moves to the next row.

Tips for LTRIM

Use RTRIM and LTRIM with || or CONCAT to remove leading and trailing blanks after you concatenate two
strings.

You can also remove multiple sets of characters by nesting LTRIM. For example, if you want to remove
leading blanks and the character 'T' from a column of names, you might create an expression similar to the
following:

LTRIM(LTRIM(NAMES), 'T')

MAKE_DATE_TIME

Returns the date and time based on the input values.
Syntax
MAKE DATE TIME(year, month, day, hour, minute, second, nanosecond)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
year Required Numeric datatype. Positive 4-digit integer. If you pass this function a 2-digit year,

the Data Integration Service returns “00” as the first two digits of the year.

month Required Numeric datatype. Positive integer between 1 and 12 (January=1 and
December=12).

day Required Numeric datatype. Positive integer between 1 and 31 (except for the months that
have less than 31 days: February, April, June, September, and November).

MAKE_DATE_TIME 131

Argument Required/ Description
Optional
hour Optional Numeric datatype. Positive integer between 0 and 24 (where 0=12AM, 12=12PM,
and 24 =12AM).
minute Optional Numeric datatype. Positive integer between 0 and 59.
second Optional Numeric datatype. Positive integer between 0 and 59.
nanosecond Optional Numeric datatype. Positive integer between 0 and 999,999,999.

Return Value
Date as MM/DD/YYYY HH24:MI:SS. Returns a null value if you do not pass the function a year, month, or day.
Example

The following expression creates a date and time from the input ports:

MAKE DATE TIME(SALE YEAR, SALE MONTH, SALE DAY, SALE HOUR, SALE MIN, SALE SEC)

SALE YR SALE MTH SALE DAY SALE HR SALE MIN SALE SEC RETURN VALUE

2002 10 21 8 36 22 10/27/2002 08:36:22
2000 6 15 15 17 06/15/2000 15:17:00
2003 1 3 22 45 01/03/2003 00:22:45
04 3 30 12 5 10 03/30/0004 12:05:10
99 12 12 5 16 12/12/0099 05:00:16

MAX (Dates)

132

Returns the latest date found within a port or group. You can apply a filter to limit the rows in the search. You
can nest only one other aggregate function within MAX.

You can also use MAX to return the largest numeric value or the highest string value in a port or group.

Syntax

MAX(date [, filter condition])

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. Passes the date for which you want to return a maximum

date. You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Date.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Example

You can return the maximum date for a port or group. The following expression returns the maximum order
date for flashlights:

MAX (ORDERDATE, ITEM NAME='Flashlight')

ITEM NAME ORDER_DATE
Flashlight Apr 20 1998
Regulator System May 15 1998
Flashlight Sep 21 1998
Diving Hood Aug 18 1998
Flashlight NULL

MAX (Numbers)

Returns the maximum numeric value found within a port or group. You can apply a filter to limit the rows in
the search. You can nest only one other aggregate function within MAX. You can also use MAX to return the
latest date or the highest string value in a port or group.

Syntax

MAX (numeric value [, filter condition])

MAX (Numbers) 133

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the numeric values for which you want to return a
maximum numeric value. You can enter any valid transformation expression.
filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or

evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value

Numeric value.

NULL if all values passed to the function are NULL or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Nulls

If a value is NULL, MAX ignores it. However, if all values passed from the port are NULL, MAX returns NULL.

Group By

MAX groups values based on group by ports you define in the transformation, returning one result for each

group.

If there is no group by port, MAX treats all rows as one group, returning one value.

Example

The first expression returns the maximum price for flashlights:

MAX (PRICE, ITEM NAME='Flashlight')

ITEM NAME

Flashlight

Regulator System

Flashlight

Diving Hood

Halogen Flashlight

Flashlight
Flashlight

RETURN VALUE:

134 Chapter 6: Functions

85.00

PRICE

10.00

360.00

55.00

79.00

162.00

85.00

NULL

MAX (String)

Returns the highest string value found within a port or group. You can apply a filter to limit the rows in the
search. You can nest only one other aggregate function within MAX.

Note: The MAX function uses the same sort order that the Sorter transformation uses. However, the MAX
function is case sensitive, and the Sorter transformation may not be case sensitive.

You can also use MAX to return the latest date or the largest numeric value in a port or group.

Syntax
MAX(string [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
string Required String datatype. Passes the string values for which you want to return a maximum

string value. You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
String.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Nulls
If a value is NULL, MAX ignores it. However, if all values passed from the port are NULL, MAX returns NULL.
Group By

MAX groups values based on group by ports you define in the transformation, returning one result for each
group.

If there is no group by port, MAX treats all rows as one group, returning one value.
Example
The following expression returns the maximum item name for manufacturer ID 104:

MAX (ITEM NAME, MANUFACTURER ID='104")

MANUFACTURER ID ITEM NAME

101 First Stage Regulator
102 Electronic Console
104 Flashlight

104 Battery (9 volt)

104 Rope (20 ft)

MAX (String) 135

MANUFACTURER ID ITEM NAME

104 60.6 cu ft Tank
107 75.4 cu ft Tank
108 Wristband Thermometer

RETURN VALUE: Rope (20 ft)

MD5

Calculates the checksum of the input value. The function uses Message-Digest algorithm 5 (MD5). MD5 is a
one-way cryptographic hash function with a 128-bit hash value. You can conclude that input values are
different when the checksums of the input values are different. Use MD5 to verify data integrity.

Syntax
MD5 (value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required String or Binary datatype. Value for which you want to calculate checksum. The

case of the input value affects the return value. For example, MD5(informatica) and
MD5(Informatica) return different values.

Return Value

Unique 32-character string of hexadecimal digits 0-9 and a-f.
NULL if the input is a null value.

Example

You want to write changed data to a database. Use MD5 to generate checksum values for rows of data you
read from a source. When you run a mapping, compare the previously generated checksum values against
the new checksum values. Then, write the rows with updated checksum values to the target. You can
conclude that an updated checksum value indicates that the data has changed.

Tip

You can use the return value as a hash key.

MEDIAN

Returns the median of all values in a selected port.

136 Chapter 6: Functions

If there is an even number of values in the port, the median is the average of the middle two values when all
values are placed ordinally on a number line. If there is an odd number of values in the port, the median is the
middle number.

You can nest only one other aggregate function within MEDIAN, and the nested function must return a
Numeric datatype.

The Data Integration Service reads all rows of data to perform the median calculation. The process of reading
rows of data to perform the calculation may affect performance. Optionally, you can apply a filter to limit the
rows you read to calculate the median.

Syntax
MEDIAN(numeric value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the values for which you want to calculate a median.

You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL, or if no rows are selected. For example, the filter
condition evaluates to FALSE or NULL for all rows.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls

If a value is NULL, MEDIAN ignores the row. However, if all values passed from the port are NULL, MEDIAN
returns NULL.

Group By

MEDIAN groups values based on group by ports you define in the transformation, returning one result for
each group.

If there is no group by port, MEDIAN treats all rows as one group, returning one value.
Example

To calculate the median salary for all departments, you create an Aggregator transformation grouped by
departments with a port specifying the following expression:

MEDIAN(SALARY)

MEDIAN 137

The following expression returns the median value for orders of stabilizing vests:

MEDIAN(SALES, ITEM

'Stabilizing Vest'

ITEM SALES
Flashlight 85
Stabilizing Vest 504
Stabilizing Vest 36
Safety Knife 5
Medium Titanium Knife 150
Tank NULL
Stabilizing Vest 441
Chisel Point Knife 60
Stabilizing Vest NULL
Stabilizing Vest 1044
Wrist Band Thermometer 110

RETURN VALUE: 472.5

METAPHONE

Encodes string values. You can specify the length of the string that you want to encode.

METAPHONE encodes characters of the English language alphabet (A-Z). It encodes both uppercase and
lowercase letters in uppercase.

METAPHONE encodes characters according to the following list of rules:

e Skips vowels (A, E, I, O, and U) unless one of them is the first character of the input string.
METAPHONE(‘CAR’) returns ‘KR’ and METAPHONE(‘AAR’) returns ‘AR’

e Uses special encoding guidelines.

The following table lists the METAPHONE encoding guidelines:

Input Returns Condition Example

B - n/a - when it follows M - METAPHONE (‘Lamb’) returns LM.
B - B - in all other cases - METAPHONE (‘Box’) returns BKS.

C - X - when followed by IA or H - METAPHONE (‘Facial’) returns FXL.
C - S - when followed by I, E, or Y - METAPHONE (‘Fence’) returns FNS.

138 Chapter 6: Functions

Input Returns Condition Example

C - n/a - when it follows S, and is followed by |, E, or Y - METAPHONE (‘Scene’) returns SN.

C - K - in all other cases - METAPHONE (‘Cool’) returns KL.

D - J - when followed by GE, GY, or Gl - METAPHONE (‘Dodge’) returns TJ.

D - T - in all other cases - METAPHONE (‘David’) returns TFT.

F - F - inall cases - METAPHONE (‘FOX’) returns FKS.

G - F - when followed by H and the first character in - METAPHONE (‘Tough’) returns TF.
the input string is not B, D, or H

G - n/a - when followed by H and the first character in - METAPHONE (‘Hugh’) returns HF.
the input string is B, D, or H

G - J - when followed by |, E or Y and does not repeat - METAPHONE (‘Magic’) returns MJK.

G - K - in all other cases - METAPHONE(‘GUN’) returns KN.

H - H - when it does not follow C, G, P, S, or T and is - METAPHONE (‘DHAT’) returns THT.
followed by A, E, I, or U

H - n/a - in all other cases - METAPHONE (‘Chain’) returns XN.

J - J - inall cases - METAPHONE (‘Jen’) returns JN.

K - n/a - when it follows C - METAPHONE (‘Ckim’) returns KM.

- K - in all other cases - METAPHONE ('Kim’) returns KM.

L - L - inall cases - METAPHONE (‘'Laura’) returns LR.

M - M - inall cases - METAPHONE (‘Maggi’) returns MK.

N - N - inall cases - METAPHONE (‘Nancy’) returns NNS.

P - F - when followed by H - METAPHONE (‘Phone’) returns FN.

P - P - in all other cases - METAPHONE (‘Pip’) returns PP.

Q - K - inall cases - METAPHONE (‘Queen’) returns KN.

R - R - inall cases - METAPHONE (‘Ray’) returns R.

S - X - when followed by H, 10, IA, or CHW - METAPHONE (‘Cash’) returns KX.

S - S - in all other cases - METAPHONE (‘Sing’) returns SNK.

T - X - when followed by IA or 10 - METAPHONE (‘Patio’) returns PX.

T - 0! - when followed by H METAPHONE (‘Thor’) returns OR.

T n/a - when followed by CH - METAPHONE (‘Glitch’) returns KLTX.

METAPHONE

139

Input Returns Condition Example

T - T - in all other cases - METAPHINE ('Tim’) returns TM.

v F - inall cases - METAPHONE ('Vin’) returns FN.

w w - when followed by A, E, I, 0, or U - METAPHONE (‘Wang’) returns WNK.
W - n/a - in all other cases - METAPHONE (‘When’) returns HN.
X - KS - inall cases - METAPHONE (‘Six’) returns SKS.

Y Y - when followed by A, E, 1,0, or U - METAPHONE (‘Yang') returns YNK.
Y - n/a - in all other cases - METAPHONE (‘Bobby’) returns BB.
Z S - inall cases - METAPHONE (‘Zack’) returns SK.

1. The integer 0.

e Skips the initial character and encodes the remaining string if the first two characters of the input string
have one of the following values:

- KN. For example, METAPHONE('KNOT’) returns ‘NT'.
- GN. For example, METAPHONE(‘GNOB’) returns ‘NB’.
- PN. For example, METAPHONE(‘PNRX’) returns ‘NRKS'.
- AE. For example, METAPHONE(‘AERL’) returns ‘ERL’.

o |f a character other than “C” occurs more than once in the input string, encodes the first occurrence only.
For example, METAPHONE('BBOX’) returns ‘BKS’ and METAPHONE(‘CCOX’) returns ‘KKKS'.

Syntax

METAPHONE (string [,length])

The following table describes the arguments for this command:

Argument Required/ Description
Optional

string Required Must be a character string. Passes the value you want to encode. The first character
must be a character in the English language alphabet (A-Z). You can enter any valid
transformation expression.
Skips any non-alphabetic character in string.

length Optional Must be an integer greater than 0. Specifies the number of characters in string that
you want to encode. You can enter any valid transformation expression.
When length is 0 or a value greater than the length of string, encodes the entire
input string.
Default is 0.

Return Value

String.

140 Chapter 6: Functions

NULL if one of the following conditions is true:

o All values passed to the function are NULL.

e No character in string is a letter of the English alphabet.

e string is empty.

Examples

The following expression encodes the first two characters in EMPLOYEE_NAME port to a string:

METAPHONE (EMPLOYEE NAME, 2)

Employee Name Return Value
John JH

*@#s NULL
P$%%0Cc&&KMNL PK

The following expression encodes the first four characters in EMPLOYEE_NAME port to a string:

METAPHONE (EMPLOYEE NAME, 4)

Employee Name Return Value
John JHN

1ABC ABK

*Q#S NULL
P$%%0Cc&&KMNL PKKM

MIN (Dates)

Returns the earliest date found in a port or group. You can apply a filter to limit the rows in the search. You
can nest only one other aggregate function within MIN, and the nested function must return a date datatype.

You can also use MIN to return the smallest numeric value or the lowest string value in a port or group.

Syntax

MIN(date [, filter condition])

MIN (Dates) 141

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. Passes the values for which you want to return minimum

value. You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Date if the value argument is a date.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Nulls

If a single value is NULL, MIN ignores it. However, if all values passed from the port are NULL, MIN returns
NULL.

Group By

MIN groups values based on group by ports you define in the transformation, returning one result for each
group.

If there is no group by port, MIN treats all rows as one group, returning one value.
Example

The following expression returns the oldest order date for flashlights:

MIN(ORDER DATE, ITEM NAME='Flashlight')

ITEM NAME ORDER_DATE
Flashlight Apr 20 1998
Regulator System May 15 1998
Flashlight Sep 21 1998
Diving Hood Aug 18 1998
Halogen Flashlight Feb 1 1998
Flashlight Oct 10 1998
Flashlight NULL

RETURN VALUE: Feb 1 1998

142 Chapter 6: Functions

MIN (Numbers)

Returns the smallest numeric value found in a port or group. You can apply a filter to limit the rows in the
search. You can nest only one other aggregate function within MIN, and the nested function must return a
numeric datatype.

You can also use MIN to return the latest date or the lowest string value in a port or group.
Syntax
MIN(numeric value [, filter condition]

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatypes. Passes the values for which you want to return minimum

value. You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls

If a single value is NULL, MIN ignores it. However, if all values passed from the port are NULL, MIN returns
NULL.

Group By

MIN groups values based on group by ports you define in the transformation, returning one result for each
group.

If there is no group by port, MIN treats all rows as one group, returning one value.
Example
The following expression returns the minimum price for flashlights:

MIN (PRICE, ITEM NAME='Flashlight')

ITEM NAME PRICE
Flashlight 10.00
Regulator System 360.00
Flashlight 55.00

MIN (Numbers) 143

ITEM NAME PRICE

Diving Hood 79.00
Halogen Flashlight 162.00
Flashlight 85.00
Flashlight NULL

RETURN VALUE: 10.00

MIN (String)

Returns the lowest string value found in a port or group. You can apply a filter to limit the rows in the search.
You can nest only one other aggregate function within MIN, and the nested function must return a string
datatype.

Note: The MIN function uses the same sort order that the Sorter transformation uses. However, the MIN
function is case sensitive, but the Sorter transformation may not be case sensitive.

You can also use MIN to return the latest date or the minimum numeric value in a port or group.

Syntax
MIN(string [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
string Required String datatype. Passes the values for which you want to return minimum value.

You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
String value.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Nulls

If a single value is NULL, MIN ignores it. However, if all values passed from the port are NULL, MIN returns
NULL.

Group By

MIN groups values based on group by ports you define in the transformation, returning one result for each
group.

144 Chapter 6: Functions

If there is no group by port, MIN treats all rows as one group, returning one value.

Example

The following expression returns the minimum item name for manufacturer ID 104:

MIN (ITEM NAME, MANUFACTURER ID='104')

MANUFACTURER ID
101

102

RETURN VALUE: 60.6 cu ft Tank

MOD

ITEM NAME

First Stage Regulator
Electronic Console
Flashlight

Battery (9 volt)

Rope (20 ft)

60.6 cu ft Tank

75.4 cu ft Tank

Wristband Thermometer

Returns the remainder of a division calculation. For example, MOD (8, 5) returns 3.

Syntax

MOD (numeric value, divisor)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. The values you want to divide. You can enter any valid
transformation expression.
divisor Required The numeric value you want to divide by. The divisor cannot be 0.

Return Value

Numeric value of the datatype you pass to the function. The remainder of the numeric value divided by the

divisor.

NULL if a value passed to the function is NULL.

MOD

145

Examples

The following expression returns the modulus of the values in the PRICE port divided by the values in the QTY
port:

MOD (PRICE, QTY)

PRICE QTY RETURN VALUE

10.00 2 0
12.00 5 2
9.00 2 1
15.00 3 0
NULL 3 NULL

20.00 NULL NULL

25.00 0 Error. Integration Service does not write row.

The last row (25, 0) produced an error because you cannot divide by 0. To avoid dividing by 0, you can create
an expression similar to the following, which returns the modulus of Price divided by Quantity only if the
quantity is not 0. If the quantity is 0, the function returns NULL:

MOD(PRICE, IIF(QTY = 0, NULL, QTY))

PRICE QTY RETURN VALUE
10.00 2 0

12.00 5 2

9.00 2 1

15.00 3 0

NULL 3 NULL

20.00 NULL NULL

25.00 0 NULL

The last row (25, 0) produced a NULL rather than an error because the IIF function replaces NULL with the 0
in the QTY port.

