
Informatica® Development Platform
10.1.1 HotFix 1

Informatica Connector
Toolkit Developer Guide

Informatica Development Platform Informatica Connector Toolkit Developer Guide
10.1.1 HotFix 1
June 2017

© Copyright Informatica LLC 2014, 2018

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III),
as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to
us in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging,
Informatica Master Data Management, and Live Data Map are trademarks or registered trademarks of Informatica LLC in the United States and in jurisdictions
throughout the world. All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Publication Date: 2018-09-28

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 7
Informatica Resources. 7

Informatica Network. 7

Informatica Knowledge Base. 7

Informatica Documentation. 7

Informatica Product Availability Matrixes. 8

Informatica Velocity. 8

Informatica Marketplace. 8

Informatica Global Customer Support. 8

Chapter 1: Introduction to the Informatica Connector Toolkit. 9
Informatica Connector Toolkit Overview. 9

Supported Features for PowerCenter, Big Data Management, and Informatica Cloud. 10

Informatica Connector Perspective. 11

Connector Navigator. 11

Connector Progress. 11

Architecture. 12

Chapter 2: Installing and Upgrading the Informatica Connector Toolkit. 13
Installing the Informatica Connector Toolkit Overview. 13

Before You Begin . 14

Install Required Software. 14

Installation of Eclipse IDE. 14

Installing Informatica Connector Toolkit on Windows. 15

Installed Informatica Connector Toolkit Components. 15

Chapter 3: Building an Adapter. 16
Building an Adapter Overview. 16

Step 1. Define the Adapter Properties. 17

Step 2. Define the Connection Attributes. 17

Test and Debug the Connection to the Data Source. 19

Step 3. Define the Type System. 19

Defining the Type System Manually. 20

Generating a Predefined Type System. 20

Step 4. Define the Common Metadata. 21

Step 5. Define the Adapter Metadata. 21

Defining the Adapter Metadata for Record Pattern. 22

Define the Adapter Metadata for Procedure Pattern. 25

Test Metadata from the Data Source. 29

Step 6. Implement the Adapter Run-Time Behavior. 29

4 Table of Contents

Implement the Adapter Run-Time Behavior in Java. 29

Implement the Adapter Run-Time Behavior in C/C++. 30

Create Messages. 31

Implement Design-Time Messages. 32

Implement Run-Time Messages. 32

Test the Read and Write Capabilities of the Adapter. 33

Test the Read Capability of the Adapter. 33

Test the Write Capability of the Adapter. 34

Step 7. Export or Publish the Adapter. 36

Manually Install the Adapter (Optional). 37

Naming Convention. 38

Chapter 4: Connection Attributes. 39
Connection Attributes Overview. 39

Connection Attribute Properties. 39

Chapter 5: Type System. 41
Type System Overview. 41

Native Types and Semantic Categories. 41

Native Type Properties. 42

Informatica Platform Types. 43

Chapter 6: Metadata Objects. 44
Metadata Objects Overview. 44

Metadata Components. 44

Import Options. 45

Chapter 7: Partitioning Capability. 46
Partitioning Capability Overview. 46

Dynamic Partitioning. 46

Static Partitioning. 47

Chapter 8: Run-time Behavior. 48
Run-time Behavior Overview. 48

Run-time Java Functions. 48

Run-time C/C++ Functions. 49

Chapter 9: Adapter Example: Instagram. 50
Instagram Adapter Overview. 50

Building the Sample Adapter. 50

Chapter 10: Adapter Example: MySQL. 51
MySQL Adapter Overview. 51

Table of Contents 5

MySQL Adapter Requirements. 51

Building the Sample Adapter. 51

MySQL Adapter Components. 52

Chapter 11: Adapter Example: YouTube. 54
YouTube Adapter Overview. 54

YouTube Adapter Requirements. 54

YouTube Adapter Components. 55

Building the Sample Adapter. 56

Appendix A: Metadata Models. 57
Metadata Model Overview. 57

Metadata Model Components. 57

Metadata Patterns. 58

Features of Type A Metadata Template. 59

Appendix B: ASO Model. 60
ASO Model Overview. 60

ASO Model Components. 60

ASO Projections. 61

Appendix C: Adapter Project Migration. 62
Adapter Project Migration Overview. 62

Migrating the Adapter Project from Windows Platform to other Platforms. 62

Index. 64

6 Table of Contents

Preface
The Informatica Connector Toolkit Developer Guide is written for independent software vendors, consulting
organizations, and developers who want to develop adapters for the Informatica platform.

This guide assumes you have a working knowledge of Informatica services and are familiar with data
sources, ODBC, JDBC, and APIs.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

7

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

8 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Introduction to the Informatica
Connector Toolkit

This chapter includes the following topics:

• Informatica Connector Toolkit Overview, 9

• Supported Features for PowerCenter, Big Data Management, and Informatica Cloud, 10

• Informatica Connector Perspective, 11

• Architecture, 12

Informatica Connector Toolkit Overview
Use the Informatica Connector Toolkit to build an adapter that provides connectivity between a data source
and PowerCenter®, Big Data Management®, or Informatica Cloud®.

Although Informatica supports generic ODBC connectivity and allows access to any data source that has a
standards-compliant ODBC driver, building an adapter by using the Informatica Connector Toolkit offers
several advantages. In cases where no ODBC driver is available, building an adapter by using the Informatica
Connector Toolkit might be the only solution.

When you use the Informatica Connector Toolkit to create an adapter, you can build functionality related to
the data source. You can preserve data type integrity and metadata lineage of the data source when you
retain the type system of the data source and perform optimal data type conversions.

The Informatica Connector Toolkit consists of libraries, plug-ins, and sample code to assist you in developing
adapters for PowerCenter, Big Data Management, or Informatica Cloud. You can use the Informatica
Connector perspective in the Eclipse IDE to quickly develop an adapter in an Eclipse environment.

The Informatica Connector Toolkit simplifies the following processes:

• Development. You can use the wizards in the Informatica Connector perspective to rapidly develop an
adapter. The wizards simplifies the use of internal components and dependencies when you develop an
adapter.

• Testing. After you define the adapter components, you can test the connection, metadata, and run-time
components of the adapter.

• Deployment. You can deploy the adapter on local Informatica services and clients and register the adapter
on local Informatica services. Alternatively, you can publish the adapter and manually deploy the adapter
later.

9

The Informatica Connector Toolkit API is written in a combination of C/C++ and Java. The connection
definition and metadata definition are available in Java. The run-time interfaces are available in C/C++ and
Java.

Note: Run-time interfaces are available in C/C++ when you develop adapters for Big Data Management. Run-
time interfaces are available only in Java when you develop connectors for Informatica Cloud and
PowerCenter.

Supported Features for PowerCenter, Big Data
Management, and Informatica Cloud

The following table lists the features that Informatica Connector Toolkit supports for PowerCenter, Big Data
Management, and Informatica Cloud:

Adapter
Component

Features Big Data
Management

Informatica Cloud PowerCenter

Connection Connection configuration Yes Yes Yes

Metadata Multiple native metadata
objects

Yes NA NA

Metadata write capability NA Yes NA

Metadata import
configuration

Yes NA NA

Partitioning capability Yes NA Yes

Join operation Yes Yes NA

Filter operation Yes Yes Yes

Sort operation Yes NA NA

Select operation Yes NA NA

Lookup Yes NA NA

Runtime C Runtime Yes NA NA

Java Runtime Yes Yes Yes

10 Chapter 1: Introduction to the Informatica Connector Toolkit

Informatica Connector Perspective
The views in the Informatica Connector perspective enable you to develop adapters for the Informatica
platform and connectors for Informatica Cloud.

After you click the Create New Connector icon in the Eclipse Workbench toolbar, you can choose to switch to
the Informatica Connector perspective. You can also open the Informatica Connector perspective from the
Window menu in the Eclipse IDE.

The Informatica Connector perspective consists of the Connector Navigator view and Connector Progress
view in the Eclipse Workbench window, and icons in the Eclipse toolbar. You can use the Connector Navigator
and Connector Progress views to define, edit, or test the adapter components and view the progress of the
adapter project. Use the Create New Connector icon in the Toolbar to create an adapter project. You can use
the View or Create Messages icon in the Eclipse toolbar to view or create messages for the adapter
components.

Connector Navigator
You can use the Connector Navigator view to add, define, edit, or test adapter components, such as
connection, metadata, and run time.

After you create an Informatica Connector project, you can right-click folders in the Connector Navigator view
to define, edit, or test adapter components. You can also right-click the adapter source files and edit them in
the Eclipse Workbench editor or any other editor.

Connector Progress
You can use the Connector Progress view to view the completeness of the connector project and to define or
edit the connector project components in each phase.

The Connector Progress view consists of the following phases:

Connectivity

You can define, edit, or test the connection component of an adapter in the Connectivity phase.

Metadata

You can define and edit data types and native metadata object components of an adapter in the
Metadata phase. You can also define common metadata for Informatica Cloud connectors in the
Metadata phase. You can test the adapter metadata components in the Metadata phase.

Runtime

You can define, edit, and test the adapter run-time components in the Runtime phase.

Export/Publish

You can publish the adapter to a location or deploy the adapter on local Informatica services and client
directories in the Export/Publish phase.

Informatica Connector Perspective 11

Architecture
The following image shows how an adapter works with Big Data Management services and tools:

The following Big Data Management services and tools work with the adapter plug-in and client plug-in
components of the adapter:

Data Integration Service

Uses the adapter plug-in at run time to read data from or write data to the data source.

Developer tool

Uses the client plug-in to create and update connections, import metadata, and perform type system
conversions.

Administrator tool

Uses the adapter plug-in to create and update the connection management properties.

Domain repository

Stores the connection objects that an end user creates using the adapter plug-in.

Model Repository Service

Stores the data source metadata and data source operation that an end user creates using the adapter
plug-in.

12 Chapter 1: Introduction to the Informatica Connector Toolkit

C h a p t e r 2

Installing and Upgrading the
Informatica Connector Toolkit

This chapter includes the following topics:

• Installing the Informatica Connector Toolkit Overview, 13

• Before You Begin , 14

• Installation of Eclipse IDE, 14

• Installing Informatica Connector Toolkit on Windows, 15

Installing the Informatica Connector Toolkit Overview
Install the Informatica Connector Toolkit and set up the Informatica Connector Toolkit Eclipse plug-in. To set
up the Informatica Connector Toolkit Eclipse plug-in, you install the required software on the machine where
you plan to develop the adapter.

The Informatica Connector Toolkit is part of the Informatica Development Platform (IDP). You can use the
Informatica Connector Toolkit installer to install the Informatica Connector Toolkit on the machine in which
you plan to develop an adapter.

You can get the Informatica Connector Toolkit installer from the following sources:

• Informatica Development Platform installation DVD.
Informatica ships the Informatica SDKs on a separate DVD. Run the Informatica Connector Toolkit
installer to install the Informatica Connector Toolkit on the machine where you plan to do your
development.

• Informatica electronic software download site.
When you purchase an Informatica product and choose to download the software, you receive a site link,
user ID, and password to access the Informatica electronic software download site. Follow the
instructions on the download site to download the Informatica Connector Toolkit installation file.

• Informatica Technology Network.
If you are a registered user of the Informatica Technology Network, you can download the Informatica
Connector Toolkit installation file from the Informatica Development Platform page. When you download
the file, the Informatica Development Network provides you with a password. Use this password when you
extract the files from the download file.

When you run the Informatica Connector Toolkit installer, the installer installs the Informatica Connector
Toolkit Eclipse plug-in in the Eclipse IDE.

13

Before You Begin
Before you develop an adapter with the Informatica Connector Toolkit, you need to install the required
software and analyze the data source.

Run the Informatica Connector Toolkit installer to install the Informatica Connector Toolkit on the machine
where you plan to develop the adapter. The Informatica Connector Toolkit contains the binaries, tools,
samples, and documents that you require to build an adapter.

