
Informatica® Data Archive
6.4.3 HotFix 1

Data Vault SQL Reference

Informatica Data Archive Data Vault SQL Reference
6.4.3 HotFix 1
June 2017

© Copyright Informatica LLC 1996, 2018

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III),
as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to
us in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging,
Informatica Master Data Management, and Live Data Map are trademarks or registered trademarks of Informatica LLC in the United States and in jurisdictions
throughout the world. All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Publication Date: 2018-07-02

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 8
Informatica Resources. 8

Informatica Network. 8

Informatica Knowledge Base. 8

Informatica Documentation. 8

Informatica Product Availability Matrixes. 9

Informatica Velocity. 9

Informatica Marketplace. 9

Informatica Global Customer Support. 9

Chapter 1: Introduction to SQL Reference for Informatica Data Vault. 10
Value Expressions. 10

Numeric Value Expressions . 11

String Value Expressions . 12

Case Expressions. 12

Simple CASE . 13

Example of a Simple CASE. 13

Searched CASE. 14

Example of a Searched CASE. 14

SQL Syntax Diagrams . 14

Required Syntax Elements. 15

Optional Syntax Elements. 15

Repetitive Constructs. 16

Expanded Elements. 16

Usage Examples. 17

SELECT Statement Syntax. 17

Required Privileges. 17

Syntax. 18

Select List Clause. 20

Value Expression Clause. 21

Table Expression Clause. 22

Joined Table Clause. 23

Qualified Join Clause. 23

Joined Table Expression Clause. 24

Group/Order Expression Clause. 25

SELECT Clauses. 25

Example of EXPORT INTO. 29

Chapter 2: Date and Time Arithmetic. 30
Date and Time Arithmetic Overview. 30

4 Table of Contents

Intervals. 30

Examples of Intervals. 31

Labeled Durations. 31

Intervals and Date/Time Values. 32

Interval Arithmetic. 33

Interval Aggregation. 35

Interval Comparisons. 35

Implicit Casting . 36

Chapter 3: WHERE Clauses. 38
WHERE Clauses Overview . 38

Boolean Value Expressions (Search Conditions). 38

Syntax. 39

Predicates. 40

Simple Predicates. 40

Compound Predicates. 41

BETWEEN Predicates. 42

EXISTS Predicate. 42

Example of EXISTS Predicate. 43

IN Predicates. 43

Examples of IN Predicates. 44

LIKE Predicates. 45

Description. 46

ESCAPE character. 46

LOOKUP Predicates. 47

Inline Lookup. 47

CSV File Lookup. 48

Inline Lookup Example. 51

CSV File Lookup Example. 51

NULL Predicates. 52

NULL Predicates Example. 52

Quantified Comparisons. 52

Example of Quantified Comparison. 53

Chapter 4: UNION Operator. 54
UNION Operator Overview. 54

UNION. 54

UNION ALL. 55

Guidelines for Using the UNION Operator. 56

Chapter 5: Parameterized Query. 57
Parameterized Query Overview. 57

Parameterized Query Usage. 57

Table of Contents 5

Operators. 57

Predicates. 58

Functions. 58

Guidelines for Using Parameterized Queries. 58

Chapter 6: Functions. 59
Functions Overview. 60

ABS. 61

AVG. 61

CEILING. 62

CHAR. 62

COALESCE. 63

CONCAT. 63

COUNT. 64

DATE. 64

DATE (Date and Time). 65

DAY. 65

DEC. 66

DIGITS. 67

EXP. 67

EXTRACT. 68

FLOOR. 69

HOUR. 69

IFNULL. 70

INT. 71

LASTDAY. 71

LEFT. 72

LEN. 72

LN. 73

LOG10. 73

LOWER. 73

LTRIM. 74

MAX. 74

MICROSECOND. 75

MIN. 75

MINUTE. 75

MOD. 76

MONTH. 77

NANOSECOND. 77

NULLIF. 78

PI. 78

POSITION. 78

POSSTR. 79

6 Table of Contents

POWER. 80

REPLACE. 81

RIGHT. 82

ROUND. 82

RTRIM. 83

SECOND. 83

SIGN. 84

SQRT. 84

SUBSTRING. 85

SUM. 86

TIME. 86

TODAY. 87

TRIM. 87

UPPER. 88

YEAR. 88

Index. 89

Table of Contents 7

Preface
The Data Vault SQL Reference provides information about the SQL commands that can be used to access the
Data Vault in Data Archive. The SQL Reference is written for users who use query tools or reporting tools to
access data in an optimized archive.

This guide assumes that you have knowledge of SQL and relational database concepts, and the database, flat
file, or mainframe systems in your environment.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

8

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

About the Data Vault SQL Reference 9

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Introduction to SQL Reference for
Informatica Data Vault

This chapter includes the following topics:

• Value Expressions, 10

• Case Expressions, 12

• Simple CASE , 13

• Searched CASE, 14

• SQL Syntax Diagrams , 14

• SELECT Statement Syntax, 17

Value Expressions
Value expressions can be used anywhere Data Vault Service SQL syntax calls for a value expression, for
example, in the projection list of the SELECT statement. A value expression is an argument that evaluates to
a single numeric, character string, or date/time value (the datatype of the expression must be appropriate to
the statement in which it is used). Value expression primaries, which are the “building blocks” of the value
expression argument, consist of direct column references, character or numeric constants, functions, the
arithmetic operators +, –, *, /, and the string concatenation operator ||. A value expression may also contain
another value expression enclosed in parentheses.

Note that only numeric values may be part of an arithmetic operation; only character values can be used with
the concatenation operator.

10

The value expression argument is described in the following syntax diagram:

column

The column argument specifies the name of a column belonging to the archived table.

constant

The constant argument specifies a character or numeric literal. A numeric value may be preceded by a
unary operator (that is, a + or –) to indicate whether it is a positive or negative value. A character string
must be surrounded by single quotes. Only numeric values may be part of an arithmetic operation; only
character values can be used with the concatenation operator.

function

A function can be applied to all input values, resulting in a single output value.

scalar subquery

The scalar subquery argument must return a single value only. If more than one value is returned, an
error condition is generated. If the subquery result set is empty, a null value is returned instead.

Note that the entire SELECT statement must be contained in parentheses. Also, a correlated subquery is
not permitted at this time.

Numeric Value Expressions
Arithmetic operators are evaluated within an expression from left to right, in the following order of
precedence:

1. Unary Plus (+) and Minus (-)

2. Multiplication (*) and Division (/)

3. Addition (+) and Subtraction (-)

Parentheses may be employed, however, to override the order of evaluation. Expressions within parentheses
are evaluated before other parts of the expression. Within a level of precedence, operations are performed in
order from left to right. Expressions that use arithmetic operators require numeric operands, and always
produce numeric values.

Value Expressions 11

String Value Expressions
A string value expression is an expression that evaluates to a character string using some combination of
direct references to CHAR or VARCHAR columns, string literals, and string functions. The concatenation
operator (||) is used to combine the string value expression primaries (as described above). The maximum
size of the result string is 4056 characters.

For example, the following expression

UPPER ("hello" || "world")
returns the result string "HELLOWORLD".

Case Expressions
The CASE statement is a conditional expression that can be used anywhere a value expression is used. It
allows for the evaluation of multiple conditions, returning a specified value when a condition is true, or a
default value when none of the conditions is true. There are three functions, NULLIF, COALESCE, and IFNULL,
that are designed to handle a subset of the CASE functionality.

The following syntax diagrams describe the CASE statement:

12 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

As indicated in the syntax diagrams, there are two types of CASE statements: simple and searched.

Simple CASE
In the simple CASE, a value expression follows the CASE keyword. This expression is tested for equality
against the value expression in each WHEN clause. If a truth condition is encountered, testing of any
remaining conditions is halted and the value expression for the current THEN clause is returned. If no
comparison evaluates to true, then the default value expression in the ELSE clause is returned. If there is no
ELSE clause, a null value is returned. At least one of the THEN clauses must specify a value other than NULL.
All comparisons must involve compatible datatypes.

Example of a Simple CASE
SELECT lastname,
 CASE dept
 WHEN 'A' THEN 'Administration'
 WHEN 'D' THEN 'Development'
 WHEN 'Q' THEN 'Quality Assurance'
 WHEN 'T' THEN 'Technical Writing'
 ELSE '(unknown department)'
 END
FROM employees;

In this example, the employees table is searched for employee last name and department. But instead of
returning the single character that represents a department, a CASE statement is set up to return the full (or
default) department name. If the dept value is ‘A’, the string ‘Administration’ is returned; if the dept value is
‘D’, ‘Development’ is returned; and so on. If the dept value matches none of the single characters tested in the
CASE statement, the default string ‘(unknown department)’ is returned instead.

Simple CASE 13

Searched CASE
In contrast to the simple CASE, the searched CASE does not use a single test expression to compare for
equality. Instead, the searched CASE permits any Boolean condition, using any comparison operator(s), to
appear in each WHEN clause. As in the simple CASE, the first condition to evaluate to true returns the value
expression in the associated THEN clause. If no comparison evaluates to true, then the default value
expression in the ELSE clause is returned. If there is no ELSE clause, a null value is returned. At least one of
the THEN clauses must specify a value other than NULL. All comparisons must involve compatible datatypes.

Note that a simple CASE can always be rewritten as a searched CASE in the following manner:

You can rewrite it to be a simple CASE expression as follows:

CASE <value-exp-0>
 WHEN <compare-value-exp-1> THEN <return-value-exp-1>
 WHEN <compare-value-exp-2> THEN <return-value-exp-2>
 ...
 WHEN <compare-value-exp-n> THEN <return-value-exp-n>
 ELSE <value-exp-x>
END

You can rewrite it to be a searched CASE expression as follows:

CASE
 WHEN <value-exp-0> = <compare-value-exp-1> THEN <return-value-exp-1>
 WHEN <value-exp-0> = <compare-value-exp-2> THEN <return-value-exp-2>
 ...
 WHEN <value-exp-0> = <compare-value-exp-n> THEN <return-value-exp-n>
 ELSE <value-exp-x>
END

Example of a Searched CASE
SELECT name,
 CASE
 WHEN age < 0 THEN '(unknown)'
 WHEN age < 18 THEN 'Youth'
 WHEN age >= 18 AND age < 65 THEN 'Adult'
 ELSE 'Senior'
 END
FROM people;

In this example, the people table is searched for name; as well, a character string that varies according to the
age of the individual is returned with the name. Since ranges of ages are tested in the CASE statement in this
example, as opposed to exact ages, a searched CASE statement is preferable to a simple CASE. Here, if the
age value is less than zero, the character string ‘(unknown)’ is returned; if the age is between 0 and 17
inclusive, ‘Youth’ is returned; and if the age is between 18 and 64 inclusive, ‘Adult’ is returned. If the age value
does not fall into any of those ranges, then it must be 65 or greater, so the default value ‘Senior’ is returned
instead. Note that the order of processing of the conditions can sometimes be important. In the above
example, the condition “age < 0” must appear before “age < 18” in the CASE structure, otherwise a value of -1
will return ‘Youth’ instead of ‘(unknown)’.

SQL Syntax Diagrams
The following conventions are used in the SQL syntax diagrams:

• Uppercase letters indicate keywords (for example, INSERT). Keywords must be spelled exactly as
presented, but are not case-sensitive, except where noted.

14 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

• Italicized words represent variables or arguments (for example, table-name.column-name) for which the
user must substitute database object names or data values. In usage, these are only case-sensitive where
specifically indicated.

• Non-italicized words or phrases between angle brackets (< >) indicate that the syntax for this element is
expanded in a subsequent diagram labeled with the same word or phrase. When uppercase keywords are
followed by the word “statement” (for example, <SELECT statement>), the syntax element is another SQL
command statement entirely, and should be replaced by the appropriate syntax diagram.

• Partial diagrams are labeled with a word or phrase in the upper-left corner. These named diagrams should
be substituted for the word or phrase wherever it is referenced in another syntax diagram.

• Parentheses () appearing within the statement syntax are part of the syntax, and must be typed as
shown. Punctuation marks such as commas (,) and colons (:) must be entered literally wherever they
appear in syntax diagrams. Mathematical symbols, such as plus signs (+) and multiplication operators
(*), must also be entered literally.

• Underlined items indicate a default option. For example, if the options for SELECT are ALL and DISTINCT,
SELECT by itself is the equivalent of SELECT ALL.

Required Syntax Elements
Required elements such as invocation commands and required arguments appear on the main path of the
syntax diagram. A vertical bar signals the end of the syntax diagram, whereas an arrow signals continuation.

Optional Syntax Elements
Optional elements appear below the main path of the syntax diagram.

SQL Syntax Diagrams 15

If there are multiple choices for a required element, one of the elements will be displayed on the main path of
the diagram.

Repetitive Constructs
An arrow appears below a syntax element (or list of optional elements) when more than one element may be
entered or when a particular element may be repeated. If the elements in the list must be separated by
commas, a comma is shown in the syntax box.

Expanded Elements
Elements that are expanded in a subsequent syntax diagram are labeled with a word or phrase between angle
brackets. The partial diagram that expands the element is labeled in the top left corner with the same word or

16 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

phrase found between angle brackets in the preceding diagram.

Usage Examples
Usage examples are shown in Data Vault Service SQL tool. In the SQL tool, statements must be terminated
with a semicolon (;).

SELECT Statement Syntax
A SELECT statement, or query, is executed against a registered archived table to retrieve data from registered
Data Vault data files, displaying this information in the form of a results table. In the case of a Direct Export,
the results of the query are instead written to one or more output flat files.

Required Privileges
In order to select data from an archived table, the user authorization must own the table, own or possess
OWNER privileges on the schema to which the table belongs, possess SELECT privileges on the table, or
possess DBA privileges.

SELECT Statement Syntax 17

Syntax

• Boolean value expression.

18 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

• Direct Export parameter.
A parameter that describes the Direct Export operation. Each parameter can be set only once in the SQL
statement. The PATHS and FILEPREFIX parameters must be specified; all other parameters are optional.
The parameters can appear in any order.

The following table describes the Direct Export parameters:

Parameter Description

PATHS Is the list of computer/directory locations where the flat files will be written in round robin fashion.
Multiple paths can be specified, separated by semicolons (;) or by new lines. The whole parameter
value must be contained in single quotation marks (' '). Note that paths can have spaces, but if the
last directory in the path ends with a space, terminate it with a slash or backslash
Each location must be accessible to all of the network computers running Data Vault Agent
processes, otherwise the export operation will almost certainly fail.

FILEPREFIX (or
FP)

Is the root name of the output flat file(s). Each flat file will be given the name fileprefix.nnn, where
nnn is a number that increases incrementally with each new file from 000 to NUMBEROFFILES-1.
The FILEPREFIX value must be contained in single quotation marks (' ').