MOVINGAVG

Returns the average (row-by-row) of a specified set of rows. Optionally, you can apply a condition to filter
rows before calculating the moving average.

146 Chapter 6: Functions

Syntax
MOVINGAVG (numeric value, rowset [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. The values for which you want to calculate a moving average.

You can enter any valid transformation expression.

rowset Required Must be a positive integer literal greater than 0. Defines the row set for which you
want to calculate the moving average. For example, if you want to calculate a
moving average for a column of data, five rows at a time, you might write an
expression such as: MOVINGAVG (SALES, 5).

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls

MOVINGAVG ignores null values when calculating the moving average. However, if all values are NULL, the
function returns NULL.

Example

The following expression returns the average order for a Stabilizing Vest, based on the first five rows in the
Sales port, and thereafter, returns the average for the last five rows read:

MOVINGAVG (SALES, 5)

ROW_NO SALES RETURN VALUE
1 600 NULL

2 504 NULL

3 36 NULL

4 100 NULL

5 550 358

6 39 245.8

7 490 243

The function returns the average for a set of five rows: 358 based on rows 1 through 5, 245.8 based on rows
2 through 6, and 243 based on rows 3 through 7.

MOVINGAVG 147

MOVINGSUM

148

Returns the sum (row-by-row) of a specified set of rows.
Optionally, you can apply a condition to filter rows before calculating the moving sum.
Syntax

MOVINGSUM(numeric value, rowset [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. The values for which you want to calculate a moving sum. You

can enter any valid transformation expression.

rowset Required Must be a positive integer literal greater than 0. Defines the rowset for which you
want to calculate the moving sum. For example, if you want to calculate a moving
sum for a column of data, five rows at a time, you might write an expression such
as: MOVINGSUM(SALES, 5)

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL, or if the function does not select any rows (for example,
the filter condition evaluates to FALSE or NULL for all rows).

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls

MOVINGSUM ignores null values when calculating the moving sum. However, if all values are NULL, the
function returns NULL.

Example

The following expression returns the sum of orders for a Stabilizing Vest, based on the first five rows in the
Sales port, and thereafter, returns the average for the last five rows read:

MOVINGSUM(SALES, 5)

ROW_NO SALES RETURN VALUE
1 600 NULL
2 504 NULL
3 36 NULL
4 100 NULL
5 550 1790

Chapter 6: Functions

ROW_NO SALES RETURN VALUE
6 39 1229
7 490 1215

The function returns the sum for a set of five rows: 1790 based on rows 1 through 5, 1229 based on rows 2
through 6, and 1215 based on rows 3 through 7.

NPER

Returns the number of periods for an investment based on a constant interest rate and periodic, constant
payments.

Syntax
NPER(rate, present value, payment [, future value, typel

The following table describes the arguments for this command:

Argument Required/ Description
Optional

rate Required Numeric. Interest rate earned in each period. Expressed as a decimal number.
Divide the rate by 100 to express it as a decimal number. Must be greater than
or equal to 0.

present value Required Numeric. Lump-sum amount a series of future payments is worth.

payment Required Numeric. Payment amount due per period. Must be a negative number.

future value Optional Numeric. Cash balance you want to attain after the last payment is made. If you
omit this value, NPER uses 0.

type Optional Boolean. Timing of the payment. Enter 1 if payment is at the beginning of
period. Enter 0 if payment is at the end of period. Default is 0. If you enter a
value other than 0 or 1, the Data Integration Service treats the value as 1.

Return Value
Numeric.

Example

The present value of an investment is $500. Each payment is $2000 and the future value of the investment is
$20,000. The following expression returns 9 as the number of periods for which you need to make the
payments:

NPER (0.015, -500, -2000, 20000, TRUE)
Notes

To calculate interest rate earned in each period, divide the annual rate by the number of payments made in an
year. For example, if you make monthly payments at an annual interest rate of 15 percent, the value of the
Rate argument is 15% divided by 12. If you make annual payments, the value of the Rate argument is 15%.

NPER 149

The payment value and present value are negative because these are amounts that you pay.

PERCENTILE

Calculates the value that falls at a given percentile in a group of numbers. You can nest only one other
aggregate function within PERCENTILE, and the nested function must return a Numeric datatype.

The Data Integration Service reads all rows of data to perform the percentile calculation. The process of
reading rows to perform the calculation may affect performance. Optionally, you can apply a filter to limit the
rows you read to calculate the percentile.

Syntax
PERCENTILE (numeric value, percentile [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the values for which you want to calculate a percentile.

You can enter any valid transformation expression.

percentile Required Integer between 0 and 100, inclusive. Passes the percentile you want to calculate.
You can enter any valid transformation expression. If you pass a number outside
the 0 to 100 range, the Data Integration Service displays an error and does not
write the row.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls

If a value is NULL, PERCENTILE ignores the row. However, if all values in a group are NULL, PERCENTILE
returns NULL.

Group By

PERCENTILE groups values based on group by ports you define in the transformation, returning one result for
each group.

If there is no group by port, PERCENTILE treats all rows as one group, returning one value.

150 Chapter 6: Functions

PMT

Example

The Data Integration Service calculates a percentile using the following logic:

i = (x+ lngercentile
100

Use the following guidelines for this equation:

e x is the number of elements in the group of values for which you are calculating a percentile.

e |Ifi< 1, PERCENTILE returns the value of the first element in the list.
e |fiis aninteger value, PERCENTILE returns the value of the ith element in the list.

e Otherwise PERCENTILE returns the value of n:

n = [Lilth?element x ([1]-1)] +[[1 th?element x (i—Li])]

The following expression returns the salary that falls at the 75th percentile of salaries greater than $50,000:

PERCENTILE (SALARY, 75, SALARY > 50000)

SALARY
125000.0
27900.0
100000.0
NULL
55000.0
9000.0
85000.0
86000.0
48000.0
99000.0

RETURN VALUE: 106250.0

Returns the payment for a loan based on constant payments and a constant interest rate.

Syntax

PMT (rate, terms, present valuel, future value, type])

PMT

151

The following table describes the arguments for this command:

Argument Required/ Description
Optional

rate Required Numeric. Interest rate of the loan for each period. Expressed as a decimal
number. Divide the rate by 100 to express it as a decimal number. Must be
greater than or equal to 0.

terms Required Numeric. Number of periods or payments. Must be greater than 0.

present value Required Numeric. Principle for the loan.

future value Optional Numeric. Cash balance you want to attain after the last payment. If you omit this
value, PMT uses 0.

type Optional Boolean. Timing of the payment. Enter 1 if the payment is at the beginning of

period. Enter 0 if the payment is at the end of period. Default is 0. If you enter a
value other than 0 or 1, the Data Integration Service treats the value as 1.

Return Value
Numeric.

Example

The following expression returns -2111.64 as the monthly payment amount of a loan:

PMT(0.01,

Notes

20000)

To calculate interest rate earned in each period, divide the annual rate by the number of payments made in a
year. For example, if you make monthly payments at an annual interest rate of 15%, the rate is 15%/12. If you
make annual payments, the rate is 15%.

The payment value is negative because these are amounts that you pay.

POWER

Returns a value raised to the exponent you pass to the function.

152

Syntax

POWER (base, exponent)

Chapter 6: Functions

PV

The following table describes the arguments for this command:

Argument Required/ Description
Optional

base Required Numeric value. This argument is the base value. You can enter any valid
transformation expression. If the base value is negative, the exponent must be an
integer.

exponent Required Numeric value. This argument is the exponent value. You can enter any valid
transformation expression. If the base value is negative, the exponent must be an
integer. In this case, the function rounds any decimal values to the nearest integer
before returning a value.

Return Value

Double value.

NULL if you pass a null value to the function.

Example

The following expression returns the values in the Numbers port raised to the values in the Exponent port:

POWER (NUMBERS,

NUMBERS

EXPONENT)

EXPONENT RETURN VALUE

2.0 100

6.0 1838.265625

5.5 982.594307804838
2.0 NULL

NULL NULL

-6.0 0.00137174211248285
-6.0 0.00137174211248285
6.0 729.0

5.5 729.0

The value -3.0 raised to 6 returns the same results as -3.0 raised to 5.5. If the base is negative, the exponent
must be an integer. Otherwise, the Data Integration Service rounds the exponent to the nearest integer value.

Returns the present value of an investment.

Syntax

PV (rate,

terms, payment

[, future value, type])

PV

153

The following table describes the arguments for this command:

Argument Required/ Description
Optional

rate Required Numeric. Interest rate earned in each period. Expresses as a decimal number.
Divide the rate by 100 to express it as a decimal number. Must be greater that or
equal to 0.

terms Required Numeric. Number of period or payments. Must be greater than 0.

payments Required Numeric. Payment amount due per period. Must be a negative number.

future value Optional Numeric. Cash balance after the last payment. If you omit this value, PV uses 0.

types Optional Boolean. Timing of the payment. Enter 1 if payment is at the beginning of
period. Enter 0 if the payment is at the end of period. Default is 0. If you enter a
value other than 0 or 1, the Data Integration Service treats the value as 1.

Return Value
Numeric.

Example

The following expression returns 12,524.43 as the amount you must deposit in the account today to have a
future value of $20,000 in one year if you also deposit $500 at the beginning of each period:

PV(0.0075,

RAND

154

12, -500, 20000, TRUE)

Returns a random number between 0 and 1. This is useful for probability scenarios.

Syntax

RAND (seed)

The following table describes the argument for this command:

Argument Required/ Description
Optional
seed Optional Numeric. Starting value for the Integration Service to generate the random number.

Value must be a constant. If you do not enter a seed, the Data Integration Service
uses the current system time to derive the numbers of seconds since January 1,
1971. It uses this value as the seed.

Return Value

Numeric.

For the same seed, the Data Integration Service generates the same sequence of numbers.

Chapter 6: Functions

Example
The following expression may return a value of 0.417022004702574:

RAND (1)

RATE

Returns the interest rate earned per period by a security.
Syntax
RATE (terms, payment, present value[, future value, type])

The following table describes the arguments for this command:

Argument Required/ Description
Optional

terms Required Numeric. Number of periods or payments. Must be greater than 0.

payments Required Numeric. Payment amount due per period. Must be a negative number.

present value Required Numeric. Lump-sum amount that a series of future payments is worth now.

future value Optional Numeric. Cash balance you want to attain after the last payment. For example,
the future value of a loan is 0. If you omit this argument, RATE uses 0.

types Optional Boolean. Timing of the payment. Enter 1 if payment is at the beginning of
period. Enter 0 if payment is at the end of the period. Default is 0. If you enter a
value other than 0 or 1, the Data Integration Service treats the value as 1.

Return Value

Numeric.

Example

The following expression returns 0.0077 as the monthly interest rate of a loan:
RATE (48, -500, 20000)

To calculate the annual interest rate of the loan, multiply 0.0077 by 12. The annual interest rate is 0.0924 or
9.24%.

REG_EXTRACT

Extracts subpatterns of a regular expression within an input value. For example, from a regular expression
pattern for a full name, you can extract the first name or last name.

Note: Use the REG_REPLACE function to replace a character pattern in a string with another character
pattern.

RATE 155

156

Syntax

REG_EXTRACT (subject, 'pattern', subPatternNum)

The following table describes the arguments for this command:

Argument Required/ Description
Optional

subject Required String datatype. Passes the value you want to compare against the regular
expression pattern.

pattern Required String datatype. Regular expression pattern that you want to match. You must
use perl compatible regular expression syntax. Enclose the pattern in single
quotation marks. Enclose each subpattern in parentheses.

subPatternNum Optional Integer value. Subpattern number of the regular expression you want to

match. Use the following guidelines to determine the subpattern number:

- no value or 1. Extracts the first regular expression subpattern.
- 2. Extracts the second regular expression subpattern.

- n. Extracts the nth regular expression subpattern.
Default is 1.

Using perl Compatible Regular Expression Syntax

You must use perl compatible regular expression syntax with REG_EXTRACT, REG_MATCH and
REG_REPLACE functions.

The following table provides perl compatible regular expression syntax guidelines:

Syntax Description

. (a period) Matches any one character.

[a-2] Matches one instance of a character in lower case. For example, [a-z] matches ab. Use [A-Z] to
match characters in upper case.

\d Matches one instance of any digit from 0-9.

\s Matches a whitespace character.

\w Matches one alphanumeric character, including underscore (_)

0 Groups an expression. For example, the parentheses in (\d-\d-\d\d) groups the expression \d\d-
\d\d, which finds any two numbers followed by a hyphen and any two numbers, as in 12-34.

{ Matches the number of characters. For example, \d{3} matches any three numbers, such as 650
or 510. Or, [a-z]{2} matches any two letters, such as CA or NY.

? Matches the preceding character or group of characters zero or one time. For example, \d{3}(-
{d{4})? matches any three numbers, which can be followed by a hyphen and any four numbers.

Chapter 6: Functions

Syntax Description

Matches zero or more instances of the values that follow the asterisk. For example, *0 is any
value that precedes a 0.

* (an asterisk)

+ Matches one or more instances of the values that follow the plus sign. For example, \w+ is any
value that follows an alphanumeric character.

For example, the following regular expression finds 5-digit U.S.A. zip codes, such as 93930, and 9-digit zip
codes, such as 93930-5407:

\d{5} (-\d{4})?

\d{5} refers to any five numbers, such as 93930. The parentheses surrounding -\d{4} group this segment of
the expression. The hyphen represents the hyphen of a 9-digit zip code, as in 93930-5407. \d{4} refers to any
four numbers, such as 5407. The question mark states that the hyphen and last four digits are optional or can
appear one time.

Converting COBOL Syntax to perl Compatible Regular Expression Syntax

If you are familiar with COBOL syntax, you can use the following information to write perl compatible regular
expressions.

The following table shows examples of COBOL syntax and their perl equivalents:

COBOL Syntax perl Syntax Description
9 \d Matches one instance of any digit from 0-9.
9999 \d\d\d\d Matches any four digits from 0-9, as in 1234 or 5936.
or
\d{4}
X [a-Z] Matches one instance of a letter.
9xx9 \d[a-z][a-z]\d Matches any number followed by two letters and another number, as in
1ab2.

Converting SQL Syntax to perl Compatible Regular Expression Syntax

If you are familiar with SQL syntax, you can use the following information to write perl compatible regular

expressions.

The following table shows examples of SQL syntax and their perl equivalents:

SQL Syntax perl Syntax Description

% V¥ Matches any string.

A% A Matches the letter “A” followed by any string, as in Area.
_ . (a period) Matches any one character.

A_ A. Matches “A” followed by any one character, such as AZ.

REG_EXTRACT

157

Return Value

Returns the value of the nth subpattern that is part of the input value. The nth subpattern is based on the
value you specify for subPatternNum.

NULL if the input is a null value or if the pattern is null.
Example

You might use REG_EXTRACT in an expression to extract middle names from a regular expression that
matches first name, middle name, and last name. For example, the following expression returns the middle
name of a regular expression:

REG_EXTRACT(Employee Name, '(\w+)\s+(\wt+)\s+(\wt+)',2)
Employee Name Return Value
Stephen Graham Smith Graham
Juan Carlos Fernando Carlos

REG_MATCH

158

Returns whether a value matches a regular expression pattern. This lets you validate data patterns, such as
IDs, telephone numbers, postal codes, and state names.

Note: Use the REG_REPLACE function to replace a character pattern in a string with a new character pattern.
Syntax
REG MATCH(subject, pattern)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
subject Required String datatype. Passes the value you want to match against the regular expression
pattern.
pattern Required String datatype. Regular expression pattern that you want to match. You must use
perl compatible regular expression syntax. Enclose the pattern in single quotes. For
more information, see “REG_EXTRACT" on page 155.

Return Value
TRUE if the data matches the pattern.
FALSE if the data does not match the pattern.

NULL if the input is a null value or if the pattern is NULL.

Chapter 6: Functions

Example

You might use REG_MATCH in an expression to validate telephone numbers. For example, the following
expression matches a 10-digit telephone number against the pattern and returns a Boolean value based on
the match:

REG_MATCH (Phone Number, '(\d\d\d-\d\d\d-\d\d\d\d)')

Phone_Number Return Value
408-555-1212 TRUE

NULL
510-555-1212 TRUE
92 555 51212 FALSE
650-555-1212 TRUE
415-555-1212 TRUE
831 555 12123 FALSE
Tip

You can also use REG_MATCH for the following tasks:
e To verify that a value matches a pattern. This use is similar to the SQL LIKE function.
e To verify that values are characters. This use is similar to the SQL IS_CHAR function.

To verify that a value matches a pattern, use a period (.) and an asterisk (*) with the REG_MATCH function in
an expression. A period matches any one character. An asterisk matches 0 or more instances of values that
follow it.

For example, use the following expression to find account numbers that begin with 1835:
REG _MATCH (ACCOUNT NUMBER, ‘1835.%*')

To verify that values are characters, use a REG_MATCH function with the regular expression [a-zA-Z]+. a-z
matches all lowercase characters. A-Z matches all uppercase characters. The plus sign (+) indicates that
there should be at least one character.

For example, use the following expression to verify that a list of last names contain only characters:

REG_MATCH (LAST NAME, ‘[a-zA-3]+’)

REG_REPLACE

Replaces characters in a string with another character pattern. By default, REG_REPLACE searches the input
string for the character pattern you specify and replaces all occurrences with the replacement pattern. You
can also indicate the number of occurrences of the pattern you want to replace in the string.