Install Required Software
Install the following software on the machine where you plan to develop the adapter:

• Eclipse version with support for Plug-in Development Environment (PDE). Informatica Connector Toolkit
supports the following Eclipse versions:

- Eclipse Kepler 4.2.2 and 4.2.3.

- Eclipse Luna 4.4.2 and 4.4.3.

- Eclipse Mars 4.5.0 M1 and 4.5.1.

- For AIX, Eclipse 4.2.2 and above.

• JDK version 1.8.x.

• Informatica services and clients version 10.1.1 to validate and use the adapter.

• If you implement the adapter run-time behavior in C/C++, install the following software:

- For Windows, MinGW 4.8.1 or later, CMake 3.0.2 or later, and Microsoft Visual C++ 2013.

- For Unix, gcc/g++ 5.2 and CMake 2.6.

- For AIX, gcc/g++ 4.8.2 or later.

• MySQL Connector/J JDBC driver version 5.1.26 or later if you use the MySQL sample adapter.

• YouTube Data API client library for Java version 3 or later if you use the YouTube sample adapter.

Installation of Eclipse IDE
You can install Eclipse IDE on the machine in which you plan to develop the adapter. Use the Eclipse IDE
package to install Eclipse IDE.

You must install Eclipse version supported by Informatica Connector Toolkit for the Informatica Connector
Toolkit plug-in to work with the Eclipse IDE.

You can download the Eclipse IDE package from the following location:

http://www.eclipse.org/downloads/

14 Chapter 2: Installing and Upgrading the Informatica Connector Toolkit

http://www.eclipse.org/downloads/

Installing Informatica Connector Toolkit on Windows
Install the Informatica Connector Toolkit to install the Informatica Connector Toolkit Eclipse plug-in and other
components that you require to build an adapter.

1. Close all other applications.

2. Run the install.bat file from the root directory.

3. In the Welcome page, click Next.

The Installation Directory page appears.

4. Select the installation directory in which you want to install the Informatica Connector Toolkit.

5. Select the installation directory in which you installed Eclipse IDE.

6. Select Install Apache log4j to install the log4j plug-in version that Informatica Connector Toolkit
requires. The installer installs the required Apache log4j plug-in by default. If you have log4j plug-in
installed and do not want to install a different version of the library, clear the Install Apache log4j option.

7. Select Install Apache Commons library to install the commons library that Informatica Connector Toolkit
requires.

8. Click Next.

The Pre-Installation Summary page appears.

9. Click Install.

The Installing page appears and displays the installation progress.

10. Click Done to complete the installation procedure and then exit the installer.

Installed Informatica Connector Toolkit Components

After you install the Informatica SDKs, you can find the Informatica Connector Toolkit in the installation
directory where you installed the Informatica Connector Toolkit.

The Informatica Connector Toolkit installation includes the following components to assist you in developing
an adapter for the Informatica platform:

• Informatica Connector Toolkit API files. Library files of the Informatica Connector Toolkit API.

• Informatica Connector Toolkit Eclipse plug-in. You can use the wizards and menus that the Informatica
Connector Toolkit plug-in adds to the Eclipse IDE to develop, test, and deploy an adapter.

• Sample MySQL and YouTube adapters. The sample MySQL and YouTube adapters include source code
that you can use as a model to build an adapter.

Note: The sample MySQL and YouTube adapters are for illustration purposes only.

• Informatica Connector Toolkit API Reference. Online documentation for the Informatica Connector Toolkit
API specification.

Installing Informatica Connector Toolkit on Windows 15

C h a p t e r 3

Building an Adapter
This chapter includes the following topics:

• Building an Adapter Overview, 16

• Step 1. Define the Adapter Properties, 17

• Step 2. Define the Connection Attributes, 17

• Step 3. Define the Type System, 19

• Step 4. Define the Common Metadata, 21

• Step 5. Define the Adapter Metadata, 21

• Step 6. Implement the Adapter Run-Time Behavior, 29

• Create Messages, 31

• Test the Read and Write Capabilities of the Adapter, 33

• Step 7. Export or Publish the Adapter, 36

• Manually Install the Adapter (Optional), 37

• Naming Convention, 38

Building an Adapter Overview
The Informatica Connector Toolkit consists of the libraries, plug-ins, and sample code to assist you in
developing an adapter for the Informatica platform.

To build an adapter, use the Informatica Connector Toolkit and perform the following tasks:

1. Create an adapter project and define the basic properties of the adapter such as name, ID, and vendor
name.

2. Define the connection attributes to connect to the data source. Implement the methods to open
connection or close connection to the data source, validate connection, and specify attribute
dependencies. Before you define the type system for the adapter, you can test and debug the connection
components of the adapter.

3. Define the type system for the adapter. Specify the data types supported by the data source and the
corresponding data types supported by Informatica.

4. Define the adapter metadata, create native metadata object (NMO), operations for the NMO, and
partition methods for the NMO operations. Implement the methods to fetch metadata from the data
source. You can also test and debug the metadata components of the adapter.

16

5. Define the adapter run-time behavior that defines how the adapter reads from and writes to the data
source. Before you deploy the adapter, you can test and debug the read capability and write capability of
the adapter.

6. Deploy the adapter to the Informatica server and client directories and register the adapter with the
Informatica domain.

Step 1. Define the Adapter Properties
The adapter properties describe and identify the adapter in the Informatica domain. Use the Informatica
Connector Toolkit to create an adapter project and define the adapter properties.

1.
From the Eclipse IDE, click the Connector button ().
The Create Informatica Connector Project dialog box appears.

2. Enter the following adapter project details:

Property Description

Connector ID An identifier that uniquely identifies the adapter. For example:
mysql.

Connector Name Name of the adapter. The adapter name is an alphanumeric
string. The first character of the name must be a letter. For
example: PowerExchange for MySQL.

Vendor Name Name of the vendor building the adapter.

Vendor ID A unique identifier for the vendor.

Version The version number of the adapter must have the format x.x.x
and must include numeric characters. For example: 1.0.0.

Description Description of the adapter.

3. Click Finish.
The adapter project appears in the Connector Navigator view of the Eclipse IDE.

Step 2. Define the Connection Attributes
The connection attributes of an adapter determine how the adapter connects to the data source. Use the
Informatica Connector Toolkit to define the connection attributes and specify the libraries required to
connect to the data source.

1. In the Connector Navigator view, right-click the project and select Add Connection.
The Add Connection dialog box appears.

2. Enter the connection type name.

3. Select Add New and enter the category name.

Step 1. Define the Adapter Properties 17

The category name that you configure corresponds to the connection object category.

4. Click Next.
The Connection Attributes page appears.

5. Click Add to enter each connection attribute.
The attributes that you configure correspond to the connection object properties. The Add Attribute
dialog box appears.

6. Enter the following properties for the connection attribute:

Attribute Property Description

Name Name of the connection attribute.

Display Name Display name for the connection attribute.

Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.

Encrypted Indicates whether you can encrypt the attribute.

Mandatory Indicates whether a connection attribute requires a value.
If you set the Mandatory property to true but you do not display the attribute on
the connection management user interface, you must set a default value for the
attribute.

Hidden Indicates whether you can hide the attribute.

Has Dependent Fields Indicates whether the attribute has dependent fields.

Allowed Values List of values allowed for the attribute.

7. Click OK.

8. Click Next.
The Configure Connection Pages page appears.

a. Group the connection attributes under one or more connection sections.

b. To create a new connection section, click Add Section and enter the section name, section title, tool
tip, and section description.

c. To create a new connection page, click Add Page and enter the page name and page description.

d. To change the order in which connection sections appear in a connection page, use Move Up or
Move Down.

9. Click Next.
The Configure Libraries page appears.

10. Click Add to select each library that the adapter requires to connect to the data source.

11. Click Generate Code.

18 Chapter 3: Building an Adapter

After you define the connection attributes, the Informatica Connector Toolkit generates the following
Java files:

• <AdapterName>ConnectInfoAdapter.java

• <AdapterName>Connection.java

Update the ConnectInfoAdapter.java file to implement connection validation and attribute dependancies.
Update the Connection.java file to implement the methods that open and close connection to the data
source.

Note: If you regenerate code for the connection project, the Informatica Connector Toolkit does not
regenerate code for the user-exposed source code visible in the Informatica perspective. You have to
manually edit the source code and make changes if you add, remove, or modify connection attributes.

Test and Debug the Connection to the Data Source
After you define the connection attributes, you can test and debug the connection to the data source.

Create a debug configuration in Eclipse IDE from the Run menu. Select the adapter connection project to
debug and provide the connection type and connection properties. You can also set breakpoints in the code
that you want to debug.

After you create a debug configuration, you can launch the Test Connection dialog box to test and debug the
connection definition.

1. In the Connector Progress view, select Test Connection.

The Test Connection dialog box appears with the default Java Virtual Machine (JVM) environment
settings. The Informatica Connector Toolkit uses the JVM settings to run the debug configuration.

2. Edit the JVM environment settings, if required. Ensure that you use the same port number that appears
in JVM settings for the connection properties in the debug configuration.

3. Click Next.

The Connection Details page appears with the connection attributes that you defined for the adapter.

4. Enter values for the connection attributes.

5. Click Test Connection.

A success message appears if the connection to the data source is successful.

Note: You cannot use the Informatica Connector Toolkit to test attribute dependencies.

Step 3. Define the Type System
Categorize each data type in the data source into one of the Informatica platform data types or Java data
types supported by the Informatica Connector Toolkit API. Use the Informatica Connector Toolkit to create a
type system or generate and use a predefined type system.

Step 3. Define the Type System 19

Defining the Type System Manually
You can manually define a type system that maps the data types that the data source supports with the data
types that Informatica Platform supports.

1. In the Connector Navigator view, right-click the project and select Define Typesystem.
The Define Type System dialog box appears.

2. To manually define a type system that matches the data types in the data source, select Manually Create
Type System.

3. To map the native data types to the Informatica platform data types, select Native to Platform Type.

4. To map the native data types to the Java data types, select Native to Java Type.

5. Click Add to configure each type system attribute.
The Add Type dialog box appears.

6. Enter the following properties for the type system attribute:

Property Value

Type Name Name for the native type system attribute.

Comments Comments for the native type system attribute.

Best Platform Type
for Read/ Best
Java Type for Read

The platform or Java data type that maps best to the native data type when the adapter
reads from the data source.

Properties Based on the selected best platform or Java type for read, you must set one or more of the
following native type properties:
- Precision properties such as max precision and default precision.
- Scale properties such as max scale, default scale, and min scale.
- Length properties such as max length and default length.

The maximum length of any attribute cannot be greater than Integer.MAX_VALUE, which
is 2,147,483,647.

- Unit of length such as characters, bytes, and bits.
- Date properties such as hour, minute, second, year, month, day, and time zone.

7. If the platform data type or Java data type is the best match when writing to the native data type, select
Mapped and then select Best Native Type to Write. For example, to map the Java INTEGER data type to
the MySQL data type INT as one of the Best Native Type to Write, select Mapped in the INTEGER row and
then select Best Native Type to Write.

8. If you want to map a platform data type or Java data type to the native data type but not as a best
match, select only Mapped. For example, if the Java SHORT data type maps to the MySQL data type INT
but might result in loss of data when converted, select Mapped in the INTEGER row.

9. Click OK. The Define Type System dialog box appears.

10. After you add and map the required native data types for the adapter, click Generate Code.

Generating a Predefined Type System
You can generate a type system with the basic data types that Informatica Platform supports. Use the basic
data types in the predefined type system for use with REST-based procedure.

1. In the Connector Navigator view, right-click the project and select Define Typesystem.
The Define Type System dialog box appears.