NUMBEROFFILE
S (or NOF)

Is the number of flat files that will be created during the export (maximum: 1000). Note that the
size of each file will not necessarily be equal, as there are a number of factors influencing flat file
size.
Default. the number of active Data Vault Agent processes, which excludes those Data Vault Agents
dedicated to internal tasks

ESCAPE (or
ESC)

Is the character used to "escape" the column delimiter, row delimiter, null character, or the escape
character itself in the exported data. When the escape character immediately precedes one of
those special characters, that character should be interpreted as part of the data. The escape
character is a single character, defined in hexadecimal form, and contained in single quotation
marks (' '). For example, the hexadecimal '\x5c' represents the backslash character "\".
Default is \x1b (the ESC character).

COLUMNDELIMI
TER (or CD)

Is the character that establishes column boundaries in the exported data. The column delimiter is a
single character, defined in hexadecimal form, and contained in single quotation marks (' ').
Default is \x1f.

ROWDELIMITER
(or RD)

Is the character that signifies the end of a row and the start of a new one in the exported data. The
row delimiter is a single character, defined in hexadecimal form, and contained in single quotation
marks (' ').
Default is \x0a (the linefeed character).

NULL Is the character that represents a null value in the exported data. The null character is a single
character, defined in hexadecimal form, and contained in single quotation marks (' ').
Default is \x7f.

SELECT Statement Syntax 19

Select List Clause

*

To retrieve all columns from the archived table, enter a single asterisk (*) as the sole argument of the
select list clause.

name.*

When selecting columns from one or more tables or views, you can select all columns from a particular
table by qualifying the special asterisk character with the appropriate table or correlation name specified
in the FROM clause.

NULL

A derived column consisting entirely of null values can be specified using the NULL keyword.

value expression

Typically, unless * is used (see above), one or more value expressions, separated by commas, make up
the select list portion of the statement. These value expressions can be column names, functions,
character or numeric constants, or some arithmetic combination of columns, functions, and constants.
Expressions may be optionally enclosed by parentheses and nested.

alias

A name for the output of the value expression or the NULL column. If no alias is specified and the value
expression is a direct column reference, the name of the output column will be the column name
referenced. If no alias is specified and the value expression is not a direct column reference, the name of
the output column will be its position number in the output table, counting from left to right.

20 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

Value Expression Clause

column name

This specifies a table column from which data values are to be retrieved by the query.

function

The function argument can be an aggregate, cast, string, math, or date function. The function is applied
to a value expression argument, producing a derived column as its result. Consult the Functions section
for a description of the available functions.

constant

A numeric or string constant can also be specified in the select list. The effect on the output table is a
derived column where the constant is the value for each row in that column. This might be useful, for
example, in labeling the output. String literals must be contained between single quotes.

(scalar subquery)

A complete SELECT statement that returns a single value. If more than one row is returned by this
subquery, an error will be generated and the outer query will fail. If the subquery result set is empty, a
null value is returned. The entire scalar subquery must be contained in parentheses.

Note that a correlated subquery is not permitted at this time.

expression operators

The + (addition), - (subtraction), * (multiplication), and / (division) operators are used to construct
arithmetic expressions. The || (concatenation) operator is used to append one string value expression to
the end of another. An exception is that aggregate functions cannot be part of an arithmetic expression.

SELECT Statement Syntax 21

Table Expression Clause

table name

This identifies the archived table from which data is retrieved for the query results. Generally, the
columns in the projection list are, or are based on, columns from this table.

correlation name

This is an alias for the archived table or subquery (nested table expression), used to identify the
database object in qualified column references within the SELECT statement. A correlation name is
optional for an archived table, since the actual name can be used to qualify column references. However,
a correlation name is required for a subquery, which cannot be referenced in any other way.

Note that, in addition to requiring a correlation name, each subquery must be contained entirely in
parentheses.

22 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

Joined Table Clause

qualified join

A join may be performed on two or more tables or subqueries. Join types include INNER JOIN (the
equivalent of simply specifying JOIN) and OUTER JOIN (LEFT, RIGHT, or FULL).

(joined table)

A table expression (table name or qualified join specification) can be included in parentheses to specify
that it should be evaluated before other table expressions in the SELECT statement.

Qualified Join Clause

SELECT Statement Syntax 23

Joined Table Expression Clause

(joined table expression)

A joined table expression can optionally be enclosed by parentheses. The use of parentheses does not
affect the order of processing in this case, since only the AND operator can be used to combine join
predicates.

column name

The first column name argument is a reference to a column from one of the joined tables; the column
name argument following the comparison operator must refer to a column from the other joined table.
Comparisons to constants cannot appear in a join predicate.

AND

Multiple join predicates can be combined using the AND Boolean operator only. That is, OR conditions
are not permitted in the joined table expression clause.

24 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

Group/Order Expression Clause

column name

The column name argument specifies a column in the projection list by which to group or order the
results of the query.

alias

The alias argument specifies an alias given to a column or derived column in the projection list, which
will be used to group or order the results of the query.

positive integer

The positive integer argument identifies a column or derived column by its position in the projection list.
That is, the first item in the projection list is 1, the second is 2, and so on. The position number cannot
refer to a constant, or an expression composed entirely of constants, in the projection list.

<value expression>

Grouping and ordering can be based on a value expression from the projection list by including the same
expression in the GROUP BY or ORDER BY clause. The value expression in the GROUP BY or ORDER BY
clause must match the one in the projection list exactly (excluding whitespace differences), otherwise an
error will be returned.

SELECT Clauses
The following list provides SELECT clauses:

DISTINCT

The DISTINCT keyword dictates that duplicate rows be omitted from query results. If DISTINCT is
specified, the projection list must consist only of named columns, with no functions or expressions. Note
that this requirement also applies to all Column Rules defined on columns in the queried table.

AS

The AS keyword can be used to name result columns in a SELECT clause. This is particularly useful for a
column derived from an expression or from a function applied to a column value.

SELECT Statement Syntax 25

The name of a result column is determined as follows:

• If the AS clause is specified, the name of the result column is the correlation name.

• If the AS clause is not specified and the result column is derived from a column name, the result
column name is the unqualified name of that column.

• If the AS clause is not specified and the result column is derived from a function or value expression,
the result column name is the number of the column, counting from left to right.

Note that the AS keyword is optional when naming result columns.

FROM

This keyword introduces the archived tables or derived tables from which data is retrieved. The FROM
clause must be included in a SELECT statement.

Correlation names can be used in place of the actual table name when qualifying columns within the
query statement. The correlation name appears immediately after the corresponding table in the FROM
clause (separated by whitespace) or after the keyword AS. Correlation names must satisfy the same
naming conventions as table names (except that they cannot be delimited by quotation marks). The
correlation name qualifies columns that appear in either SELECT or WHERE clauses.

Apart from individual archived table names, the FROM clause can include explicit join syntax.

Explicit Joins

You can use the following explicit join types:

• INNER JOIN

Inner joins return matched rows from both tables.

• LEFT [OUTER] JOIN

Left outer joins include non-matching rows only from the table named before (that is, to the left of)
the LEFT OUTER JOIN clause. Missing values in a row are filled with nulls.

• RIGHT [OUTER] JOIN

Right outer joins include non-matching rows only from the table named after (that is, to the right of)
the RIGHT [OUTER] JOIN clause. Missing values in a row are filled with nulls.

• FULL [OUTER] JOIN

The result of the full outer join contains all matched as well as unmatched rows from both tables.

An explicit join is allowed in the FROM clause with the following restrictions:

• a single explicit join tree can be specified (that is, multiple explicit joins, separated by commas, are
not permitted in the query)

• the explicit join must appear after all implicit joins (individual archived table names, separated by
commas) in the FROM clause, if implicit joins are included in the query.

The FROM clause must therefore comprise one of the following:

• one or more comma-delimited table names

• a single explicit join tree

• one or more comma-delimited table names, followed by a single explicit join tree

For example, the following query constructions are syntactically legal:
SELECT * FROM t1, t2, t3 WHERE ... ;
SELECT * FROM t4 INNER JOIN t1
ON t4.c1 = t1.c1 AND
t4.c2 != t1.c2 AND
t1.c3 > t4.c3

26 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

WHERE ... ;
SELECT * FROM t1 JOIN t2 ON t1.c1 < t2.c1
FULL OUTER JOIN t3 ON t2.c2 != t3.c2
WHERE ... ;
SELECT * FROM t1, t2, t7,
(t3 INNER JOIN t4 ON t3.c2 = t4.c2) FULL OUTER JOIN
(t5 INNER JOIN t6 ON t5.col1 != t6.c1) ON t3.c3 < t6.c3
WHERE ... ;

while the following are syntactically illegal queries:

-- implicit joins (t3, t4) follow explicit join:
SELECT * FROM t1 INNER JOIN t2 ON t1.c1 > t2.c1, t3, t4 WHERE ... ;
-- multiple join trees:
SELECT * FROM t1 INNER JOIN t2 ON t1.c1 > t2.c1,
t3 RIGHT JOIN t4 ON t3.c3 != t4.c3 WHERE ... ;

WHERE

The optional WHERE clause sets conditions that each record must meet before being retrieved by a
query. If the SELECT statement does not include a WHERE clause, every row in the table being queried
will appear in the result.

In the WHERE clause, a Boolean value expression defines a selection criterion (or criteria) applied to each
row of data values in the table being queried by the SELECT statement. If the data in a particular record
matches the selection criteria, then that record is retrieved by the query; otherwise the record is passed
over.

Consult the next section for more information about the possible Boolean value expressions.

GROUP BY

The optional GROUP BY clause allows query results from aggregate functions on columns to be grouped
in terms of the distinct values appearing in specified columns. The GROUP BY clause collects the rows
that meet the specified search criteria into groups containing common values in the specified columns.
There must be at least one expression in the SELECT column list that represents a group sharing a single
value.

The grouping-column argument(s) must consist of a column name (or names) from among those
specified in the column list following the SELECT command keyword. Multiple grouping-column
arguments may be specified, separated by commas. A direct column reference need not correspond to a
column in the projection list; the query output can be grouped by any column from the archived table.

An alternative to specifying a column by name is to use a positive integer to identify the column by its
position in the projection list of the SELECT statement. That is, the first item in the projection list is 1, the
second is 2, and so on. One restriction, however, is that a position number cannot refer to a constant, or
an expression composed entirely of constants, in the projection list.

Additionally, grouping can be done by specifying a correlation name from the projection list, which is
useful for grouping by a named value expression. For instance, if the SELECT list contains the item
"col1*col2 AS derived_col", the GROUP BY clause would reference derived_col to group by that
derived column.

Grouping can also be based on a value expression from the projection list by including the same
expression in the GROUP BY clause. The value expression in the GROUP BY clause must match the one
in the projection list exactly (excluding whitespace differences and extraneous parentheses), otherwise
an error will be returned.

A HAVING clause can be applied to qualify further the results of a GROUP BY clause.

SELECT Statement Syntax 27

HAVING

The HAVING clause further qualifies groups in the same way that the WHERE clause qualifies rows.
Groups of rows from the tables referenced in the FROM clause that satisfy all the selection criteria
arguments are used in composing the query result. Note that a GROUP BY clause must appear in the
SELECT statement if there is a HAVING clause.

A HAVING clause may contain Boolean value expressions, simply or compounded together using AND or
OR operators. Each Boolean predicate value expression must consist of a grouped column (that is, a
column referenced in the GROUP BY clause), an aggregate function, a constant, or some arithmetic
combination of grouped columns, aggregate functions, and constants. To optimize query execution
speeds, avoid using compound expressions in the HAVING clause and in the projection list; it is best to
specify columns only.

Subqueries may not appear in the HAVING clause.

WITH SAMPLE OF

The WITH SAMPLE OF clause returns a random sampling of the result set produced by the SELECT
statement. That is, if the same SELECT...WITH SAMPLE OF statement is issued multiple times, a
different subset of the total result set is returned to the caller each time.

The number of rows in the returned sample is proportional to the total number of rows in the result set.
The "number IN factor" part of the clause indicates the proportion of returned rows to total rows, which is
calculated as number:factor. For example, the following SELECT statement returns approximately a 10%
subset, (a 1:10 proportion) of the entire result set:

SELECT p_no FROM products WITH SAMPLE OF 1 IN 10;
If 100 rows were contained in the result set, then about 10 of those rows, determined randomly, would be
returned to the caller.

The syntax rules for number and factor are as follows:

• number and factor must be integers greater than zero.

• number must be less than or equal to factor.

If number is equal to factor, then no sampling is performed: the entire result set is returned. If more than
zero rows are selected but the sample size is calculated as zero, then one row will be randomly chosen.
The sampling logic will never return zero rows, unless the result set itself contains zero rows.

ORDER BY

The optional ORDER BY clause sorts the rows returned by the query according to the values in the
specified columns, in the order in which they are specified. That is, results are sorted according to the
values in the first column argument first; the values in the second column argument next, and so on. The
column argument can be a column from among those returned by the query (that is, one of the select list
expressions), or it can be any column from the archived table (regardless of whether the column is
included in the select list). Multiple column arguments may be specified, separated by commas. Results
can be sorted in ascending order (the default) or descending order by specifying the ASC or DESC
keywords, respectively.

As an alternative to specifying a column by name, a positive integer may be used to identify the column
by its position in the projection list of the SELECT statement. That is, the first item in the projection list is
1, the second is 2, and so on. In the case of SELECT *, the positive integer refers to the ordinal position
of a column in the archived table.

Ordering can also be specified using a correlation name from the projection list, which is useful for
ordering results by derived column.

28 Chapter 1: Introduction to SQL Reference for Informatica Data Vault

Another way to sort by a value expression from the projection list is to include the same expression in
the ORDER BY clause. The value expression in the ORDER BY clause must match the one in the
projection list exactly (excluding whitespace differences and extraneous parentheses), otherwise an
error will be returned.

EXPORT INTO

The "Direct Export" query option is a method of exporting data from an archived table to one or more flat
files. By including the EXPORT INTO clause at the end of a standard SELECT statement, the data fetched
by the query will be written to the specified files rather than displayed at the console. The Direct Export
method is highly scalable, so increasing the number of computers with active Data Vault Agent
processes should decrease the total amount of time required for the export operation. The key principle
is to maximize the number of Data Vault Agents writing data to separate flat files in parallel with minimal
hardware contention.

As the SELECT...EXPORT INTO command is executing, the fetched data will not be displayed at the
console. Instead, as each Data Vault data file is processed, the data file name will appear on the screen.
By default, this output is buffered by the client, so the data file names will actually be written in clusters
sporadically during the export operation. To have the data file names displayed as they are processed,
issue the following command prior to the SELECT...EXPORT INTO command:

ALTER SESSION SET FETCHROWS=1;
This does not affect the export operation performance in any way, only the presentation of information
on the client side. (To restore the default data display buffering, execute the same command with
FETCHROWS=0.)

Note that if the export operation fails before completion, the flat files written up to that point will most
likely be incomplete.