Syntax

REG_REPLACE (subject, pattern, replace, numReplacements)

REG_REPLACE 159

The following table describes the arguments for this command:

Argument Required/ Description
Optional

subject Required String datatype. Passes the string you want to search.

pattern Required String datatype. Passes the character string to be replaced. You must use perl
compatible regular expression syntax. Enclose the pattern in single quotes.
For more information, see "REG_EXTRACT" on page 155.

replace Required String datatype. Passes the new character string.

numReplacements Optional Numeric datatype. Specifies the number of occurrences you want to replace. If
you omit this option, REG_REPLACE will replace all occurrences of the
character string.

Return Value
String

Example

The following expression removes additional spaces from the Employee name data for each row of the

Employee_name port:

REG_REPLACE (Employee Name,

Employee Name
Adam Smith
Greg Sanders
Sarah Fe

Sam Cooper

REPLACECHR

Replaces characters in a string with a single character or no character. REPLACECHR searches the input
string for the characters you specify and replaces all occurrences of all characters with the new character

160

you specify.

Syntax

REPLACECHR(CaseFlag,

Chapter 6: Functions

\\S+I, \ I)

RETURN VALUE

Adam Smith

Greg Sanders

Sarah Fe

Sam Cooper

InputString, OldCharSet, NewChar)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
CaseFlag Required Must be an integer. Determines whether the arguments in this function are case

sensitive. You can enter any valid transformation expression.
When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is a null value or 0, the function is not case sensitive.

InputString Required Must be a character string. Passes the string you want to search. You can enter any
valid transformation expression. If you pass a numeric value, the function converts
it to a character string.

If InputString is NULL, REPLACECHR returns NULL.

OldCharSet Required Must be a character string. The characters you want to replace. You can enter one
or more characters. You can enter any valid transformation expression. You can
also enter a text literal enclosed within single quotation marks, for example, 'abc'.

If you pass a numeric value, the function converts it to a character string.
If OldCharSet is NULL or empty, REPLACECHR returns InputString.

NewChar Required Must be a character string. You can enter one character, an empty string, or NULL.
You can enter any valid transformation expression.

If NewChar is NULL or empty, REPLACECHR removes all occurrences of all
characters in OldCharSet in InputString.

If NewChar contains more than one character, REPLACECHR uses the first character
to replace O/dCharSet.

Return Value

String.

Empty string if REPLACECHR removes all characters in InputString.
NULL if InputString is NULL.

InputString if OldCharSet is NULL or empty.

Examples

The following expression removes the double quotes from web log data for each row in the WEBLOG port:

REPLACECHR(0, WEBLOG, '"', NULL)
WEBLOG RETURN VALUE
"GET /news/index.html HTTP/1.1" GET /news/index.html HTTP/1.1
"GET /companyinfo/index.html HTTP/1.1" GET /companyinfo/index.html HTTP/1.1
GET /companyinfo/index.html HTTP/1.1 GET /companyinfo/index.html HTTP/1.1
NULL NULL

REPLACECHR 161

The following expression removes multiple characters for each row in the WEBLOG port:

REPLACECHR (1, WEBLOG, ']["', NULL
WEBLOG RETURN VALUE
[29/0¢ct/2001:14:13:50 -0700] 29/0ct/2001:14:13:50 -0700
[31/0ct/2000:19:45:46 -0700] "GET /news/ 31/0ct/2000:19:45:46 -0700 GET /news/
index.html HTTP/1.1" index.html HTTP/1.1
[01/Nov/2000:10:51:31 -0700] "GET /news/ 01/Nov/2000:10:51:31 -0700 GET /news/
index.html HTTP/1.1" index.html HTTP/1.1
NULL NULL

The following expression changes part of the value of the customer code for each row in the
CUSTOMER_CODE port:

REPLACECHR (1, CUSTOMER CODE, 'A', 'M')

CUSTOMER CODE RETURN VALUE
ABA MBM

abA abM

BBC BBC

ACC MCC

NULL NULL

The following expression changes part of the value of the customer code for each row in the
CUSTOMER_CODE port:

REPLACECHR (0, CUSTOMER CODE, 'A', 'M')

CUSTOMER _CODE RETURN VALUE
ABA MBM
abA MbM
BBC BBC
ACC MCC

The following expression changes part of the value of the customer code for each row in the
CUSTOMER_CODE port:

REPLACECHR (1, CUSTOMER CODE, 'A', NULL)

CUSTOMER CODE RETURN VALUE

ABA B

162 Chapter 6: Functions

CUSTOMER CODE RETURN VALUE

BBC BBC

ACC cc

ARA [empty string]
aaa aaa

NULL NULL

The following expression removes multiple numbers for each row in the INPUT port:

REPLACECHR (1, INPUT, '14', NULL)

INPUT RETURN VALUE
12345 235

4141 NULL

111115 5

NULL NULL

When you want to use a single quote (') in either OldCharSet or NewChar, you must use the CHR function. The
single quote is the only character that cannot be used inside a string literal.

The following expression removes multiple characters, including the single quote, for each row in the INPUT
port:

REPLACECHR (1, INPUT, CHR(39), NULL)

INPUT RETURN VALUE

'Tom Smith' 'Laura Jones' Tom Smith Laura Jones
Tom's Toms

NULL NULL

REPLACESTR

Replaces characters in a string with a single character, multiple characters, or no character. REPLACESTR
searches the input string for all strings you specify and replaces them with the new string you specify.

Syntax

REPLACESTR (CaseFlag, InputString, 0l1dStringl, [0ldString2, ... 0ldStringN,] NewString

REPLACESTR 163

The following table describes the arguments for this command:

Argument

Required/
Optional

Description

CaseFlag

Required

Must be an integer. Determines whether the arguments in this function are case
sensitive. You can enter any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is a null value or 0, the function is not case sensitive.

InputString

Required

Must be a character string. Passes the strings you want to search. You can enter
any valid transformation expression. If you pass a numeric value, the function
converts it to a character string.

If InputString is NULL, REPLACESTR returns NULL.

0ldString

Required

Must be a character string. The string you want to replace. You must enter at least
one 0ldString argument. You can enter one or more characters per 0/dString
argument. You can enter any valid transformation expression. You can also enter a
text literal enclosed within single quotation marks, for example, 'abc'.

If you pass a numeric value, the function converts it to a character string.

When REPLACESTR contains multiple 0/dString arguments, and one or more
0ldString arguments is NULL or empty, REPLACESTR ignores the 0/dString
argument. When all O/dString arguments are NULL or empty, REPLACESTR returns
InputString.

The function replaces the characters in the 0/dString arguments in the order they
appear in the function. For example, if you enter multiple 0/dString arguments, the
first 0ldString argument has precedence over the second 0/dString argument, and
the second 0/dString argument has precedence over the third 0/dString argument.
When REPLACESTR replaces a string, it places the cursor after the replaced
characters in InputString before searching for the next match.

NewString

Required

Must be a character string. You can enter one character, multiple characters, an
empty string, or NULL. You can enter any valid transformation expression.

If NewString is NULL or empty, REPLACESTR removes all occurrences of 0/dString in
InputString.

Return Value

String.

Empty string if REPLACESTR removes all characters in InputString.

NULL if InputString is NULL.

InputString if all OldString arguments are NULL or empty.

Examples

The following expression removes the double quotes and two different text strings from web log data for

each row in the WEBLOG port:

REPLACESTR(1, WEBLOG, '"', 'GET ', ' HTTP/1.1', NULL)
WEBLOG RETURN VALUE
"GET /news/index.html HTTP/1.1" /news/index.html
"GET /companyinfo/index.html HTTP/1.1" /companyinfo/index.html

164 Chapter 6: Functions

WEBLOG RETURN VALUE

GET /companyinfo/index.html /companyinfo/index.html
GET [empty string]
NULL NULL

The following expression changes the title for certain values for each row in the TITLE port:

REPLACESTR (1, TITLE, 'rs.', 'iss', 's.')
TITLE RETURN VALUE
Mrs. Ms.
Miss Ms.
Mr. Mr.
MRS. MRS.

The following expression changes the title for certain values for each row in the TITLE port:

REPLACESTR (0, TITLE, 'rs.', 'iss', 's.'
TITLE RETURN VALUE
Mrs. Ms.
MRS. Ms.

The following expression shows how the REPLACESTR function replaces multiple 01dString arguments for

each row in the INPUT port:

REPLACESTR (1, INPUT, 'ab', 'bc', '*')

INPUT RETURN VALUE
abc *c

abbc *x

abbbbc *bb*

bc *

The following expression shows how the REPLACESTR function replaces multiple 01dString arguments for

each row in the INPUT port:

REPLACESTR (1, INPUT, 'ab', 'bc', 'b')

INPUT RETURN VALUE

ab b

REPLACESTR

165

INPUT RETURN VALUE

bc b

abc bc
abbc bb
abbcc bbc

When you want to use a single quote (') in either OldString or NewString, you must use the CHR function. Use
both the CHR and CONCAT functions to concatenate a single quote onto a string. The single quote is the only
character that cannot be used inside a string literal. Consider the following example:

CONCAT ('Joan', CONCAT(CHR(39), 's car'))
The return value is:
Joan's car

The following expression changes a string that includes the single quote, for each row in the INPUT port:

REPLACESTR (1, INPUT, CONCAT('it', CONCAT (CHR(39), 's')), 'its')
INPUT RETURN VALUE
it's its
mit's mits
mits mits
mits' mits'

RESPEC

166

Renames each element of the given struct value based on the names of the elements in the specified
complex data type definition.

Syntax

RESPEC (:Type.type definition library.type definition, struct value)

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional

:Type.type_definition_library.type_definition | Required The complex data type definition that represents the
schema of the struct data.
Use the reference qualifier : Type to reference the type
definition library that contains the complex data type
definition.

struct_value Required The struct value for which you want to change the

element names. You can enter any valid transformation
expression that evaluates to a struct.

The data type of each element in the complex data type definition must match the data type of the

corresponding element of the struct.

Return Value

Struct.

Examples

The following expression changes the names of the elements in the struct port h2_sales based on the names
in the complex data type definition h1_sales_def.

RESPEC (:Type.type definition library.h2 sales def, h2 sales)

h2 sales_def

{

ql sales :
q2_sales :

REVERSE

bigint

Reverses the input string.

Syntax

REVERSE (string)

h2 sales

q3_total :
g4 _total :

RETURN VALUE

ql sales : int

bigint g2 sales : bigint

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Any character value. Value you want to reverse.

Return Value

String. Reverse of the input value.

REVERSE 167

Example

The following expression reverses the numbers of the customer code:

REVERSE (CUSTOMER CODE)

CUSTOMER CODE RETURN VALUE
0001 1000
0002 2000
0003 3000
0004 4000

ROUND (Dates)

Rounds one part of a date. You can also use ROUND to round numbers.
This function can round the following parts of a date:
Year

Rounds the year portion of a date based on the month.
Month

Rounds the month portion of a date based on the day of the month.
Day

Rounds the day portion of the date based on the time.
Hour

Rounds the hour portion of the date based on the minutes in the hour.
Minute

Rounds the minute portion of the date based on the seconds.
Second

Rounds the second portion of the date based on the milliseconds.
Millisecond

Rounds the millisecond portion of the date based on the microseconds.
Microsecond

Rounds the microsecond portion of the date based on the nanoseconds.

168 Chapter 6: Functions

The following table shows the conditions used by the ROUND expression and the return values:

Condition

Expression

Return Value

Month between January and June, function
returns January 1 of the same year and sets the
time to 00:00:00.000000000.

ROUND (TO_DATE ('04/16/1998
8:24:19', '"MM/DD/YYYY
HH24:MI:SS'),'YY')

01/01/1998
00:00:00.000000000

Month between July and December, function
returns January 1 of next year and sets the time
t0 00:00:00.000000000.

ROUND (TO_DATE ('07/30/1998
2:30:55', 'MM/DD/YYYY
HH24:MI:SS'),'YY')

01/01/1999
00:00:00.000000000

Day of the month between 1 and 15, function
returns the first day of the input month and sets
the time to 00:00:00.000000000.

ROUND (TO_DATE ('04/15/1998
8:24:19', '"MM/DD/YYYY
HH24:MI:SS'), 'MM')

04/01/1998
00:00:00.000000000

Day of the month between 16 and the last day of
the month, function returns the first day of the
next month and sets the time to
00:00:00.000000000.

ROUND (TO_DATE ('05/22/1998
10:15:29', '"MM/DD/YYYY
HH24:MI:SS'"), 'MM'")

06/01/1998
00:00:00.000000000

Time between 00:00:00 (12 a.m.) and 11:59:59
a.m., function returns the current date and sets
the time to 00:00:00.000000000 (12 a.m.).

ROUND (TO_DATE ('06/13/1998
2:30:45', 'MM/DD/YYYY
HH24:MI:SS'),'DD')

06/13/1998
00:00:00.000000000

Time 12:00:00 (12 p.m.) or later, function
rounds the date to the next day and sets the
time to 00:00:00.000000000 (12 a.m.).

ROUND (TO_DATE ('06/13/1998
22:30:45", "MM/DD/YYYY
HH24:MI:SS"),'DD'")

06/14/1998
00:00:00.000000000

Minute portion of time between 0 and 29
minutes, function returns the current hour and
sets minutes, seconds, milliseconds, and
nanoseconds to 0.

ROUND (TO_DATE ('04/01/1998
11:29:35", '"MM/DD/YYYY
HH24:MI:SS'), 'HH')

04/01/1998
11:00:00.000000000

Minute portion of the time 30 or greater,
function returns the next hour and sets minutes,
seconds, milliseconds, and nanoseconds to 0.

ROUND (TO_DATE ('04/01/1998
13:39:00', '"MM/DD/YYYY
HH24:MI:SS'), 'HH')

04/01/1998
14:00:00.000000000

Time between 0 and 29 seconds, function
returns the current minute and sets seconds,
milliseconds, and nanoseconds to 0.

ROUND (TO_DATE ('05/22/1998
10:15:29", "MM/DD/YYYY
HH24:MI:SS'"), 'MI'")

05/22/1998
10:15:00.000000000

Time between 30 and 59 seconds, function
returns the next minute and sets seconds,
milliseconds, and nanoseconds to 0.

ROUND (TO_DATE ('05/22/1998
10:15:30", "MM/DD/YYYY
HH24:MI:SS'),'MI')

05/22/1998
10:16:00.000000000

Time between 0 and 499 milliseconds, function
returns the current second and sets
milliseconds to 0.

ROUND (TO_DATE ('05/22/1998
10:15:29.499"', '"MM/DD/YYYY
HH24:MI:SS.MS'),'SS")

05/22/1998
10:15:29.000000000

Time between 500 and 999 milliseconds,
function returns the next second and sets
milliseconds to 0.

ROUND (TO_DATE ('05/22/1998
10:15:29.500", '"MM/DD/YYYY
HH24:MI:SS.MS'),'SS")

05/22/1998
10:15:30.000000000

Time between 0 and 499 microseconds, function
returns the current millisecond and sets
microseconds to 0.

ROUND (TO DATE ('05/22/1998
10:15:29.498125", 'MM/DD/
YYYY HH24:MI:SS.US'),'MS'")

05/22/1998
10:15:29.498000000

ROUND (Dates)

169

microseconds to 0.

Condition Expression Return Value
Time between 500 and 999 microseconds, ROUND (TO_DATE ('05/22/1998 05/22/1998
function returns the next millisecond and sets 10:15:29.498785", '"MM/DD/ 10:15:29.499000000

YYYY HH24:MI:SS.US'),'MS'")

Time between 0 and 499 nanoseconds, function ROUND (TO DATE ('05/22/1998 05/22/1998
returns the current microsecond and sets 10:15:29.498125345", '"MM/DD | 10:15:29.498125000
nanoseconds to 0.

/YYYY
HH24:MI:SS.NS'),'US")

Time between 500 and 999 nanoseconds, ROUND (TO DATE ('05/22/1998 05/22/1998
function returns the next microsecond and sets 10:15:29.498125876", 'MM/DD 10:15:29.498126000
nanoseconds to 0.

/YYYY
HH24:MI:SS.NS'),'US")

Syntax

ROUND (date

[, format]

)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. You can nest TO_DATE to convert strings to dates before
rounding.
format Optional Enter a valid format string. This is the portion of the date that you want to round.
You can round only one portion of the date. If you omit the format string, the
function rounds the date to the nearest day.

Return Value

Date with the specified part rounded. ROUND returns a date in the same format as the source date. You can
link the results of this function to any port with a Date/Time datatype.

NULL if you pass a null value to the function.

