(;» Informatica

Informatica® Development Platform

Cloud Data Integration
Connector Toolkit Developer
Guide

Informatica Development Platform Cloud Data Integration Connector Toolkit Developer Guide
November 2022

© Copyright Informatica LLC 2021, 2022

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, and Informatica Intelligent Cloud Services™ are trademarks or registered trademarks of Informatica LLC in the United States and
many jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other
company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2022-11-08

Table of Contents

o -1 T+ 7
Informatica RESOUrCesS. 7
Informatica Network. 7
Informatica Knowledge Base. 7
Informatica Documentation. 7
Informatica Product Availability Matrices. 8
Informatica Velocity. e 8
Informatica Marketplace. 8
Informatica Global Customer Support. 8

Chapter 1: Introduction to the Informatica Connector Toolkit.................. 9

Informatica Connector Toolkit Overview. 9
Supported Features. e 10
Informatica Connector Perspective. 11
Connector Navigator. e 11
Connector Progress. o o e 11
Chapter 2: Installing and Upgrading the Informatica Connector Toolkit...... 12
Installing the Informatica Connector Toolkit Overview. 12
Before You Begin. e 13
Download the Welcome Kit. 13
Install Software. 13
Configure Environment Variables for OpendDKon Linux. 14
Configure Environment Variables for Azul OpendDK on Windows. 14
Download the Cloud Data Integration Services Connector Toolkit. 15
Installation of Eclipse IDE. e 15
Installing Informatica Connector Toolkit on Windows. 15
Installed Informatica Connector Toolkit Components. 16
Sample Connectors Source Codes. 16

Chapter 3: Buildinga Connector...........ccoiiiiiiiiiiiiiiiiienennnnnnn.. 17

Building a Connector for Cloud Data Integration. 17
Step 1. Select the Product Type and Define the Connector Properties. 18
Step 2. Define the Connection Attributes. 18
Step 3. Define the Type System. e 21
Step 4. Definethe Common Metadata. 23
Step 5. Define the Connector Metadata. 23
Step 6. Implement the Connector Run-time Behavior. 36
Step 7. Test the Read and Write Capabilities of the Connector. 39
Step 8. Publish the Connector. e 42

Table of Contents 3

4

Step 8. Testthe Connector. e 43

Building a Connector for Data Loader. e 43
Step 1. Select the Product Type and Define the Connector Properties. 44
Step 2. Define the Connection Attributes. 45
Step 3. Define the Type System. e 46
Step 4. Defining the ConnectorMetadata. 47
Step 5. Implement the Connector Run-time Behavior. 49
Step 6. Test the Read Capability of the Connector. 52
Step 7. Publish the Connector. 53
Step 8. Testthe Connector. e 54

Chapter 4: Connection Attributes................coiiiiiiiiiiiiiiiiiiin ... 55

Connection Attribute Overview. 55
Connection Attribute Properties. 55
Chapter 5: Type System.cociiiiiiiiiiiiiiiiii it iiriieeeeararnnnnns 57
Type System OVervieW. 57
Native Types and Semantic Categories. 57

Native Type Properties. e 58
Cloud Data Integration Types. e 59
Chapter 6: Metadata Objects............cooieiiiiiiiiiiiiiiiiiiiiiiii, 60
Connector Metadata Overview. 60
Metadata CoOmponents. e 60
Import Dialog Box Settings. 61
Chapter 7: Partitioning Capability................ocoiiiiiiiiiiiiiii.t. 63
Partition Capability Overview. e 63
Automatic Partitioning. L e 63
Static Partitioning. e 64
Chapter 8: Pushdown Capability..............cooiiiiiiiiiiiiiiiiiiinne.. 65
Pushdown Capability Overview. e 65
Pushdown Optimization Execution Flow. 65
Classes and Methods for Pushdown Capabilities. 66

Chapter 9: Mappings in advanced mode...................cocoviiiiee..... 68
Mappings in advanced mode overview. 68