Example of EXPORT INTO
SELECT id, ddate, price, qty, sku FROM ssa.demossa WHERE ddate > '2004-01-01'
 EXPORT INTO
 PATHS='\\ALPHA1\sct ; \\BETA1\work 7\sct
 \\DELTA1\usr\tmp'
 NOF=3
 FP='sct_export1'
 ESC='\x5c'
 CD='\x7c'
 RD='\x0a'
 NULL='\x87' ;

The above SELECT statement fetches all records from the DemoSSA table where the ddate value is after
January 1, 2004, and exports this data to four flat files that will be created on the three specified computers
(ALPHA1, BETA1, DELTA1). The flat files will have the names "sct_export1.000", "sct_export1.001", and
"sct_export1.002". Columns in the flat files will be delimited by the pipe ("|") symbol; rows will be delimited by
the linefeed character; null values will be indicated by the "double dagger" symbol ("‡"); and the escape
character will be a backslash ("\").

The equivalent SELECT statement with the longer parameter aliases is as follows:

SELECT id, ddate, price, qty, sku FROM ssa.demossa WHERE ddate > '2004-01-01'
 EXPORT INTO
 PATHS='\\ALPHA1\sct ; \\BETA1\work 7\sct
 \\DELTA1\usr\tmp'
 NUMBEROFFILES=3
 FILEPREFIX='sct_export1'
 ESCAPE='\x5c'
 COLUMNDELIMITER='\x7c'
 ROWDELIMITER='\x0a'
 NULL='\x87' ;

SELECT Statement Syntax 29

C h a p t e r 2

Date and Time Arithmetic
This chapter includes the following topics:

• Date and Time Arithmetic Overview, 30

• Intervals, 30

• Labeled Durations, 31

• Intervals and Date/Time Values, 32

• Interval Arithmetic, 33

• Interval Aggregation, 35

• Interval Comparisons, 35

• Implicit Casting , 36

Date and Time Arithmetic Overview
Basic arithmetic operations can be performed with DATE, TIME, and TIMESTAMP values. Subtracting one
date/time value from another produces an interval. An interval can also be produced by labeling an
expression as a duration (a labeled duration). These intervals can be added to or subtracted from the date/
time datatypes and other intervals, and can also be multiplied or divided by numeric expressions. Further,
intervals of the same type can be grouped together using a subset of the aggregate functions, or compared in
Boolean value expressions using comparison operators. There is implicit type casting when quoted string
literals or numeric expressions are involved in date/time arithmetic or Boolean expressions.

Intervals
Subtracting one temporal type from another of the same type results in an interval. There are three types of
intervals: date, time, and timestamp. A date interval is characterized by an integral number of days, ranging
between -99,999,999 and 99,999,999 inclusive. A time interval is characterized by an integral number of
seconds, ranging between -999,999 and 999,999 inclusive. And a timestamp interval is represented by a
decimal number of seconds, anywhere between +/-99,999,999,999,999.999999 inclusive. Note that a negative
interval is produced if the value being subtracted is greater than the value from which it is being subtracted.
"Greater than", in the case of temporal intervals, means "more recent".

Intervals can be involved in arithmetic expressions involving other intervals or labeled durations (see below),
date/time datatypes, or numeric expressions. If required, a date/time interval can be converted to an integer
value using the INTEGER casting function.

30

The following table summarizes characteristics of these intervals:

Operation Interval Type Size Unit

<DATE> – <DATE> date interval DEC (8,0) days

<TIME> – <TIME> time interval DEC (6,0) seconds

<TIMESTAMP> – <TIMESTAMP> timestamp interval DEC (20,6) seconds

Examples of Intervals
The following table provides expressions for intervals:

Expression Result

'01.01.1954'-'01.01.1953' 365 (days)

'1602-12-31'-'2001-01-01' -145368 (days)

'00:00:00'-'10:10:10' -36610 (seconds)

'23.59.59'-'22.59.00' 3659 (seconds)

'1954-01-01-00.00.00'-
'1953-01-01-00.00.00'

31536000.000000 (seconds)

'2003-12-16-09.51.16.073000'-
'2003-12-19-09.00.00.000000'

-256123.927000 (seconds)

Labeled Durations
Expressions can be cast into an interval type by labeling the expression as a duration. This labeled duration is
represented by a numeric expression followed by one of the duration keywords. The supported labeled
durations are DAY(S), MONTH(S), YEAR(S), HOUR(S), MINUTE(S), SECOND(S), and MICROSECOND(S).

The following table provides the possible labeled durations and resulting interval types:

Label Result Type

<integer expression> DAYS (or DAY) date interval

<integer expression> MONTHS (or MONTH) date interval

<integer expression> YEARS (or YEAR) date interval

<integer expression> HOURS (or HOUR) time interval

<integer expression> MINUTES (or MINUTE) time interval

Labeled Durations 31

Label Result Type

<integer expression> SECONDS (or SECOND) time interval

<decimal/float expression> SECONDS (or SECOND) timestamp interval

<numeric expression> MICROSECONDS (or MICROSECOND) timestamp interval

Examples
277 DAYS
(1024*1024-100) MINUTES
10e2 SECONDS

Intervals and Date/Time Values
Intervals can be added to or subtracted from date/time datatypes. Such arithmetic expressions will always
evaluate to the same datatype as the date/time value in the expression. The base arithmetic expressions and
their result types are summarized in the following tables:

DATE

The following table provides the DATE expressions:

Expression Result Type

<DATE> – <date interval> DATE

<DATE> + <date interval> DATE

<date interval> + <DATE> DATE

TIME

The following table provides the TIME expressions:

Expression Result Type

<TIME> – <time interval> TIME

<TIME> + <time interval> TIME

<time interval> + <TIME> TIME

32 Chapter 2: Date and Time Arithmetic

TIMESTAMP

The following table provides the TIMESTAMP expressions:

Expression Result Type

<TIMESTAMP> – <timestamp interval> TIMESTAMP

<TIMESTAMP> + <timestamp interval> TIMESTAMP

<timestamp interval> + <TIMESTAMP> TIMESTAMP

<TIMESTAMP> – <date interval> TIMESTAMP

<TIMESTAMP> + <date interval> TIMESTAMP

<date interval> + <TIMESTAMP> TIMESTAMP

<TIMESTAMP> – <time interval> TIMESTAMP

<TIMESTAMP> + <time interval> TIMESTAMP

<time interval> + <TIMESTAMP> TIMESTAMP

Examples

The following table provides examples for expressions:

Expression Result

13 DAYS + '2003-12-19' 2004-01-01

'11:30:45' - 156 SECONDS 11:28:09

'2003-12-19-12.35.52.544000' - 75 HOURS 2003-12-16-09.35.52.544000

Interval Arithmetic
Intervals can be added to and subtracted from other intervals in most cases.

The following table shows the possible combinations of addition and subtraction between two intervals, and
the resulting interval types:

+ | – DAYS MONTHS YEARS HOURS MINUTES SECONDS MICRO-
SECONDS

DAYS DAYS * * SECONDS SECONDS SECONDS SECONDS

MONTHS * MONTHS MONTHS * * * *

YEARS * MONTHS MONTHS * * * *

Interval Arithmetic 33

+ | – DAYS MONTHS YEARS HOURS MINUTES SECONDS MICRO-
SECONDS

HOURS SECONDS * * SECONDS SECONDS SECONDS SECONDS

MINUTES SECONDS * * SECONDS SECONDS SECONDS SECONDS

SECONDS SECONDS * * SECONDS SECONDS SECONDS SECONDS

MICRO-
SECONDS

SECONDS * * SECONDS SECONDS SECONDS SECONDS

Note: * You cannot perform an arithmetic operation between the two interval types.

Intervals can also be involved in addition, subtraction, multiplication, and division operations with numeric
expressions as operands. The interval can appear on either side of an operator (+, –, *, /) in all cases except
one: a numeric expression cannot be divided by an interval. For example, "12/(3 days)" is an invalid
arithmetic operation.

The following table lists the interval type resulting from the arithmetic interaction of a numeric expression
and an interval of a given type (the result is the same for each operator):

Interval Result Type

DAYS DAYS

MONTHS MONTHS

YEARS MONTHS

HOURS SECONDS

MINUTES SECONDS

SECONDS SECONDS

MICROSECONDS SECONDS

Examples of Interval Arithmetic

The following table provides examples for interval arithmetic:

Expression Result

1 DAY + 1 HOUR 90000.000000 (seconds)

60 SECONDS + 500 MICROSECONDS 60.000500 (seconds)

12 MONTHS + 1 YEAR 24 (months)

1 YEAR * 2 24 (months)

28 DAYS / 7 4 (days)

34 Chapter 2: Date and Time Arithmetic

Expression Result

8 * 2 HOURS 57600 (seconds)

20 MICROSECONDS + 2 2.000020 (seconds)

1 DAY - (30 + 30 MINUTES) 84570.000000 (seconds)

Interval Aggregation
Intervals of the same type can be grouped together using a subset of the aggregation functions. When
intervals are aggregated in this manner, the resulting value is the same interval type.

The following aggregate functions can be used to group interval values:

• MIN

• MAX

• AVG

• SUM

Examples
given SMALLINT column c1:

c1

10

90

55

33

48

• MIN (C1 * 10 DAYS) = 100 (days)

• MAX (C1 - 5 SECONDS) = 85 (seconds)

• AVG (C1 + 10 HOURS) = 36047 (seconds)

• SUM (C1 - 1 MINUTE) = -64 (seconds)

Interval Comparisons
Intervals can be compared to intervals of the same type using any of the following comparison operators: =,
<, >, >=, <=, <>. When such a comparison is made, the expression evaluates to a Boolean value (TRUE or
FALSE).

Interval Aggregation 35

Examples
x=3
y=1

Expression Result

x SECONDS <= y SECONDS FALSE

x HOURS <> y HOURS TRUE

y DAYS < x DAYS TRUE

Implicit Casting
Certain implicit type casting is performed on quoted string literals to DATE, TIME, and TIMESTAMP values,
when they are part of an arithmetic expression or comparison operation. There is also implicit type casting
on some numeric expressions to interval types in the same situations.

The following list provides the implicit date/time type castings:

• A quoted literal in a subtraction expression with a DATE value, or a quoted literal compared to a DATE
value, is cast as a DATE value.

• A quoted literal in a subtraction expression with a TIME value, or a quoted literal compared to a TIME
value, is cast as a TIME value.

• A quoted literal in a subtraction expression with a TIMESTAMP value, or a quoted literal compared to a
TIMESTAMP value, is cast as a TIMESTAMP value.

• A numeric value in an addition or subtraction expression with a time or timestamp interval, or a numeric
value compared to a time or timestamp interval, is cast as a SECONDS labeled duration.

• A numeric value in an addition or subtraction expression with a date interval, or a numeric value compared
to a date interval, is cast as a DAYS labeled duration.

• A quoted literal that is added to a date interval, or a quoted literal that has a date interval subtracted from
it, is cast as a DATE value.

• A quoted literal that is added to a time interval, or a quoted literal that has a time interval subtracted from
it, is cast as a TIME value.

• A quoted literal that is added to a timestamp interval, or a quoted literal that has a timestamp interval
subtracted from it, is cast as a TIMESTAMP value.

• A numeric value that is added to a DATE value, or a numeric value subtracted from a DATE value, is cast
as a DAYS labeled duration.

• A numeric value that is added to a TIME or TIMESTAMP value, or a numeric value subtracted from a TIME
or TIMESTAMP value, is cast as a SECONDS labeled duration.

• A numeric value subtracted from a quoted literal, or a numeric value added to a quoted literal, involves a
double casting: if the quoted literal is a valid date, it is cast as a DATE value and the numeric is cast as a
DAYS labeled duration; if the quoted literal is a valid time, it is cast as a TIME value and the numeric is
cast as a SECONDS labeled duration; or if the quoted literal is a valid timestamp, it is cast as a
TIMESTAMP value and the numeric is cast as a SECONDS labeled duration

36 Chapter 2: Date and Time Arithmetic

• A quoted literal subtracted from a quoted literal involves a double casting: if both quoted literals are valid
dates, they are both cast as DATE values. If both quoted literals are valid times, they are both cast as
TIME values; or if both quoted literals are valid timestamps, they are both cast as TIMESTAMP values.

The following table displays examples for implicit casting:

Expression Result

'01:01:01' + 59 01:02:00

'1945-09-02' - '1939-09-10' 2184 (days)

'2003-12-19' - 19 2003-11-30

Implicit Casting 37

C h a p t e r 3

WHERE Clauses
This chapter includes the following topics:

• WHERE Clauses Overview , 38

• Boolean Value Expressions (Search Conditions), 38

• Predicates, 40

• BETWEEN Predicates, 42

• EXISTS Predicate, 42

• IN Predicates, 43

• LIKE Predicates, 45

• LOOKUP Predicates, 47

• NULL Predicates, 52

• Quantified Comparisons, 52

WHERE Clauses Overview
Selection criteria arguments are used in the WHERE clauses of SELECT statements. These selection criteria
consist of a collection of predicates and expressions that determine which rows of the table will be returned
by a SELECT statement.

Boolean Value Expressions (Search Conditions)
Boolean value expressions are used in Data Vault Service SQL to specify a search condition that can be used
in SELECT statements. These expressions use various predicates to test a particular operand (for example,
the contents of a column) for membership in a specified set of values. If the operand satisfies the condition,
it is TRUE; if it does not satisfy the condition, it is FALSE; a NULL value can force a Boolean expression to
evaluate to UNKNOWN.

When the NOT operator is used, the following Boolean values are equivalent:

• NOT TRUE is FALSE

• NOT FALSE is TRUE

• NOT UNKNOWN is UNKNOWN

38

Syntax

Boolean value expressions can specify a single search condition or can combine multiple conditions linked
by the AND / OR keywords. The order in which Boolean operators are evaluated within an expression is as
follows, unless altered by the presence of parentheses: NOT, AND, then OR.

Note that parentheses (...) can be placed around individual predicates, groups of predicates, and even the
whole Boolean value expression. If a predicate (or collection of predicates) is enclosed by parentheses, it will
be evaluated first. If parenthetical expressions are nested, the innermost condition surrounded by
parentheses is evaluated before all others. Placing parentheses around logical operations also enhances the
readability of the SQL, especially if there are many predicates in the expression.

The following table provides evaluation of different Boolean expressions combined with the AND operator:

Boolean
Expression

true false unknown

true true false unknown

false false false false

unknown unknown false unknown

The following table provides evaluation of different Boolean expressions combined with the OR operator:

Boolean
Expression

true false unknown

true true true true

false true false unknown

unknown true unknown unknown

Boolean Value Expressions (Search Conditions) 39

Predicates
WHERE clauses can contain simple or compound predicates.

Simple Predicates
A simple predicate uses comparison operators in selection conditions:

The following table lists the simple predicates:

Predicate Interpretation

= equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

The following query displays all rows in the Supplier table containing a value of 20 in their status column:

SELECT *
FROM supplier
WHERE status = 20;

The following table displays the query results:

sno sname status city

S1 SMITH 20 LONDON

S4 CLARK 20 LONDON

The WHERE clause in the next example compares a character string 'PARIS' with the city column. The query
below retrieves sno (supplier number) and status column data for all suppliers in Paris:

SELECT sno, status
FROM supplier
WHERE city = 'PARIS';

Note that character strings must be enclosed by single quotation marks ('x').