Examples

The following expressions round the year portion of dates in the DATE_SHIPPED port:

ROUND
ROUND
ROUND
ROUND

DATE

DATE_SHIPPED

DATE SHIPPED,
DATE_SHIPPED,

SHIPPED,

DATE SHIPPED,

Jan 15 1998 2:10:30AM

Apr 19 1998 1:31:20PM

Dec 20 1998 3:29:55PM

NULL

170 Chapter 6: Functions

'Yl)
TYyy!)
TYYY')
TYYYY')

RETURN VALUE

Jan 1 1998 12:00:00.000000000AM

Jan 1 1998 12:00:00.000000000AM

Jan 1 1999 12:00:00.000000000AM

NULL

The following expressions round the month portion of each date in the DATE_SHIPPED port:

ROUND (DATE SHIPPED, 'MM')
ROUND (DATE SHIPPED, 'MON')
ROUND (DATE _SHIPPED, 'MONTH')

DATE_SHIPPED RETURN VALUE

Jan 15 1998 2:10:30AM Jan 1 1998 12:00:00.000000000AM
Apr 19 1998 1:31:20PM May 1 1998 12:00:00.000000000AM
Dec 20 1998 3:29:55PM Jan 1 1999 12:00:00.000000000AM
NULL NULL

The following expressions round the day portion of each date in the DATE_SHIPPED port:

(DATE_SHIPPED, 'D')
(DATE SHIPPED, 'DD')
ROUND (DATE_SHIPPED, 'DDD')
(
(

ROUND (DATE SHIPPED, 'DY')

ROUND (DATE SHIPPED, 'DAY')
DATE_SHIPPED RETURN VALUE
Jan 15 1998 2:10:30AM Jan 15 1998 12:00:00.000000000AM
Apr 19 1998 1:31:20PM Apr 20 1998 12:00:00.000000000AM
Dec 20 1998 3:29:55PM Dec 21 1998 12:00:00.000000000AM
Dec 31 1998 11:59:59PM Jan 1 1999 12:00:00.000000000AM
NULL NULL

The following expressions round the hour portion of each date in the DATE_SHIPPED port:

ROUND (DATE_SHIPPED, 'HH')
ROUND (DATE SHIPPED, 'HH12')
ROUND (DATE_SHIPPED, 'HH24')

DATE_SHIPPED RETURN VALUE

Jan 15 1998 2:10:31AM Jan 15 1998 2:00:00.000000000AM
Apr 19 1998 1:31:20PM Apr 19 1998 2:00:00.000000000PM
Dec 20 1998 3:29:55PM Dec 20 1998 3:00:00.000000000PM
Dec 31 1998 11:59:59PM Jan 1 1999 12:00:00.000000000AM
NULL NULL

ROUND (Dates)

171

The following expression rounds the minute portion of each date in the DATE_SHIPPED port:

ROUND (DATE SHIPPED, 'MI')

DATE_SHIPPED RETURN VALUE

Jan 15 1998 2:10:30AM Jan 15 1998 2:11:00.000000000AM
Apr 19 1998 1:31:20PM Apr 19 1998 1:31:00.000000000PM
Dec 20 1998 3:29:55PM Dec 20 1998 3:30:00.000000000PM
Dec 31 1998 11:59:59PM Jan 1 1999 12:00:00.000000000AM
NULL NULL

ROUND (Numbers)

Rounds numbers to a specified number of digits or decimal places. You can also use ROUND to round dates.
Syntax
ROUND (numeric value [, precision])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. You can enter any valid transformation expression. Use

operators to perform arithmetic before you round the values.

precision Optional Positive or negative integer. If you enter a positive precision, the function rounds
to this number of decimal places. For example, ROUND(12.99, 1) returns 13.0 and
ROUND(15.44, 1) returns 15.4.

If you enter a negative precision, the function rounds this number of digits to the
left of the decimal point, returning an integer. For example, ROUND(12.99, -1)
returns 10 and ROUND(15.99, -1) returns 20.

If you enter decimal precision, the function rounds to the nearest integer before
evaluating the expression. For example, ROUND(12.99, 0.8) returns 13.0 because
the function rounds 0.8 to 1 and then evaluates the expression.

If you omit the precision argument, the function rounds to the nearest integer,
truncating the decimal portion of the number. For example, ROUND(12.99) returns
13.

Return Value
Numeric value.
If one of the arguments is NULL, ROUND returns NULL.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

172 Chapter 6: Functions

Examples

The following expression returns the values in the Price port rounded to three decimal places:

ROUND (PRICE, 3)

PRICE RETURN VALUE
12.9936 12.994
15.9949 15.995
-18.8678 -18.868
56.9561 56.956

NULL NULL

You can round digits to the left of the decimal point by passing a negative integer in the precision argument:

ROUND (PRICE, -2)

PRICE RETURN VALUE
13242.99 13200.0
1435.99 1400.0
-108.95 -100.0

NULL NULL

If you pass a decimal value in the precision argument, the Data Integration Service rounds it to the nearest
integer before evaluating the expression:

ROUND(PRICE, 0.8)

PRICE RETURN VALUE
12.99 13.0
56.34 56.3
NULL NULL

If you omit the precision argument, the function rounds to the nearest integer:

ROUND (PRICE)

PRICE RETURN VALUE
12.99 13.0

-15.99 -16.0

-18.99 -19.0

ROUND (Numbers) 173

RPAD

174

PRICE RETURN VALUE

56.95 57.0
NULL NULL
Tip

You can also use ROUND to explicitly set the precision of calculated values and achieve expected results.
When the Data Integration Service runs in low precision mode, it truncates the result of calculations if the
precision of the value exceeds 15 digits. For example, you might want to process the following expression in
low precision mode:

7/3 x 3 =1

In this case, the Data Integration Service evaluates the left hand side of the expression as
6.999999999999999 because it truncates the result of the first division operation. The Data Integration
Service evaluates the entire expression as FALSE. This may not be the result you expect.

To achieve the expected result, use ROUND to round the truncated result of the left hand side of the
expression to the expected result. The Data Integration Service evaluates the following expression as TRUE:

ROUND(7/3 * 3) =17

Converts a string to a specified length by adding blanks or characters to the end of the string.
Syntax
RPAD(first string, length [,second string])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
first_string Required Any string value. The strings you want to change. You can enter any valid

transformation expression.

length Required Must be a positive integer literal. Specifies the length you want each string to be.

second_string Optional Any string value. Passes the string you want to append to the right-side of the
first_string values. Enclose the characters you want to add to the end of the
string within single quotation marks, for example, 'abc'. This argument is case
sensitive.

If you omit the second string, the function pads the end of the first string with
blanks.

Return Value
String of the specified length.

NULL if a value passed to the function is NULL or if length is a negative number.

Chapter 6: Functions

Examples

The following expression returns the item name with a length of 16 characters, appending the string ".' to the
end of each item name:

RPAD(ITEM NAME, 16, '.')

ITEM NAME RETURN VALUE

Flashlight Flashlight......
Compass Compass.........
Regulator System Regulator System
Safety Knife Safety Knife....

RPAD counts the length from left to right. So, if the first string is longer than the length, RPAD truncates the
string from right to left. For example, RPAD(‘alphabetical’, 5, ‘x’) would return the string ‘alpha’. RPAD uses a
partial part of the second_string when necessary.

The following expression returns the item name with a length of 16 characters, appending the string *..*' to
the end of each item name:

RPAD(ITEM NAME, 16, '*..*')

ITEM NAME RETURN VALUE

Flashlight Flashlight*..**.
Compass Compass*..*x*, **
Regulator System Regulator System
Safety Knife Safety Knifex..*

RTRIM

Removes blanks or characters from the end of a string.
If you do not specify a trim_set parameter in the expression:
¢ In UNICODE mode, RTRIM removes both single- and double-byte spaces from the end of a string.

¢ In ASCII mode, RTRIM removes only single-byte spaces.

If you use RTRIM to remove characters from a string, RTRIM compares the trim_set to each character in the
string argument, character-by-character, starting with the right side of the string. If the character in the string
matches any character in the trim_set, RTRIM removes it. RTRIM continues comparing and removing
characters until it fails to find a matching character in the trim_set. It returns the string without the matching
characters.

Syntax

RTRIM(string [, trim set])

RTRIM 175

176

The following table describes the arguments for this command:

Argument Required/ Description
Optional
string Required Any string value. Passes the values you want to trim. You can enter any valid

transformation expression. Use operators to perform comparisons or concatenate
strings before removing blanks from the end of a string.

trim_set Optional Any string value. Passes the characters you want to remove from the end of the
string. You can also enter a text literal. However, you must enclose the characters
you want to remove from the end of the string within single quotation marks, for
example, 'abc'. If you omit the second string, the function removes blanks from the
end of the first string.

RTRIM is case sensitive.

Return Value

String. The string values with the specified characters in the trim_set argument removed.
NULL if a value passed to the function is NULL.

Example

The following expression removes the characters ‘re’ from the strings in the LAST_NAME port:

RTRIM(LAST NAME, 're')

LAST_NAME RETURN VALUE
Nelson Nelson

Page Pag

Osborne Osborn

NULL NULL

Sawyer Sawy

H. Bender H. Bend
Steadman Steadman

RTRIM removes ‘e’ from Page even though ‘r’ is the first character in the trim_set. This is because RTRIM
searches, character-by-character, for the set of characters you specify in the trim_set argument. If the last
character in the string matches the first character in the trim_set, RTRIM removes it. If, however, the last
character in the string does not match, RTRIM compares the second character in the trim_set. If the second
from last character in the string matches the second character in the trim_set, RTRIM removes it, and so on.
When the character in the string fails to match the trim_set, RTRIM returns the string and evaluates the next
row.

In the last example, the last character in Nelson does not match any character in the trim_set argument, so
RTRIM returns the string 'Nelson' and evaluates the next row.

Tips for RTRIM

Use RTRIM and LTRIM with || or CONCAT to remove leading and trailing blanks after you concatenate two
strings.

Chapter 6: Functions

You can also remove multiple sets of characters by nesting RTRIM. For example, if you want to remove
trailing blanks and the character ‘t’ from the end of each string in a column of names, you might create an
expression similar to the following:

RTRIM(RTRIM(NAMES), 't')

SET_DATE_PART

Sets one part of a Date/Time value to a value you specify. With SET_DATE_PART, you can change the
following parts of a date:

Year. Change the year by entering a positive integer in the value argument. Use any of the year format
strings: Y, YY, YYY, or YYYY to set the year. For example, the following expression changes the year to
2001 for all dates in the SHIP_DATE port:

SET DATE PART(SHIP DATE, 'YY', 2001)

Month. Change the month by entering a positive integer between 1 and 12 (January=1 and December=12)
in the value argument. Use any of the month format strings: MM, MON, MONTH to set the month. For
example, the following expression changes the month to October for all dates in the SHIP_DATE port:

SET DATE PART(SHIP DATE, 'MONTH', 10)

Day. Change the day by entering a positive integer between 1 and 31 (except for the months that have less
than 31 days: February, April, June, September, and November) in the value argument. Use any of the
month format strings (D, DD, DDD, DY, and DAY) to set the day. For example, the following expression
changes the day to 10 for all dates in the SHIP_DATE port:

SET DATE PART(SHIP DATE, 'DD', 10)

Hour. Change the hour by entering a positive integer between 0 and 24 (where 0=12AM, 12=12PM, and 24
=12AM) in the value argument. Use any of the hour format strings (HH, HH12, HH24) to set the hour. For
example, the following expression changes the hour to 14:00:00 (or 2:00:00PM) for all dates in the
SHIP_DATE port:

SET DATE PART(SHIP DATE, 'HH', 14)

Minute. Change the minutes by entering a positive integer between 0 and 59 in the value argument. Use
the MI format string to set the minute. For example, the following expression changes the minute to 25 for
all dates in the SHIP_DATE port:

SET DATE PART(SHIP DATE, 'MI', 25)

Seconds. Change the seconds by entering a positive integer between 0 and 59 in the value argument. Use
the SS format string to set the second. For example, the following expression changes the second to 59
for all dates in the SHIP_DATE port:

SET DATE PART(SHIP DATE, 'SS', 59)

Milliseconds. Change the milliseconds by entering a positive integer between 0 and 999 in the value
argument. Use the MS format string to set the milliseconds. For example, the following expression
changes the milliseconds to 125 for all dates in the SHIP_DATE port:

SET DATE PART(SHIP DATE, 'MS', 125)

Microseconds. Change the microseconds by entering a positive integer between 1000 and 999999 in the
value argument. Use the US format string to set the microseconds. For example, the following expression
changes the microseconds to 12555 for all dates in the SHIP_DATE port:

SET DATE PART(SHIP DATE, 'US', 12555)

SET_DATE_PART 177

* Nanoseconds. Change the nanoseconds by entering a positive integer between 1000000 and 999999999
in the value argument. Use the NS format string to set the nanoseconds. For example, the following
expression changes the nanoseconds to 12555555 for all dates in the SHIP_DATE port:

SET_DATE_ PART(SHIP DATE, 'NS', 12555555)
Syntax
SET DATE PART(date, format, value)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. The date you want to modify. You can enter any valid

transformation expression.

format Required Format string specifying the portion of the date to be changed. The format string is
not case sensitive.

value Required A positive integer value assigned to the specified portion of the date. The integer
must be a valid value for the part of the date you want to change. If you enter an
improper value such as February 30, the session fails.

Return Value

Date in the same format as the source date with the specified part changed.
NULL if a value passed to the function is NULL.

Examples

The following expressions change the hour to 4PM for each date in the DATE_PROMISED port:

SET DATE PART (DATE PROMISED, 'HH', 16)
SET DATE PART(DATE PROMISED, 'HH12', 16)
SET DATE PART (DATE PROMISED, 'HH24', 16)

DATE_PROMISED RETURN VALUE

Jan 1 1997 12:15:56AM Jan 1 1997 4:15:56PM
Feb 13 1997 2:30:01AM Feb 13 1997 4:30:01PM
Mar 31 1997 5:10:15PM Mar 31 1997 4:10:15PM
Dec 12 1997 8:07:33AM Dec 12 1997 4:07:33PM
NULL NULL

178 Chapter 6: Functions

SIGN

The following expressions change the month to June for the dates in the DATE_PROMISED port. The Data
Integration Service displays an error when you try to create a date that does not exist, such as changing

March 31 to June 31:

SET DATE PART(DATE PROMISED, 'MM', 6)
SET DATE PART(DATE PROMISED, 'MON', 6)
SET DATE PART (DATE PROMISED, 'MONTH', 6)

DATE_PROMISED
Jan 1 1997 12:15:56AM

Feb 13 1997 2:30:01AM

RETURN VALUE

Jun 1 1997 12:15:56AM

Jun 13 1997 2:30:01AM

Mar 31 1997 5:10:15PM Error. Integration Service doesn't write row.

Dec 12 1997 8:07:33AM Jun 12 1997 8:07:33AM

NULL NULL

The following expressions change the year to 2000 for the dates in the DATE_PROMISED port:

SET DATE PART
SET DATE PART
SET DATE PART
SET DATE PART

DATE PROMISED, 'Y', 2000)
DATE_PROMISED, 'YY', 2000)
DATE_PROMISED, 'YYY', 2000)

(
(
(
(DATE PROMISED, 'YYYY', 2000)

DATE PROMISED RETURN VALUE

Jan 1 1997 12:15:56AM Jan 1 2000 12:15:56AM

Feb 13 1997 2:30:01AM Feb 13 2000 2:30:01AM

Mar 31 1997 5:10:15PM Mar 31 2000 5:10:15PM

Dec 12 1997 8:07:33AM Dec 12 2000 4:07:33PM

NULL NULL

Tip
If you want to change multiple parts of a date at one time, you can nest multiple SET_DATE_PART functions

within the date argument. For example, you might write the following expression to change all of the dates in
the DATE_ENTERED port to July 1 1998:

SET DATE_PART(SET DATE PART(SET DATE PART(DATE ENTERED, 'YYYY', 1998),MM', 7), 'DD',
1)

Returns whether a numeric value is positive, negative, or 0.

Syntax

SIGN(numeric value)

SIGN 179

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric value. Passes the values you want to evaluate. You can enter any valid

transformation expression.

Return Value

-1 for negative values.

0 for 0.

1 for positive values.

NULL if NULL.

Example

The following expression determines if the SALES port includes any negative values:

SIGN(SALES)

SALES

100

-25.99

NULL

SIN

180

RETURN VALUE

NULL

Returns the sine of a numeric value (expressed in radians).

Syntax

SIN(numeric value

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by pi

divided by 180). Passes the values for which you want to calculate the sine. You
can enter any valid transformation expression. You can also use operators to
convert a numeric value to radians or perform arithmetic within the SIN
calculation.

Return Value

Double value.

Chapter 6: Functions

SINH

NULL if a value passed to the function is NULL.

Example

The following expression converts the values in the Degrees port to radians and then calculates the sine for

each radian:

SIN(DEGREES * 3.14159265359 / 180)

DEGREES

90

70

30

89

NULL

RETURN VALUE

0.939692620785936

0.50000000000003

0.0871557427476639

0.999847695156393

NULL

You can perform arithmetic on the values passed to SIN before the function calculates the sine. For example:

SIN(ARCS * 3.14159265359 / 180)

Returns the hyperbolic sine of the numeric value.

Syntax

SINH(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by pi

divided by 180). Passes the values for which you want to calculate the hyperbolic
sine. You can enter any valid transformation expression.

Return Value

Double value.

NULL if a value passed to the function is NULL.

SINH 181

Example

The following expression returns the hyperbolic sine for the values in the Angles port:

SINH(ANGLES)

ANGLES RETURN VALUE

1.0 1.1752011936438
2.897 9.03225804884884
3.66 19.4178051793031
5.45 116.376934801486
0 0.0

0.345 0.35188478309993
NULL NULL

Tip

You can perform arithmetic on the values passed to SINH before the function calculates the hyperbolic sine.
For example:

SINH(MEASURES.ARCS / 180)

SIZE

Returns the size of the array.

Syntax
SIZE (array value)

The following table describes the arguments for this command:

Argument Required/Optional Description

array_value Required Array data type. The array for which you want to determine the size.

Return Value
Int.

Returns -1 if the array is NULL.

182 Chapter 6: Functions

Examples

The following expression returns the size of the array ITEM_NAME.

SIZE (ITEM NAME)

ITEM NAME RETURN VALUE
[‘apples’, ‘bananas’, ‘oranges’] 3
[‘milk’, ‘coffee’, ‘tea’, ‘chai’] 4
[‘cookie’,’cake’] 2
[‘croissant’,NULL] 2
NULL -1

SOUNDEX

Encodes a string value into a four-character string.

SOUNDEX works for characters in the English alphabet (A-Z). It uses the first character of the input string as
the first character in the return value and encodes the remaining three unique consonants as numbers.