20 Chapter 3: Building an Adapter

2. To generate and use basic data types that the Informatica Platform supports, select Use Predefined
Type System.

3. To map the native data types to the Informatica platform data types, select Native to Platform Type.

4. To map the native data types to the Java data types, select Native to Java Type.

5. Click Generate Code.

Step 4. Define the Common Metadata
For data sources in which data is stored in a schema, you can specify additional metadata details, such as
schema name and foreign key name. The connector uses the specified schema name and foreign key name
during the read operation to retrieve data.

Note: By default, the Supports Schema option will be enabled for all connectors. Disable the Supports
Schema option if your connector does not support schema and click Save.

1. In the Connector Navigator view, right-click the project and select Edit Common Metadata.

The Edit Common Metadata dialog box appears.

2. If the connector supports schema, select Supports Schema and add the Schema Display Name.

3. If the connector supports foreign key, select Supports Foreign Key and add the Foreign Key Display
Name.

4. Click Generate Code.

Step 5. Define the Adapter Metadata
The adapter metadata represents the metadata in the data source for which you build the adapter. You can
define multiple metadata definitions to represent the differently structured metadata objects of the data
source.

Use the Informatica Connector Toolkit to define the adapter metadata. You can represent the metadata for
data sources in which data is stored as records and for procedures in data sources. You can manually create
native metadata for procedures or use swagger specifications to define the native metadata.

You can use the procedure pattern to define native metadata objects for Informatica Cloud connectors.

Note: Procedure pattern is available only for Informatica Cloud and not supported for PowerCenter and Big
Data Management in this release.

Define the following adapter components to specify the adapter metadata:

• Native metadata definition for the adapter. You can define multiple native metadata definitions for an
adapter. For example, you can create different native metadata objects for tables, views, and synonyms in
a relational data source.

• Record extensions and field extensions. You can define record extensions and field extensions to define
additional metadata for records and fields.

• Read and write capability for the adapter. You can add attributes that you can use to read from or write to
the data source.

Step 4. Define the Common Metadata 21

• Import dialog box settings. You can define import options that appear in the Developer tool when an
adapter consumer creates a data object.

Note: If you regenerate code for the native metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica perspective. You have
to manually edit the source code and make changes if you add, remove, or change the native metadata
attributes.

Defining the Adapter Metadata for Record Pattern
For data sources in which data is stored as records, you can define the native metadata definition for the
adapter by using the record pattern type.

1. In the Connector Navigator view, right-click the project and select Add Native Metadata Definition.
The Add Native Metadata Definition dialog box appears.

2. Enter the native metadata details.
The following table describes the properties to enter:

Property Description

Name Name for the native metadata.

Display Name Display name for the native metadata.

Description Description of the native metadata.

3. Specify the pattern type as record to create a native metadata object based on the record structure of
the data source.

4. To add additional metadata information for records, select Add Record Extension and add the following
properties for the attribute:

Attribute Property Description

Name Name of the attribute.

Display Name Display name for the connection attribute.

Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.
The maximum length of any attribute cannot be greater than
Integer.MAX_VALUE, which is 2,147,483,647.

Encrypted Indicates whether you can encrypt the attribute.

22 Chapter 3: Building an Adapter

Attribute Property Description

Mandatory Indicates whether a connection attribute requires a value.
If you set the Mandatory property to True but you do not display the attribute on
the connection management user interface, you must set a default value for the
attribute.

Hidden Indicates whether you can hide the attribute.

Allowed Values List of values allowed for the attribute.

5. Click Next.
The Native Metadata Field page appears.

6. To add additional metadata information for fields, select Add Field Extension and add the attribute
properties.

7. Click Next.
The Native Metadata Read Capability page appears.

8. To define read capability for the native metadata object, select Enable Read Capability.

9. Select whether the adapter supports lookup of data when the adapter reads from the data source.

10. Select whether the adapter supports join and filter operations when the adapter reads from the data
source.

• To specify operators and expression syntax recognized by the Informatica platform for the join or
filter operation, select Platform Expression.

Note: If you plan to add key range partitioning capability for the adapter, you must select support for
filter operation and platform expression.

• To specify an expression for the join or filter operation that is specific to the data source for which
you build the adapter, select Native Expression.

11. Select whether the adapter supports sort filter to retrieve data from the data source in a specific order.

12. Select whether the adapter supports select filters when the adapter reads from the data source.

13. To add read capability attributes, click Add and add the attribute properties.
You can also define the following parameterization and partitioning support for an attribute:

• When you specify the read attribute properties, you can define whether you can parameterize the
attribute. When you parameterize an attribute, you can assign values for the attribute at run time. For
example, you can parameterize the user name and add user names to a configuration file and then
run the same mapping to read data of different users.

You can define the following parameterization support for an attribute:
Full Parameterization

The attribute supports parameterization. You can parameterize the value of an attribute
completely.

Partial Parameterization

The attribute supports partial parameterization. You can parameterize a part of the attribute
value.

No

The attribute does not support parameterization.

Step 5. Define the Adapter Metadata 23

• You can select Override Partitions to specify if the attribute can be overridden for each partition.
Implement the <ConnectorID><NMOName>AutoPartitioningMetadataAdapter file to define the
partition support.

You can also define whether the attribute supports paramertization and if the attribute can be overridden
for each partition.

14. Click Next.
The Native Metadata Write Capability page appears.

15. To define write capability for the native metadata object, select Enable Write Capability and add the
attribute properties.
When you specify the write attribute properties, you can define whether you can parameterize the
attribute.

You can define the following parameterization support for an attribute:
Full Parameterization

The attribute supports parameterization. You can parameterize the value of an attribute completely.

Partial Parameterization

The attribute supports partial parameterization. You can parameterize a part of the attribute value.

No

The attribute does not support parameterization.

16. Select whether the adapter supports upsert operation when the adapter writes to the target.
When you select Enable Upsert Support, Informatica Connector Toolkit adds the UpdateMode attribute to
the write capability attribute list.

You can specify one of the following values for the UpdateMode attribute during runtime:

• Update As Update. If you specify the Update As Update value, you must implement the upsert logic
so that the adapter updates an existing row while writing to the target.

• Update Else Insert. If you specify the Update Else Insert value, you must implement the upsert logic
so that the adapter updates an existing row if the row exists in the target, else inserts a row while
writing to the target.

17. Click Next.
The Native Metadata Partitioning Capability page appears.

18. Select whether the adapter supports partitioning capability for the read operation.

19. To configure the adapter to fetch partition information from the data source, select the Dynamic
partitioning method and implement the partition logic. Extend the AutoPartitioningMetadataAdapter
class to implement the partition logic.

20. To configure the adapter to get partition information from the user, select the Static partitioning method.
The user enters the partition information, such as number of partitions or key range.

• If you want to implement a partition logic based on the partition information that the user specifies,
select Fixed. Implement the partition logic in the DataAdapter class. The user can specify the
required partition information before the adapter reads from the data source.

• If the tables in the data source support key range partitioning, select Key Range. The user can specify
the partition keys and key range type before the adapter reads from the data source. If you add
support for key range partitioning, ensure that the adapter supports filter operation and platform
expression. You need not implement the partition logic for key range partitioning because the
Informatica Connector Toolkit implements key range partitioning as a filter query.

Note: Key range partitioning is supported only for Big Data Management.

24 Chapter 3: Building an Adapter

21. Select whether the adapter supports partitioning capability for the write operation. By default, the
dynamic partitioning method is selected for partition-enabled write operations. Extend the
AutoPartitioningMetadataAdapter class to implement the partition logic.

22. Click Next.
The Import Dialog Box Settings page appears.

23. In the Metadata Import Dialog Box Settings section, select the metadata import options that appear in
the client tool when an adapter consumer creates a data object and click Save.

24. If you are developing a connector for the Informatica Cloud, specify whether the adapter supports DDL
generation and select the supported modifications to the data source schema in the Metadata Write
Settings section.
You can configure the connector to support the following modifications in the data source schema:
Create Object

To add the capability to create objects in the target, select Create Object. To add the capability to
drop the existing object and then create a new object, select Drop and Create.

Alter Object

To add the capability to alter objects in the target, select Alter Object. To add the capability to
create a object if the object to alter does not exist, select Alter Else Create.

Drop Object

To add the capability to drop objects in the target, select Drop Object.

25. Click Generate Code.
After you define the adapter metadata, the Informatica Connector Toolkit generates the
<NMOName>MetadataAdapter.java file in the Metadata folder. Implement the following methods in the
<NMOName>MetadataAdapter.java file to import metadata.

populateObjectCatalog()

Populates metadata details in the import wizard for the adapter consumer.

Note: Data preview in the PowerCenter client or Informatica Cloud does not work if the values of the
Record.setName and Record.setNativeName methods are different.

populateObjectDetails()

Gets metadata from the data source based on the import dialog options settings.

If you configured metadata write settings for the connector, implement the writeObjects method in the
<NMOName>MetadataAdapter.java file.

Note: If you regenerate code for the native metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica perspective. You have
to manually edit the source code and make changes if you add, remove, or change the native metadata
attributes.

Define the Adapter Metadata for Procedure Pattern
For procedures and functions in data sources, you can define the native metadata definition for the
Informatica Cloud connectors by using the procedure pattern type.

You can use the manual method to create the native metadata object for the procedure or use a REST-based
specification. You can choose to use an existing swagger specification or generate and use a swagger
specification.

Step 5. Define the Adapter Metadata 25

Defining the Adapter Metadata for Procedure Pattern Manually
When you use the procedure pattern type to define the native metadata for the adapter, you can use the
manual method to define the native metadata object.

Note: Procedure pattern is available only for Informatica Cloud and not supported for PowerCenter and Big
Data Management in this release.

1. In the Connector Navigator view, right-click the project and select Add Native Metadata Definition.
The Add Native Metadata Definition dialog box appears.

2. Enter the native metadata details.
The following table describes the properties to enter:

Property Description

Name Name for the native metadata.

Display Name Display name for the native metadata.

Description Description of the native metadata.

3. Specify the pattern type as procedure to create a native metadata object for procedures or functions in a
data source.

4. To manually define the native metadata object for the data source with procedure pattern type, select
Manual as the creation method.

5. Click Next.
The Native Metadata Procedure Definition page appears.

6. To add additional metadata information for procedure, select Add Procedure Extension and add the
following properties for the attribute:

Attribute Property Description

Name Name of the attribute.

Display Name Display name for the connection attribute.

Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.
The maximum length of any attribute cannot be greater than
Integer.MAX_VALUE, which is 2,147,483,647.

Encrypted Indicates whether you can encrypt the attribute.

26 Chapter 3: Building an Adapter

Attribute Property Description

Mandatory Indicates whether a connection attribute requires a value.
If you set the Mandatory property to True but you do not display the attribute on
the connection management user interface, you must set a default value for the
attribute.

Hidden Indicates whether you can hide the attribute.

Allowed Values List of values allowed for the attribute.

7. Click Next.
The Native Metadata Parameter Definition page appears.

8. To add additional metadata information for parameters, select Add Parameter Extension and add the
attribute properties.

9. Click Next.
The Native Metadata Call Capability Attributes page appears.

10. To add call capability attributes, click Add and add the attribute properties.
You can select Override Partitions to specify if the attribute can be overridden for each partition.
Implement the <ConnectorID><NMOName>AutoPartitioningMetadataAdapter file to define the partition
support.

11. Click Next.
The Import Dialog Box Settings page appears.

12. In the Metadata Import Dialog Box Settings section, select the metadata import options that appear in
the client tool when an adapter consumer creates a data object and click Save.

13. Click Generate Code.
After you define the adapter metadata, the Informatica Connector Toolkit generates the
<NMOName>MetadataAdapter.java file in the Metadata folder. Implement the following methods in the
<NMOName>MetadataAdapter.java file to import metadata.

populateObjectCatalog()

Populates metadata details in the import wizard for the adapter consumer.

Note: Data preview in the PowerCenter client or Informatica Cloud does not work if the values of the
Record.setName and Record.setNativeName methods are different.

populateObjectDetails()

Gets metadata from the data source based on the import dialog options settings.