The following table displays the results:

sno status

S2 10

S3 30

40 Chapter 3: WHERE Clauses

When one column value is compared against another column value in a query and the column datatypes are
different, the Data Vault Service tries to convert one of the data values to a datatype compatible with the
other data value before performing the comparison. For example, if integer and float column values are
compared, the INT data value is converted to a FLOAT value before the Data Vault Service performs the
comparison.

Note that BLOB columns cannot be compared with other BLOB columns, or with columns of any other
datatype.

Spaces in data values are considered when evaluating retrieval conditions. Right-justified data with leading
spaces does not equal left-justified data with trailing spaces. For example, the string ‘Jones’ is read as a
completely different value, depending on the number of preceding or trailing blank spaces attached.

The LIKE predicate operator allows string pattern matching without strict adherence to character string
content and order. See the LIKE Predicates section below for more information.

The < > (not equal) comparison operator specifies records for retrieval that do not meet the specified
condition. For example, the following query retrieves the pno (part number) column values of all Part table
records with a color column value other than ‘RED’.

SELECT pno
FROM part
WHERE color <> 'RED';

Compound Predicates
Compound predicates use the operators OR and AND. For example, to display the sno column values for all
suppliers in “PARIS” with a status column value greater than 20, use the following query:

SELECT sno
FROM supplier
WHERE city = 'PARIS'
AND status > 20;

This SELECT command statement retrieves pno column values for those parts that are either ‘RED’, or weigh
more than 15 pounds:

SELECT pno
FROM part
WHERE color = 'RED'
OR weight > 15;

In complex queries, parentheses can be used to indicate the order of evaluation. The condition(s) surrounded
by the innermost pair of parentheses are applied first.

SELECT pno, pname
FROM part
WHERE color = 'green'
OR (city = 'LONDON'
AND weight < 15);

This last query retrieves pno and pname column values of all parts that are either green, or are both made in
London and have a weight less than 15.

Predicates 41

The following table displays the query result:

pno pname

P1 NUT

P2 BOLT

P4 SCREW

BETWEEN Predicates
The BETWEEN operator can evaluate whether or not data values fall within the range of values indicated in
the predicate.

Each occurrence of the expression x is evaluated to determine if it sorts between and including the range
values indicated by y and z (the range values in the BETWEEN clause are also part of the result set). The
three variables above can consist of any combination of value expressions, although x is typically a column
name.

Note that the value of y should be less than that of z. Otherwise, in the case of literals, an error will be
returned; in the case of numeric expressions, the predicate will always return FALSE.

The following query selects all Part table records with weight column values between 15 and 18:

SELECT pno, pname
FROM part
WHERE weight BETWEEN 15 AND 18;

The following table displays the records retrieved:

pno pname

P2 BOLT

EXISTS Predicate
The [NOT] EXISTS predicate tests a subquery for the presence of a value. If the subquery returns at least one
value, the EXISTS predicate evaluates to TRUE, while a NOT EXISTS predicate evaluates to FALSE. Its syntax
is as follows:

42 Chapter 3: WHERE Clauses

Note that a correlated subquery is supported with some restrictions:

• A correlated EXISTS predicate cannot appear in the HAVING clause.

• Correlation can be used in the WHERE and HAVING clauses of the subquery.

• Only one correlated column is allowed in the subquery, but it can be part of multiple conditions in the
WHERE and HAVING clauses.

For instance, the following clauses are allowed in an EXISTS subquery ('outer' is a table reference from the
outer query):

WHERE outer.c1 != inner.c1
WHERE outer.c1 > 15 AND inner.c2 > outer.c1
WHERE outer.c1 > 15 AND outer.c1*3 <= inner.c1 OR outer.c1 = 0
WHERE outer.c1 > 15 ... HAVING MAX(outer.c1) > 40

But the following are disallowed:

WHERE outer.c1 > 15 AND outer.c2 <= inner.c2
WHERE outer.c1 > 15 ... HAVING MAX(outer.c2) > 10

Example of EXISTS Predicate
The following query returns the last and first names (lname, fname) of all personnel in the 'patients' table if
the same patient ID (pid) record has the infected attribute set to 'TRUE' in the 'diagnosis' table:

SELECT P.lname, P.fname
FROM patients P
WHERE EXISTS (SELECT *
FROM diagnosis D
WHERE P.pid = D.pid
AND D.infected = 'TRUE');

IN Predicates
The IN and NOT IN operators cause the values appearing in the WHERE clause predicate to be tested for
membership in a collection of values, which can be contained in a specified file, represented as a value list, or
the result of a noncorrelated subquery.

The syntax for the IN predicate is as follows:

The set of values contained in the value list must be compatible with the datatype of x (which is typically a
column name). The NULL keyword cannot be included in the value list (for comparisons against null, use a
NULL predicate instead). If a SELECT statement (subquery) is used with the IN predicate, the subquery may

IN Predicates 43

only return values from a single column. The individual values contained in the value list must be separated

by commas.

When the alternative IN-file option is used, the parameters following the "IN" keyword must all be contained
within a set of braces { }. The one required element of the IN-file option is the path of a single file containing
the list of values in the test set, enclosed by single quotation marks and preceded by the keyword
"SOURCEFILE". If the specified file is missing, an error is returned and the whole query is cancelled.

One of the two optional elements of the IN-file clause is the delimiter character, which is a single ASCII
character that will act as the list delimiter in the specified text file. This character must be contained in single
quotation marks and preceded by the keyword "DELIMITER". By default, if the delimiter is not specified, it is
assumed to be a newline (or carriage return plus newline) character: \n or \r\n. Hexadecimal characters are
not supported at this time.

The other optional element in the IN-file clause is the keyword "REMOTE", which (when present) indicates that
the specified file is on the Data Vault Service side. If this keyword is omitted, the file is assumed to be on the
client side: that is, the machine from where the query originated.

Note that multiple files cannot be specified in a single IN-file clause. However, multiple IN-file clauses, each
referencing a different file, can be included in the same query.

Also note that each file name specified by the IN-file clauses in the same query must be unique, even if they
are in different locations. This is because all of the files will be copied to the same SHAREDIR folder for
processing, and so the names must not conflict.

Examples of IN Predicates
The following is an example of an IN clause with a value list:

SELECT sno, sname
FROM supplier
WHERE sno IN ('S1', 'S2', 'S3');

All data values in the sno column must match one of the three string constants in order for their
corresponding records to be retrieved.

This query retrieves the following data values:

sno sname

S1 SMITH

S2 JONES

S3 BLAKE

44 Chapter 3: WHERE Clauses

The following is an example of IN-file usage:

SELECT col2
FROM sct1
WHERE col1 IN { SOURCEFILE 'C:\ssa\tmp\infile.csv' DELIMITER ',' }
OR col1 IN { SOURCEFILE '\\ALPHA\Public\in.txt' REMOTE } ;

In this example, an archived table named sct1 is queried. Each value in column col1 is compared against the
set of values in the client-side file, infile.csv, where separate values are separated by commas. The values in
the same column are also checked against the contents of a remote, server-side file named in.txt (on a
machine named ALPHA), whose individual values are assumed to be delimited by newline, or newline plus
carriage return, characters. The query returns the col2 value for each record that satisfies the IN-file
membership testing.

The final example shows an IN clause containing a noncorrelated subquery:

SELECT SUM(S.sales) AS Total_UK_Sales
FROM stores S
WHERE S.storeno IN (SELECT L.storeno
FROM locations L
WHERE L.country = 'UK');

Here, the outer query calculates the total sales of stores whose storeno value is contained in the result set of
the inner query. The inner query (the noncorrelated subquery) returns only the storeno values of stores
located in the UK. Hence, the value returned by the overall query is the sum of sales for UK stores only.

LIKE Predicates
The LIKE condition specifies a test that involves pattern matching. You can use the LIKE predicate with
placeholders.

The following text is an example of a query that uses the LIKE predicate:

Select * from employee where first_name like “John%”
The following image shows the syntax for a LIKE (pattern-match) predicate:

LIKE Predicates 45

character value expression

The character value expression parameter is compared to the pattern string. The expression can consist
of a direct column reference, a string function, a string constant, or any combination of these using the
concatenation operator (||).

pattern-string

All string-constant arguments must be enclosed by single quotation marks (' '). The underscore
character (_) is a wildcard character that matches any single character; the percent character (%) is a
wildcard character that matches any number (zero or more) characters. Note that wildcard characters
can only appear at the end of the string.

ESCAPE

The optional ESCAPE clause designates a special escape character, which if placed immediately before
a percent (%) or underline (_) character causes that percent or underline character to be interpreted
literally as part of the pattern string.

escape character

An escape character must appear after the ESCAPE keyword in the statement, if the ESCAPE clause is
used. The escape character can be any single character, enclosed by single quotation marks (' '). It is
recommended that the chosen escape character not be a common string component (such as a letter or
digit), or one of the wildcard characters (the percent or underline character), as the query expression
might not produce the expected results.

Description
A particular row satisfies the LIKE predicate if the value of the column specified as the character value
expression preceding the LIKE predicate matches the pattern specified in the pattern-string argument.
Otherwise, the row is disqualified. The following examples demonstrate pattern matching:

The LIKE predicate is satisfied in the following cases:

• Part LIKE 'Q%'. All part values beginning with Q.

• Part LIKE '%Q'. All part values ending with Q.

• Part LIKE 'Q_ _ _9'. All part values beginning with Q and having a 9 as the fifth and final character.

• Part LIKE '_ _6%'. All part values having a 6 as the third character.

• Part LIKE '%QQQ%'. All part values containing the string QQQ (for example, QQQAB, AQQQB, and ABQQQ).

ESCAPE character
If either the percent (%) character or underscore (_) character is to be interpreted literally within the pattern-
string argument of a LIKE predicate, an escape character must precede the percent character or underscore
character within the string constant.

In order to define an escape character, the ESCAPE keyword and its character argument must follow the
pattern-string argument within the LIKE predicate. The character specified for the character argument must
precede occurrences of the percent character or underscore character within the pattern-string argument.
Consider the following example:

desc LIKE '%40!%%' ESCAPE '!'
This LIKE predicate is satisfied by rows containing the string 40% in the desc column.

46 Chapter 3: WHERE Clauses

LOOKUP Predicates
As part of an archived table query, the Lookup predicate allows the insertion of an array of values into
placeholders in a template Boolean expression. Each row of the array represents a different instance of the
same Boolean expression. When the Lookup predicate is processed, all of those individual expressions are
combined by logical OR conjunctions into a larger conditional expression.

For example, the following inline Lookup instance:

Lookup(c1 = %1 AND c2 > %2 OR c3 < %3,
('N', 1, 100),
('Y', 2, 150),
('N', 3, 200)
)

is equivalent to the following conditional expression:

(c1 = 'N' AND c2 > 1 OR c3 < 100) OR
(c1 = 'Y' AND c2 > 2 OR c3 < 150) OR
(c1 = 'N' AND c2 > 3 OR c3 < 200)

In this example, the three rows of lookup values are inserted into placeholders in the lookup expression when
the query is executed, producing three distinct Boolean expressions, connected by ORs.

Inline Lookup
With the inline form of Lookup, all of the comparison values are specified as inline parameters within the
Lookup instance in the SQL statement. By contrast, the CSV file version of Lookup specifies the location of
an external file that contains all of the comparison values.

Other than the manner of specifying lookup values, there are no substantial differences between the two
types of Lookup. However, inline Lookup might be preferred over CSV file Lookup if the array of values is not
too large, or if it is desirable to avoid an external dependency in the form of a CSV file.

The syntax for an inline LOOKUP predicate appears below:

lookup condition

The conditional expression containing placeholders. Multiple sub-conditions can be connected by the
logical AND or OR conjunctions. Parentheses can be used to group sub-conditions for readability and/or
to override the logical order of processing.

The placeholders take the form of "%p", where p is an integer ranging from 1 to the total number of
values in each row of the data array. The number of distinct placeholders can be less than the total
number of values in each array row, which means that one or more columns of values in the array will be

LOOKUP Predicates 47

ignored when testing the Lookup conditions. For instance, in the expression "col1 > %1 AND col3 = %3
AND col7 < %7", only the 1st, 3rd, and 7th values in each row of the array are used.

The placeholders do not have to appear in sequential order from right to left within the expression. For
example, "col1 = %3 OR col2 = %2 OR col3 = %1" is a perfectly valid expression.

Also, the same array value can be used multiple times in the expression, simply by repeating the specific
placeholder. For example, we could have this expression: "col1 = %1 AND col2 > %1". This means that the
same value will be compared against both col1 and col2.

Note that a comma (,) must follow the lookup condition parameter.

row of values

A row of values in the "array" that will be inserted into the lookup expression. Each row must have the
same number of values, separated by commas, and the datatype at the same position in each row must
be compatible.

Currently, there is no way to specify null values. An empty string can be specified using two single
quotation marks ('').

Each row of values must be contained in parentheses, and separated from the next row by a comma.

Any individual character value can be specified using the hexadecimal format. For example, the
uppercase letter "Z" (ASCII hexadecimal code: 5A) can be represented as:

x'5A'
Similarly, the unprintable line feed control character can be specified as:

x'0A'
A full string can also be represented in hexadecimal form by concatenating the ASCII codes for all the
characters in the string. For example, the string "Crüe" can be written as:

x'4372FC65'
String concatenation is supported for inline Lookup strings, using the concatenation (||) operator.This
makes it possible to specify the hexadecimal form only for extended or unprintable characters, instead
of for the whole string. For instance, the string "Crüe" can also be written as:

'Cr'||x'FC'||'e'
Note that literal single quotation marks (') can be referenced by escaping the quote; that is, specifying
two consecutive single quotation marks (''). Alternatively, single quotation marks can be specified using
the hexadecimal representation:

x'27'
The following two Lookup strings are therefore equivalent:

'''Drive,'', she said.'
x'27'||'Drive,'||x'27'||' she said.'

They both specify the following string:

'Drive,' she said.

CSV File Lookup
The CSV file form of the Lookup predicate generally works the same way as the inline form, except the array
of values is contained in an external file referenced by the Lookup instance. The values in the external file are
typically in the CSV (Comma-Separated Values) format, although Lookup can also read some custom
formats.

48 Chapter 3: WHERE Clauses

The Lookup predicate adheres to the following CSV file characteristics:

• Each row of values is located on a separate line, delimited by a line break.

• The last record in the file may or may not have an ending line break.

• Within each record, there may be one or more fields, separated by commas, and each line contains the
same number of fields throughout the file.

• Each field may or may not be enclosed in double quotation marks ("). If fields are not enclosed by double
quotation marks, then double quotation marks may not appear inside the fields.

• Fields that contain line breaks, double quotes, and commas should be enclosed by double quotation
marks.

• If double quotation marks are used to enclose fields, then a double quotation mark appearing inside a
field must be escaped by preceding it with another double quotation mark.

One CSV file feature not supported by Lookup is the optional header line. A CSV file referenced by Lookup
must not contain the field names on the first line.

Note that there are no limitations on the size of a CSV file, except those imposed by hardware resources or
the operating system.