SOUNDEX encodes characters according to the following list of rules:

e Uses the first character in string as the first character in the return value and encodes it in uppercase. For
example, both SOUNDEX(‘John’) and SOUNDEX(‘john’) return ‘J500'.

e Encodes the first three unique consonants following the first character in string and ignores the rest. For
example, both SOUNDEX(‘JohnRB’) and SOUNDEX(‘JohnRBCD’) return 'J561°.

¢ Assigns a single code to consonants that sound alike.

The following table lists SOUNDEX encoding guidelines for consonants:

Table 2. SOUNDEX Encoding Guidelines for Consonants

Code Consonant

1 B,P,F,V

2 C S G JKQXZ
3 D, T

4 L

5 M, N

6 R

e Skips the characters A E, I, O, U, H, and W unless one of them is the first character in string. For example,
SOUNDEX('A123’) returns ‘A000’ and SOUNDEX(‘MAeiouhwC’) returns ‘M200'.

SOUNDEX 183

e If string produces fewer than four characters, SOUNDEX pads the resulting string with zeroes. For
example, SOUNDEX('J’) returns ‘J000’.

o |f string contains a set of consecutive consonants that use the same code listed in “SOUNDEX" on page
183, SOUNDEX encodes the first occurrence and skips the remaining occurrences in the set. For example,
SOUNDEX(‘AbbpdMN’) returns ‘A135'.

e Skips numbers in string. For example, both SOUNDEX(‘Joh12n’) and SOUNDEX(“1John’) return ‘J500'.

e Returns NULL if string is NULL or if all the characters in string are not letters of the English alphabet.
Syntax
SOUNDEX (string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Character string. Passes the string value you want to encode. You can enter any
valid transformation expression.

Return Value

String.

NULL if one of the following conditions is true:

o |[f value passed to the function is NULL.

e No character in string is a letter of the English alphabet.

e string is empty.

Example

The following expression encodes the values in the EMPLOYEE_NAME port:

SOUNDEX (EMPLOYEE NAME

EMPLOYEE NAME RETURN VALUE
John J500
William w450
jane J500
johl2n J500
labc Al120
NULL NULL

184 Chapter 6: Functions

SQL_LIKE

Returns whether a value matches a regular expression pattern. This lets you validate date patterns, such as
IDs, telephone numbers, postal codes, and state names.

Syntax
SQL LIKE (subject, pattern, escape character)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
subject Required String data type. Passes the value you want to match against the regular

expression. Enclose the value in single quotation marks.

pattern Required String data type. Regular expression that you want to match. Enclose the pattern
in single quotation marks.

escape Optional String data type. The SQL_LIKE function supports the percentage sign (%) and
character underscore (_) as escape characters. Enclose the escape character in single
quotation marks.

Return Value

TRUE if the data matches the pattern.

FALSE if the data does not match the pattern.

NULL if the input is a null value or if the pattern is NULL.
Example

You might use SQL_LIKE in an expression to find names that match a pattern. For example, the following
expression matches names against the pattern "A_#%" with the escape character '#"

SQL LIKE (ENAME, 'A #%', '#')

ENAME Value
SMITH FALSE
AX% TRUE

MILLER FALSE
A% FALSE
JONES FALSE
BLAKE FALSE
A%1 FALSE

SQL_LIKE 185

SQRT

Returns the square root of a non-negative numeric value.
Syntax
SQRT (numeric value

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Positive numeric value. Passes the values for which you want to calculate a
square root. You can enter any valid transformation expression.

Return Value

Double value.

NULL if a value passed to the function is NULL.
Example

The following expression returns the square root for the values in the Numbers port:

SQRT (NUMBERS)

NUMBERS RETURN VALUE

100 10

-100 Error. Data Integration Service does not write row.
NULL NULL

60.54 7.78074546557076

The value -100 results in an error, since the function SQRT only evaluates positive numeric values. If you pass
a negative value or character value, the Data Integration Service displays a Transformation Evaluation Error
and does not write the row.

You can perform arithmetic on the values passed to SQRT before the function calculates the square root.

STDDEV

186

Returns the standard deviation of the numeric values you pass to this function. STDDEV is used to analyze
statistical data. You can nest only one other aggregate function within STDDEV, and the nested function must
return a Numeric datatype.

Syntax

STDDEV (numeric value [,filter condition])

Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatypes. This function passes the values for which you want to

calculate a standard deviation or the results of a function. You can enter any valid
transformation expression. You can use operators to average values in different
ports.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls
If a single value is NULL, STDDEV ignores it. However, if all values are NULL, STDDEV returns NULL.

Group By

STDDEV groups values based on group by ports you define in the transformation, returning one result for
each group.

If there is no group by port, STDDEV treats all rows as one group, returning one value.
Examples

The following expression calculates the standard deviation of all rows greater than $2000.00 in the
TOTAL_SALES port:

STDDEV (SALES, SALES > 2000.00)

SALES

2198.0
1010.90
2256.0
153.88
3001.0
NULL

8953.0

RETURN VALUE: 3254.60361129688

STDDEV 187

The function does not include the values 1010.90 and 153.88 in the calculation because the filter_condition
specifies sales greater than $2,000.

The following expression calculates the standard deviation of all rows in the SALES port:
STDDEV (SALES)

SALES

2198.0

2198.0

2198.0

2198.0

RETURN VALUE: 0

The return value is 0 because each row contains the same number (no standard deviation exists). If there is
no standard deviation, the return value is 0.

STRUCT

188

Generates a struct with element names and data types based on the specified arguments.

Syntax
STRUCT (element namel, valuel as any [, element name2, valueZ as any] ...)

The following table describes the arguments for this command:

Argument Required/Optional Description
element_name1 Required The name of the struct element.
valuel Required Any data type. The value of the struct element.

If you use the STRUCT function in an output expression for a struct port, the function arguments must match
the data type of the elements in the complex data type definition.

Return Value

Struct.

Chapter 6: Functions

Examples
The following expression generates a struct.

STRUCT (city , ‘New York’, state, ‘NY’)

RETURN VALUE

city:New York
state:NY

The following expression generates a struct for a struct output port with a complex data type definition
adrs_typedef:

STRUCT (city, cust city, state, cust state)
The complex data type definition adrs_typedef is defined in the type definition library as follows:
adrs_typedef{

city : string
state : string

cust_city cust_state RETURN VALUE

NEWYORK NY {
city:NEWYORK
state:NY

REDWOOD CITY CA {
city:REDWOOD CITY
state:CA

STRUCT_AS

Generates a struct with a schema based on the specified complex data type definition and the values you
pass as argument.

Syntax

STRUCT AS (:Type.type definition library.type definition, struct value)

STRUCT_AS 189

The following table describes the arguments for this command:

Argument

Required/
Optional

Description

:Type.type_definition_library.type_definition | Required

The complex data type definition that represents the
schema of the struct data.

Use the reference qualifier : Type to reference the type
definition library that contains the complex data type
definition.

struct_value

Required

Value for each element in the complex data type
definition separated by comma.

Return Value
Struct.

Examples

The following expression generates a struct based on the specified complex data type definition
h1_address_def with the values that you pass as arguments for the struct elements.

STRUCT AS (:Type.type definition library.hl address def, City, State, ZIP)

The complex data type definition h1_address_def is defined in the type definition library as follows:

hl address def{
city :
state :

zip
city

NEWYORK

REDWOOD CITY

SUBSTR

state zip
NY 12345
CA 23452

RETURN VALUE

city:NEWYORK
state:NY
zip:12345

city:REDWOOD CITY
state:CA
zip:23452

Returns a portion of a string. SUBSTR counts all characters, including blanks, starting at the beginning of the

string.

Syntax

SUBSTR(string,

190 Chapter 6: Functions

[, length])

The following table describes the arguments for this command:

Argument Required/ Description
Optional

string Required Must be a character string. Passes the strings you want to search. You can enter
any valid transformation expression. If you pass a numeric value, the function
converts it to a character string.

start Required Must be an integer. The position in the string where you want to start counting. You
can enter any valid transformation expression. If the start position is a positive
number, SUBSTR locates the start position by counting from the beginning of the
string. If the start position is a negative number, SUBSTR locates the start position
by counting from the end of the string. If the start position is 0, SUBSTR searches
from the first character in the string.

length Optional Must be an integer greater than 0. The number of characters you want SUBSTR to

return. You can enter any valid transformation expression. If you omit the length
argument, SUBSTR returns all of the characters from the start position to the end of
the string. If you pass a negative integer or 0, the function returns an empty string.
If you pass a decimal, the function rounds it to the nearest integer value.

Return Value

String.

Empty string if you pass a negative or 0 length value.

NULL if a value passed to the function is NULL.

Examples

The following expressions return the area code for each row in the Phone port:

SUBSTR(PHONE, 0, 3

PHONE

809-555-0269

357-687-6708

NULL

SUBSTR(PHONE, 1, 3

PHONE

809-555-3915

357-687-6708

NULL

RETURN VALUE

809

357

NULL

RETURN VALUE

809

357

NULL

SUBSTR 191

The following expressions return the phone number without the area code for each row in the Phone port:

SUBSTR(PHONE, 5, 8)

PHONE RETURN VALUE
808-555-0269 555-0269
809-555-3915 555-3915
357-687-6708 687-6708
NULL NULL

You can also pass a negative start value to return the phone number for each row in the Phone port. The
expression still reads the source string from left to right when returning the result of the length argument:

SUBSTR(PHONE, -8, 3)

PHONE RETURN VALUE
808-555-0269 555
809-555-3915 555
357-687-6708 687

NULL NULL

You can nest INSTR in the start or length argument to search for a specific string and return its position.

The following expression evaluates a string, starting from the end of the string. The expression finds the last
(right-most) space in the string and then returns all characters preceding it:

SUBSTR(CUST NAME,1,INSTR(CUST NAME,' ' ,-1,1) -1
CUST_NAME RETURN VALUE
PATRICIA JONES PATRICIA
MARY ELLEN SHAH MARY ELLEN

The following expression removes the character '#' from a string:
SUBSTR(CUST ID, 1, INSTR(CUST ID, '#')-1) || SUBSTR(CUST ID, INSTR(CUST ID, '#')+1)

When the length argument is longer than the string, SUBSTR returns all the characters from the start position
to the end of the string. Consider the following example:

SUBSTR ('abcd', 2, 8)
The return value is ‘bed’. Compare this result to the following example:
SUBSTR('abcd', -2, 8)

The return value is ‘cd’.

192 Chapter 6: Functions

SUM

Returns the sum of all values in the selected port. Optionally, you can apply a filter to limit the rows you read
to calculate the total. You can nest only one other aggregate function within SUM, and the nested function
must return a Numeric datatype.

Syntax
SUM(numeric value [, filter condition]

The following table describes the arguments for this command:

Argument Required/ Description
Optional

numeric_value Required Numeric datatype. Passes the values you want to add. You can enter any valid
transformation expression. You can use operators to add values in different
ports.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL or if no rows are selected (for example, the filter condition
evaluates to FALSE or NULL for all rows).

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Nulls

If a single value is NULL, SUM ignores it. However, if all values passed from the port are NULL, SUM returns
NULL.

Group By

SUM groups values based on group by ports you define in the transformation, returning one result for each
group.

If there is no group by port, SUM treats all rows as one group, returning one value.

Example

The following expression returns the sum of all values greater than 2000 in the Sales port:
SUM(SALES, SALES > 2000)

SALES

2500.0

1900.0

1200.0

NULL

SUM 193

SALES

3458.0

4519.0

RETURN VALUE: 10477.0
Tip

You can perform arithmetic on the values passed to SUM before the function calculates the total. For
example:

SUM(QTY * PRICE - DISCOUNT)

SYSTIMESTAMP

194

Returns the current date and time of the node hosting the Data Integration Service with precision to the
nanosecond. The precision to which you display the date and time depends on the platform.

The return value of the function varies depending on how you configure the argument:

e When you configure the argument of SYSTIMESTAMP as a variable, the Data Integration Service evaluates
the function for each row in the transformation.

o When you configure the argument of SYSTIMESTAMP as a constant, the Data Integration Service
evaluates the function once and retains the value for each row in the transformation.

Syntax
SYSTIMESTAMP ([format])

The following table describes the argument for this command:

Argument Required/ Description
Optional
format Optional Precision to which you want to retrieve the timestamp. You can specify precision up to

seconds (SS), milliseconds (MS), microseconds (US), or nanoseconds (NS). Enclose
the format string within single quotation marks. The format string is not case
sensitive. For example, to display the date and time to the precision of milliseconds
use the following syntax: SYSTIMESTAMP('MS’). Default precision is microseconds
(US).

Return Value
Timestamp. Returns date and time to the specified precision.

Examples

Your organization has an online order service and processes real-time data. You can use the SYSTIMESTAMP
function to generate a primary key for each transaction in the target database.

Chapter 6: Functions

TAN

Create an Expression transformation with the following ports and values:

Port Name
Customer Name
Order Qty
Time Counter

Transaction Id

Port Type Expression

Input n/a

Input n/a

Variable ‘us’

Output SYSTIMESTAMP (Time Counter)

At run time, the Data Integration Service generates the system time to the precision of microseconds for each

row:

Customer Name
Vani Deed
Kalia Crop
Vani Deed

Harry Spoon

Order Qty Transaction_Id

14 07/06/2007 18:00:30.701015000
3 07/06/2007 18:00:30.701029000
6 07/06/2007 18:00:30.701039000
32 07/06/2007 18:00:30.701048000

Returns the tangent of a numeric value (expressed in radians).

Syntax

TAN(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by pi

divided by 180). Passes the numeric values for which you want to calculate the
tangent. You can enter any valid transformation expression.

Return Value

Double value.

NULL if a value passed to the function is NULL.

TAN

195

Example

The following expression returns the tangent for all values in the Degrees port:

TAN(DEGREES * 3.14159 / 180)

DEGREES

70

50

30

18

89

NULL

TANH

196

RETURN VALUE

2.74747741945531

1.19175359259435

0.577350269189672

0.0874886635259298

0.324919696232929

57.2899616310952

NULL

Returns the hyperbolic tangent of the numeric value passed to this function.

Syntax

TANH (numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by pi

divided by 180). Passes the numeric values for which you want to calculate the
hyperbolic tangent. You can enter any valid transformation expression.

Return Value

Double value.

NULL if a value passed to the function is NULL.

Example

The following expression returns the hyperbolic tangent for the values in the Angles port:

TANH (ANGLES

ANGLES

1.0

Chapter 6: Functions

RETURN VALUE

0.761594155955765

NULL

Tip

RETURN VALUE

0.993926947790665

0.998676551914886

0.999963084213409

0.331933853503641

NULL

You can perform arithmetic on the values passed to TANH before the function calculates the hyperbolic
tangent. For example:

TANH (ARCS / 360)

TO_BIGINT

Converts a string or numeric value to a bigint value. TO_BIGINT syntax contains an optional argument that
you can choose to round the number to the nearest integer or truncate the decimal portion. TO_BIGINT
ignores leading blanks.

Syntax

TO BIGINT(value [,

flag])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required String or numeric datatype. Passes the value you want to convert to a bigint value.
You can enter any valid transformation expression.
flag Optional Specifies whether to truncate or round the decimal portion. The flag must be an

integer literal or the constants TRUE or FALSE.

TO_BIGINT truncates the decimal portion when the flag is TRUE or a number other
than 0.

TO_BIGINT rounds the value to the nearest integer if the flag is FALSE or 0 or if you
omit this argument.

The flag is not set by default.

Return Value

Bigint.

NULL if the value passed to the function is NULL.

TO_BIGINT 197

198

If the value passed to the function contains data that is not valid for a bigint value, the Data Integration
Service marks the row as an error row or fails the mapping.

Examples

The following expressions use values from the port IN_TAX:

TO_BIGINT(IN TAX, TRUE)

IN TAX RETURN VALUE
'7245176201123435.6789" 7245176201123435
'7245176201123435.2" 7245176201123435
'7245176201123435.2.48" 7245176201123435
NULL NULL

'Al2.3Grove' Error. Integration Service skips this row.
! 176201123435.87" 176201123435
'-7245176201123435.2" -7245176201123435
'-7245176201123435.23" -7245176201123435
-9223372036854775806.9 -9223372036854775806
9223372036854775806.9 9223372036854775806

TO BIGINT(IN TAX)

IN TAX RETURN VALUE
'7245176201123435.6789" 7245176201123436
'7245176201123435.2" 7245176201123435
'7245176201123435.348" 7245176201123435
NULL NULL

'Al2.3Grove' Error. Integration Service skips this row.
! 176201123435.87" 176201123436
'-7245176201123435.6789"' -7245176201123436
'-7245176201123435.23" -7245176201123435
-9223372036854775806.9 -9223372036854775807
9223372036854775806.9 9223372036854775807

Chapter 6: Functions

TO_CHAR (Dates)

Converts dates to character strings. TO_CHAR also converts numeric values to strings. You can convert the
date into any format using the TO_CHAR format strings.

TO_CHAR (date [,format]) converts a data type or internal value of date, Timestamp, Timestamp with Time
Zone, or Timestamp with Local Time Zone data type to a value of string data type specified by the format

string.

Syntax

TO CHAR(date [, format]

)

The following table describes the arguments for this command:

Argument Required/ Description
Optional

date Required Date/Time datatype. Passes the date values you want to convert to character
strings. You can enter any valid transformation expression.

format Optional Enter a valid TO_CHAR format string. The format string defines the format of the
return value, not the format for the values in the date argument. If you omit the
format string, the function returns a string based on the date format specified in the
mapping configuration.

Return Value

String.

NULL if a value passed to the function is NULL.