Project, classes, and methods. 68

Chapter 10: Manual Changes to Informatica Connector Toolkit Source Code. 74

Manual Changes to Informatica Connector Toolkit Source Code Overview. 74

Code Changes for Connection Pooling. e 74

Table of Contents

Connection Pooling through APIL. 76

Code Changes for Custom Query Capability. 77
Code Changes for Object Path Override Capability. 79
Code Changes for Pushdown Capability. 80
Code Changes for SQL Transformation. e 85
Code Changes for Stored Procedures. 91
Chapter 11: Run-time Behavior................coiiiiiiiiiiiiiiiiiiiinn.... 101
Run-time Behavior Overview. 101
Run-time Java Functions. 101

Chapter 12: TestaConnector............cccvvieiiiieneneneneencnenenenna.. 103

Generating the Test Case for Unit and Integration Tests. 103
Configuring the Parameters in the Test Suite File. 106
Regenerate a Test Case. e 107

Runningthe Test Cases. e e e 107
Runningthe Unit Test. 108
Running the Integration Test. e 110
Failure Scenario. L 113

Chapter 13: Connector Example: MySQL_Cloud..................cooenaeen. 115

MySQL_Cloud Connector OVEIVIEW. e e 115

MySQL_Cloud Connector Requirements. 115

Building the Sample Connector. e 116

MySQL_Cloud Connector COmMpoNents. oottt e e e e e 116

Chapter 14: Version Control Integration................cccoiiiiiiiia.... 119

Git Version Control Integration. e 119
Prerequisites. e 119
Build a Connector in Git Repository e 119

Perforce Version Control Integration. 123
Prerequisites. e 123
Download and Install the Perforce Eclipse Plugin. 123
Build a Connectorin Perforce. 124

Appendix A: MetadataModels. ... 128

Metadata Model Overview. 128

Metadata Model Components. 128

Metadata Patterns. 129

Features of Type A Metadata Template. 130

Appendix B: ASOModel.........coimiiiiiiiiiiiiiiiiii it iiieeeeeene.. 131
ASO Model OVEerVIEW. e 131

Table of Contents

5

6

ASO Model COmponeNnts. e e 131

ASO Projections. 132
Appendix C: Connector Project Migration.....................cooiiiiiat, 133
Connector Project Migration Overview. e 133
Migrating the Adapter Project from Windows Platform to other Platforms. 133
Appendix D: Frequently used Generic APIs...........cccoiiiiiiiiienan.n.. 135
Frequently Used Generic APIs in Informatica Connector Toolkit. 135
Appendix E: Frequently Asked Questions..............cccoeiiiiiiiininn... 138
Informatica Connector Toolkit Frequently Asked Questions. 138
INdeX. .. e ittt e 139

Table of Contents

Preface

Use the Cloud Data Integration Informatica® Connector Toolkit Developer Guide to develop connectors for
the Informatica Intelligent Cloud Services® platform. Learn how to build a connector by defining the
connection attributes, type system, and runtime behavior of the connector. This guide also includes
information about how to build the sample MySQL_cloud connector.

Informatica Resources

Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network

The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:
e Search the Knowledge Base for product resources.

e View product availability information.

e Create and review your support cases.

¢ Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com

8

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices

Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

Preface

You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

CHAPTER 1

Introduction to the Informatica
Connector Toolkit

This chapter includes the following topics:

e Informatica Connector Toolkit Overview, 9

e Supported Features, 10

e Informatica Connector Perspective, 11

Informatica Connector Toolkit Overview

Use the Informatica Connector Toolkit to build a connector that provides connectivity between a data source

and Informatica Intelligent Cloud Services.

Although Informatica supports generic ODBC connectivity and allows access to any data source that has a
standards-compliant ODBC driver, building a connector by using the Informatica Connector Toolkit offers
several advantages. In cases where no ODBC driver is available, building a connector by using the Informatica

Connector Toolkit might be the only solution.

When you use the Informatica Connector Toolkit to create a connector, you can build functionality related to
the data source. You can preserve data type integrity and metadata lineage of the data source when you

retain the type system of the data source and perform optimal data type conversions.

The Informatica Connector Toolkit consists of libraries, plug-ins, and sample code to assist you in developing
connectors for Informatica Intelligent Cloud Services. You can use the Informatica Connector perspective in

the Eclipse IDE to quickly develop a connector in an Eclipse environment.