The syntax for a CSV file LOOKUP predicate appears below:

lookup condition

The conditional expression containing placeholders for the CSV values. Note that a comma (,) must
follow the lookup condition parameter.

LOOKUP Predicates 49

The following table describes the lookup condition parameters.

Parameter Description

SOURCEFILE 'CSV file' Specifies the CSV file containing an array of values that will be used in the lookup
condition. The CSV file path, which must be enclosed by single quotation marks,
can be absolute or relative.

DELIMITER 'delimiter
character'

Optionally specifies which single character separates the values in the CSV file. By
default, the delimiter character is a comma (,), as is standard in CSV files. Note that
the rows in the CSV file are delimited by line breaks, and this row delimiter cannot
be changed.

REMOTE Indicates that the specified CSV file is on the Data Vault Service side. If this
keyword is omitted, the file is assumed to be on the client side (the machine where
the query originated).

While the Lookup predicate is capable of processing a typical CSV file, it is flexible enough to also
handle nonstandard CSV files or non-CSV files. As mentioned above, the DELIMITER parameter in the
Lookup syntax allows the specification of any other single character as the value delimiter in the file. For
example, the following CSV rows use the default comma, pound symbol (#), pipe symbol (|), and space
character, respectively, as value delimiters:

1,"aubergine",-6e23,"Y"
1#"aubergine"#-6e23#"Y"
1|"aubergine"|-6e23|"Y"
1 "aubergine" -6e23 "Y"

As with the inline form of Lookup, columns in the array of values in the CSV file can be ignored by
omitting the associated placeholders in the conditional expression.

Unlike the inline form of Lookup, hexadecimal values cannot be specified in the CSV file. However, this
should not be a problem, since any literal character can appear in the CSV file. The CSV file can even
include control characters like the escape character (ASCII code 27), or special whitespace characters
like the vertical tab (ASCII code 11), as long as the containing string is enclosed by double quotation
marks.

Line breaks that are part of a string appear as line breaks in the CSV file, in exactly the same way that it
would appear if the string were printed out. For instance:

24786,"Dear Joan,
Get well soon.
Regards,
Tim",1997
24787,"shipping notice",2004

In the above example, the string "Dear Joan,<line break><line break>Get well soon.<line break><line
break>Regards,<line break>Tim" is interpreted as a single string in the same record as the values
"24786" and "1997" that appear on either side of the string. The row that follows ('24787,"shipping
notice",2004') is a more typical record.

Optionally, any field value can be enclosed by double quotation marks in the CSV file, whether the value
is string or numeric. However, certain characters require that the whole string be contained in quotes:

• control characters (ASCII codes 1-31 and 127)

• space character (ASCII code 32)

• comma (,)

50 Chapter 3: WHERE Clauses

• double quotation marks ("), if they are at the start of the string

Note that if control characters and spaces are not part of a quoted string, they are ignored or treated
as delimiters.

Repeated delimiter characters (for example, ",,,,,") are counted as a single delimiter.

Literal double quotation marks in a CSV file string must be escaped by doubling the character (""). For
example:

24788,"She said, ""OUCH!""",1998
The string in the above example is interpreted as:

She said, "OUCH!"
As with the inline form of Lookup, null values cannot be specified. An empty string can be specified
using "".

Warning: If the null control character (ASCII code 00) is present in the CSV file, either as part of a string
literal or as a delimiter, the query will hang when executed against the Data Vault Service.

Inline Lookup Example
SELECT c1, c2, c3
FROM S1.T1
WHERE
Lookup (c1 <= %1 AND c2 = %2 AND c3 >= %3,
('20071222072132021540241263', 158.97, '20071223091422020670233655'),
('20071218163352021130070420', 12.26 , '20071218163352021130070420'),
('20071217125938020250714927', 22.20 , '20071217125938020250714927'),
('20071222085214020220173289', 148.91, '20071222085214020220173289'),
('20071217121333021600203214', 56.48 , '20071223091422020670233670')
) ;

CSV File Lookup Example

SELECT c1, c2, c3
FROM S1.T1
WHERE
Lookup (c1 <= %1 AND c2 = %2 AND c3 >= %3,
SOURCEFILE 'C:/prod/csv/20090116.csv' DELIMITER ','
) ;
 where the CSV file 20090116.csv contains the following data:
"20071222072132021540241263",158.97,"20071223091422020670233655"
"20071218163352021130070420",12.26,"20071218163352021130070420"
"20071217125938020250714927",22.20,"20071217125938020250714927"
"20071222085214020220173289",148.91,"20071222085214020220173289"
"20071217121333021600203214",56.48,"20071223091422020670233670"

Both of the Lookup examples above are effectively identical to the following SQL statement:

SELECT c1, c2, c3
FROM S1.T1
WHERE
(c1 <= '20071222072132021540241263' AND c2 = 158.97 AND
c3 >= '20071223091422020670233655') OR
(c1 <= '20071218163352021130070420' AND c2 = 12.26 AND
c3 >= '20071218163352021130070420') OR
(c1 <= '20071217125938020250714927' AND c2 = 22.20 AND
c3 >= '20071217125938020250714927') OR
(c1 <= '20071222085214020220173289' AND c2 = 148.91 AND
c3 >= '20071222085214020220173289') OR
(c1 <= '20071217121333021600203214' AND c2 = 56.48 AND
c3 >= '20071223091422020670233670') ;

LOOKUP Predicates 51

NULL Predicates
The IS [NOT] NULL operator can be used in WHERE clause predicates to match or exclude null values
occurring in a specified data column. Its syntax is as follows (where x is typically a column name):

NULL Predicates Example
The following query retrieves all Part table records that do not have a null value in their color data column:

SELECT *
FROM part
WHERE color IS NOT NULL;

When used in a predicate, the NULL operator keyword must be preceded with either the IS or IS NOT
keywords. Operators such as = or <> cannot be used with the NULL keyword.

Quantified Comparisons
The quantified comparison predicate compares the specified value (x) with the values returned by a
subquery. If ALL is specified, then the value is tested for its appearance in all records returned by the
subquery. If either ANY or SOME is specified (these two keywords are equivalent), the value is tested for its
appearance in at least one of the records returned by the subquery. If no keyword is supplied, the subquery is
interpreted as a scalar subquery, which must return exactly one row and one value.

If the value x is null, or the subquery returns no rows, the predicate will evaluate to UNKNOWN. The SELECT
statement (subquery) may only return values from a single column, or in the case of a scalar subquery, only a
single value.

52 Chapter 3: WHERE Clauses

Note that a correlated subquery is not permitted at this time.

Example of Quantified Comparison
SELECT * FROM inventory
WHERE cost >= ALL (SELECT I.price
FROM items I, orders O
WHERE I.o_no = O.o_no);

Each cost value in the inventory table is tested against all the price values returned by the subquery. Since the
operator/keyword is >= ALL , if a particular row’s cost value is greater than every single value returned by the
subquery, the value expression returns TRUE, and that row is included in the result set.

Quantified Comparisons 53

C h a p t e r 4

UNION Operator
This chapter includes the following topics:

• UNION Operator Overview, 54

• UNION, 54

• UNION ALL, 55

• Guidelines for Using the UNION Operator, 56

UNION Operator Overview
The UNION operator combines the result sets of two or more SELECT statements. By default, the Data Vault
Service evaluates the SELECT statements from left to right. You can use parentheses to explicitly set the
order of evaluation.

The UNION operator has the following forms:

• UNION

• UNION ALL

UNION
The UNION operator combines the result sets of multiple SELECT statements but does not include duplicate
rows in the final result set. The final result set contains only distinct rows from all the SELECT statements.

Syntax

The UNION operator has the following syntax:

SELECT column1 [, columnN]
FROM table1 [, tableN]
[WHERE clause]

UNION

SELECT column1 [, columnN]
FROM table1 [, tableN]
[WHERE clause]

54

Examples

The following UNION query selects the same number of columns from different tables:

SELECT location_id, department_name,
 FROM departments
 UNION
 SELECT location_id, warehouse_name
 FROM warehouses;

The following UNION query selects all columns from multiple tables that have the same number of columns
of the same datatype:

SELECT *
 FROM departments
 UNION
 SELECT *
 FROM warehouses
 UNION
 SELECT *
 FROM offices;

The following UNION query includes an ORDER BY clause:

SELECT City
FROM Customers
UNION
SELECT City
FROM Suppliers
ORDER BY City;

UNION ALL
The UNION ALL query combines the result sets of multiple SELECT statements. It returns all rows from the
queries, including rows returned from more than one SELECT statement. It does not remove duplicate rows
from the final result set.

Syntax

The UNION ALL operator has the following syntax:

SELECT column1 [, columnN]
FROM table1 [, tableN]
[WHERE clause]

UNION ALL

SELECT column1 [, columnN]
FROM table1 [, tableN]
[WHERE clause]

Examples

The following UNION ALL query returns all product IDs from the first and second SELECT statements:

SELECT product_id FROM order_items
UNION ALL
SELECT product_id FROM inventories;

The following UNION ALL query uses parentheses to specify the precedence of evaluation :

SELECT *
 FROM departments
 UNION ALL
 (SELECT *
 FROM warehouses

UNION ALL 55

 UNION
 SELECT *
 FROM offices);

All three tables must have the same number of columns of the same data type.

Guidelines for Using the UNION Operator
Unless otherwise noted in the guidelines, the Data Vault Service follows the standard SQL rules for the UNION
operator.

Use the following guidelines when you include UNION or UNION ALL in a query:

• You can use parentheses to specify the order of evaluation.
The following example is a valid UNION query for use with the Data Vault Service:

SELECT c1, c2, c3 FROM Table1
UNION
(SELECT c1, c2, c3 FROM Table2
UNION
SELECT c1, c2, c3 FROM Table3);

In this example, the Data Vault Service evaluates the union between Table2 and Table3. Then the Data
Vault Service evaluates the union between Table1 and the result set of the union between Table2 and
Table3.

• If you use the Data Vault Service ssasql command line program to run queries, you cannot use
parentheses to enclose the first SELECT statement in a UNION query.
The following example is not a valid use of parentheses in a UNION query that you run from the Data Vault
Service ssasql command line program:

(SELECT c1, c2, c3 FROM Table1)
UNION
SELECT c1, c2, c3 FROM Table2;

• The number of columns selected from a table must be the same for each SELECT statement. If you select
all columns from a table with SELECT *, the number of columns in the table must be the same as the
number of columns selected for other tables.

• The data types of the selected columns must be compatible. For example, integer and decimal data types
are compatible. In the following example, LastName from Customers is compatible with VendorName
from Suppliers, City is compatible with City, MembershipStart is compatible with LastUpdated.

SELECT LastName, City, MembershipStart FROM Customers
UNION
SELECT VendorName, City, LastUpdated FROM Suppliers
ORDER BY City;

• The columns in the final result set take the names of the columns in the first SELECT statement. For
example, the columns in the final result set for the following query will be named LastName and City.

SELECT LastName, City FROM Customers
UNION
SELECT VendorName, City FROM Suppliers
ORDER BY City;

• The columns in the final result set take the largest column size in all the SELECT statements. For example,
if the SELECT statements include a column with small integer, integer, and decimal data types, the
datatype for the column in final result set will be decimal.

• You can use the UNION or UNION ALL operator in a subquery.

56 Chapter 4: UNION Operator

C h a p t e r 5

Parameterized Query
This chapter includes the following topics:

• Parameterized Query Overview, 57

• Parameterized Query Usage, 57

• Guidelines for Using Parameterized Queries, 58

Parameterized Query Overview
A parameterized query uses parameters or placeholders in place of values. When you define the SQL
statement, you can use placeholders in place of the values. When you run the SQL statement, supply the
values for the placeholders in a separate statement. Parameterized queries are also known as prepared
statements.

The SQL client that you use must support parameterized queries. The SQL client determines the syntax for
the parameterized queries. Each SQL client has its own method for preparing and running parameterized
queries.

Unless otherwise noted in the guidelines, the Data Vault Service follows the standard SQL rules for
parameterized queries.

Parameterized Query Usage
You can use parameters for values used with operators, predicates, and functions. You must use a question
mark (?) as a placeholder for the value.

Operators
You can use placeholders for values in mathematical operations (+ - * /) and the string concatenation
operation (||).

For example, the following query uses a placeholder for one of the values in the addition operation:

SELECT *
FROM customer
WHERE age + ? > 100;

57

Predicates
You can use placeholders with the following predicates: > < >= <= = != BETWEEN IN LIKE

For example, the following query uses placeholders for values in the >= and <= predicates:

SELECT *
FROM employee
 WHERE emp_no >= ? and emp_no <= ?;

The following query uses a placeholder for the value in the LIKE predicate:

Select * from employee where first_name like ?;

Functions
You can use placeholders with Data Vault Service SQL functions except aggregate functions and the
COALESCE, IFNULL, and NULLIF functions.

When you use a parameter in place of a function argument, verify that the datatype of the parameter matches
the datatype required for the argument.

You cannot use parameters in the following functions:

• AVG

• COALESCE

• COUNT

• IFNULL

• MAX

• MIN

• NULLIF

• SUM

For more information about the functions available for Data Vault Service queries, see Chapter 6,
“Functions” on page 59.

Guidelines for Using Parameterized Queries
You can include parameters in any type of query.

Use the following guidelines when you include parameters in your queries:

• You must use a question mark (?) as a placeholder.

• When you use a placeholder with an operator or a predicate, only one side of the expression can use a
placeholder. One side of the operation must always contain a value for which the Data Vault Service can
determine the datatype.
For example, the following query is valid:

SELECT account_balance
FROM users
WHERE user_name = ?;

The following query is not valid:

SELECT account_balance
FROM users
WHERE ? <= ?;

58 Chapter 5: Parameterized Query

C h a p t e r 6

Functions
This chapter includes the following topics:

• Functions Overview, 60

• ABS, 61

• AVG, 61

• CEILING, 62

• CHAR, 62

• COALESCE, 63

• CONCAT, 63

• COUNT, 64

• DATE, 64

• DATE (Date and Time), 65

• DAY, 65

• DEC, 66

• DIGITS, 67

• EXP, 67

• EXTRACT, 68

• FLOOR, 69

• HOUR, 69

• IFNULL, 70

• INT, 71

• LASTDAY, 71

• LEFT, 72

• LEN, 72

• LN, 73

• LOG10, 73

• LOWER, 73

• LTRIM, 74

• MAX, 74

• MICROSECOND, 75

• MIN, 75

• MINUTE, 75

59

• MOD, 76

• MONTH, 77

• NANOSECOND, 77

• NULLIF, 78

• PI, 78

• POSITION, 78

• POSSTR, 79

• POWER, 80

• REPLACE, 81

• RIGHT, 82

• ROUND, 82

• RTRIM, 83

• SECOND, 83

• SIGN, 84

• SQRT, 84

• SUBSTRING, 85

• SUM, 86

• TIME, 86

• TODAY, 87

• TRIM, 87

• UPPER, 88

• YEAR, 88

Functions Overview
A function is a named, specialized operation performed on zero or more input values, that returns a single
value when executed successfully. A function can appear anywhere a value expression is permitted. The
function is invoked by its name, followed by the input arguments in parentheses.