Examples

The following expression converts the dates in the DATE_PROMISED port to text in the format MON DD YYYY:

TO_CHAR(DATE_ PROMISED,

DATE_PROMISED

Apr 1 1998 12:00:10AM

Feb 22 1998 01:31:10PM

Oct 24 1998 02:12:30PM

NULL

'MON DD YYYY')

RETURN VALUE

'Apr 01 1998'

'Feb 22 1998

'Oct 24 1998

NULL

If you omit the format argument, TO_CHAR returns a string in the date format specified in the mapping
configuration, by default, MM/DD/YYYY HH24:MI:SS.US:

TO CHAR(DATE PROMISED)

DATE PROMISED

Apr 1 1998 12:00:10AM

Feb 22 1998 01:31:10PM

RETURN VALUE
'04/01/1998 00:00:10.000000"

'02/22/1998 13:31:10.000000"'

TO_CHAR (Dates) 199

200

DATE PROMISED RETURN VALUE
Oct 24 1998 02:12:30PM '10/24/1998 14:12:30.000000"

NULL NULL

The following expressions return the day of the week for each date in a port:

TO CHAR(DATE PROMISED, 'D')

DATE_PROMISED RETURN VALUE
04-01-1997 12:00:10AM '3
02-22-1997 01:31:10PM '
10-24-1997 02:12:30PM 'e!

NULL NULL

TO_CHAR(DATE PROMISED, 'DAY')

DATE_PROMISED RETURN VALUE
04-01-1997 12:00:10AM 'Tuesday'
02-22-1997 01:31:10PM 'Saturday'
10-24-1997 02:12:30PM 'Friday'
NULL NULL

The following expression returns the day of the month for each date in a port:

TO_CHAR(DATE PROMISED, 'DD')

DATE_PROMISED RETURN VALUE
04-01-1997 12:00:10AM ‘01"
02-22-1997 01:31:10PM 122"
10-24-1997 02:12:30PM 124"
NULL NULL

The following expression returns the day of the year for each date in a port:

TO_CHAR(DATE PROMISED, 'DDD')

DATE PROMISED RETURN VALUE

04-01-1997 12:00:10AM '091!

Chapter 6: Functions

DATE PROMISED RETURN VALUE

02-22-1997 01:31:10PM '053"'
10-24-1997 02:12:30PM 1297
NULL NULL

The following expressions return the hour of the day for each date in a port:

TO_CHAR(DATE PROMISED, 'HH')
TO_CHAR(DATE PROMISED, 'HH12')

DATE_PROMISED RETURN VALUE
04-01-1997 12:00:10AM '12!
02-22-1997 01:31:10PM ‘01!
10-24-1997 02:12:30PM ‘02"
NULL NULL

TO_CHAR(DATE PROMISED, 'HH24')

DATE_PROMISED RETURN VALUE
04-01-1997 12:00:10AM '00"
02-22-1997 01:31:10PM 13"
10-24-1997 11:12:30PM 123"
NULL NULL

The following expression converts date values to MJD values expressed as strings:

TO_CHAR(SHIP_ DATE, 'J')

SHIP DATE RETURN_VALUE
Dec 31 1999 03:59:59PM 2451544
Jan 1 1900 01:02:03AM 2415021

The following expression converts dates to strings in the format MM/DD/YY:

TO CHAR(SHIP DATE, 'MM/DD/RR')

SHIP_DATE RETURN_VALUE

12/31/1999 01:02:03AM 12/31/99

TO_CHAR (Dates)

201

SHIP_DATE RETURN_VALUE
09/15/1996 03:59:59PM 09/15/96
05/17/2003 12:13:14AM 05/17/03

You can also use the format string SSSSS in a TO_CHAR expression. For example, the following expression
converts the dates in the SHIP_DATE port to strings representing the total seconds since midnight:

TO CHAR(SHIP DATE, 'SSSSS')

SHIP_DATE RETURN_VALUE
12/31/1999 01:02:03AM 3783
09/15/1996 03:59:59PM 86399

In TO_CHAR expressions, the YY format string produces the same results as the RR format string.

The following expression converts dates to strings in the format MM/DD/YY:

TO CHAR(SHIP DATE, 'MM/DD/YY')

SHIP_DATE RETURN_VALUE
12/31/1999 01:02:03AM 12/31/99
09/15/1996 03:59:59PM 09/15/96
05/17/2003 12:13:14AM 05/17/03

The following expression returns the week of the month for each date in a port:

TO CHAR(DATE PROMISED, 'W')

DATE PROMISED RETURN VALUE
04-01-1997 12:00:10AM 01"
02-22-1997 01:31:10AM '04"
10-24-1997 02:12:30PM 104"
NULL NULL

The following expression returns the week of the year for each date in a port:

TO CHAR(DATE PROMISED, 'WW')

DATE_PROMISED RETURN VALUE
04-01-1997 12:00:10PM '18"
02-22-1997 01:31:10AM '08"

202 Chapter 6: Functions

DATE PROMISED RETURN VALUE

10-24-1997 02:12:30AM 143"
NULL NULL
Tip

You can combine TO_CHAR and TO_DATE to convert a numeric value for a month into the text value for a
month using a function such as:

TO_CHAR(TO_DATE(numeric month, 'MM'), 'MONTH')

TO_CHAR (Numbers)

Converts numeric values to text strings. TO_CHAR also converts dates to strings.
TO_CHAR converts double values to text strings as follows:

e Converts double values of up to 16 digits to strings and provides accuracy up to 15 digits. If you pass a
number with more than 15 digits, TO_CHAR rounds the number based on the sixteenth digit and returns
the string representation of the number in scientific notation. For example, 1234567890123456 double
value converts to '1.23456789012346e+015' string value.

e Returns decimal notation for numbers in the ranges (-1e16,-1e-16] and [1e-16, 1e16). TO_CHAR returns
scientific notation for numbers outside these ranges. For example, 10842764968208837340 double value
converts 10 '1.08427649682088e+019' string value.

TO_CHAR converts decimal values to text strings as follows:

¢ In high precision mode, TO_CHAR converts decimal values of up to 38 digits to strings. If you pass a
decimal value with more than 38 digits, TO_CHAR returns scientific notation for numbers greater than 38
digits.

¢ Inlow precision mode, TO_CHAR treats decimal values as double values.

Syntax

TO_CHAR(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric data type. The numeric value you want to convert to a string. You can
enter any valid transformation expression.

Return Value
String.

NULL if a value passed to the function is NULL.

TO_CHAR (Numbers) 203

Double Conversion Example

The following expression converts the double values in the SALES port to strings:

TO_CHAR(SALES)

SALES RETURN VALUE
1010.99 '1010.99"
-15.62567 '-15.62567"

10842764968208837340'1.08427649682088e+019' (rounded based on the 16th digit and returns
the value in scientific notation)

236789034569723 '236789034569723"
0 '’

33.15 '33.15"

NULL NULL

Decimal Conversion Example

The following expression converts the decimal values in the SALES port to strings in high precision mode:

TO CHAR(SALES)

SALES RETURN VALUE

2378964536789761 '2378964536789761"
1234567890123456789012345679 '1234567890123456789012345679"
1.234578945469649345876123456 '1.234578945469649345876123456"
0.999999999999999999999999999 '0.999999999999999999999999999"
12345678901234567890123456799 '12345678901234567890123456799"
23456788992233456678458934567123465239 '23456788992233456678458934567123465239"
423456789012345678901234567991234567899 '4.23456789012346e+038"

(greater than 38)

TO_DATE

204

Converts a character string to a Date/Time datatype. You use the TO_DATE format strings to specify the
format of the source strings.

The output port must be Date/Time for TO_DATE expressions.

If you are converting two-digit years with TO_DATE, use either the RR or YY format string. Do not use the
YYYY format string.

Chapter 6: Functions

Syntax
TO DATE(string [, format])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
string Required Must be a string datatype. Passes the values that you want to convert to dates. You

can enter any valid transformation expression.

format Optional Enter a valid TO_DATE format string. The format string must match the parts of the
string argument. For example, if you pass the string ‘Mar 15 1998 12:43:10AM’, you
must use the format string '"MON DD YYYY HH12:MI:SSAM'. If you omit the format
string, the string value must be in the date format specified in the session.

Return Value
Date.

TO_DATE always returns a date and time. If you pass a string that does not have a time value, the date
returned always includes the time 00:00:00.000000000. You can map the results of this function to any target
column with a datetime datatype. If the target column precision is less than nanoseconds, the Data
Integration Service truncates the datetime value to match the precision of the target column when it writes
datetime values to the target.

NULL if you pass a null value to this function.

Warning: The format of the TO_DATE string must match the format string including any date separators. If it
does not, the Data Integration Service might return inaccurate values or skip the record.

Examples

The following expression returns date values for the strings in the DATE_PROMISED port. TO_DATE always
returns a date and time. If you pass a string that does not have a time value, the date returned always
includes the time 00:00:00.000000000. If you run a mapping in the twentieth century, the century will be 19.
In this example, the current year on the node running the Data Integration Service is 1998. The datetime
format for the target column is MON DD YY HH24:MI SS, so the Data Integration Service truncates the
datetime value to seconds when it writes to the target:

TO DATE(DATE PROMISED, 'MM/DD/YY')

DATE PROMISED RETURN VALUE
'01/22/98" Jan 22 1998 00:00:00
'05/03/98" May 3 1998 00:00:00
'11/10/98" Nov 10 1998 00:00:00
'10/19/98" Oct 19 1998 00:00:00
NULL NULL

The following expression returns date and time values for the strings in the DATE_PROMISED port. If you
pass a string that does not have a time value, the Data Integration Service returns an error. If you run a

TO_DATE 205

mapping in the twentieth century, the century will be 19. The current year on the node running the Data
Integration Service is 1998:

TO_DATE(DATE PROMISED, 'MON DD YYYY HH12:MI:SSAM')

DATE_PROMISED RETURN VALUE

'Jan 22 1998 02:14:56pPM' Jan 22 1998 02:14:56PM

'Mar 15 1998 11:11:11AM' Mar 15 1998 11:11:11AM

'Jun 18 1998 10:10:10pM' Jun 18 1998 10:10:10PM

'October 19 1998' Error. Integration Service skips this row.
NULL NULL

The following expression converts strings in the SHIP_DATE_MJD_STRING port to date values:

TO DATE (SHIP DATE MJD STR, 'J')

SHIP_DATE MJD_STR RETURN_VALUE
'2451544" Dec 31 1999 00:00:00.000000000
'2415021" Jan 1 1900 00:00:00.000000000

Because the J format string does not include the time portion of a date, the return values have the time set to
00:00:00.000000000.

The following expression converts a string to a four-digit year format. The current year is 1998:

TO DATE(DATE STR, 'MM/DD/RR')

DATE_STR RETURN VALUE
'04/01/98" 04/01/1998 00:00:00.000000000
'08/17/05" 08/17/2005 00:00:00.000000000

The following expression converts a string to a four-digit year format. The current year is 1998:

TO DATE(DATE STR, 'MM/DD/YY')

DATE_STR RETURN VALUE
'04/01/98" 04/01/1998 00:00:00.000000000
'08/17/05" 08/17/1905 00:00:00.000000000

Note: For the second row, RR returns the year 2005 and YY returns the year 1905.

206 Chapter 6: Functions

The following expression converts a string to a four-digit year format. The current year is 1998:

TO DATE(DATE STR, 'MM/DD/Y'")

DATE_STR RETURN VALUE
'04/01/8" 04/01/1998 00:00:00.000000000
'08/17/5" 08/17/1995 00:00:00.000000000

The following expression converts a string to a four-digit year format. The current year is 1998:

TO DATE(DATE STR, 'MM/DD/YYY')

DATE_STR RETURN VALUE
'04/01/998" 04/01/1998 00:00:00.000000000
'08/17/995" 08/17/1995 00:00:00.000000000

The following expression converts strings that includes the seconds since midnight to date values:

TO DATE(DATE STR, 'MM/DD/YYYY SSSSS')

DATE_STR RETURN_VALUE
'12/31/1999 3783 12/31/1999 01:02:03
'09/15/1996 86399 09/15/1996 23:59:59

If the target accepts different date formats, use TO_DATE and IS_DATE with the DECODE function to test for

acceptable formats. For example:

DECODE (TRUE,

--test first format
IS_DATE(CLOSE_DATE,'MM/DD/YYYY HH24:MI:SS'),

--if true, convert to date
TO DATE (CLOSEiDATE,'MM/DD/YYYY HH24:MI:SS'),

--test second format; if true, convert to date
ISiDATE(CLOSEiDATE,'MM/DD/YYYY'), TOiDATE(CLOSEiDATE,'MM/DD/YYYY'),

--test third format; if true, convert to date
IS_DATE(CLOSE_DATE,'MON DD YYYY'), TO_DATE(CLOSE_DATE,'MON DD YYYY'),

--if none of the above
ERROR('NOT A VALID DATE'))

You can combine TO_CHAR and TO_DATE to convert a numeric value for a month into the text value for a

month using a function such as:

TO_CHAR(TO_DATE(numeric_month, 'MM'), 'MONTH')

TO_DATE

207

RELATED TOPICS:

e “Rules and Guidelines for Date Format Strings” on page 46

TO_DECIMAL

Converts a string or numeric value to a decimal value. TO_DECIMAL ignores leading blanks.
Syntax
TO DECIMAL(value [, scale])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Must be a string or numeric datatype. Passes the values you want to convert to

decimal values. You can enter any valid transformation expression.

scale Optional Must be an integer literal between 0 and 28, inclusive. Specifies the number of
digits allowed after the decimal point. If you omit this argument, the function
returns a value with the same scale as the input value.

Return Value
Decimal of precision and scale between 0 and 28, inclusive.
NULL if a value passed to the function is NULL.

If the value passed to the function contains data that is not valid for a decimal value, the Data Integration
Service marks the row as an error row.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Example

This expression uses values from the port IN_TAX. IN_TAX is a String data type with precision of 44 digits.
RETURN VALUE is a Decimal data type with a precision of 28 and scale of 3:

TO DECIMAL(IN TAX, 3)

IN TAX RETURN VALUE

'15.6789" 15.679

'60.2" 60.200

'118.348" 118.348

NULL NULL

'Al2.3Grove' Error. Integration Service skips this row.
'711A1" Error. Integration Service skips this row.

208 Chapter 6: Functions

IN_TAX

'1234567890.123"

RETURN VALUE

1234567890.123

'123456789012345678901234567890.123" Error. Integration Service skips this row.

'1234567890123456789012345678901234567890.123 Error. Integration Service skips this row.

TO_DECIMALSS

Converts a string or numeric value to a decimal value. TO_DECIMALS38 ignores leading blanks.

Syntax

TO_DECIMAL38(value [, scale])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Must be a string or numeric data type. Passes the values that you want to convert to
decimal values. You can enter any valid transformation expression.
scale Optional Must be an integer literal between 0 and 38, inclusive. Specifies the number of
digits allowed after the decimal point. If you omit this argument, the function
returns a value with the same scale as the input value.

Return Value

Decimal of precision and scale between 0 and 38, inclusive.

NULL if a value passed to the function is NULL.

If the value passed to the function contains data that is not valid for a decimal value, the Data Integration
Service marks the row as an error row. For example, if you pass
TO DECIMAL38("1234567890123456789012345678901234567890.12"), the Data Integration Service rejects the

row.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 38 digits.

Example

This expression uses values from the port IN_TAX. IN_TAX is a String data type with precision of 44 digits.
RETURN VALUE is a Decimal data type with a precision of 38 and a scale of 3:

TO_DECIMAL38(IN TAX, 3)

IN_TAX

'15.6789"

RETURN VALUE

15.679

TO_DECIMAL38 209

IN TAX RETURN VALUE

'60.2" 60.200

'118.348" 118.348

NULL NULL

'Al2.3Grove' Error. Integration Service skips this row.
'1234567890.123" 1234567890.123
'123456789012345678901234567890.123" 123456789012345678901234567890.123

'1234567890123456789012345678901234567890.123" Error. Integration Service skips this row.

'711A1" Error. Integration Service skips this row.

TO_FLOAT

Converts a string or numeric value to a double-precision floating point number (the Double datatype).
TO_FLOAT ignores leading blanks.

Syntax
TO_FLOAT (value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Must be a string or numeric datatype. Passes the values you want to convert to
double values. You can enter any valid transformation expression.

Return Value
Double value.
NULL if a value passed to this function is NULL.

If the value passed to the function contains data that is not valid for a float value, the Data Integration Service
marks the row as an error row or fails the mapping.

210 Chapter 6: Functions

Example

This expression uses values from the port IN_TAX:

TO_FLOAT(IN TAX)

IN TAX RETURN VALUE

'15.6789" 15.6789

'60.2" 60.2

'118.348" 118.348

NULL NULL

'Al2.3Grove' Error. Integration Service skips this row.

TO_INTEGER

Converts a string or numeric value to an integer. TO_INTEGER syntax contains an optional argument that you
can choose to round the number to the nearest integer or truncate the decimal portion. TO_INTEGER ignores
leading blanks.

Syntax
TO_INTEGER(value [, flag])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required String or numeric datatype. Passes the value you want to convert to an integer. You

can enter any valid transformation expression.

flag Optional Specifies whether to truncate or round the decimal portion. The flag must be an
integer literal or the constants TRUE or FALSE.

TO_INTEGER truncates the decimal portion when the flag is TRUE or a number other
than 0.

TO_INTEGER rounds the value to the nearest integer if the flag is FALSE or 0 or if
you omit this argument.

Return Value
Integer.
NULL if the value passed to the function is NULL.

If the value passed to the function contains data that is not valid for an integer value, the Data Integration
Service marks the row as an error row or fails the mapping.