If you configured metadata write settings for the connector, implement the writeObjects method in the
<NMOName>MetadataAdapter.java file.

Note: If you regenerate code for the native metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica perspective. You have
to manually edit the source code and make changes if you add, remove, or change the native metadata
attributes.

Step 5. Define the Adapter Metadata 27

Defining the Adapter Metadata for Procedure Pattern by Using REST-based
Specification
You can define the native metadata definition for the adapter by using an existing REST-based specification
or generate and use a REST-based specification.

Note: Procedure pattern is available only for Informatica Cloud and not supported for PowerCenter and Big
Data Management in this release.

1. In the Connector Navigator view, right-click the project and select Add Native Metadata Definition.
The Add Native Metadata Definition dialog box appears.

2. Enter the native metadata details.
The following table describes the properties to enter:

Property Description

Name Name for the native metadata.

Display Name Display name for the native metadata.

Description Description of the native metadata.

3. Specify the pattern type as procedure to create a native metadata object for procedures or functions in a
data source.

4. To create native metadata object based on a REST-based specification, select REST-based creation
method.

5. To use an existing swagger specification, click Browse and open the JSON file. After you open the JSON
file, skip to step 7.

6. To generate a swagger specification by sampling, select Generate swagger specification by sampling
and then click Next.
Perform the following steps to sample the REST end point:

a. Enter the base URL.

b. Click Add to get the procedure details.

c. Specify the Path, Display Name, Method, Content Type, and Accept Type properties.

d. Add the parameter details.

e. Click Test to validate and sample the REST end point.

f. Click OK to add the procedure details.

7. Click Generate Code.
After you define the adapter metadata, the Informatica Connector Toolkit generates the
<NMOName>MetadataAdapter.java file in the Metadata folder. To implement features specific to the data
source, you can also modify code in the following methods in the <NMOName>MetadataAdapter.java file
to import metadata.

populateObjectCatalog()

Populates metadata details in the import wizard for the adapter consumer.

Note: Data preview in the PowerCenter client or Informatica Cloud does not work if the values of the
Record.setName and Record.setNativeName methods are different.

populateObjectDetails()

Gets metadata from the data source based on the import dialog options settings.

28 Chapter 3: Building an Adapter

If you configured metadata write settings for the connector, implement the writeObjects method in the
<NMOName>MetadataAdapter.java file.

Note: If you regenerate code for the native metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica perspective. You have
to manually edit the source code and make changes if you add, remove, or change the native metadata
attributes.

Test Metadata from the Data Source
After you define the native metadata objects, you can test metadata that you import from the data source.

To debug when you test metadata from the data source, use the same debug configuration that you used to
test the connection to the data source. You can also set breakpoints in the code that you want to debug.

After you define the debug configuration, you can launch the Test Metadata dialog box to test the connection
definition and test the metadata import from the data source.

1. In the Connector Progress view, select Test<NMOName> under the Test Metadata section.

The Test Metadata dialog box appears with the connection attributes that you defined for the adapter.

2. Enter values for the connection attributes to connect to the data source.

3. Click Connect.

The adapter retrieves the metadata from the data source and the metadata appears in the Test
Metadata page.

4. Browse and verify the retrieved metadata.

5. Click Close.

Step 6. Implement the Adapter Run-Time Behavior
Use the Informatica Connector Toolkit to implement the adapter run-time behavior in C/C++ or Java. The
adapter run-time behavior defines how the adapter performs operations, such as establishing a connection,
closing a connection, preparing SQL statements, and running SQL statements.

You can set up the run-time implementation for each NMO of the adapter. For example, if you define an NMO
with read capability and another NMO with write capability, you can choose to implement the run time for the
first NMO with read capability in C++ and implement the run time for the other NMO with write capability in
Java.

You can also define the adapter run-time behavior to support pre and post commands to perform tasks
before and after a mapping run. For example, you can define the adapter run-time behavior to support a pre
command that initializes environment variables before the mapping run.

Implement the Adapter Run-Time Behavior in Java
You can use the Run-Time Implementation wizard in the Informatica Connector Toolkit to implement the run-
time behavior in Java.

1. In the Connector Navigator view, right-click the project and select Runtime > <NMOName> > Set Up.

The Run-Time Implementation wizard appears.

2. Choose to implement the run-time behavior in Java.

Step 6. Implement the Adapter Run-Time Behavior 29

3. Add the required run-time library files and generate the <ConnectorID><NMOName>DataAdapter.java and
<ConnectorID>DataConnection.java files.

4. Implement the following methods in the <ConnectorID><NMOName>DataAdapter.java file:

• initDataSourceOperation. Implement this method to perform tasks before a mapping run. For
example, you can implement code to initialize environment variables. The scope of the
RuntimeConfig and Metadata handles available in this method is within the initDataSourceOperation
method.

• deinitDataSourceOperation. Implement this method to perform tasks after a mapping run. The scope
of the RuntimeConfig and Metadata handles available in this method is within the
deinitDataSourceOperation method.

• initDataSourceOperation

• deinitDataSourceOperation

• initDataSession

• deinitDataSession

• read

• write

• reset (Optional. Implement this method if lookup operation is supported.)

• beginDataSession

• endDataSession

5. Implement the following methods in the <ConnectorID>DataConnection.java file:

• connect

• disconnect

6. To support data preview in the Informatica Cloud, implement the following method in the
<ConnectorID>ASOOperationObjMgr.java file:

prepareRuntimeOperation

Implement the Adapter Run-Time Behavior in C/C++
You can use the Run-Time Implementation wizard in the Informatica Connector Toolkit to implement the run-
time behavior in C/C++.

1. In the Connector Navigator view, right-click the project and select Runtime > <NMOName> > Set Up.

The Run-Time Implementation wizard appears.

2. Choose to implement the run-time behavior in C/C++.

3. Add the supported platform for which you need to implement the run-time behavior in C/C++.

4. Configure the following run-time settings for the platform that you select:

• Include directory path and compile options

• Library paths, library names, and link options

• Environment variables

• Other run-time library files

For Windows platform, you can choose to generate the C/C++ project for the Eclipse IDE or Visual
Studio.

30 Chapter 3: Building an Adapter

5. Open the C++ project and implement the following methods in the
<ConnectorID><NMOName>RuntimeAdapter.cpp file:

• INFAADPInitPlugin

• INFAADPDeinitPlugin

• INFAADPInitDataSourceOperation. The scope of the RuntimeConfig and Metadata handles available
in this method is within the INFAADPInitDataSourceOperation method.

• INFAADPDeinitDataSourceOperation. The scope of the RuntimeConfig and Metadata handles
available in this method is within the INFAADPDeinitDataSourceOperation method.

• INFAADPInitDataSession

• INFAADPDeinitDataSession

• INFAADPBegindataSession

• INFAADPEndDataSession

• INFAADPConnect

• INFAADPDisConnect

• INFAADPRead

• INFAADPWrite

Create Messages
You can use the Informatica Connector Toolkit to create, edit, or delete messages and handle exceptions that
occur during the design time or run time of the adapter.

When you create messages, you specify the message text and message code, and you can include
information on the message severity, cause, and user action. After you create messages, you can implement
the code to handle exceptions. When you implement the code to handle the exception, you pass the message
as an argument to the exception handing method.

Create design-time messages to handle design-time exceptions, such as service exceptions. Create run-time
messages to handle run-time exceptions.

To create messages, perform the following steps:

1. In the Connector Navigator view, right-click the project and select View and Create Messages. The
Messages dialog box appears.

2. Click Add. The Add New Message dialog box appears.

3. Enter an ID for the message.

4. Enter a code for the message. At run time, the message code and the message text appears in the
session log.

5. Specify the severity of the message.

6. Enter the message text. You can include parameters in the message text and specify the parameters in C
format or Java message format.
The following examples show parameters used in C format and Java message format:

• The parameters in the following message text uses C format: Connection User [%s], Port [%d],
Connection time [%f] milliseconds.

Create Messages 31

• The parameters in the following message text uses Java format: Connection User [{0}], Port
[{1,number,integer}], Connection time [{1,number}] milliseconds.

7. Enter a description for the message.

8. Enter the cause of the error message.

9. Enter the suggested user action when the user encounters the error.

10. Specify whether the message is a design-time message or a run-time message.

11. Click OK. The Messages dialog box appears.

12. Click Finish. The message XML files appear under the Message folder in the Connector Navigator view.

Implement Design-Time Messages
You can use the methods in the com.informatica.sdk.exceptions.ExceptionManager class to implement
design-time messages.

To enable localization of messages, implement the createNlsAdapterSDKException() method in the
ExceptionManager class.

The following sample code shows the message parameters passed to the createNlsAdapterSDKException()
method:

ExceptionManager.createNlsAdapterSDKException(ExceptionManager.createNlsAdapterSDKExcepti
on(MessageBundle.getInstance(),
Messages.Test_CONN_SUCC_200, "admin", 5040, 138.76);

To implement design-time messages that do not require localization, implement the
createNonNlsAdapterSDKException() method in the ExceptionManager class.

The following sample code shows the message string passed to the createNonNlsAdapterSDKException()
method:

ExceptionManager.createNonNlsAdapterSDKException("Unknown error:" + e.getMessage());

Implement Run-Time Messages
To implement run-time messages that require localization, implement the logMessage() helper method in the
<ConnectorID><NMOName>DataAdapter.<C or Java> file. The logMessage() method logs messages to the
session log.

The following Java sample code shows the message parameters passed to the logMessage() method:

logMessage(Messages.Test_CONN_SUCC_200, "admin", 5040, 138.76);
The following C sample code shows the message parameters passed to the INFAADPLogMessage() method:

INFAADPLogMessage(infaDataSessionHandle, INFA_MSG_ERROR,INFA_TRACE_NONE, CONN_ID,"admin",
12,12.3);

To implement the run-time messages that do not require localization, implement the logger.logMessage()
method.

32 Chapter 3: Building an Adapter

Test the Read and Write Capabilities of the Adapter
Before you deploy the adapter in the Informatica domain, you can test the read and write capabilities of the
adapter.

After you define the adapter run-time components, you can use the Test Read and Test Write wizards to test
the read and write capabilities of the adapter. After you debug and fix issues in the read and write capabilities
of the adapter, you can deploy the adapter in the Informatica domain.

You can test the read and write capabilities of the adapter only for the Windows platform.

Test the Read Capability of the Adapter
When you test the read capability of the adapter, you test the connection definition, metadata of the data
source, and operations that the adapter supports. After you specify the test settings and run the test, you can
view the result of the read operation, read operation statistics, and the log file.

To debug the code, use the same debug configuration that you used to test the connection and metadata
components of the adapter. You can also set breakpoints in the code that you want to debug.

After you define the debug configuration, you can launch the Test Read dialog box to test the read
capabilities of the adapter.

1. In the Connector Progress view, select the native metadata object that appears under Test Read.

The Test Read dialog box appears with the default JVM environment settings and tracing level. The
Informatica Connector Toolkit uses the JVM settings to run the debug configuration.

2. If required, edit the JVM environment settings. Ensure that you use the same port number that appears
in JVM settings for the connection properties in the debug configuration.

3. Select the required tracing level. The default is normal. Based on the amount of detail that you require in
the log file, you can override the default tracing level.

You can set the following types of tracing level:

None

Does not override the default tracing level.

Terse

Logs initialization information and error messages and notification of rejected data.

Normal

Logs initialization and status information, errors encountered, and skipped rows due to
transformation row errors. Summarizes mapping results, but not at the level of individual rows. This
is the default tracing level.

Verbose Initialization

In addition to normal tracing, logs additional initialization details, names of index and data files
used, and detailed statistics.

Verbose Data

In addition to verbose initialization tracing, logs each row. You can also get detailed statistics on
where string data was truncated to fit the precision of a column.