The following table describes the types of functions that you can use:

Function Type Description

Aggregate An operation applied to the values contained in a particular column (or in a derived
column created by a value expression), producing a single value that summarizes
the (derived) column. The value expression argument cannot itself contain an
aggregate function.

Cast The cast functions are used to convert input values from one format to another. A
cast function can appear anywhere a value expression is permitted in SQL syntax.

String The string functions are used to manipulate character string values. A string
function can be used anywhere a string value expression is permitted.

60 Chapter 6: Functions

Function Type Description

Math The math functions are used for manipulating numeric values. A math function can
appear wherever a numeric value expression is allowed.

Date/Time The date/time functions are used to manipulate DATE, TIME, and TIMESTAMP
values, and can appear wherever a value expression is permitted.

NULLIF, COALESCE, IFNULL The three functions that are designed to handle a subset of the CASE functionality.

ABS
A math function that returns the absolute value of the input expression.

ABS Syntax
ABS (double)

ABS Examples

Input Output

-1 1

1 1

CREATE TABLE num_table (col1 SMALLINT);
INSERT INTO num_table VALUES (-1);
1 row affected
INSERT INTO num_table VALUES (1);
1 row affected
SELECT ABS(col1) FROM num_table;
2 rows selected

1

 1

AVG
An aggregate function that returns the average of the non-null values in the specified or derived column
(numeric data only).

AVG Syntax
AVG (value-expression)
AVG (DISTINCT value-expression)

ABS 61

CEILING
A math function that returns the smallest integer that is greater than or equal to the input expression.

CEILING Syntax
CEILING (double)

CEILING Example

Input Output

9.3 10

CREATE TABLE num_table (col1 DEC(5,2));
INSERT INTO num_table VALUES (9.3);
1 row affected
SELECT CEILING(col1) FROM num_table;
1 row selected
1

 1.00000000000000e+01

CHAR
A cast function that converts the input value to the CHAR datatype equivalent and returns the value. DATE
and TIME values are converted according to the picture format in the nucleus.ini file, unless a second
parameter that specifies a particular date or time picture (between quotation marks) is included.

CHAR Syntax
CHAR (char)
CHAR (char [, ‘picture format’])
CHAR (timestamp [, ‘picture format’])

CHAR Examples

Input Output

'2004-01-31', 'mmmm dd, yyyy' 'January 31, 2004'

1000 + 200 + 30 + 4 '1234'

CREATE TABLE string_table (col1 VARCHAR(20));
CREATE TABLE date_table (c1 DATE);
INSERT INTO date_table VALUES ('2004-01-31');
1 row affected
INSERT INTO string_table SELECT CHAR(c1, 'mmmm dd, yyyy') FROM date_table;
1 row affected
INSERT INTO string_table VALUES (CHAR(1000+200+30+4));
1 row affected
SELECT * FROM string_table;
2 rows selected
COL1

January 31, 2004
 1234

62 Chapter 6: Functions

COALESCE
Returns the first argument that is not null. The arguments are evaluated in the order in which they are
specified. The result is null only if all the arguments are null.

COALESCE Example
SELECT lastname,
 job_desc,
 COALESCE(salary, contract, commission, subsistence)
FROM payroll;

In this example, a worker on the payroll is paid either a regular salary, contract pay, a commission, or
subsistence wages. The COALESCE function returns the value for the appropriate pay type, assuming all but
the applicable pay field store null values. If none of the pay types apply, a null value is returned.

The equivalent (searched) CASE expression for this example would be the following:

SELECT lastname,
 job_desc,
 CASE
 WHEN salary IS NOT NULL THEN salary
 WHEN contract IS NOT NULL THEN contract
 WHEN commission IS NOT NULL THEN commission
 WHEN subsistence IS NOT NULL THEN subsistence
 ELSE NULL
 END
FROM payroll;

CONCAT
A string function that is the explicit function counterpart to the concatenation operator ("||"). CONCAT()
returns the character string produced by concatenating the first argument with the second argument. An
error is generated if either of the input arguments does not evaluate to a character string. The maximum size
of the result string is 4056 characters.

CONCAT Syntax
CONCAT (string, string)

COALESCE 63

CONCAT Example

Input Output

'hello', 'world' 'helloworld'

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES (CONCAT('hello', 'world'));
1 row affected
SELECT col1 FROM string_table;
1 row selected
col1

helloworld

COUNT
An aggregate function.

COUNT Syntax
• Returns the number of rows in the table or virtual table.

COUNT (*)
• Returns the number of non-null values in the specified or derived column, when duplicates are omitted.

COUNT (DISTINCT column)
• Returns the number of non-null values in the specified or derived column.

COUNT (value-expression)

DATE
A cast function that converts a properly formatted input expression to the DATE datatype and returns the
value. The input expression can evaluate to the CHAR, VARCHAR, TIMESTAMP, or DATE datatype. For the
character input types, the following formats are permitted:

• 'YYYY-MM-DD'

• 'MM/DD/YYYY'

• 'DD.MM.YYYY'

• Any legal format that matches the date picture (DatePic) specified in the [CLIENT] section of the
nucleus.ini file.

If the input type is TIMESTAMP, the DATE portion of the value is returned. If the input type is DATE, the value
is returned unchanged.

The DATE (month, day, year) form of the function constructs a DATE value from integer values.

DATE Syntax
DATE (char)
DATE (timestamp)
DATE (month, day, year)

64 Chapter 6: Functions

DATE Example

Input Output

'22.11.1975' 1975-11-22

CREATE TABLE emp_data (eyear CHAR(4), emonth CHAR(2), eday CHAR(2));
INSERT INTO emp_data VALUES ('1975', '11', '22');
1 row affected
CREATE TABLE birthdates (d1 DATE);
INSERT INTO birthdates SELECT DATE(eday || '.' || emonth || '.' || eyear) FROM emp_data;
1 row affected
SELECT d1 FROM birthdates;
1 row selected
d1

1975-11-22

DATE (Date and Time)
A date and time function that returns the equivalent DATE datatype value for the specified month, day, and
year. The input values must be integers, and they must represent a valid date.

DATE Syntax
DATE (month, day, year)

DATE Result

Input Output

12, 31, 2003 2003-12-31

CREATE TABLE emp_data (emonth INT, eday INT, eyear INT);
INSERT INTO emp_data VALUES (12, 31, 2003);
1 row affected
SELECT DATE(emonth, eday, eyear) FROM emp_data;
1 row selected
1

2003-12-31

DAY
A date and time function that returns the day portion of a DATE or TIMESTAMP value as an INTEGER value.

DAY Syntax
DAY (char)

DAY Examples

Input Output

'11/27/1969' 27

DATE (Date and Time) 65

Input Output

'2004-02-13-14.14.59.624000' 13

CREATE TABLE dt_table (date_col DATE, timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('11/27/1969', '2004-02-13-14.14.59.624000');
1 row affected
SELECT date_col, DAY(date_col) AS day FROM dt_table;
1 row selected

date_col day
---------- -----------
1969-11-27 27
SELECT timestamp_col, DAY(timestamp_col) AS day FROM dt_table;
1 row selected
timestamp_col day
-------------------------- -----------
2004-02-13-14.14.59.624000 13

DEC
A cast function that converts a numeric or string input to the DECIMAL datatype and returns the value.
Optionally, the precision and scale for the converted DECIMAL value can be set. If omitted, the following
default precisions are used, depending on the input type:

• SMALLINT: 5

• INTEGER: 11

• UNSIGNED: 19

• other: 15

The default scale is 0 in all cases.

DEC Syntax
DEC (char value-expression [, precision [, scale]])
DECIMAL (char value-expression [, precision [, scale]])

DEC Examples

Input Output

'1234.567', 10, 5 1234.56700

5.67192e3 5672

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES ('1234.567');
1 row affected
SELECT DEC(col1, 10, 5) FROM string_table;
1 row selected
1

 1234.56700
CREATE TABLE num_table (col1 FLOAT);
INSERT INTO num_table VALUES (5.67192e3);
1 row affected
SELECT DEC(col1) FROM num_table;
1 row selected
1

66 Chapter 6: Functions

 5672

DIGITS
A cast function that returns a string representation of the numeric input expression, excluding non-digits. The
input value's numeric sign, decimal point, and/or exponent character (if applicable) are not part of the return
value. The length of the returned string is the precision of the input value, padded with leading zeroes if
necessary.

DIGITS Syntax
DIGITS (decimal)

DIGITS Example

Input Output

-123456.789 '0123456789'

CREATE TABLE dec1 (col1 DEC(10, 3));
INSERT INTO dec1 VALUES (-123456.789);
1 row affected
CREATE TABLE varchar1 (c1 VARCHAR(10));
INSERT INTO varchar1(c1) SELECT DIGITS(col1) FROM dec1;
1 row affected
SELECT c1 FROM varchar1;
1 row selected
c1

0123456789

EXP
A math function that returns a FLOAT value of the logarithmic constant e (2.718281828) raised to the power
of the parameter.

EXP Syntax
EXP (double)

EXP Example

Input Output

100 2.68811714181614e+43

CREATE TABLE num_table (col1 SMALLINT);
INSERT INTO num_table VALUES (100);
1 row affected
SELECT EXP(col1) FROM num_table;
1 row selected
1

 2.68811714181614e+43

DIGITS 67

EXTRACT
A date and time function that returns the specified component from the input date/time expression as an
INTEGER value.

Use the following keywords to indicate the date component to extract:

• DAY

• MONTH

• YEAR

• HOUR

• MINUTE

• SECOND

• MICROSECOND
Note that DATE components cannot be extracted from TIME values.

EXTRACT Syntax
EXTRACT (DateComponentKeyword FROM char)

EXTRACT Examples

Input Output

DAY FROM '2003-12-29' 29

MONTH FROM '2003-12-29' 12

YEAR FROM '2004-02-17-14.20.06.131000' 2004

HOUR FROM '02:20:34' 2

MINUTE FROM '2004-02-17-14.20.06.131000' 20

SECOND FROM '02:20:34' 34

MICROSECOND FROM '2004-02-17-14.20.06.131000' 131000

CREATE TABLE dt_table (date_col DATE, timestamp_col TIMESTAMP, time_col TIME);
INSERT INTO dt_table VALUES ('2003-12-29', '2004-02-17-14.20.06.131000', '02:20:34');
1 row affected
SELECT date_col, EXTRACT(DAY FROM date_col) AS result FROM dt_table;
1 row selected
date_col result
---------- -----------
2003-12-29 29
SELECT date_col, EXTRACT(MONTH FROM date_col) AS result FROM dt_table;
1 row selected
date_col result
---------- -----------
2003-12-29 12
SELECT timestamp_col, EXTRACT(YEAR FROM timestamp_col) AS result FROM dt_table;
1 row selected

timestamp_col result
-------------------------- -----------
2004-02-17-14.20.06.131000 2004
SELECT time_col, EXTRACT(HOUR FROM time_col) AS result FROM dt_table;
1 row selected
time_col result
-------- -----------

68 Chapter 6: Functions

02:20:34 2
SELECT timestamp_col, EXTRACT(MINUTE FROM timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-14.20.06.131000 20
SELECT time_col, EXTRACT(SECOND FROM time_col) AS result FROM dt_table;
1 row selected
time_col result
-------- -----------
02:20:34 34
SELECT timestamp_col, EXTRACT(MICROSECOND FROM timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-14.20.06.131000 131000

FLOOR
A math function that returns the largest integer that is less than or equal to the input expression.

FLOOR Syntax
FLOOR (double)

FLOOR Example

Input Output

9.3 9

CREATE TABLE num_table (col1 DEC(5,2));
INSERT INTO num_table VALUES (9.3);
1 row affected
SELECT FLOOR(col1) FROM num_table;
1 row selected
1

 9.00000000000000e+00

HOUR
A date and time function that returns the hours portion of a TIME or TIMESTAMP value as an INTEGER value.

HOUR Syntax
HOUR (char)

HOUR Examples

Input Output

'15:08:37' 15

FLOOR 69

Input Output

'2004-02-17-15.08.37.588000' 15

CREATE TABLE dt_table (time_col TIME, timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('15:08:37', '2004-02-17-15.08.37.588000');
1 row affected
SELECT time_col, HOUR(time_col) AS result FROM dt_table;
1 row selected
time_col result
-------- -----------
15:08:37 15
SELECT timestamp_col, HOUR(timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-15.08.37.588000 15

IFNULL
Returns the first of two arguments that is not null. This is the same as calling the COALESCE function with
only two arguments. As with the COALESCE function, the IFNULL arguments are evaluated in the order in
which they are specified, and the result is null only if both arguments are null.

IFNULL Example
SELECT item, IFNULL(price, -1) AS Price
FROM inventory;

In this example, a SELECT statement returns a list each item and its associated price from the inventory
table. The IFNULL function is used here to intercept item prices that have not been set (and are therefore
null) and return a value of -1 instead. For items whose price is not null, the IFNULL function returns the price
value unchanged.

The equivalent (searched) CASE expression for this example would be the following:

SELECT item,
 CASE
 WHEN price IS NOT NULL THEN price
 ELSE -1
 END
 AS Price
FROM inventory;

70 Chapter 6: Functions

INT
A cast function that returns the INTEGER datatype representation of a numeric or character input expression.
The value produced by the conversion must fall within the range of the INTEGER type, or else an error
condition will result. If present, the decimal part of the input value is rounded.

INT Syntax
INT (char)
INTEGER (char)

INT Examples

Input Output

'1.024e4' 10240

1.024099999999e+04 10241

CREATE TABLE temp_int (col1 INT);
INSERT INTO temp_int values (INTEGER('1.024e4'));
1 row affected
INSERT INTO temp_int values (INTEGER(1.024099999999e+04));
1 row affected
SELECT * FROM temp_int;
2 rows selected
COL1

 10240
 10241

LASTDAY
Returns the date of the last day of the month in the DateString.

Syntax
LASTDAY (DateString)

Argument DataType Description

DateString char, date, or
timestamp

Date string from which to get the last day. The format of the date string can
be a date or a time stamp.

Return Value

Date of the last day of the month specified in the DateString.

Example

The function call lastday('2013-09-12') returns the last day of September: 2013-09-30

INT 71

LEFT
A string function that returns a substring from value-expression consisting of the number of leftmost
characters indicated by length. The length parameter is a numeric expression that evaluates to an integer
value. If the value of length is greater than or equal to the length of the input string, the whole string is
returned.

LEFT Syntax
LEFT (char value-expression, integer length)

LEFT Example

Input Output

'isopropyl', 3 'iso'

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES (LEFT('isopropyl', 3));
1 row affected
SELECT col1 FROM string_table;
1 row selected

col1

iso

LEN
A string function that returns the number of characters in the input expression.

LEN Syntax
LEN (char)
LENGTH (char)

LEN Example

Input Output

'sea bass' 8

CREATE TABLE string_table (col1 VARCHAR(10));
INSERT INTO string_table VALUES ('sea bass');
1 row affected
SELECT LENGTH(col1) FROM string_table;
1 row selected
1

 8

72 Chapter 6: Functions

LN
A math function that returns the natural logarithm of the input expression. If the input expression evaluates
to a negative number or 0, an error message is returned.