TO_INTEGER 211

Examples

The following expressions use values from the port IN_TAX. The Data Integration Service displays an error
when the conversion causes a numeric overflow:

TO_INTEGER(IN TAX, TRUE)

IN TAX RETURN VALUE

'15.6789" 15

'60.2" 60

'118.348" 118

'5,000,000,000" Error. Integration Service skips this row.
NULL NULL

'Al2.3Grove' Error. Integration Service skips this row.
! 123.87" 123

'-15.6789" -15

'-15.23" -15

TO_INTEGER(IN TAX, FALSE)

IN TAX RETURN VALUE

'15.6789" 16

'60.2" 60

'118.348" 118

'5,000,000,000" Error. Integration Service skips this row.
NULL NULL

'Al2.3Grove' Error. Integration Service skips this row.
! 123.87" 124

'-15.6789" -16

'-15.23" -15

212 Chapter 6: Functions

TO_TIMESTAMP_TZ

Converts a string to Timestamp with Time Zone value. The function returns Timestamp with Time Zone data
type. You use the TO_TIMESTAMP_TZ format strings to specify the format of the source strings.

Syntax

TO TIMESTAMP TZ

(String , [format])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
String Required Must be a string data type. Passes the values you want to convert to Timestamp
with Time Zone. You can enter any valid transformation expression.
The string must be a character string.
format Optional Enter a valid TO_TIMESTAMP_TZ format string. The format string must match the

parts of the string argument. For example, if you pass the string ‘Mar 15 1997
12:43:10AM ASIA/CALCUTTA', you must use the format string 'MON DD YYYY
HH12:MI:SSAM TZR'.

If you do not specify the format string, the function uses the default date time
format in the Run Configurations dialog.

Return Value

Returns a timestamp with time zone data type.

NULL if the input is a null value.

If the value passed to the function contains data that is not valid for a timestamp with time zone value, the
Data Integration Service marks the row as an error row or fails the mapping.

Example

INPUT VALUE

‘1947-08-05

10:45:00.221111000 AM
America/Los Angeles’,

'YYYY-MM-DD HH:MI:SS.NS AM

TZR'

'1947-08-05

10:45:00.221111000 AM
America/Los Angeles’,

'YYYY-MM-DD HH:MI:SS.NS AM'

RETURN VALUE

Returns a timestamp with time zone data type with the following
data:

‘1947-08-05 10:45:00.221111000 AM AMERICA/LOS ANGELES’

Returns a timestamp with time zone data type even without
specifying time zone region in the time zone region format:

'1947-08-05 10:45:00.221111000 AM AMERICA/LOS ANGELES'

TO_TIMESTAMP_TZ

213

INPUT VALUE RETURN VALUE

'1947-08-05
:45:00.221111000 AM

10

Returns a timestamp with time zone data type even without
specifying timestamp with time zone format.

America/Los_Angeles’ '1947-08-05 10:45:00.221111000 AM AMERICA/LOS ANGELES'

'1947-08-05
:45:00.221111000 AM

10

Default date time format at the Run Configurations dialog is used
when the format is not specified at the function level.

Default date time format: 'YYYY-MM-DD HH:MI:SS.NS AM TZR'

If a timestamp with time zone data does not match the given
format, the following error appears:

America/Los_Angeles’, Process row failed for function [TO TIMESTAMP TZ]: Failed to
"MM-DD-YYYY HH:MI:SS.NS AM' convert the string to timestamp with time zone value.

Verify that the specified date format string is wvalid.
Verify that the timestamp with time zone string used in the
first argument is compatible with the specified date format.

TRUNC (Dates)

Truncates dates to a specific year, month, day, hour, minute, second, millisecond, or microsecond. You can
also use TRUNC to truncate numbers.

214

You can truncate the following date parts:

Chapter 6:

Year. If you truncate the year portion of the date, the function returns Jan 1 of the input year with the time
set to 00:00:00.000000000. For example, the following expression returns 1/1/1997 00:00:00.000000000:

TRUNC (12/1/1997 3:10:15, 'YY')
Month. If you truncate the month portion of a date, the function returns the first day of the month with the

time set to 00:00:00.000000000. For example, the following expression returns 4/1/1997
00:00:00.000000000:

TRUNC (4/15/1997 12:15:00, 'MM')
Day. If you truncate the day portion of a date, the function returns the date with the time set to
00:00:00.000000000. For example, the following expression returns 6/13/1997 00:00:00.000000000:
TRUNC (6/13/1997 2:30:45, 'DD')

Hour. If you truncate the hour portion of a date, the function returns the date with the minutes, seconds,
and subseconds set to 0. For example, the following expression returns 4/1/1997 11:00:00.000000000:

TRUNC (4/1/1997 11:29:35, 'HH')
Minute. If you truncate the minute portion of a date, the function returns the date with the seconds and
subseconds set to 0. For example, the following expression returns 5/22/1997 10:15:00.000000000:
TRUNC (5/22/1997 10:15:29, 'MI')
Second. If you truncate the second portion of a date, the function returns the date with the milliseconds
set to 0. For example, the following expression returns 5/22/1997 10:15:29.000000000:
TRUNC (5/22/1997 10:15:29.135, 'SS")

Millisecond. If you truncate the millisecond portion of a date, the function returns the date with the
microseconds set to 0. For example, the following expression returns 5/22/1997 10:15:30.135000000:

TRUNC (5/22/1997 10:15:30.135235, 'MS'")

Microsecond. If you truncate the microsecond portion of a date, the function returns the date with the
nanoseconds set to 0. For example, the following expression returns 5/22/1997 10:15:30.135235000:

TRUNC (5/22/1997 10:15:29.135235478, 'US'")

Functions

Syntax

TRUNC (date

[, format]

)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. The date values you want to truncate. You can enter any valid
transformation expression that evaluates to a date.
format Optional Enter a valid format string. The format string is not case sensitive. If you omit the
format string, the function truncates the time portion of the date, setting it to
00:00:00.000000000.

Return Value

Date.

NULL if a value passed to the function is NULL.

Examples

The following expressions truncate the year portion of dates in the DATE_SHIPPED port:

TRUNC
TRUNC
TRUNC
TRUNC

DATE

DATE_SHIPPED

SHIPPED,

DATE_SHIPPED,
DATE_SHIPPED,
DATE_SHIPPED,

Jan 15 1998 2:10:30AM

Apr 19 1998 1:31:20PM

Jun 20 1998 3:50:04AM

Dec 20 1998 3:29:55PM

NULL

Y
Yy o)

'YYY')
'YYYY')

RETURN VALUE

Jan 1 1998 12:00:00.000000000

Jan 1 1998 12:00:00.000000000

Jan 1 1998 12:00:00.000000000

Jan 1 1998 12:00:00.000000000

NULL

The following expressions truncate the month portion of each date in the DATE_SHIPPED port:

TRUNC (DATE

SHIPPED,

TRUNC (DATE:SHIPPED,
TRUNC (DATE_ SHIPPED, 'MONTH')

DATE_SHIPPED

Jan 15 1998 2:10:30AM

Apr 19 1998 1:31:20PM

Jun 20 1998 3:50:04AM

TMM')
'MON')
RETURN VALUE
Jan 1 1998 12:00:00.000000000AM
Apr 1 1998 12:00:00.000000000AM

Jun 1 1998 12:00:00.000000000AM

TRUNC (Dates)

215

216

DATE_SHIPPED RETURN VALUE
Dec 20 1998 3:29:55PM Dec 1 1998 12:00:00.000000000AM

NULL NULL

The following expressions truncate the day portion of each date in the DATE_SHIPPED port:

(DATE_SHIPPED, 'D')
(DATE_SHIPPED, 'DD')
TRUNC (DATE_SHIPPED, 'DDD')
(
(

TRUNC (DATE SHIPPED, 'DY')

TRUNC (DATE _SHIPPED, 'DAY')
DATE_SHIPPED RETURN VALUE
Jan 15 1998 2:10:30AM Jan 15 1998 12:00:00.000000000AM
Apr 19 1998 1:31:20PM Apr 19 1998 12:00:00.000000000AM
Jun 20 1998 3:50:04AM Jun 20 1998 12:00:00.000000000AM
Dec 20 1998 3:29:55PM Dec 20 1998 12:00:00.000000000AM
Dec 31 1998 11:59:59PM Dec 31 1998 12:00:00.000000000AM
NULL NULL

The following expressions truncate the hour portion of each date in the DATE_SHIPPED port:

TRUNC (DATE_SHIPPED, 'HH')
TRUNC (DATE_SHIPPED, 'HH12')
TRUNC (DATE_SHIPPED, 'HH24')

DATE_SHIPPED RETURN VALUE

Jan 15 1998 2:10:31AM Jan 15 1998 2:00:00.000000000AM
Apr 19 1998 1:31:20PM Apr 19 1998 1:00:00.000000000PM
Jun 20 1998 3:50:04AM Jun 20 1998 3:00:00.000000000AM
Dec 20 1998 3:29:55PM Dec 20 1998 3:00:00.000000000PM
Dec 31 1998 11:59:59PM Dec 31 1998 11:00:00.000000000AM
NULL NULL

The following expression truncates the minute portion of each date in the DATE_SHIPPED port:

TRUNC (DATE SHIPPED, 'MI')

DATE_SHIPPED RETURN VALUE
Jan 15 1998 2:10:30AM Jan 15 1998 2:10:00.000000000AM
Apr 19 1998 1:31:20PM Apr 19 1998 1:31:00.000000000PM

Chapter 6: Functions

DATE_SHIPPED RETURN VALUE

Jun 20 1998 3:50:04AM Jun 20 1998 3:50:00.000000000AM
Dec 20 1998 3:29:55PM Dec 20 1998 3:29:00.000000000PM
Dec 31 1998 11:59:59PM Dec 31 1998 11:59:00.000000000PM
NULL NULL

TRUNC (Numbers)

Truncates numbers to a specific digit. You can also use TRUNC to truncate dates.
Syntax
TRUNC (numeric value [, precision])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the values you want to truncate. You can enter any

valid transformation expression that evaluates to a Numeric datatype.

precision Optional Can be a positive or negative integer. You can enter any valid transformation
expression that evaluates to an integer. The integer specifies the number of
digits to truncate.

If precision is a positive integer, TRUNC returns numeric_value with the number of decimal places specified
by precision. If precision is a negative integer, TRUNC changes the specified digits to the left of the decimal
point to zeros. If you omit the precision argument, TRUNC truncates the decimal portion of numeric_value and
returns an integer.

If you pass a decimal precision value, the Data Integration Service rounds numeric_value to the nearest
integer before evaluating the expression.

When you run a mapping in high precision mode, use the ROUND function before truncating.

For example, suppose the following expression is used to truncate the values in the QTY port:
TRUNC (QTY / 15)
When the value for QTY = 15000000, the session returns the value 999999. The expected result is 1000000.

At run time, the Data Integration Service evaluates the constant part of the expression and then the variable
part.

In the above expression, QTY is the variable value and (1/15) is the constant value.

When QTY = 15000000, the expression is evaluated as follows:

TRUNC (15000000 * (1/15)
TRUNC (15000000 * (1/15)
= TRUNC (15000000 * 0.0666666666666666)
= TRUNC (15000000 * 0.0666666666666666)

TRUNC (Numbers) 217

218

= TRUNC (999999.99999999)
= 999999

If you use the ROUND function before truncating, the expression is evaluated as follows:
TRUNC (ROUND (QTY/15, .99999999999999999999999999)) .

Return Value

Numeric value.

NULL if one of the arguments is NULL.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to ensure
decimal precision up to 28 digits.

Examples

The following expressions truncate the values in the Price port:

TRUNC (PRICE, 3)

PRICE RETURN VALUE
12.9995 12.999
-18.8652 -18.865
56.9563 56.956
15.9928 15.992

NULL NULL

TRUNC (PRICE, -1)

PRICE RETURN VALUE
12.99 10.0

-187.86 -180.0

56.95 50.0

1235.99 1230.0

NULL NULL

TRUNC (PRICE)

PRICE RETURN VALUE
12.99 12.0

-18.99 -18.0

56.95 56.0

Chapter 6: Functions

PRICE
15.99

NULL

UPPER

RETURN VALUE

15.0

NULL

Converts lowercase string characters to uppercase.

Syntax

UPPER(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required String datatype. Passes the values you want to change to uppercase text. You can
enter any valid transformation expression.

Return Value

Uppercase string. If the data contains multibyte characters, the return value depends on the code page and
data movement mode of the Data Integration Service.

NULL if a value passed to the function is NULL.

Example

The following expression changes all names in the FIRST_NAME port to uppercase:

UPPER(FIRST NAME)

FIRST NAME
Ramona
NULL
THOMAS
PierRe

Bernice

RETURN VALUE

RAMONA

NULL

THOMAS

PIERRE

BERNICE

UPPER 219

UuID4

Returns a randomly generated 16-byte binary value that complies with variant 4 of the UUID specification
described in RFC 4122. UUID4 does not take an argument.

Syntax

UuUID4 ()
Return Value
Binary.

UUID4 never returns a null value or an error.

UUID_UNPARSE

Converts a 16-byte binary value to a 36-character string representation as specified in RFC 4122.
Syntax
UUID UNPARSE(binary)

The following table describes the argument for this command:

Argument Required/ Description
Optional
binary Required Binary datatype. Any 16-byte binary value that you want to convert to a 36-character
string.

Return Value

36-character string.

Returns null if the argument is null and an error if the argument is not a 16-byte binary value.
Example

The following expression might return a value of 6948DF80-14BD-4E04-8842-7668D9C001F5:

UUID_UNPARSE (UUID4 ())

VARIANCE

Returns the variance of a value you pass to it. VARIANCE is used to analyze statistical data. You can nest
only one other aggregate function within VARIANCE, and the nested function must return a Numeric datatype.

Syntax

VARIANCE (numeric value [, filter condition])

220 Chapter 6: Functions

The following table describes the arguments for this command:

Argument Required/ | Description
Optional
numeric_value Required Numeric datatype. Passes the values for which you want to calculate a variance.

You can enter any valid transformation expression.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Double value.

NULL if all values passed to the function are NULL or if no rows are selected (for example, the filter_condition
evaluates to FALSE or NULL for all rows).

Nulls

If a single value is NULL, VARIANCE ignores it. However, if all values passed to the function are NULL or if no
rows are selected, VARIANCE returns NULL.

Group By

VARIANCE groups values based on group by ports you define in the transformation, returning one result for
each group.

If there is not a group by port, VARIANCE treats all rows as one group, returning one value.

Example
The following expression calculates the variance of all rows in the TOTAL_SALES port:

VARIANCE (TOTAL SALES)

TOTAL SALES
2198.0
2256.0
3001.0

NULL

8953.0

RETURN VALUE: 10592444.6666667

VARIANCE 221

INDEX

A

ABORT function
description 60
ABS function
description 60
absolute values
obtaining 60
ADD_TO_DATE function
description 61
Advanced Encryption Standard algorithm
description 64, 65
AES_DECRYPT function
description 64
AES_ENCRYPT function
description 65
aggregate functions
ANY 66
AVG 69
COUNT 81
description 52
FIRST 96
LAST 120
MAX (dates) 132
MAX (numbers) 133
MAX (string) 135
MEDIAN 136
MIN (dates) 141
MIN (numbers) 143, 144
null values 20, 54
PERCENTILE 150
STDDEV 186
SUM 193
VARIANCE 220
AND
reserved word 16
ANY function
description 66
arithmetic
date/time values 48
arithmetic operators
description 31
using strings in expressions 31
using to convert data 31
array
generating 67, 75
ARRAY function
description 67
ASCII
CHR function 73
converting ASCI| values 73

converting characters to ASCII values 68

converting to Unicode values 74
ASCII function
description 68

222

averages
aggregate functions for determining 69
returning 146

AVG function
description 69

bigint
converting values to 197

built-in variables
description 35

C

calendars
date types supported 37
capitalization
strings 108, 127,219
case
converting to uppercase 219
CAST function
description 70
CEIL function
description 71
character functions
ASCII 68
CHR 73
CHRCODE 74
CONCAT function 76
INITCAP 108
INSTR 109
LENGTH 125
list of 54
LOWER 127
LPAD 128
LTRIM 130
METAPHONE 138
REG_EXTRACT 155
REG_MATCH 158
REG_REPLACE 159
REPLACECHR 160
REPLACESTR 163
RPAD 174
RTRIM 175
SOUNDEX 183
SUBSTR 190
UPPER 219
character strings
converting from dates 199
converting to dates 204

characters

adding to strings 128,174
ASCII characters 68, 73

characters (continued)
capitalization 108, 127,219
counting 190
encoding 138, 183

removing from strings 130, 175

replacing multiple 163
replacing one 160
returning number 125
Unicode characters 68, 73, 74
CHOOSE function
description 72
CHR function
description 73
inserting single quotes 14, 73
CHRCODE function
description 74
COBOL syntax
converting to perl syntax 155
COLLECT_LIST function
description 75
comments
adding to expressions 15
comparison operators
description 33

using strings in expressions 33

complex functions
ARRAY 67
CAST 70
COLLECT_LIST 75
CONCAT_ARRAY 78
description 55
RESPEC 166
SIZE 182
STRUCT 188
STRUCT_AS 189
complex operators

accessing nested data types 27

description 23

for array with struct elements 28
for multidimensional arrays 27

for nested data types 27

for struct with array elements 29
for struct with struct elements 30

using to access data 23
COMPRESS function
description 75
compression
compressing data 75
decompressing data 93
CONCAT function
description 76

inserting single quotes using 76

CONCAT_ARRAY function
description 78
concatenating
strings 32,76
constants
DD_INSERT 17
DD_REJECT 18
DD_UPDATE 18
description 12
FALSE 19
NULL 19
TRUE 20
conversion functions
CREATE_TIMESTAMP_TZ 84
description 55
GET_TIMESTAMP 102

conversion functions (continued)
GET_TIMEZONE 101
TO_CHAR (dates) 199
TO_CHAR (numbers) 203
TO_DATE 204
TO_DECIMAL 208
TO_DECIMAL38 209
TO_FLOAT 210
TO_INTEGER 211
TO_TIMESTAMP_TZ 213
CONVERT_BASE function
description 78
converting
date strings 38
COS function
description 79
COSH function
description 80
cosine
calculating 79
calculating hyperbolic cosine 80
COUNT function
description 81
CRC32 function
description 83
CREATE_TIMESTAMP_TZ function
description 84
CUME function
description 85