4. Click Next.

The connection attributes that you defined for the adapter appears.

5. Enter values for the connection attributes to test the connection to the data source.

Test the Read and Write Capabilities of the Adapter 33

6. Click Connect.

The Test Metadata page appears with the metadata imported from the data source.

7. Select the native metadata objects and the corresponding native metadata fields to test the read
operation.

8. Click Next.

Based on whether the selected native metadata object supports join and filter operations, the Join
Condition page or Filter Condition page appears.

9. If the native metadata object supports join operation, specify an expression in the Join Condition page.

• To specify an Informatica platform expression for the join operation, perform the following steps:

1. In the Definition section, select the native metadata object for which you want to specify the join
condition.

2. To change the join order, click Move Up or Move Down.

3. Specify the join type in Join condition.

4. To define a join condition, select values in the Left Field, Operator, and Right Field columns.

5. To add additional join conditions, click Add.

6. To remove a join condition, select the join condition and click Remove.

• To specify a native expression for the join operation, enter the expression in the Definition section.

10. If the native metadata object supports filter operation, select the Configure Filter option in the Filter
Condition page and specify the filter condition.

• To specify an Informatica platform expression for the filter operation, perform the following steps:

1. In the Definition section, click Add to add an Informatica platform expression.

2. In the Field column, select the field to use in the expression.

3. In the Operation column, select a conditional operator to use in the expression.

4. In the Value column, enter a value for the conditional expression.

• To specify a native expression for the filter operation, enter the expression in the Definition section.

11. After you specify expressions for the native metadata object, click Next.

The Read Capability page appears.

12. Specify values for the read capability attributes and then click Run.

The Result page appears. You can view the result of the read operation, read operation statistics, and the
log file in the Result page.

13. Click Close.

Test the Write Capability of the Adapter
When you test the write capability of the adapter, you test the components of the adapter and write sample
data to the data source. After you specify the test settings and run the test, you can view the result of the
write operation, write operation statistics, and the log file.

To debug the code, use the same debug configuration that you used to test the connection and metadata
components of the adapter. You can also set breakpoints in the code that you want to debug.

34 Chapter 3: Building an Adapter

After you define the debug configuration, you can launch the Test Write dialog box to test the write
capabilities of the adapter.

1. In the Connector Progress view, select the native metadata object that appears under Test Write.

The Test Write dialog box appears with the default JVM environment settings and tracing level. The
Informatica Connector Toolkit uses the JVM settings to run the debug configuration.

2. If required, edit the JVM environment settings. Ensure that you use the same port number that appears
in JVM settings for the connection properties in the debug configuration.

3. Select the required tracing level. The default is normal. Based on the amount of detail that you require in
the log file, you can override the default tracing level.

You can set the following types of tracing level:

None

Does not override the default tracing level.

Terse

Logs initialization information and error messages and notification of rejected data.

Normal

Logs initialization and status information, errors encountered, and skipped rows due to
transformation row errors. Summarizes mapping results, but not at the level of individual rows. This
is the default tracing level.

Verbose Initialization

In addition to normal tracing, logs additional initialization details, names of index and data files
used, and detailed statistics.

Verbose Data

In addition to verbose initialization tracing, logs each row. You can also get detailed statistics on
where string data was truncated to fit the precision of a column.

4. Click Next.

The connection attributes that you defined for the adapter appears.

5. Enter values for the connection attributes to test the connection to the data source.

6. Click Connect.

The Test Metadata page appears with the metadata imported from the data source.

7. Select a native metadata object to test the write operation.

The metadata of the native metadata object along with the data type, scale, and precision appears in the
Test Write page.

8. Select the columns to which you want to write data.

9. Click Next.

The Test Data page appears.

10. In the Test Data page, you can load test data from a file or you can generate test data.

• To load the test data from a file, perform the following steps:

1. Select the Load from a File option. You must load a comma-delimited TXT file or CSV file.

Note: The date and time data types in the file must have the following timestamp format:
MM/DD/YYYY hh24:mm:ss

2. Click Browse and select the file that contains the test data.

Test the Read and Write Capabilities of the Adapter 35

• To generate test data, perform the following steps:

1. Select the Auto generate data option.

2. Enter the number of rows to generate. You can specify a maximum of 1000 rows.

3. Click Generate. The test data appears in the Data Preview section.

4. If required, you can edit the test data that appears in the Data Preview section.

11. After you load a test data file or generate test data, click Next.

The Write Capability page appears.

12. Specify values for the write capability attributes and then click Run.

The Result page appears. You can view the result of the write operation, write operation statistics, and
the log file in the Result page.

13. Click Close.

Step 7. Export or Publish the Adapter
Use the Informatica Connector Toolkit to export or publish the adapter. You can export the adapter files to a
location or publish the adapter on local Informatica services and client directory.

1. In the Connector Navigator view, right-click the project and select Publish.
The Export/Publish Informatica Connector dialog box appears.

2. Click Browse and specify a location to export the adapter.
The Export Location defaults to the adapter project workspace.

3. To export the connector for Informatica Cloud, select Informatica Cloud and specify the following
details:

• If you use record pattern type to create the connector, specify a plugin version.

• If you use procedure pattern type to create the connector, select Specify Plugin ID and specify a
plugin ID and a plugin version.

4. To export the connector for PowerCenter, select PowerCenter and specify the plugin ID.

5. If you want to use the Informatica Connector Toolkit to install the adapter on a local Informatica services
and client machine, select Publish connector on local Informatica services and client and perform the
following steps:

a. Specify the location of the local Informatica server directory.

b. Specify the location of the client installation directory.

To reinstall the adapter or install a newer version of the adapter, select Upgrade.

6. Click Next to view the contents of the client and server bundles.

7. Click Finish.

If you export the adapter, the Informatica Connector Toolkit bundles the client and service artifacts and
generates batch files that you can use to install the adapter. If you encounter any error or fail to export the
adapter, refer to the <adapter_name>_codebuilder.log file for more information. The
<adapter_name>_codebuilder.log file is available in the <Eclipse workspace>/<adapter project> folder.

If you publish the adapter, the Informatica Connector Toolkit restarts the Informatica domain and registers
the adapter with the Informatica services. The Data Integration Service can connect to the data source and

36 Chapter 3: Building an Adapter

you can create connections to the data source in the Developer tool and Administrator tool. If you fail to
publish the adapter, install the adapter manually.

Note: If the Informatica domain is not available after you publish the adapter, ensure that no Informatica
services are running in the domain and then publish the adapter.

Manually Install the Adapter (Optional)
To install the adapter, you deploy it to the Informatica services and client installation directories. You also
register it to the Informatica services installation directory. If you use the Publish connector on local
Informatica services and client option to deploy the adapter, you do not need to complete these steps.

After you use the Informatica Connector Toolkit to export the adapter, complete the following steps to
manually install the adapter:

1. Shut down the Informatica domain and Informatica Developer tool applications on which you plan to
deploy the adapter files.

2. Perform the following steps to deploy and register the adapter to the server installation directory:

a. Copy the installServer.bat file and the server folder from the publish location to the machine in
which you have installed Informatica services.

b. Launch a command window and navigate to the location of the installServer.bat file.

c. Run following command in the command window: installServer.bat
[InformaticaInstallationDir]
For example, installServer.bat C:\Informatica\10.1.1

d. If you need to reinstall the adapter or install a newer version of the adapter, run the following
command in the command window: installServer.bat [InformaticaInstallationDir] true

3. Perform the following steps to deploy the adapter files to the client installation directory:

a. Copy the installClient.bat file and the client folder from the publish location to the machine in
which you have installed Informatica client.

b. Launch a command window and navigate to the location of the installClient.bat file.

c. Run following command in the command window: installClient.bat
[InformaticaClientInstallationDir]
For example, installClient.bat C:\Informatica\10.1.1\clients

4. Start the Informatica domain.

The Data Integration Service can connect to the MySQL database and you can create MySQL
connections in the Developer tool and Administrator tool. The MySQL connection appears when you
display the list of available connection types in the Administrator tool, the Developer tool, and the
command line.

Manually Install the Adapter (Optional) 37

Naming Convention
A naming convention makes it easy to identify the files that belong to an adapter and the usage of those
files.

Use the following guidelines when you name the adapter files:

• Determine a name for the adapter. Use the adapter name as a prefix for the adapter file names. The
adapter name is an alphanumeric string that can include the uppercase and lowercase letters A to Z and
the numbers 0 to 9. The first character of the name must be a letter.

• Determine a unique name to identify the company building the adapter. The company name is included in
the package name for the adapter classes.

• Use the adapter name when you create a directory for the adapter in the Informatica directory:

INFA_HOME\plugins\dynamic\AdapterName
The following table lists the recommended naming convention for adapter files:

Component Naming Format

Package for the adapter definition and type
system classes

com.vendorname.adaptername.connection

Adapter definition class AdapterNameDefn

Type system class AdapterNameTypeSystem

Resource file for the connection management
user interface

AdapterNameBundle.properties or
AdapterNameBundle_lang.properties

38 Chapter 3: Building an Adapter

C h a p t e r 4

Connection Attributes
This chapter includes the following topics:

• Connection Attributes Overview, 39

• Connection Attribute Properties, 39

Connection Attributes Overview
The adapter connection attributes determine the behavior and functionality of the adapter when it connects
to a data source. You can configure connection attributes such as connection-level encryption, connection
pool settings, database user credentials, and other database-specific attributes.

Define the connection attributes that are specific for the data source. You can set the default value of a
connection attribute or mark a connection attribute as a required attribute.

Connection Attribute Properties
You can configure properties for each connection attribute that you define for an adapter. You can specify
whether an attribute is required, provide the default, maximum, and minimum values for the attribute, or
specify a list of possible values for the attribute.

All connection management user interfaces, including command line programs, validate the values set for the
properties of a connection attribute.

The following table describes the properties that you can set for a connection attribute:

Attribute Property Description

Name Name of the connection attribute.

Display Name Display name for the connection attribute.

Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

39

Attribute Property Description

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.

Encrypted Indicates whether the attribute is encrypted.

Mandatory Indicates whether a connection attribute requires a value.
If you set the Mandatory property to true but you do not display the attribute on the
connection management user interface, you must set a default value for the
attribute.

Hidden Indicates whether the attribute can be hidden.

Has Dependent Fields Indicates whether the attribute has dependent fields.

Allowed Values List of values allowed for the attribute.

40 Chapter 4: Connection Attributes

C h a p t e r 5

Type System
This chapter includes the following topics:

• Type System Overview, 41

• Native Types and Semantic Categories, 41

• Informatica Platform Types, 43

Type System Overview
A type system is a framework that specifies characteristics of data types. The adapter type system must
define the data types that the data source supports, the semantic category that matches the data type, and
how they map to the data types that the Informatica platform supports.

The type system you define for an adapter consists of the following sets of data types:

• Native types. Data types that the data source supports.

• Semantic types. Semantic category that matches the native data type. For example, the semantic type
Length matches the native data types, such as Char, Varchar2, Binary, Varbinary, Blob, and Clob.

• Informatica platform types. Data types that the Informatica platform supports. The Informatica Connector
Toolkit API uses ODBC as a model for describing Informatica platform data types.

Native Types and Semantic Categories
The native types included in the type system are all possible data types in the data source for which the
adapter is built.

You must define the semantic category of each data type in the data source. The Informatica Connector
Toolkit API defines each semantic category. Check the data source documentation to verify the data types
that are available in the data source.

Use the Informatica Connector Toolkit to associate native data types with semantic categories. The data type
name must match the character string that corresponds to the type name returned during the metadata
import process, such as Integer, Varchar2, or Blob.

When you define the semantic category for a data type, you can modify the precision and scale returned by
the import process so that the data type matches the requirements of the type system.

Use the following semantic categories to classify the native types:

41

Length semantics

Use this category for native types where length is the principal characteristic. This category can include
data types such as Char, Varchar2, Binary, Varbinary, Blob, and Clob.