The Informatica Connector Toolkit simplifies the following processes:

¢ Development. You can use the wizards in the Informatica Connector perspective to rapidly develop a
connector. The wizards simplify the use of internal components and dependencies when you develop a

connector.

e Testing. After you define the connector components, you can test the connection, metadata, and run-time

components of the connector.

e Deployment. You can deploy the connector on Informatica Intelligent Cloud Services.

The Informatica Connector Toolkit APl is written in a combination of Java. The connection definition and

metadata definition are available in Java. The run-time interfaces are available in Java.

Supported Features

10

The following table lists the features that Informatica Connector Toolkit supports for Informatica Intelligent

Cloud Services:

Connector Component | Features Informatica Intelligent Cloud
Services
Connection Connection configuration Yes
Connection pooling Yes
Metadata Bulk processing Yes
Custom query capability Yes
Filter operation Yes
Join operation Yes
Lookup No
Mapping in advanced mode Yes
Metadata import configuration No
Metadata write capability Yes
Multiple endpoint metadata objects No
Previously known as native metadata object.
Object path override capability Yes
Partitioning capability Yes
Note: You can only implement
static partitioning.
Pushdown capability Yes
Select operation No
Sort operation No
SQL Transformation Yes
Stored procedures Yes
Runtime C Runtime No
Java Runtime Yes
Note: Java runtime supports Commit, Rollback, IsEqual,
and IsTransactional APIs for Informatica Intelligent Cloud
Services.

Chapter 1: Introduction to the Informatica Connector Toolkit

Informatica Connector Perspective

The views in the Informatica Connector perspective enable you to develop connectors for Informatica
Intelligent Cloud Services.

After you click the Create New Connector icon in the Eclipse Workbench toolbar, you can choose to switch to
the Informatica Connector perspective. You can also open the Informatica Connector perspective from the
Window menu in the Eclipse IDE.

The Informatica Connector perspective consists of the Connector Navigator view and Connector Progress
view in the Eclipse Workbench window, and icons in the Eclipse toolbar. You can use the Connector Navigator
and Connector Progress views to define, edit, or test the connector components and view the progress of the
connector project. Use the Create New Connector icon in the Toolbar to create a connector project. You can
use the View or Create Messages icon in the Eclipse toolbar to view or create messages for the connector
components.

Connector Navigator

You can use the Connector Navigator view to add, define, edit, or test connector components, such as
connection, metadata, and run time.

After you create an Informatica Connector project, you can right-click folders in the Connector Navigator view
to define, edit, or test connector components. You can also right-click the connector source files and edit
them in the Eclipse Workbench editor or any other editor.

Connector Progress

You can use the Connector Progress view to view the completeness of the connector project and to define or
edit the connector project components in each phase.

The Connector Progress view consists of the following phases:
Connectivity

You can define, edit, or test the connection component of a connector in the Connectivity phase.
Metadata

You can define and edit data types and endpoint metadata object components of a connector in the
Metadata phase. You can also define common metadata for connectors in the Metadata phase. You can
test the connector metadata components in the Metadata phase.

Runtime
You can define, edit, and test the connector run-time components in the Runtime phase.
Export/Publish

You can publish the connector to a location or deploy the connector on Informatica Intelligent Cloud
Services in the Export/Publish phase.

Informatica Connector Perspective 11

CHAPTER 2

Installing and Upgrading the
Informatica Connector Toolkit

This chapter includes the following topics:

e Installing the Informatica Connector Toolkit Overview, 12

e Before You Begin, 13

o |Installation of Eclipse IDE, 15

e Installing Informatica Connector Toolkit on Windows, 15

Installing the Informatica Connector Toolkit Overview

Install the Informatica Connector Toolkit and set up the Informatica Connector Toolkit Eclipse plug-in. To set
up the Informatica Connector Toolkit Eclipse plug-in, you install the required software on the machine where
you plan to develop the connector.

The Informatica Connector Toolkit is part of the Informatica Development Platform (IDP). You can use the
Informatica Connector Toolkit installer to install the Informatica Connector Toolkit on the machine in which
you plan to develop a connector.

You can get the Informatica Connector Toolkit installer from the following sources:

¢ Informatica electronic software download site.
When you purchase an Informatica product and choose to download the software, you receive a site link,
user ID, and password to access the Informatica electronic software download site. Follow the
instructions on the download site to download the Informatica Connector Toolkit installation file.