D

data cleansing functions
description 56
GREATEST 103
IN 106
LEAST 124
Data Integration Service
handling nulls in comparison expressions 20
datatypes
Date/Time 36
date functions
ADD_TO_DATE 61
DATE_COMPARE 86
DATE_DIFF 87
GET_DATE_PART 99
LAST_DAY 121
MAKE_DATE_TIME 131
MAX (dates) 132
MIN (dates) 141
ROUND 168
SET_DATE_PART 177
SYSTIMESTAMP 194
TRUNC (Dates) 214
DATE_COMPARE function
description 86
DATE_DIFF function
description 87
date/time values
adding 61
dates
converting to character strings 199
default datetime format 39
flat files 39
format strings 40
functions 56
Julian 37

Index

223

dates (continued)
Modified Julian 37
overview 36
performing arithmetic 48
relational databases 39
rounding 168
truncating 214
year 2000 37
DD_DELETE constant
description 17
reserved word 16
update strategy example 17
DD_INSERT constant
description 17
reserved word 16
update strategy example 17
DD_REJECT constant
description 18
reserved word 16
update strategy example 18
DD_UPDATE constant
description 18
reserved word 16
update strategy example 18
DEC_BASE®64 function
description 90
decimal values

DECODE function
description 91
internationalization 13
decoding
DEC_BASE64 function 90
DECOMPRESS function
description 93
decryption
AES_DECRYPT function 64
default datetime format
setting 39
default values
ERROR function 94
division calculation
returning remainder 145
dot operator
description 25
for complex data types 23
using to access data 25
dot operators
for nested data type 27
for struct with struct elements 30
double precision values
floating point numbers 210

E

empty strings
testing for 125
ENC_BASE64 function
description 93
encoding
characters 138, 183
ENC_BASE64 function 93
encoding functions
AES_DECRYPT 64
AES_ENCRYPT 65
COMPRESS 75
CRC32 83

224 Index

encoding functions (continued)
DEC_BASE64 90
DECOMPRESS 93
description 57
ENC_BASE64 93
MD5 136

encryption
AES_ENCRYPT function 65

using the Advanced Encryption Standard algorithm 65

ERROR function
default value 94
description 94

EXP function
description 95

exponent values
calculating 95
returning 152

expressions
adding comments 15
conditional 19
overview 12
syntax 13
using operators 22

F

FALSE constant
description 19
reserved word 16
filter conditions
aggregate functions 54
null values 20
Filter transformation
using ISNULL function 112
financial functions
description 57
FV function 98
NPER function 149
PMT function 151
PV function 153
RATE function 155
FIRST function
description 96
flat files
dates 39
FLOOR function
description 97
FLOOR function (expressions)
description 97
format
from character string to date 204
from date to character string 199
format strings
dates 40
definition 36
IS_DATE function 44
Julian day 41, 44
matching 46
Modified Julian day 41, 44
TO_CHAR function 41
TO_DATE function 44
functions
aggregate 52
categories 52
character 54
complex 55
conversion 55

functions (continued)
data cleansing 56
date 56
description 12
encoding 57
financial 57
internationalization 13
numeric 58
scientific 58
special 59
string 59
test 59
window 59

FV function
description 98

G

GET_DATE_PART function
description 99
GET_TIMESTAMP function
description 102
GET_TIMEZONE function
description 101
GREATEST function
description 103
Gregorian calendar
in date functions 37

H

hierarchical data
accessing elements 23
generating 67, 75,188, 189
high precision
ABS 60
ABS function 60
arithmetic operators 31
AVG 69
AVG function 69
CEIL71
CREATE_TIMESTAMP_TZ function 84
CUME 85
CUME function 85
EXP 95
GET_TIMESTAMP function 102
GET_TIMEZONE function 101
LOG 127
MAX (numbers) 133
MAX function 133
MEDIAN 136
MEDIAN function 136
MIN (numbers) 143
MIN function 143
MOD 145
MOVINGAVG 146
MOVINGAVG function 146
MOVINGSUM 148
MOVINGSUM function 148
PERCENTILE 150
PERCENTILE function 150
POWER 152
ROUND (numbers) 172
ROUND function 172
SIGN 179
SIN 180

high precision (continued)
STDDEYV function 186
SUM 193
SUM function 193
TO_DECIMAL function 208
TO_DECIMAL38 function 209
TO_TIMESTAMP_TZ function 213
TRUNC function 217
hyperbolic
cosine function 80
sine function 181
tangent function 196

IIF function
description 104
internationalization 13
IN function
description 106
INDEXOF function
description 107
:INFA reference qualifier
reserved word 16
INITCAP function
description 108
internationalization 13
INSTR function
description 109
integers
converting values to 211
internationalization
functions affected 13
invalid expression 13
sort order 13
IS_DATE function
description 113
format strings 44
IS_NUMBER function
description 116
IS_SPACES function
description 118
ISNULL function
description 112

J

J format string
using with IS_DATE 47
using with TO_CHAR 43
using with TO_DATE 47
Julian dates
in date functions 37
Julian day
format string 41, 44

L

:LKP reference qualifier
description 14
reserved word 16

LAG function
description 119

LAST function
description 120

Index

225

LAST_DAY function
description 121
LEAD function
description 122
LEAST function
description 124
LENGTH function
description 125
empty string test 125
literals
single quotes in 73,76
single quotes requirement 14
LN function
description 126
local variables
description 12
LOG function
description 127
logarithm
returning 126, 127
logical operators
description 34
LOWER function
description 127
internationalization 13
LPAD function
description 128
LTRIM function
description 130

M

MAKE_DATE_TIME function
description 131
mapping parameters
definition 12
mapping variables
built-in variables 35
MAX (dates) function
description 132
internationalization 13
MAX (numbers) function
description 133
internationalization 13
MAX (string) function
description 135
:MCR reference qualifier
reserved word 16
MD5 function
description 136
MEDIAN function
description 136
METAPHONE
description 138
MIN (dates) function
description 141
internationalization 13
MIN (numbers) function
description 143, 144
internationalization 13
minimum
value, returning 141
MOD function
description 145
Modified Julian day
format string 41, 44

226 Index

month
returning last day 121
MOVINGAVG function
description 146
MOVINGSUM function
description 148
multiple searches
example of TRUE constant 21

N

negative values
SIGN 179
nested expressions
operators 22
NOT
reserved word 16
NPER function
description 149
NULL constant
description 19
reserved word 16
null values
aggregate functions 20, 54
checking for 112
filter conditions 20
in comparison expressions 20
ISNULL 112
logical operators 34
operators 20
string operator 32
numbers
rounding 172
truncating 217
numeric functions
ABS 60
CEIL71
CONVERT_BASE 78
CUME 85
description 58
EXP 95
FLOOR 97
LN 126
LOG 127
MOD 145
MOVINGAVG 146
MOVINGSUM 148
POWER 152
RAND 154
ROUND (numbers) 172
SIGN 179
SQRT 186
TRUNC (numbers) 217
numeric values
converting to text strings 203
returning absolute value 60
returning cosine 79
returning hyperbolic cosine of 80
returning hyperbolic sine 181
returning hyperbolic tangent 196
returning logarithms 126, 127
returning minimum 143
returning sine 180
returning square root 186
returning standard deviation 186
returning tangent 195
SIGN 179

O

operator precedence
expressions 22
operators
arithmetic 31
comparison operators 33
complex 23
description 12
logical operators 34
null values 20
string operators 32
using strings in arithmetic 31
using strings in comparison 33
OR
reserved word 16

P

PERCENTILE function
description 150
perl compatible regular expression syntax
using in a REG_EXTRACT function 155
using in a REG_MATCH function 155
PMT function
description 151
ports
syntax 14
positive values
SIGN 179
POWER function
description 152
primary key constraint
null values 19
PROC_RESULT variable
reserved word 16
PV function
description 153

Q

quotation marks
inserting single using CHR function 14

R

RAND function
description 154
RATE function
description 155
reference qualifiers
description 14
REG_EXTRACT function
description 155
using perl syntax 155
REG_MATCH function
description 158
using perl syntax 155
REG_REPLACE function
description 159
relational databases
dates 39
REPLACECHR function
description 160

REPLACESTR function
description 163
reserved words
list16
RESPEC function
description 166
return values
description 12
syntax 14
REVERSE function
description 167
ROUND (dates) function
description 168
processing subseconds 168
ROUND (numbers) function
description 172
rounding
dates 168
numbers 172
rows
avoiding spaces 118
counting 81
returning any row 66
returning average 146
returning first row 96
returning last row 120
returning sum 148
running total 85
skipping 94
RPAD function
description 174
RR format string
description 38
difference between YY and RR 38
using with IS_DATE 47
using with TO_CHAR 44
using with TO_DATE 47
RTRIM function
description 175
running total
returning 85

S

scientific functions
C0S 79
COSH 80
description 58
SIN 180
SINH 181
TAN 195
TANH 196
SESSSTARTTIME variable
using in date functions 48
SET_DATE_PART function
description 177
SIGN function
description 179
SIN function
description 180
sine
returning 180, 181
single quotes in string literals
CHR function 73
using CHR and CONCAT functions 76
SINH function
description 181

Index

227

size
array 182
SIZE function
description 182
skipping
rows 94
sort order
internationalization 13
SOUNDEX function
description 183
spaces
avoiding in rows 118
removing with DD_REJECT 18
special functions
ABORT 60
DECODE 91
description 59
ERROR 94
IIF 104
SPOUTPUT
reserved word 16
SQL IS_CHAR function
using REG_MATCH 158
SQL LIKE function
using REG_MATCH 158
SQL syntax
converting to perl syntax 155
SQL_LIKE function
description 185
SQRT function
description 186
square root
returning 186
SSSSS format string
using with IS_DATE 47
using with TO_CHAR 43
using with TO_DATE 47
standard deviation
returning 186
STDDEYV function
description 186
string conversion
dates 38
string functions
CHOOSE 72
description 59
INDEXOF 107
REVERSE 167
string literals
single quotes in 73, 76
single quotes requirement 14
string operators
description 32
string values
returning maximum 135
returning minimum 144
strings
adding blanks 128
adding characters 128
capitalization 108,127,219
character set 109
concatenating 32, 76
converting character strings to dates 204
converting dates to characters 199
converting length 174
converting numeric values to text strings 203
number of characters 125
removing blanks 130

228 Index

strings (continued)
removing blanks and characters 175
removing characters 130
replacing multiple characters 163
replacing one character 160
returning portion 190
struct
generating 188, 189
STRUCT function
description 188
STRUCT_AS function
description 189
subscript operator
description 24
for complex data types 23
using to access data 24
subscript operators
for multidimensional arrays 27
for nested data type 27
subseconds
processing in ROUND (dates) function 168
processing in TRUNC (dates) function 214
SUBSTR function
description 190
sum
returning 148, 193
SUM function
description 193
syntax
expression 13
general rules 14
ports 14
return values 14
SYSDATE variable
description 35
reserved word 16
using in expressions 35
system variables 35
SYSTIMESTAMP function
description 194

T

TAN function
description 195
tangent
returning 195, 196
TANH function
description 196
test functions
description 59
IS_DATE 113
IS_ZNUMBER 116
IS_SPACES 118
ISNULL 112
text strings
converting numeric values 203
TO__TIMESTAMP_TZ function
description 213
TO_CHAR (dates) function
description 199
examples 43
format strings 41
TO_CHAR (numbers) function
description 203
TO_DATE function
description 204

TO_DATE function (continued)
examples 46
format strings 44
TO_DECIMAL function
description 208
TO_DECIMAL38 function
description 209
TO_FLOAT function
description 210
TO_INTEGER function
description 211
transformation expressions
null constraints 19
overview 12
transformation language
compared to SQL 13
operators 22
reserved words 16
transformation language components
overview 12
transformation language updates
boolean expressions 20
comparison expressions 20
TRUE constant
description 20
reserved word 16
TRUNC (dates) function
description 214
processing subseconds 214
TRUNC (numbers) function
description 217
truncating
dates 214
numbers 217
‘TYPE reference qualifier
reserved word 16

U

Unicode
converting characters to Unicode values 68
converting to ASCII values 74

Unicode (continued)
converting Unicode values 73

update strategy
DD_DELETE example 17
DD_INSERT example 17
DD_REJECT example 18
DD_UPDATE example 18

UPPER function
description 219
internationalization 13

UUID_UNPARSE function
description 220

UUID4 function
description 220

Vv

variables
built-in variables 35
SYSDATE 35
VARIANCE function
description 220

W

window functions
description 59
LAG 119
LEAD 122

Y

year 2000
dates 37
YY format string
difference between RR and YY 38
using with IS_DATE 47
using with TO_CHAR 44
using with TO_DATE 47

Index

229

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: The Transformation Language
	The Transformation Language Overview
	Transformation Language Components
	Internationalization and the Transformation Language

	Expression Syntax
	Expression Components
	Rules and Guidelines for Expression Syntax

	Adding Comments to Expressions
	Reserved Words

	Chapter 2: Constants
	DD_DELETE
	Example

	DD_INSERT
	Examples

	DD_REJECT
	Examples

	DD_UPDATE
	Examples

	FALSE
	Example

	NULL
	Working with Null Values in Boolean Expressions
	Null Values in Comparison Expressions
	Null Values in Aggregate Functions
	Null Values in Filter Conditions
	Nulls with Operators

	TRUE
	Example

	Chapter 3: Operators
	Operator Precedence
	Complex Operators
	Subscript Operator
	Dot Operator
	Complex Operators for Nested Data Types

	Arithmetic Operators
	String Operators
	Nulls
	Example

	Comparison Operators
	Logical Operators
	Nulls

	Chapter 4: Variables
	Built-in Variables
	SYSDATE

	Local Variables

	Chapter 5: Dates
	Dates Overview
	Date/Time Datatype
	Julian Day, Modified Julian Day, and the Gregorian Calendar
	Dates in the Year 2000
	Dates in Relational Databases
	Dates in Flat Files
	Default Date Format

	Date Format Strings
	TO_CHAR Format Strings
	Examples

	TO_DATE and IS_DATE Format Strings
	Rules and Guidelines for Date Format Strings
	Example

	Understanding Date Arithmetic

	Chapter 6: Functions
	Function Categories
	Aggregate Functions
	Aggregate Functions and Nulls
	Character Functions
	Complex Functions
	Conversion Functions
	Data Cleansing Functions
	Date Functions
	Encoding Functions
	Financial Functions
	Numeric Functions
	Scientific Functions
	Special Functions
	String Functions
	Test Functions
	Window Functions

	ABORT
	ABS
	ADD_TO_DATE
	AES_DECRYPT
	AES_ENCRYPT
	ANY
	ARRAY
	ASCII
	AVG
	CAST
	CEIL
	CHOOSE
	CHR
	CHRCODE
	COLLECT_LIST
	COMPRESS
	CONCAT
	CONCAT_ARRAY
	CONVERT_BASE
	COS
	COSH
	COUNT
	CRC32
	CREATE_TIMESTAMP_TZ
	CUME
	DATE_COMPARE
	DATE_DIFF
	DEC_BASE64
	DECODE
	DECOMPRESS
	ENC_BASE64
	ERROR
	EXP
	FIRST
	FLOOR
	FV
	GET_DATE_PART
	GET_TIMEZONE
	GET_TIMESTAMP
	GREATEST
	IIF
	IN
	INDEXOF
	INITCAP
	INSTR
	ISNULL
	IS_DATE
	IS_NUMBER
	IS_SPACES
	LAG
	LAST
	LAST_DAY
	LEAD
	LEAST
	LENGTH
	LN
	LOG
	LOWER
	LPAD
	LTRIM
	MAKE_DATE_TIME
	MAX (Dates)
	MAX (Numbers)
	MAX (String)
	MD5
	MEDIAN
	METAPHONE
	MIN (Dates)
	MIN (Numbers)
	MIN (String)
	MOD
	MOVINGAVG
	MOVINGSUM
	NPER
	PERCENTILE
	PMT
	POWER
	PV
	RAND
	RATE
	REG_EXTRACT
	REG_MATCH
	REG_REPLACE
	REPLACECHR
	REPLACESTR
	RESPEC
	REVERSE
	ROUND (Dates)
	ROUND (Numbers)
	RPAD
	RTRIM
	SET_DATE_PART
	SIGN
	SIN
	SINH
	SIZE
	SOUNDEX
	SQL_LIKE
	SQRT
	STDDEV
	STRUCT
	STRUCT_AS
	SUBSTR
	SUM
	SYSTIMESTAMP
	TAN
	TANH
	TO_BIGINT
	TO_CHAR (Dates)
	TO_CHAR (Numbers)
	TO_DATE
	TO_DECIMAL
	TO_DECIMAL38
	TO_FLOAT
	TO_INTEGER
	TO_TIMESTAMP_TZ
	TRUNC (Dates)
	TRUNC (Numbers)
	UPPER
	UUID4
	UUID_UNPARSE
	VARIANCE

	Index