Integer semantics

Use this category for native types that can contain signed integers. The length of the data type is the
number of decimal digits specified in the data type precision. This category can include data types such
as Integer, Smallint, Bigint, and Tinyint.

Machine integer semantics

Use this category for native types that can contain signed or unsigned integers. The length of this data
type is measured in bytes. The precision of a machine integer type is the maximum number of decimal
digits that fits within the length of the data type, regardless of whether all possible values can be stored.
For example, a 32-bit (4 byte) machine integer can store up to 10 digits but if the value of each digit is 9,
then the value of the integer can result in an overflow.

Decimal semantics

Use this category for native types that can contain an exact real number where precision is the total
number of digits and scale is the number of digits to the right of the decimal point. The precision for this
semantic category must be greater than or equal to the scale. This category can include data types such
as Decimal and Numeric.

Scientific decimal semantics

Use this category for native types that can contain an exact real number where precision is the number
of digits stored rather than the total number of digits represented by the number. The total number of
digits represented by the number can exceed the precision. The scale of the data type can exceed
precision and can be positive or negative. A positive scale represents digits to the right of the decimal
point. A negative scale represents the rounding position to the left of the decimal point. This category
can include data types such as the Number data type in Oracle with precision and scale specified.

Float semantics

Use this category for binary or decimal floating point data types. An example of a binary floating point
type is the binary_float type in Oracle. An example of a decimal floating point number is the Number data
type in Oracle with precision and scale not specified.

Gregorian date semantics

Use this category for date types that the adapter can expose as Gregorian dates, times, and timestamps.

Native Type Properties
Depending on the semantic category, you must set one or more of the following native type properties:

• Maximum precision

• Minimum precision

• Default precision

• Support for changes to precision

• Maximum scale

• Minimum scale

• Default scale

• Support for changes to scale

• Unit of length, such as characters, bytes, and bits

42 Chapter 5: Type System

• For Gregorian date semantics, support for hour, minute, second, year, month, day, or time zone

• For float semantics, radix of the precision and exponent

Set the maximum and minimum values for precision and scale to validate the following:

• Imported database metadata

• Data type of a column that an end user adds to a table in a mapping

The default precision, default scale, and the specification of whether the precision and scale can be modified
apply to metadata that is manually defined by the user. If the precision or scale cannot be modified, then the
default value and the maximum value must be set to the same value.

Informatica Platform Types
Informatica platform types include all the data types that are recognized by Informatica. The Informatica
Connector Toolkit API uses ODBC as a model to describe the Informatica platform data types.

In addition to assigning semantic categories to native types, you must match each semantic category with
one or more Informatica platform data types. The Informatica platform uses ODBC types to determine what
type of data buffers to bind to the run-time adapter for data access. In some cases, the match between a
semantic type and an Informatica platform type is not exact. For example, the Informatica platform always
binds a timestamp buffer if the semantic category is mapped to an Informatica platform date, time, or
timestamp data type.

In many cases, a semantic category matches one of the available Informatica platform types. In cases where
there is no exact match between types, select the best possible match.

In addition to defining the best mappings to convert native types to Informatica platform types, you can
specify alternate mappings. An alternate mapping allows the end user to select alternate transformation data
types to associate with the input and output ports of a data source used in a mapping.

Use the Informatica Connector Toolkit to add matching Informatica platform data types for the semantic
category. You can indicate whether the mapping is the exact match or whether the mapping can result in a
lossy data conversion due to a match that is not exact.

Note: Informatica platform types are not the same as the transformation data types that appear in a
transformation that you add to a mapping. Informatica platform types are internal data types used only within
the adapter type system. Informatica can convert Informatica platform types to transformation data types.

Informatica Platform Types 43

C h a p t e r 6

Metadata Objects
This chapter includes the following topics:

• Metadata Objects Overview, 44

• Metadata Components, 44

• Import Options, 45

Metadata Objects Overview
Define the adapter metadata components to represent the metadata of the data source. After you define the
metadata components, you can fetch and display the metadata in the Developer tool with information on the
native data type, precision, and scale.

Use the Informatica Connector Toolkit to define one or more native metadata definitions for the adapter to
read from and write to the data source. The Informatica Connector Toolkit internally uses a metadata model
that represents the metadata.

The pattern classes in the metadata model describe the metadata structure. When the Informatica Connector
Toolkit publishes the adapter, it registers the metadata model in the Model repository. After the Informatica
Connector Toolkit registers the metadata model in the Model repository, you can use the Developer tool to
import metadata from the data source.

Metadata Components
The metadata components in the Informatica Connector Toolkit represent the metadata of the data source
and the associated operations to read from and write to the data source.

Use the Informatica Connector Toolkit to define the following metadata components:

Native metadata

Define one or more native metadata objects to represent the metadata of the native source. Associate
the native metadata objects with operations to read metadata from a data source, look up metadata
from a data source, or write metadata to a data source.

Record extensions

You can define record extensions to define additional metadata for records. For example, you can add
the attribute query hint as a record extension.

44

Field extensions

You can define field extensions to define additional metadata for fields. For example, you can add the
attribute isNullable as a field extension to indicate that the field can contain a null value.

Procedure Extension

You can define procedure extensions to define additional metadata for procedures.

Parameter extension

You can define parameter extensions to define additional metadata for parameters.

Call Capability

You can define additional attributes to create a read or a write call to a procedure.

Read capability

Define attributes that you can read from the data source. You can also define whether the adapter
supports look up of data, join operations, and filter operations when the adapter reads from the data
source.

Write capability

Define attributes that you can write to the data source. You can also define whether the adapter supports
upsert operation when the adapter writes to the target.

Import Options
Use the Informatica Connector Toolkit to define the import options that appear in the Developer tool when an
adapter consumer creates a data object.

The following tables describes the import options:

Option Description

Allow Multi Select Allows selection of multiple importable objects. Default is false.

Display Filter By Name Displays the filter by name option. Default is true.

Display Filter By Description Displays the filter by description option. Default is true.

Display Filter By Path Displays the filter by path option. Default is true.

Display Skip Description Displays the skip descriptions check box. Default is true.

Show Entity Shows entity details. Default is true.

Show Hierarchy Shows metadata hierarchy. Default is true.

Show Related Records Shows related records. Default is true.

Import Options 45

C h a p t e r 7

Partitioning Capability
This chapter includes the following topics:

• Partitioning Capability Overview, 46

• Dynamic Partitioning, 46

• Static Partitioning, 47

Partitioning Capability Overview
You can use the Informatica Connector Toolkit to specify the partition type and implement the partition logic
to use when the adapter reads or writes data.

Based on the partition logic you implement for an adapter, the Data Integration Service dynamically divides
the underlying data into partitions and processes all of the partitions concurrently.

You can specify the following partitioning types for an adapter:

Dynamic

A partitioning logic that determines the number of partitions at run time based on the partition
information from the data source. If the data source provides partition information, you can use dynamic
partitioning to increase the performance of adapter read and write operations.

Static

A partitioning logic that is based on the partition information that the user specifies, such as number of
partitions or key range. If you require the user to specify the partition information, you can implement
fixed partitioning for the adapter. If the tables in the data source support key range partitioning, you can
add key range partitioning capability for the adapter.

Dynamic Partitioning
You can use the Informatica Connector Toolkit to configure an adapter to dynamically determine partition
information from the data source. Adapters with dynamic partitioning capability do not require partition
information from the user when the adapter reads or writes data.

If you implement dynamic partitioning for an adapter, the adapter queries the data source for the number of
source or target partitions and other partition-specific attributes. For example, if the data source is a

46

relational database, you can make use of the partition information from the database to implement the
partition logic.

When you define a native metadata object, you can implement dynamic partitioning for both read and write
capabilities of the native metadata object.

Static Partitioning
You can use the Informatica Connector Toolkit to configure static partitioning if you require the user to
specify the partition information before the adapter reads data.

When you define a native metadata object, you can implement static partitioning for read capabilities of the
native metadata object. Based on the data source, you can implement following static partitioning types:

Fixed

If you require partition logic based on the partition information specified by the user, implement fixed
partitioning capability. For example, if the data source does not provide partition information, you can
implement partitioning logic based on the user inputs. The user enters the partition information, such as
the number of partitions, before the adapter reads data from the data source.

Key range

If the tables in the data source support key range partitioning, you can add support for key range
partitioning capability. Before you add support for key range partitioning, you must ensure that the
adapter supports filter operation and platform expression. The Informatica Connector Toolkit
implements key range partitioning as a filter query. The adapter user enters the partition keys and key
range when the adapter reads data from the data source.

You can implement static partitioning only for adapters with read capability.

Static Partitioning 47

C h a p t e r 8

Run-time Behavior
This chapter includes the following topics:

• Run-time Behavior Overview, 48

• Run-time Java Functions, 48

• Run-time C/C++ Functions, 49

Run-time Behavior Overview
Use the functions in the Informatica Connector Toolkit API to specify the run-time behavior of the adapter.
You must write the code to define how the adapter connects, disconnects, reads from and writes to the data
source.

The run-time functions are available in C and Java. Within the run-time functions, you can use any API that is
appropriate for communicating with the data source. You must implement all the run-time functions.

The run-time functions use character string arguments and character data buffers in UCS-2 format. If the
database API communicates with the data source through the UCS-2 character set, then pass the character
strings and data buffers directly to the database API. If the database API does not use the UCS-2 character
set, you must convert the data to UCS-2 format before you pass the data to the database API.

To reduce complexity, design the adapter so that it does not require the end user to specify any character set
information. Use the Unicode mode if the database client API provides a Unicode mode. Or, query the
database to determine the correct character set to use when reading or writing data to the database. If you
require input from the end user about the correct character set, define a custom connection attribute to store
this information.

You can define the adapter run-time behavior to support pre and post commands to perform tasks before and
after a mapping run. For example, you can define the adapter run-time behavior to support a pre command
that initializes environment variables before the mapping run.

Run-time Java Functions
Extend the following classes to define the adapter run-time behavior with Java functions:
DataConnection

Implement the methods in this class to connect and disconnect from the data source.

48

DataAdapter

Implement the methods in this class to initialize the data session, deinitialize the data session, begin the
data session, end the data session, read data from the data source, and write data to the data source.

AutoPartitioningMetadataAdapter

If the adapter supports partitioning capability, implement the methods in this class to specify the
partition type and logic.

OperationAdapter

If the adapter supports partitioning capability, implement the methods in this class to perform any
operation before or after the partitioning.

ASOOperationObjMgr

Implement the methods in this class to perform any custom metadata validations.

Run-time C/C++ Functions
Implement the following functions in the runtimeadapter.cpp file to define the adapter run-time behavior with
C/C++ interfaces:

• INFAADPInitPlugin

• INFAADPInitDataSession

• INFAADPInitDataSourceOperation. The scope of the RuntimeConfig and Metadata handles available in
this method is within the INFAADPInitDataSourceOperation method.

• INFAADPDeinitDataSourceOperation. The scope of the RuntimeConfig and Metadata handles available in
this method is within the INFAADPDeinitDataSourceOperation method.

• INFAADPConnect

• INFAADPBegindataSession

• INFAADPRead

• INFAADPReset
If you defined lookup support for the adapter, implement INFAADPReset. The INFAADPReset method is
called after INFAADPRead if the mapping contains a lookup operation.

• INFAADPWrite

• INFAADPDeinitDataSession
Even if INFAADPInitdataSession returns failure, INFAADPDeinitDataSession is called to deinitialize the
data session.

• INFAADPEndDataSession

• INFAADPDisConnect

• INFAADPDeinitPlugin

Run-time C/C++ Functions 49

C h a p t e r 9

Adapter Example: Instagram
This chapter includes the following topics:

• Instagram Adapter Overview, 50

• Building the Sample Adapter, 50

Instagram Adapter Overview
The Informatica Connector Toolkit includes sample source code of the Instagram adapter. You can use the
Instagram adapter sample source code as a model to develop an adapter for a data source. The Instagram
sample was developed with the Informatica Connector Toolkit.