¢ Informatica Technology Network.
If you are a registered user of the Informatica Technology Network, you can download the Informatica
Connector Toolkit installation file from the Informatica Development Platform page. When you download
the file, the Informatica Development Network provides you with a password. Use this password when you
extract the files from the download file.

When you run the Informatica Connector Toolkit installer, the installer installs the Informatica Connector
Toolkit Eclipse plug-in in the Eclipse IDE.

12

Before You Begin

Before you develop a connector with the Informatica Connector Toolkit, you need to install the required
software and analyze the data source.

Run the Informatica Connector Toolkit installer to install the Informatica Connector Toolkit on the machine
where you plan to develop the connector. The Informatica Connector Toolkit contains the binaries, tools,
samples, and documents that you require to build a connector.

Download the Welcome Kit

The Informatica Partner Program provides a complete set of enablement, marketing, and sales resources and
information so that partners can develop and promote their services and solutions in conjunction with
Informatica.

Click the following link to download the Partner Welcome KIT:

Download

Install Software

Install the following software on the machine where you plan to develop the connector:

e Eclipse IDE for Java EE Developers with support for Plug-in Development Environment (PDE). Informatica
Connector Toolkit supports the following Eclipse versions:

Eclipse Version Java

eclipse-juno SR1 1.7 and above
eclipse-juno SR2 1.7 and above
eclipse-kepler SR1 1.7 and above
eclipse-kepler SR2 1.7 and above
eclipse-luna SR1 1.7 and above
eclipse-luna SR2 1.7 and above
eclipse-mars Milestone 1 (4.5.0M1) 1.7 and above
eclipse-mars SR1-SR2 1.7 and above
eclipse-neon M5 1.8 and above
eclipse-oxygen 3a 1.8 and above
eclipse-2020-06 4.16.0 1.8 and above

Note: For AlX, install Eclipse 4.2.2 or above.
e Azul OpenJDK version 1.8.0_275 or previous sub versions.

e MySQL_Cloud Connector/J JDBC driver version 8.0.13 or later if you use the MySQL_Cloud sample
connector.

Before You Begin 13

https://marketplace.informatica.com/content/dam/informatica-marketplace/resources/Partner%20Kit%201.0.zip

e YouTube Data API client library for Java version 3 or later if you use the YouTube sample connector.

Configure Environment Variables for OpenJDK on Linux

After you download the Azul OpenJDK version 1.8.0_275 or any previous sub version on a Linux machine, you
must configure the environment variables.

Perform the following steps to configure the environment variables:

1. After you download the Azul OpenJDK, extract the .tar file.

2. Set the variable name to JAVA_HOME and the variable value to <Java installation directory>/jdk:
export JDK HOME=<Java installation directory>/jdk

Delete the JRE_HOME environment variable.

E

Edit the PATH variable and add JAvA HOME/bin to the variable value.
export PATH=$JDK_HOME/bin:$PATH

In the Informatica Connector Eclipse IDE, open Windows > Preferences.
Navigate to Java > Installed JREs.

Click Add.

Select Standard VM as the JRE Type.

Click Next.

© v ® N o O

In the JRE home property, specify the <Java installation directory>/jdk or click Directory to
navigate to the <Java installation directory>/jdk.

11. Enter a name for the JRE name property.
12. Click Finish.
13. Click Apply and then click OK.

14. Restart the Informatica Connector Eclipse IDE.

Configure Environment Variables for Azul OpenJDK on Windows

After you download the Azul OpenJDK version 1.8.0_275 or any previous sub version on a Windows machine,
you must configure the environment variables.

Perform the following steps to configure the environment variables:

—_

After you download the Azul OpenJDK, extract the .zip file.

Open the Advanced System Properties from the Windows Control Panel.
Click Environment Variables.

Under System variables, click New.

Set the variable name to JAVA_HOME and the variable value to <Java installation directory>/jdk.
Edit the Path variable and add JAvA HOME/bin to the variable value.

In the Informatica Connector Eclipse IDE, open Windows > Preferences.
Navigate to Java > Installed JREs.

Click Add.

Select Standard VM as the JRE Type.

Click Next.