LN Syntax
LN (double)
LOG (double)

LN Example

Input Output

120 4.78749174278205e+00

CREATE TABLE num_table (col1 SMALLINT);
INSERT INTO num_table VALUES (120);
1 row affected
SELECT LN(col1) FROM num_table;
1 row selected
1

 4.78749174278205e+00

LOG10
A math function that returns the base 10 logarithm of the input expression. If the input expression evaluates
to a negative number or 0, an error message is returned.

LOG10 Syntax
LOG10 (double)

LOG10 Example

Input Output

2 3.01029995663981e-01

CREATE TABLE num_table (col1 SMALLINT);
INSERT INTO num_table VALUES (2);
1 row affected
SELECT LOG10(col1) FROM num_table;
1 row selected
1

 3.01029995663981e-01

LOWER
A string function that returns the input expression with all uppercase characters converted to their lowercase
equivalents.

LN 73

LOWER Syntax
LOWER (char)
LCASE (char)

LOWER Example

Input Output

'LOUD' 'loud'

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES (LOWER('LOUD'));
1 row affected
SELECT col1 FROM string_table;
1 row selected
col1

loud

LTRIM
A string function that returns the input string with leading spaces removed.

LTRIM Syntax
LTRIM (char)

LTRIM

Input Output

' snipped' 'snipped'

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES (LTRIM(' snipped'));
1 row affected
SELECT col1 FROM string_table;
1 row selected
col1

snipped

MAX
An aggregate function that returns the maximum value in the specified column or derived column.

MAX Syntax
MAX (value-expression)

74 Chapter 6: Functions

MICROSECOND
A date and time function that returns the fractional second portion of a time stamp value in microsecond
precision. The function returns the microsecond value as an integer.

Syntax
MICROSECOND (char)

Example

Input Output

'2004-02-17-15.08.37.588000' 588000

'2004-02-17-15.08.37.588000123456' 588000

CREATE TABLE dt_table (timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('2004-02-17-15.08.37.588000');
1 row affected
SELECT timestamp_col, MICROSECOND(timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-15.08.37.588000 588000

MIN
An aggregate function that returns the minimum value in the specified or derived column.

MIN Syntax
MIN (value-expression)

MINUTE
A date and time function that returns the minutes portion of a TIME or TIMESTAMP value as an INTEGER
value.

MINUTE Syntax
MINUTE (char)

MINUTE Examples

Input Output

'15:08:37' 8

'2004-02-17-15.08.37.588000' 8

CREATE TABLE dt_table (time_col TIME, timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('15:08:37', '2004-02-17-15.08.37.588000');
1 row affected
SELECT time_col, MINUTE(time_col) AS result FROM dt_table;

MICROSECOND 75

1 row selected
time_col result
-------- -----------
15:08:37 8
SELECT timestamp_col, MINUTE(timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-15.08.37.588000 8

MOD
A math function that returns the remainder of value-expression1 divided by value-expression2. The return
value is negative only if value-expression1 is negative. If value-expression2 is 0, the function returns value-
expression1. If either of the arguments is a null value, the result is a null value.

MOD Syntax
MOD (double value-expression1, double value-expression2)

MOD Examples

Input Output

8, 5 3

127,62 3

-4,2 0

-4,3 -1

NULL,1 NULL

CREATE TABLE num_table (exp1 SMALLINT, exp2 SMALLINT, result SMALLINT);
INSERT INTO num_table VALUES (8, 5,);
1 row affected
INSERT INTO num_table VALUES (127, 62,);
1 row affected
INSERT INTO num_table VALUES (-4, 2,);
1 row affected
INSERT INTO num_table VALUES (-4, 3,);
1 row affected
INSERT INTO num_table VALUES (, 1,);
1 row affected
UPDATE num_table SET result = MOD(exp1, exp2);
5 rows affected
.NULLS *****
SELECT * FROM num_table;
5 rows selected
EXP1 EXP2 RESULT
------ ------ ------
 8 5 3
 127 62 3
 -4 2 0
 -4 3 -1
***** 1 *****

76 Chapter 6: Functions

MONTH
A date and time function that returns the month portion of a DATE or TIMESTAMP value as an INTEGER
value.

MONTH Syntax
MONTH (char)

MONTH Examples

Input Output

'02/17/2004' 2

'2004-02-17-15.08.37.588000' 2

CREATE TABLE dt_table (date_col DATE, timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('02/17/2004', '2004-02-17-15.08.37.588000');
1 row affected
SELECT date_col, MONTH(date_col) AS result FROM dt_table;
1 row selected
date_col result
---------- -----------
2004-02-17 2
SELECT timestamp_col, MONTH(timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-15.08.37.588000 2

NANOSECOND
A date and time function that returns the fractional second portion of a time stamp value in nanosecond
precision. The function returns the nanosecond value as an integer.

Syntax
NANOSECOND (char)

Example

Input Output

'2004-02-17-15.08.37.588000' 588000000000

'2004-02-17-15.08.37.588000123456' 588000123456

CREATE TABLE dt_table (timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('2004-02-17-15.08.37.588000');
1 row affected
SELECT timestamp_col, NANOSECOND(timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-15.08.37.588000 588000000000

MONTH 77

NULLIF
Returns a null value if the arguments are equal, otherwise it returns the value of the first argument.

NULLIF Example
SELECT item, NULLIF(cost, -1)
FROM inventory;

For this example, say that a cost value of -1 indicates no cost at all. With the .NULLS system variable set to
‘N/A’, it might be more informative to return a null value instead of -1. Using the NULLIF function, a null value
can be substituted for every return of -1.

The equivalent (simple) CASE expression for this example would be the following:

SELECT item,
 CASE cost
 WHEN -1 THEN NULL
 ELSE cost
 END
FROM inventory;

PI
A math function that returns the constant pi (that is, 3.14159265...) as a FLOAT value.

PI Syntax
PI ()

PI Example
CREATE TABLE num_table (col1 SMALLINT);
INSERT INTO num_table VALUES (2);
1 row affected
SELECT PI(), PI()*col1 FROM num_table;
1 row selected
1 2
---------------------- ----------------------
 3.14159265358979e+00 6.28318530717958e+00

POSITION
A string function that returns the starting position of a string value-expression1 within another string value-
expression2. The Data Vault Service evaluates the position of the string from left to right, starting at position
1. If value-expression1 is not found, POSITION returns 0. If value-expression1 occurs more than once within
value-expression2, POSITION returns the starting position of the last occurrence of value-expression1.

78 Chapter 6: Functions

The POSITION function is similar to the POSSTR function. Both functions return the position of a substring
within a string.

POSITION Syntax
POSITION (char value-expression1 IN char value-expression2)

POSITION Example 1

In this example, value-expression1 occurs once within value-expression2. POSITION returns the starting
position of value-expression1.

Input Output

'fun' IN 'malfunction' 4

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES ('malfunction');
1 row affected
SELECT POSITION('fun' IN col1) FROM string_table;
1 row selected
1

 4

POSITION Example 2

In this example, value-expression1 occurs more than once within value-expression2. POSITION returns the
starting position of the last occurrence of value-expression1.

Input Output

'4' IN '4234.23423' 8

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES ('4234.23423');
1 row affected
SELECT POSITION('4' IN col1) FROM string_table;
1 row selected
1

 8

POSSTR
A string function that returns the starting position of a string value-expression1 within another string value-
expression2. The Data Vault Service evaluates the position of the string from left to right, starting at position
1. If value-expression1 is not found, POSSTR returns 0. If value-expression1 occurs more than once within
value-expression2, POSSTR returns the starting position of the first occurrence of value-expression1.

The POSSTR function is similar to the POSITION function. Both functions return the position of a substring
within a string.

POSSTR Syntax
POSSTR (char value-expression2, char value-expression1)

POSSTR 79

POSSTR Example 1

In this example, value-expression1 occurs once within value-expression2. POSSTR returns the starting
position of value-expression1.

Input Output

'solstice', 'ice' 6

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES ('solstice');
1 row affected
SELECT POSSTR(col1, 'ice') FROM string_table;
1 row selected
1

 6

POSSTR Example 2

In this example, value-expression1 occurs more than once within value-expression2. POSSTR returns the
starting position of the last occurrence of value-expression1.

Input Output

'4234.23423', '4' 8

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES ('4234.23423');
1 row affected
SELECT POSSTR(col1, '4') FROM string_table;
1 row selected
1

 8

POWER
A math function that returns a value that is calculated as value-expression1 raised to the power of value-
expression2. If both input values are integers, then the result is INTEGER; otherwise the result is a FLOAT
value.

POWER Syntax
POWER (double value-expression1, double value-expression2)
POW (double value-expression1, double value-expression2)

POWER Examples

Input Output

4, 8 65536

4.0, 8 6.55360000000000e+04

4, 0.5 2.00000000000000e+00

80 Chapter 6: Functions

Input Output

4, -2.0 6.25000000000000e-02

CREATE TABLE num_table (col1 SMALLINT, col2 SMALLINT);
INSERT INTO num_table VALUES (4, 8);
1 row affected
SELECT POWER(col1, col2) FROM num_table;
1 row selected
1

 65536
SELECT POWER(4.0, col2) FROM num_table;
1 row selected
1

 6.55360000000000e+04
SELECT POWER(col1, 0.5) FROM num_table;
1 row selected
1

 2.00000000000000e+00
SELECT POWER(col1, -2.0) FROM num_table;
1 row selected
1

 6.25000000000000e-02

REPLACE
Replaces characters in a string with a specified substring. REPLACE searches the input string for all
instances of the substring you specify and replaces them with the replacement string you specify.

Syntax
REPLACE (InputString, Substring[, ReplacementString])

Argument DataType Description

InputString char String in which to search for a substring to be replaced by another string.

Substring char Substring to search for that you want to replace with ReplacementString.

ReplacementString char Optional. String to replace Substring. If you do not pass this parameter, REPLACE
deletes all occurrences of Substring.

Return Value

String with the specified substring replaced or deleted.

Example

If a column named col1 contains the string "The fox sees another fox in the meadow.", the following
expression replaces all instances of the substring "fox" with the string "rabbit":

REPLACE (col1, 'fox', 'rabbit')
The function call returns the following string:

The rabbit sees another rabbit in the meadow.

REPLACE 81

RIGHT
A string function that returns a substring from value-expression consisting of the number of rightmost
characters indicated by length. The length parameter is a numeric expression that evaluates to an integer
value. If the value of length is greater than or equal to the length of the input string, the whole string is
returned.

RIGHT Syntax
RIGHT (char value-expression, integer length)

RIGHT Example

Input Output

'isopropyl' 'pyl'

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES ('isopropyl');
1 row affected
SELECT RIGHT(col1, 3) FROM string_table;
1 row selected
1

pyl

ROUND
A math function that returns the value produced by rounding value-expression1 to value-expression2 digits to
the right of the decimal point. A negative number of digits indicates rounding to the left of the decimal point.
Note that value-expression1 can be any numeric value, but value-expression2 must be an integer value.

ROUND Syntax
ROUND (double value-expression1, integer value-expression2)

ROUND Example

Input Output

234.56789, 2 234.57

234.56789, -2 200

CREATE TABLE num_table (col1 DEC(10, 2));
INSERT INTO num_table VALUES (234.56789);
1 row affected
SELECT ROUND(col1, 2) FROM num_table;
1 row selected
1

 234.57
SELECT ROUND(col1, -2) FROM num_table;
1 row selected
1

 200.00

82 Chapter 6: Functions

RTRIM
A string function that returns the input string with trailing spaces removed.

RTRIM Syntax
RTRIM (char)

RTRIM Example

Input Output

'pruned ' 'pruned'

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES ('pruned ');
1 row affected
SELECT RTRIM(col1) FROM string_table;
1 row selected
1

pruned

SECOND
A date and time function that returns the seconds portion of a TIME or TIMESTAMP value as an INTEGER
value.

SECOND Syntax
SECOND (char)

SECOND Examples

Input Output

'15:08:37' 37

'2004-02-17-15.08.37.588000' 37

CREATE TABLE dt_table (time_col TIME, timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('15:08:37', '2004-02-17-15.08.37.588000');
1 row affected
SELECT time_col, SECOND(time_col) AS result FROM dt_table;
1 row selected
time_col result
-------- -----------
15:08:37 37
SELECT timestamp_col, SECOND(timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-15.08.37.588000 37

RTRIM 83

SIGN
A math function that returns a numeric value that indicates the sign of the input expression. SIGN can have
the following return values:

• -1. Value is less than zero.

• 0. Value is zero.

• 1. Value is greater than zero.

If the input value is an INTEGER, then the return value is INTEGER as well. Similarly, if the input is SMALLINT,
the output is SMALLINT. Otherwise, a FLOAT value is returned.

SIGN Syntax
SIGN (double)

SIGN Examples

Input Output

173 1

-173 -1

-173.34 -1.00000000000000e+00

173.34 1.00000000000000e+00

0 0

CREATE TABLE num_table (int_col INT, float_col FLOAT);
INSERT INTO num_table VALUES (173, 173.34);
1 row affected
INSERT INTO num_table VALUES (-173, -173.34);
1 row affected
INSERT INTO num_table VALUES (0,);
1 row affected
SELECT int_col, SIGN(int_col) AS result FROM num_table;
3 rows selected
int_col result
----------- -----------
 173 1
 -173 -1
 0 0
SELECT float_col, SIGN(float_col) AS result FROM num_table WHERE float_col IS NOT NULL;
2 rows selected
float_col result
---------------------- ----------------------
 1.73340000000000e+02 1.00000000000000e+00
 -1.73340000000000e+02 -1.00000000000000e+00

SQRT
A math function that returns a FLOAT value that is the square root of the input expression.

SQRT Syntax
SQRT (double)

84 Chapter 6: Functions

SQRT Examples

Input Output

81 9.00000000000000e+00

4678 6.83959063102464e+01

CREATE TABLE num_table (col1 INT);
INSERT INTO num_table VALUES (81);
1 row affected
INSERT INTO num_table VALUES (4678);
1 row affected
SELECT col1, SQRT(col1) AS result FROM num_table;
2 rows selected
col1 result
----------- ----------------------
 81 9.00000000000000e+00
 4678 6.83959063102464e+01

SUBSTRING
A string function that returns the specified portion of the input expression. Value-expression is the input
character string; start-position is the starting position of the substring, counting from the left (the first
character in the input string is position 1, the second character is position 2, and so on); and length is the
number of characters to return, counting from left to right from the substring starting position. If the length
argument is omitted, the substring from the starting position to the end of the input string is returned.