Note: The sample Instagram adapter is for illustration purposes only.

Building the Sample Adapter
You can use the sample adapter source code to develop an adapter for a data source. Import the sample
adapter project in to the Eclipse IDE and use the Informatica Connector Toolkit to publish or deploy the
sample adapter.

To use the sample source code and develop an adapter, perform the following tasks:

1. From the Eclipse IDE, click File > Import. The Import dialog box appears.

2. Select Existing Projects into Workspace and then click Next. The Import Projects page appears.

3. Select Select root directory and browse to the directory of the sample adapter that you want to import
into Eclipse.

4. Click Finish.
The sample adapter project appears in the package explorer.

5. Change to the Informatica Connector perspective.

6. Edit the connection, types system, metadata, and run-time components, if required.

7. Publish the sample adapter or deploy the sample adapter on local Informatica services and client.

For more information, see the Sample Adapter Readme.

50

C h a p t e r 1 0

Adapter Example: MySQL
This chapter includes the following topics:

• MySQL Adapter Overview, 51

• MySQL Adapter Requirements, 51

• Building the Sample Adapter, 51

• MySQL Adapter Components, 52

MySQL Adapter Overview
The Informatica Connector Toolkit includes sample source code of the MySQL adapter. You can use the
MySQL adapter sample source code as a model to develop an adapter for a data source. The MySQL sample
was developed with the Informatica Connector Toolkit.

Note: The sample MySQL adapter is for illustration purposes only.

MySQL Adapter Requirements
To run the sample adapter, you must install the MySQL JDBC driver on your development machine. Use the
MySQL JDBC driver to access the metadata and perform read and write operations on the MySQL database.
Download MySQL JDBC driver version 5.1.26 or later from the following URL:

http://dev.mysql.com/downloads/connector/j

Building the Sample Adapter
You can use the sample adapter source code to develop an adapter for a data source. Import the sample
adapter project in to the Eclipse IDE and use the Informatica Connector Toolkit to publish or deploy the
sample adapter.

To use the sample source code and develop an adapter, perform the following tasks:

1. From the Eclipse IDE, click File > Import. The Import dialog box appears.

2. Select Existing Projects into Workspace and then click Next. The Import Projects page appears.

51

3. Select Select root directory and browse to the directory of the sample adapter that you want to import
into Eclipse.

4. Click Finish.
The sample adapter project appears in the package explorer.

5. Change to the Informatica Connector perspective.

6. Edit the connection, types system, metadata, and run-time components, if required.

7. Publish the sample adapter or deploy the sample adapter on local Informatica services and client.

For more information, see the Sample Adapter Readme.

MySQL Adapter Components
The sample MySQL adapter includes the following components:

Contribution

Use the contribution plug-in project to get information on plug-ins contributing to the MySQL adapter
project. The name of the MySQL contribution plug-in is
com.infa.adapter.mysql.adapter.contribution.

Connection model

Use the connection model Java project to represent the connection model for the MySQL adapter. The
name of the MySQL connection model Java project is
com.infa.products.adapters.mysql.models.connection.annotatedjava.

Connection adapter

Use the connection adapter plug-in project to provide connection attribute information and consumer
information for the MySQL adapter. The name of the MySQL connection attributes plug-in is
com.infa.products.adapter.mysql.connection.adapter.

Seed provider

Use the seed provider Java project to map native data types to Informatica data types. The name of the
MySQL seed provider Java project is com.infa.adapter.mysql.seedprovider.

Type system

Use the type system plug-in project to contribute the seed provider of the adapter to the Informatica
platform. The name of the MySQL type system plug-in project is
com.infa.products.adapter.mysql.typesystem.

Metadata model

Use the metadata model Java project to represent the metadata model for the MySQL adapter. The
name of the MySQL metadata model Java project is
com.infa.products.adapters.mysql.models.metadata.annotatedjava.

Metadata adapter

Use the metadata adapter Java project to provide the functionality to open and close connections to the
MySQL adapter. The name of the MySQL metadata adapter Java project is
com.infa.products.adapter.mysql.metadata.adapter.

52 Chapter 10: Adapter Example: MySQL

Run-time model

Use the run-time model Java project to represent the run-time model for the MySQL adapter. The name
of the MySQL run-time model java project is
com.infa.products.adapters.mysql.models.runtime.annotatedjava.

Run-time adapter

Use the run-time adapter plug-in project to implement run-time adapter for the MySQL adapter in Java.
The name of the MySQL run-time adapter plug-in project is
com.infa.products.adapter.mysql.runtime.adapter.

Run-time adapter C

Use the C run-time adapter C++ project to implement run-time adapter for the MySQL adapter in C++. The
MySQL C++ run-time adapter project is a Visual Studio 2012 C++ project.

Metamodel bundle

Use the MySQL metamodel bundle plug-in project to list the metaclasses for adapter packages such as
connection, metadata, run-time ASO, and run-time capability. The name of the MySQL metamodel bundle
plug-in project is com.infa.products.adapter.mysql.metamodel.

Model attributes

Use the model attributes plug-in project to define the presentation labels for the field, record, and run-
time extensions. The name of the MySQL model attributes plug-in project is
com.infa.products.adapter.mysql.modelAttributes.

Design-time messages

Use the messages design plug-in project to implement design-time messages for the MySQL adapter in
Java. The name of the MySQL messages design plug-in project is
com.infa.products.adapter.mysql.messages.design.

Run-time messages

Use the messages runtime plug-in project to implement run-time messages for the MySQL adapter in
Java. The name of the MySQL messages runtime plug-in project is
com.infa.products.adapter.mysql.messages.runtime.

Library information

Use the library info plug-in project to define the run-time adapter based on the programming language in
which you implement the run-time adapter. Currently, you can use only Java interfaces to implement the
run-time adapter. The name of the MySQL library Info plug-in project is
com.infa.products.adapter.mysql.libraryInfo.

License

Use the license Java project to perform license checks for the MySQL adapter. The name of the MySQL
license Java project is com.infa.products.adapter.mysql.license.

UI wizard

Use the UI wizard project to define the icons for the Import wizard. The UI wizard project is a Java
project. The Developer tool uses the import options to display UI components when an adapter
consumer creates a data object. The name of the UI wizard project is
com.infa.products.adapter.mysql.wizard.

Feature

Use the feature plug-in project, which is an Eclipse feature, to define an adapter plug-in. The name of the
MySQL feature plug-in project is com.infa.products.adapter.mysql.feature.

MySQL Adapter Components 53

C h a p t e r 1 1

Adapter Example: YouTube
This chapter includes the following topics:

• YouTube Adapter Overview, 54

• YouTube Adapter Requirements, 54

• YouTube Adapter Components, 55

• Building the Sample Adapter, 56

YouTube Adapter Overview
The Informatica Connector Toolkit includes sample source code of the YouTube adapter. You can use the
YouTube adapter sample source code as a model to develop an adapter for a data source. The YouTube
sample was developed with the Informatica Connector Toolkit.

Note: The sample YouTube adapter is for illustration purposes only.

YouTube Adapter Requirements
To run the sample adapter, you must install the following software on your development machine:

Json-smart library

Use the json-smart library to parse data from YouTube.

Download JSON-smart version 1.1.1 from the following URL:

http://code.google.com/p/json-smart/
GData client library

Use the GData client library for to read and write data from YouTube. Download GData client library from
the following URL:

https://developers.google.com/gdata/articles/java_client_lib

54

YouTube Adapter Components
The sample YouTube adapter includes the following components:

Contribution

Use the contribution plug-in project to get information on plug-ins contributing to the YouTube adapter
project. The name of the YouTube contribution plug-in is
com.infa.adapter.youtube.adapter.contribution.

Connection model

Use the connection model Java project to represent the connection model for the YouTube adapter. The
name of the YouTube connection model Java project is
com.infa.products.adapters.youtube.models.connection.annotatedjava.

Connection adapter

Use the connection adapter plug-in project to provide connection attribute information and consumer
information for the YouTube adapter. The name of the YouTube connection attributes plug-in is
com.infa.products.adapter.youtube.connection.adapter.

Seed provider

Use the seed provider Java project to map native data types to Informatica data types. The name of the
YouTube seed provider Java project is com.infa.adapter.youtube.seedprovider.

Type system

Use the type system plug-in project to contribute the seed provider of the adapter to the Informatica
platform. The name of the YouTube type system plug-in project is
com.infa.products.adapter.youtube.typesystem.

Metadata model

Use the metadata model Java project to represent the metadata model for the YouTube adapter. The
name of the YouTube metadata model Java project is
com.infa.products.adapters.youtube.models.metadata.annotatedjava.

Metadata adapter

Use the metadata adapter Java project to provide the functionality to open and close connections to the
YouTube adapter. The name of the YouTube metadata adapter Java project is
com.infa.products.adapter.youtube.metadata.adapter.

Run-time model

Use the run-time model Java project to represent the run-time model for the YouTube adapter. The name
of the YouTube run-time model java project is
com.infa.products.adapters.youtube.models.runtime.annotatedjava.

Run-time adapter

Use the run-time adapter plug-in project to implement run-time adapter for the YouTube adapter in Java.
The name of the YouTube run-time adapter plug-in project is
com.infa.products.adapter.youtube.runtime.adapter.

Metamodel bundle

Use the YouTube metamodel bundle plug-in project to list the metaclasses for adapter packages such as
connection, metadata, run-time ASO, and run-time capability. The name of the YouTube metamodel
bundle plug-in project is com.infa.products.adapter.youtube.metamodel.

YouTube Adapter Components 55

Model attributes

Use the model attributes plug-in project to define the presentation labels for the field, record, and run-
time extensions. The name of the YouTube model attributes plug-in project is
com.infa.products.adapter.youtube.modelAttributes.

Library information

Use the library info plug-in project to define the run-time adapter based on the programming language in
which you implement the run-time adapter. Currently, you can use only Java interfaces to implement the
run-time adapter. The name of the YouTube library Info plug-in project is
com.infa.products.adapter.youtube.libraryInfo.

License

Use the license Java project to perform license checks for the YouTube adapter. The name of the
YouTube license Java project is com.infa.products.adapter.youtube.license.

UI wizard

Use the UI wizard project to define the icons for the Import wizard. The UI wizard project is a Java
project. The Developer tool uses the import options to display UI components when an adapter
consumer creates a data object. The name of the UI wizard project is
com.infa.products.adapter.youtube.wizard.

Feature

Use the feature plug-in project, which is an Eclipse feature, to define an adapter plug-in. The name of the
YouTube feature plug-in project is com.infa.products.adapter.youtube.feature.

Building the Sample Adapter
You can use the sample adapter source code to develop an adapter for a data source. Import the sample
adapter project in to the Eclipse IDE and use the Informatica Connector Toolkit to publish or deploy the
sample adapter.

To use the sample source code and develop an adapter, perform the following tasks:

1. From the Eclipse IDE, click File > Import. The Import dialog box appears.

2. Select Existing Projects into Workspace and then click Next. The Import Projects page appears.

3. Select Select root directory and browse to the directory of the sample adapter that you want to import
into Eclipse.

4. Click Finish.
The sample adapter project appears in the package explorer.

5. Change to the Informatica Connector perspective.

6. Edit the connection, types system, metadata, and run-time components, if required.

7. Publish the sample adapter or deploy the sample adapter on local Informatica services and client.

For more information, see the Sample Adapter Readme.

56 Chapter 11: Adapter Example: YouTube

A p p e n d i x A

Metadata Models
This appendix includes the following topics:

• Metadata Model Overview, 57

• Metadata Model Components, 57

• Metadata Patterns, 58

• Features of Type A Metadata Template, 59

Metadata Model Overview
The Informatica Connector Toolkit internally uses metadata models to define native metadata objects for the
adapter to read from and write to the data source. The metadata model contains components that represent
the metadata of the data source.