S © ® N O s wN

_
—_

14 Chapter 2: Installing and Upgrading the Informatica Connector Toolkit

12. In the JRE home property, specify the <Java installation directory> or click Directory to navigate to
the <Java installation directory>.

13. Enter a name for the JRE name property.
14. Click Finish.
15. Click Apply and then click OK.

16. Restart the Informatica Connector Eclipse IDE.

Download the Cloud Data Integration Services Connector Toolkit

Download the Cloud Data Integration Connector Toolkit based on your system requirement:

Operating System URL
Windows 64-bit Download
Linux 64-bit Download

Installation of Eclipse IDE

You can install Eclipse IDE on the machine in which you plan to develop the connector. Use the Eclipse IDE
package to install Eclipse IDE.

You must install Eclipse version supported by Informatica Connector Toolkit for the Informatica Connector
Toolkit plug-in to work with the Eclipse IDE.

You can download the Eclipse IDE package from the following location:

http://www.eclipse.org/downloads/

For more information about the supported Eclipse versions, see “Install Software” on page 13.

Installing Informatica Connector Toolkit on Windows

Install the Informatica Connector Toolkit to install the Informatica Connector Toolkit Eclipse plug-in and other
components that you require to build an connector.

1. Close all other applications.
2. Runthe install.bat file from the root directory.
3. Inthe Welcome page, click Next.
The Installation Directory page appears.
4. Select the installation directory in which you want to install the Informatica Connector Toolkit.

5. Select the installation directory in which you installed Eclipse IDE.

Installation of Eclipse IDE 15

https://marketplace.informatica.com/content/dam/informatica-marketplace/resources/connector-toolkit/toolkit/informatica_cloud_connector_toolkit_winem-64t.zip
https://marketplace.informatica.com/content/dam/informatica-marketplace/resources/connector-toolkit/toolkit/informatica_cloud_connector_toolkit_linux-x64.zip
http://www.eclipse.org/downloads/

10.

Select Install Apache log4j to install the log4j plug-in version that Informatica Connector Toolkit
requires. The installer installs the required Apache log4j plug-in by default. If you have log4j plug-in
installed and do not want to install a different version of the library, clear the Install Apache log4j option.

Select Install Apache Commons library to install the commons library that Informatica Connector Toolkit
requires.

Click Next.

The Pre-Installation Summary page appears.

Click Install.

The Installing page appears and displays the installation progress.

Click Done to complete the installation procedure and then exit the installer.

Installed Informatica Connector Toolkit Components

After you install the Informatica SDKs, you can find the Informatica Connector Toolkit in the installation
directory where you installed the Informatica Connector Toolkit.

The Informatica Connector Toolkit installation includes the following components to assist you in developing
a connector for the Informatica platform:

Informatica Connector Toolkit API files. Library files of the Informatica Connector Toolkit API.

Informatica Connector Toolkit Eclipse plug-in. You can use the wizards and menus that the Informatica
Connector Toolkit plug-in adds to the Eclipse IDE to develop, test, and deploy a connector.

Sample MySQL_Cloud connector. The sample MySQL_Cloud connector include source code that you can
use as a model to build a connector.

Note: The sample MySQL_Cloud connector are for illustration purposes only.

Informatica Connector Toolkit APl Reference. Online documentation for the Informatica Connector Toolkit
API specification.

Sample Connectors Source Codes

The Informatica Connector Toolkit installation includes the following sample connector source codes:

Instagram
MySQL
MySQL_Cloud
Redis
YouTube

16 Chapter 2: Installing and Upgrading the Informatica Connector Toolkit

CHAPTER 3

Building a Connector

This chapter includes the following topics:

Building a Connector for Cloud Data Integration, 17

Building a Connector for Data Loader, 43

Building a Connector for Cloud Data Integration

The Informatica Connector Toolkit consists of the libraries, plug-ins, and sample code to assist you in
developing a connector for the Informatica platform.

To build a connector for Cloud Data Integration, use the Informatica Connector Toolkit and perform the
following tasks:

1.

Create a connector project and define the basic properties of the connector such as name, ID, and
vendor name.

Define the connection attributes to connect to the data source. Implement the methods to open
connection or close connection to the data source, validate connection, and specify attribute
dependencies. Before you define the type system for the connector, you can test and debug the
connection components of the connector.