SUBSTRING Syntax
 SUBSTRING (char value-expression, integer start-position [, integer length])
 SUBSTRING (char value-expression FROM integer start-position [FOR integer length])
 SUBSTR (char value-expression, integer start-position [, integer length])
SUBSTR (char value-expression FROM integer start-position [FOR integer length])

SUBSTRING Examples

Input Output

'12345', 2, 2 '23'

'PK1-H4V1Y9-QC', 5, 6 'H4V1Y9'

'514-939-3477', 5 '939-3477'

CREATE TABLE string_table (col1 SMALLINT, col2 VARCHAR(20));
INSERT INTO string_table VALUES (1, '12345');
1 row affected
INSERT INTO string_table VALUES (2, 'PK1-H4V1Y9-QC');
1 row affected
INSERT INTO string_table VALUES (3, '514-939-3477');
1 row affected
SELECT SUBSTR(col2, 2, 2) FROM string_table WHERE col1=1;
1 row selected
1
--
23
SELECT SUBSTRING(col2 FROM 5 FOR 6) FROM string_table WHERE col1=2;
1 row selected

SUBSTRING 85

1

H4V1Y9
SELECT SUBSTR(col2, 5) FROM string_table WHERE col1=3;
1 row selected
1

939-3477

SUM
An aggregate function.

SUM Syntax
• Returns the sum of the non-null values in the specified or derived column. It is only for numeric data.

SUM (value-expression)
• Returns the sum of the non-null values in the specified or derived column, when duplicates are omitted. It

is only for numeric data.

SUM (DISTINCT value-expression)

TIME
A cast function that returns a TIME datatype representation of a TIME, TIMESTAMP, or character string input
expression. An input string expression must correspond to either the standard TIME format (hh:mm:ss), or
any legal format that matches the time picture (TimePic) specified in the [CLIENT] section of the nucleus.ini
file.

TIME Syntax
TIME (char)

TIME Example

Input Output

'1999-03-01-01.59.30.123456' 01:59:30

'23:12:23' 23:12:23

CREATE TABLE temp_time (col1 TIME);
CREATE TABLE temp_timestamp (c1 TIMESTAMP);
INSERT INTO temp_timestamp VALUES ('1999-03-01-01.59.30.123456');
1 row affected
INSERT INTO temp_time SELECT TIME(c1) FROM temp_timestamp;
1 row affected
INSERT into temp_time VALUES (TIME('23:12:23'));
1 row affected
SELECT col1 FROM temp_time;
2 rows selected
col1

01:59:30
11:12:23

86 Chapter 6: Functions

TODAY
A date and time function that returns the current date as a DATE value. (The same functionality is provided by
the special constant CURRENT DATE.)

TODAY Syntax
TODAY ()

TODAY Example
CREATE TABLE dt_table (col1 DATE);
INSERT INTO dt_table VALUES (TODAY());
1 row affected
SELECT * FROM dt_table;
1 row selected
COL1

2004-02-17

TRIM
A string function that trims the specified character (character) from the beginning and/or end of the input
string (value-expression) and returns the resulting string. The default trim action is BOTH, and the default
character value is a blank space. Only a single character can be specified for character. If the specified
leading/trailing character is not found, the input expression is returned unchanged.

TRIM Syntax
TRIM ([[LEADING | TRAILING | BOTH] [char character] FROM] char value-
expression)

TRIM Examples

Input Output

' midriff ' 'midriff'

TRAILING, ' midriff ' ' midriff'

LEADING 's' FROM 'ssssSmokin' 'Smokin'

CREATE TABLE string_table (col1 CHAR(20));
INSERT INTO string_table VALUES (' midriff ');
1 row affected
SELECT TRIM (col1) FROM string_table;
1 row selected
1

midriff
SELECT TRIM(TRAILING FROM col1) FROM string_table;
1 row selected
1

 midriff
SELECT TRIM(LEADING 's' FROM 'ssssSmokin') FROM string_table;
1 row selected
1

Smokin

TODAY 87

UPPER
A string function that returns the input expression with all lowercase characters converted to their uppercase
equivalents.

UPPER Syntax
UPPER (char)
UCASE (char)

UPPER Example

Input Output

'loud' 'LOUD'

CREATE TABLE string_table (col1 VARCHAR(20));
INSERT INTO string_table VALUES (UPPER('loud'));
1 row affected
SELECT col1 FROM string_table;
1 row selected
col1

LOUD

YEAR
A date and time function that returns the year portion of a DATE or TIMESTAMP value as an INTEGER value.

YEAR Syntax
YEAR (char)

YEAR Examples

Input Output

'02/17/2004' 2004

'2004-02-17-15.08.37.588000' 2004

CREATE TABLE dt_table (date_col DATE, timestamp_col TIMESTAMP);
INSERT INTO dt_table VALUES ('02/17/2004', '2004-02-17-15.08.37.588000');
1 row affected
SELECT date_col, YEAR(date_col) AS result FROM dt_table;
1 row selected
date_col result
---------- -----------
2004-02-17 2004
SELECT timestamp_col, YEAR(timestamp_col) AS result FROM dt_table;
1 row selected
timestamp_col result
-------------------------- -----------
2004-02-17-15.08.37.588000 2004

88 Chapter 6: Functions

I n d e x

A
ABS function 61
aggregate functions

about 17
AVG 61
COUNT 64
MAX 74
MIN 75
SUM 86

aliases 17
ALTER SESSION SET FETCHROWS 17
AVG function 61

B
BLOB data type 40
Boolean predicates

BETWEEN 42
compound 41
EXISTS 42
IN 43
LIKE 45
LOOKUP 47
NULL 52
quantified comparisons 52
simple 40

Boolean value expressions 14, 17

C
cast functions

about 86
CHAR 62
DATE 64
DECIMAL 66
DIGITS 67
INTEGER 30, 71
TIME 86

CD (Direct Export parameter) 17
CEILING function 62
CHAR data type 62, 64
CHAR function 62
character strings 10, 17, 43, 45, 60
character value expressions 45
COLUMNDELIMITER (Direct Export parameter) 17
columns

comparing values 40
in value expressions[columns

value expressions] 10
nulls 52
selecting in queries 17

CONCAT function 63

constants
character strings 10, 17, 43, 45, 60
numeric constants 10, 17

special constants
CURRENT DATE 87

correlation names 17
COUNT function 64
creating flat files 17
CURRENT DATE (special constant) 87

D
data types

BLOB 40
CHAR 62, 64
DATE 60, 62, 64, 65, 77, 87, 88
DEC 66
FLOAT 67, 78, 80, 84
INT 65, 68, 69, 71, 75, 77, 80, 83, 84, 88
NUMERIC 66

numeric types
manipulating with functions 60

SMALLINT 84
TIME 60, 62, 69, 75, 83, 86
TIMESTAMP 60, 64, 65, 69, 75, 77, 83, 86, 88
VARCHAR 64

database object names 17
DATE data type 60, 62, 64, 65, 77, 87, 88
DATE function 64, 65
date picture 62, 64
date/time functions

about 88
DATE 65
DAY 65
EXTRACT 68
HOUR 69
MICROSECOND 75
MINUTE 75
MONTH 77
NANOSECOND 77
SECOND 83
TODAY 87
YEAR 88

DatePic 64
DAY function 65
DBA privileges 17
DEC data type 66
DECIMAL function 66
delimiting object names 17
diagrams, SQL syntax 14
DIGITS function 67
Direct Export

about 17
parameters

CD 17

89

Direct Export (continued)
parameters (continued)

COLUMNDELIMITER 17
ESC 17
ESCAPE 17
FILEPREFIX 17
FP 17
NOF 17
NULL 17
NUMBEROFFILES 17
PATHS 17
RD 17
ROWDELIMITER 17

DISTINCT 17

E
ESC (Direct Export parameter) 17
ESCAPE (Direct Export parameter) 17
EXP function 67
EXPORT INTO (SQL SELECT clause)

See also Direct Export. 17
EXTRACT function 68

F
FILEPREFIX (Direct Export parameter) 17
flat file creation 17
FLOAT data type 67, 78, 80, 84
FLOOR function 69
FP (Direct Export parameter) 17
functions

about 10, 17
aggregate

about 17
AVG 61
COUNT 64
MAX 74
MIN 75
SUM 86

cast
CHAR 62
DATE 64
DECIMAL 66
DIGITS 67
INTEGER 30, 71
TIME 86

COALESCE 63
date/time

DATE 65
DAY 65
EXTRACT 68
HOUR 69
MICROSECOND 75
MINUTE 75
MONTH 77
NANOSECOND 77
SECOND 83
TODAY 87
YEAR 88

IFNULL 70
math

ABS 61
CEILING 62
EXP 67
FLOOR 69

functions (continued)
math (continued)

LN 73
LOG10 73
MOD 76
PI 78
POWER 80
ROUND 82
SIGN 84
SQRT 84

NULLIF 78
string

about 45
CONCAT 63
LEFT 72
LEN 72
LENGTH 72
LOWER 73
LTRIM 74
POSITION 78
POSSTR 79
RIGHT 82
RTRIM 83
SUBSTR 85
SUBSTRING 85
TRIM 87
UPPER 88

G
GROUP BY (SELECT clause) 17

H
HAVING (SELECT clause) 17
HOUR function 69

I
INNER JOIN 17
INT data type 65, 68, 69, 71, 75, 77, 80, 83, 84, 88
INTEGER function 30, 71
intervals 30, 36

J
joins

INNER 17
outer joins

RIGHT \ 17
LEFT \ 17
FULL \ 17

K
keywords, SAND CDBMS Nearline SQL 43, 52

L
LEFT function 72
LEN function 72
LENGTH function 72

90 Index

LN function 73
LOG10 function 73
LOWER function 73
LTRIM function 74

M
math functions

about 84
ABS 61
CEILING 62
EXP 67
FLOOR 69
LN 73
LOG10 73
MOD 76
PI 78
POWER 80
ROUND 82
SIGN 84
SQRT 84

MAX function 74
MICROSECOND function 75
MIN function 75
MINUTE function 75
MOD function 76
MONTH function 77

N
naming

database objects 17
NANOSECOND function 77
nested table expressions 17
NOF (Direct Export parameter) 17
nucleus.ini file

date picture 62, 64
DatePic 64
time picture 62, 86
TimePic 86

NULL (Direct Export parameter) 17
nulls 52
NUMBEROFFILES (Direct Export parameter) 17
numeric constants

about 10, 17
arithmetic 11

NUMERIC data type 66

O
object

delimited names 17
names 17

ORDER BY (SELECT clause) 17
outer joins

RIGHT \ 17
LEFT \ 17
FULL \ 17

LEFT \ 17
FULL \ 17
RIGHT \ 17
OWNER privileges 17
ownership privileges 17

P
PATHS (Direct Export parameter) 17
PI function 78
POSITION function 78
POSSTR function 79
POWER function 80
predicates, Boolean. See Boolean predicates. 40
privileges

DBA 17
OWNER 17
ownership 17
SELECT 17

projection list 10, 17

R
RD (Direct Export parameter) 17
RIGHT function 82
ROUND function 82
ROWDELIMITER (Direct Export parameter) 17
RTRIM function 83
rules for naming database objects 17

S
SAND CDBMS Nearline

SQL keywords 43, 52
SCT File Administration Utility (ssau) 17
SECOND function 83
SELECT command 10, 38
SELECT privileges 17
SELECT...EXPORT INTO

See also Direct Export. 17
SIGN function 84
SMALLINT data type 84
special constants

CURRENT DATE 87
SQL commands

SELECT 10, 38
SQL keywords, SAND CDBMS Nearline 43, 52
SQL syntax diagrams, interpreting 14
SQRT function 84
ssau (SCT File Administration Utility) 17
string functions

about 45
CONCAT 63
LEFT 72
LEN 72
LENGTH 72
LOWER 73
LTRIM 74
POSITION 78
POSSTR 79
RIGHT 82
RTRIM 83
SUBSTR 85
SUBSTRING 85
TRIM 87
UPPER 88

strings, character 10, 17, 43, 45, 60
SUBSTR function 85
SUBSTRING function 85
SUM function 86
syntax diagrams, interpreting 14

Index 91

T
table expressions, nested 17
tables

correlation names. See correlation names. 17
TIME data type 60, 62, 69, 75, 83, 86
TIME function 86
time picture 62, 86
TimePic 86
TIMESTAMP data type 60, 64, 65, 69, 75, 77, 83, 86, 88
TODAY function 87
TRIM function 87

U
UPPER function 88

V
value expressions 12–14, 17
VARCHAR data type 64

Y
YEAR function 88

92 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to SQL Reference for Informatica Data Vault
	Value Expressions
	Numeric Value Expressions
	String Value Expressions

	Case Expressions
	Simple CASE
	Example of a Simple CASE

	Searched CASE
	Example of a Searched CASE

	SQL Syntax Diagrams
	Required Syntax Elements
	Optional Syntax Elements
	Repetitive Constructs
	Expanded Elements
	Usage Examples

	SELECT Statement Syntax
	Required Privileges
	Syntax
	Select List Clause
	Value Expression Clause
	Table Expression Clause
	Joined Table Clause
	Qualified Join Clause
	Joined Table Expression Clause
	Group/Order Expression Clause
	SELECT Clauses
	Example of EXPORT INTO

	Chapter 2: Date and Time Arithmetic
	Date and Time Arithmetic Overview
	Intervals
	Examples of Intervals

	Labeled Durations
	Intervals and Date/Time Values
	Interval Arithmetic
	Interval Aggregation
	Interval Comparisons
	Implicit Casting

	Chapter 3: WHERE Clauses
	WHERE Clauses Overview
	Boolean Value Expressions (Search Conditions)
	Syntax

	Predicates
	Simple Predicates
	Compound Predicates

	BETWEEN Predicates
	EXISTS Predicate
	Example of EXISTS Predicate

	IN Predicates
	Examples of IN Predicates

	LIKE Predicates
	Description
	ESCAPE character

	LOOKUP Predicates
	Inline Lookup
	CSV File Lookup
	Inline Lookup Example
	CSV File Lookup Example

	NULL Predicates
	NULL Predicates Example

	Quantified Comparisons
	Example of Quantified Comparison

	Chapter 4: UNION Operator
	UNION Operator Overview
	UNION
	UNION ALL
	Guidelines for Using the UNION Operator

	Chapter 5: Parameterized Query
	Parameterized Query Overview
	Parameterized Query Usage
	Operators
	Predicates
	Functions

	Guidelines for Using Parameterized Queries

	Chapter 6: Functions
	Functions Overview
	ABS
	AVG
	CEILING
	CHAR
	COALESCE
	CONCAT
	COUNT
	DATE
	DATE (Date and Time)
	DAY
	DEC
	DIGITS
	EXP
	EXTRACT
	FLOOR
	HOUR
	IFNULL
	INT
	LASTDAY
	LEFT
	LEN
	LN
	LOG10
	LOWER
	LTRIM
	MAX
	MICROSECOND
	MIN
	MINUTE
	MOD
	MONTH
	NANOSECOND
	NULLIF
	PI
	POSITION
	POSSTR
	POWER
	REPLACE
	RIGHT
	ROUND
	RTRIM
	SECOND
	SIGN
	SQRT
	SUBSTRING
	SUM
	TIME
	TODAY
	TRIM
	UPPER
	YEAR

	Index