The Informatica Connector Toolkit uses pattern classes in the metadata model to describe the metadata
structure of the data source. The metadata model uses a pattern template to define the metadata pattern of
an adapter.

After the Informatica Connector Toolkit registers the metadata model of the data source in the Model
Repository Service, you can use the Developer tool to import metadata from the data source.

Note: Do not use the metadata models directly to define the native metadata objects for the adapter. Use the
Informatica Connector Toolkit to define native metadata objects.

Metadata Model Components
The metadata model contains components that represent the metadata of the data source.

The metadata model consists of the following components:

Flat Record

A flat record represents a structure that contains columns, unique keys, and primary keys. The structure
of a flat record is similar to a database table that contains columns and keys.

A flat record contains attributes that store the following information:

• Name of the native metadata object

• Type of native metadata object

57

• Related records for the flat record

• Primary key for the flat record

• Unique keys for the flat record

• Indexes for the flat record

• Any additional record attributes specific to the data source

Field

A field is a data structure for a single unit of data in a data source.

A field contains attributes that store the following information:

• Name of the field

• Default value of the field

• Precision of the field

• Scale of the field

• Boolean value that indicates whether the field can contain a null value

• Any additional field attributes specific to the data source

Constraints

Constraints represent the primary key and unique keys for a flat record.

The primary key and unique key contain attributes that store the following information:

• Name of the key

• Native name of the key defined in the native metadata

• List of fields that form the key

Index

Index represents a native index that orders the flat records or uniquely identifies a row in the flat record.

An index contains attributes that store the following information:

• Name of the index

• Native name of the index

• Boolean value that indicates whether the index is unique

• List of index fields

• Index order to retrieve the data

The Informatica Connector Toolkit internally uses the metadata model components to represent the data
source metadata and persists the metadata in the Model repository.

Metadata Patterns
The metadata pattern of an adapter describes the metadata structure of the native data source. You can
choose a metadata pattern template to define the metadata pattern of an adapter.

A metadata pattern template is a set of packages such as catalog, container, flat record, and so on. Sets of
related classes that define the metadata pattern are organized as packages.

58 Appendix A: Metadata Models

Though an adapter can have more than one metadata pattern, the Informatica Connector Toolkit currently
supports only Type A template. The type A template provides the metadata patterns for flat records. You can
use the metadata catalog that the Type A template provides to describe the metadata structure of the data
source.

Features of Type A Metadata Template
The Informatica Connector Toolkit uses the Type A metadata pattern template to define the metadata pattern
for flat records.

The Type A metadata pattern template supports the following features:

Catalog

A catalog is a container for metadata objects that you can import.

Container

A container is a collection of packages.

Package

A package contains flat records. A package may also contain other packages.

Flat record

A flat record represents the structure of the native metadata object that you can import. The flat record
structure contains fields, relationships, index, and constraints.

Field

A field is a data structure for a single piece of data in a data source.

Record relationship

A record relationship represents the relationship between flat records.

Index

An index represents a native index that orders the flat records or uniquely identifies a flat record.

Constraints

A constraint represents the unique key and primary key for a flat record.

Features of Type A Metadata Template 59

A p p e n d i x B

ASO Model
This appendix includes the following topics:

• ASO Model Overview, 60

• ASO Model Components, 60

• ASO Projections, 61

ASO Model Overview
The Informatica Connector Toolkit internally uses an Adapter Specific Object (ASO) model to represent
operations on native metadata objects.

The ASO model serves as a container for native metadata objects and associates operations such as read,
write, or lookup with the native metadata objects. A native metadata object represents the native importable
metadata of a data source such as a flat file, relational data source, and nonrelational data source. An ASO
model contains references to multiple native metadata objects and operations.

Note: Do not use the ASO models directly to define operations on native metadata objects. Use the
Informatica Connector Toolkit to define operations on native metadata objects.

ASO Model Components
Use the Informatica Connector Toolkit to define the components that comprise the application specific
object.

The ASO model consists of the following components:

ASO

The ASO object represents the generic adapter specific object. The ASO object contains references to
the following components that comprise the ASO object.

• ASO Operation

• Catalog

• Projection

60

ASO Operation

The ASO operation object contains references to capabilities, capability attributes, and complex types
that you associate with an operation.

Catalog

The catalog object represents the native metadata object. The native metadata object is the native
importable metadata of a data source. The catalog object contains references to components of native
metadata objects such as columns, unique keys, and primary keys.

Projection

The projection object represents the operations that you can perform when you read or write data. The
projection object contains references to the list of operations, projection type, and basic projection view.

ASO Projections
An ASO projection is a sequence of operations that you perform on data when you read data from a data
source or write data to a data source.

Use the Informatica Connector Toolkit to define a basic ASO projection model or an advanced projection
model according to your requirements. The basic ASO projection model provides a simple view of the
advanced projection model. The Informatica Connector Toolkit uses the BasicProjectionView interface to
provide a simple and basic model to the adapter developer. Use the get methods in the BasicProjectionView
interface to get information on native metadata object, platform types, scale, precision, and conditions like
filter and join.

To define the advanced ASO projection model, define the following projection operation interfaces as
required.

Sink operation

There are two types of sink operations: native sink operation and platform sink operation. The native
sink operation gets data from the platform operation when you write to a data source. The platform sink
operation gets data from the native source operation when you read from a data source.

Source operation

There are two types of source operations: native source operation and platform source operation. The
native source operation inputs the native data to the platform sink operation in a read projection
operation. The platform source operation inputs the platform data to the native sink operation in a write
projection operation.

Join operation

Use the join operation to join data from two related sources or from the same source.

Filter operation

Use the filter operation to filter data based on one or more conditions.

Projection operation

Use the projection operation to select a subset of attributes to rename or to drop fields.

For more information about interfaces that define the ASO projection model, see the Informatica Connector
Toolkit API reference documentation.

ASO Projections 61

A p p e n d i x C

Adapter Project Migration
This appendix includes the following topics:

• Adapter Project Migration Overview, 62

• Migrating the Adapter Project from Windows Platform to other Platforms, 62

Adapter Project Migration Overview
You can run the ict.bat file to migrate an adapter project from Windows platform to UNIX or AIX platform.

The following table lists the available command options that you can use to migrate the adapter project and
deploy the adapter:

Command Option Description

generateCode Generates the adapter code and build.xml using the configurations defined in
ict_metadata.xml.

buildAdapter Compiles and deploys the adapter project.

backupProject Creates a backup file for the adapter project.

restoreProject Restores the project by using the project backup file.

The ICT command uses the following syntax:

• On Windows, ict.bat <option> <argument1> [argument2] [...]>
• On UNIX, LINUX and AIX, ict.sh <option> <argument1> [argument2] [...]>

Migrating the Adapter Project from Windows
Platform to other Platforms

Before you migrate the adapter project, verify that the project is available on the Windows platform.

1. Open the command prompt on the Windows platform and navigate to %ICT_HOME%\tools\scripts.

62

2. Run ict.bat backupProject <source_dir> <destination_dir\FileName.zip> to back up the adapter
project.

Specify the following arguments:
source_dir

The source directory of your adapter project .

destination_dir
The directory where you want to save the backup file.

FileName
File name for the backup file.

The <FileName>.zip backup file is created in the specified directory.

3. Copy the <FileName>.zip file from the Windows platform to the target platform.

4. To restore the adapter project, run ict.bat restoreProject <source_dir> <destination_dir
\FileName.zip> from the target platform command prompt.

Specify the following arguments:
source_dir

The path of your <FileName>.zip file.

destination_dir
The directory where you want to save the adapter project.

FileName
File name for the extracted adapter project.

5. Set the environment variables ICT_HOME, ECLIPSE_HOME, JAVA_HOME and ANT_HOME on the target platform.

6. Run ict.bat generateCode <source_dir> to generate the adapter code and the build.xml file.

Specify the path of the adapter project in <source_dir>.

7. Run ict.bat buildAdapter <source_dir> to compile and deploy the adapter project.

Specify the path of the adapter project in <source_dir>.

Migrating the Adapter Project from Windows Platform to other Platforms 63

I n d e x

A
adapter

build 16
deploy 36

C
connection

test 19
connection attribute

properties 39
connection attributes

define 17
create

adapter 16

D
define

connection attributes 17
metadata 21
procedure 26
record 22
REST-based 28
type system 19

E
Eclipse

install 14

I
Informatica Connector Toolkit

install 13, 15
overview 9

install
Eclipse 14

install (continued)
Informatica Connector Toolkit 13, 15

M
metadata

components 44
define 21, 22, 26, 28

MySQL adapter
components 52
requirements 51

P
publish

adapter 36

R
run time

overview 48

T
test

connection 19
metadata 29
read capability 33
write capability 34

type system
define 19

Y
YouTube adapter

components 55
requirements 54

64

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to the Informatica Connector Toolkit
	Informatica Connector Toolkit Overview
	Supported Features for PowerCenter, Big Data Management, and Informatica Cloud
	Informatica Connector Perspective
	Connector Navigator
	Connector Progress

	Architecture

	Chapter 2: Installing and Upgrading the Informatica Connector Toolkit
	Installing the Informatica Connector Toolkit Overview
	Before You Begin
	Install Required Software

	Installation of Eclipse IDE
	Installing Informatica Connector Toolkit on Windows
	Installed Informatica Connector Toolkit Components

	Chapter 3: Building an Adapter
	Building an Adapter Overview
	Step 1. Define the Adapter Properties
	Step 2. Define the Connection Attributes
	Test and Debug the Connection to the Data Source

	Step 3. Define the Type System
	Defining the Type System Manually
	Generating a Predefined Type System

	Step 4. Define the Common Metadata
	Step 5. Define the Adapter Metadata
	Defining the Adapter Metadata for Record Pattern
	Define the Adapter Metadata for Procedure Pattern
	Test Metadata from the Data Source

	Step 6. Implement the Adapter Run-Time Behavior
	Implement the Adapter Run-Time Behavior in Java
	Implement the Adapter Run-Time Behavior in C/C++

	Create Messages
	Implement Design-Time Messages
	Implement Run-Time Messages

	Test the Read and Write Capabilities of the Adapter
	Test the Read Capability of the Adapter
	Test the Write Capability of the Adapter

	Step 7. Export or Publish the Adapter
	Manually Install the Adapter (Optional)
	Naming Convention

	Chapter 4: Connection Attributes
	Connection Attributes Overview
	Connection Attribute Properties

	Chapter 5: Type System
	Type System Overview
	Native Types and Semantic Categories
	Native Type Properties

	Informatica Platform Types

	Chapter 6: Metadata Objects
	Metadata Objects Overview
	Metadata Components
	Import Options

	Chapter 7: Partitioning Capability
	Partitioning Capability Overview
	Dynamic Partitioning
	Static Partitioning

	Chapter 8: Run-time Behavior
	Run-time Behavior Overview
	Run-time Java Functions
	Run-time C/C++ Functions

	Chapter 9: Adapter Example: Instagram
	Instagram Adapter Overview
	Building the Sample Adapter

	Chapter 10: Adapter Example: MySQL
	MySQL Adapter Overview
	MySQL Adapter Requirements
	Building the Sample Adapter
	MySQL Adapter Components

	Chapter 11: Adapter Example: YouTube
	YouTube Adapter Overview
	YouTube Adapter Requirements
	YouTube Adapter Components
	Building the Sample Adapter

	Appendix A: Metadata Models
	Metadata Model Overview
	Metadata Model Components
	Metadata Patterns
	Features of Type A Metadata Template

	Appendix B: ASO Model
	ASO Model Overview
	ASO Model Components
	ASO Projections

	Appendix C: Adapter Project Migration
	Adapter Project Migration Overview
	Migrating the Adapter Project from Windows Platform to other Platforms

	Index