You can also use connection pooling to reuse the connections instead of creating a new connection
each time and optimize the performance.

Define the type system for the connector. Specify the data types supported by the data source and the
corresponding data types supported by Informatica.

Define the connector metadata, create endpoint metadata object, operations for the endpoint metadata
object, and partition methods for the operations. Implement the methods to fetch metadata from the
data source. You can also test and debug the metadata components of the connector.

Enable read and write capabilities for mappings on the advanced cluster

If you want enable read and write capabilities for a mapping that runs on the advanced cluster,
complete the following prerequisites:

1. Click the following link to download and install the Scala binaries:
https://www.scala-lang.org/download/2.12.8.html

2. Addthe SCALA_HOME environment variable under system variables in the agent machine.
Set the value of the variable to the installation directory where you installed the Scala binaries.

Define the connector run-time behavior that defines how the connector reads from and writes to the data
source. Before you deploy the connector, you can test and debug the read capability and write capability
of the connector.

Deploy the connector to the Cloud Data Integration service.

17

https://www.scala-lang.org/download/2.12.8.html

18

Step 1. Select the Product Type and Define the Connector
Properties
The connector properties describe and identify the connector in the Informatica Intelligent Cloud Services

Administrator. Use the Informatica Connector Toolkit to create an connector project and define the connector
properties.

1. From the Eclipse IDE, click the Create New Connector button (=).

The Create Informatica Connector Project dialog box appears.
2. Select Data Integration as the product type to select Cloud Data Integration.

3. Click Next.
The Create Informatica Connector Project dialog box appears.

4. Enter the following connector project details:

Property Description
Connector ID An identifier that uniquely identifies the connector.
Connector Name Name of the connector. The connector name is an alphanumeric

string. The first character of the name must be a letter.

Vendor Name Name of the vendor building the connector.
Vendor ID A unique identifier for the vendor.
Version The version number of the connector must have the format x.x.x

and must include numeric characters. For example: 1.0.0.

Description Description of the connector.

5. Click Finish.
The connector project appears in the Connector Navigator view of the Eclipse IDE.

Step 2. Define the Connection Attributes

The connection attributes of a connector determine how the connector connects to the data source. Use the
Informatica Connector Toolkit to define the connection attributes and specify the libraries required to
connect to the data source.

1. In the Connector Navigator view, right-click the project and select Add Connection.
The Add Connection dialog box appears.

2. Enter the connection type name.

3. Select Add New and enter the category name.
The category name that you configure corresponds to the connection object category.

4. Click Next.
The Connection Attributes page appears.

5. Click Add to enter each connection attribute.
The attributes that you configure correspond to the connection object properties. The Add Attribute
dialog box appears.

Chapter 3: Building a Connector

6.

10.

Enter the following properties for the connection attribute:

Attribute Property

Description

Name Name of the connection attribute.

Display Name Display name for the connection attribute.
Description Description of the connection attribute.
Data Type Data type of the connection attribute.

Default Value

Default value for the attribute.

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.

Encrypted Indicates whether you can encrypt the attribute.

Mandatory Indicates whether a connection attribute requires a value.
If you set the Mandatory property to true but you do not display the attribute on
the connection management user interface, you must set a default value for the
attribute.

Hidden Indicates whether you can hide the attribute.

Has Dependent Fields

Indicates whether the attribute has dependent fields.

Allowed Values

List of values allowed for the attribute.

Click OK.
Click Next.

The Configure Connection Pages page appears.

a. Group the connection attributes under one or more connection sections.

b. To create a new connection section, click Add Section and enter the section name, section title, tool
tip, and section description.

c. To create a new connection page, click Add Page and enter the page name and page description.

d. To change the order in which connection sections appear in a connection page, use Move Up or

Move Down.
Click Next.

The Connection Pooling page appears.

Set the connection pool through the Informatica Connector Toolkit interface or API.

e To use connection pooling through the API, select the Support Connection Pooling through API
check box. Values for the connection pooling properties are set through the code.

Building a Connector for Cloud Data Integration 19

To use connection pooling through the Informatica Connector Toolkit interface, select the Supports
Connection Pooling check box. Then, enter the details for the following connection pooling

properties:

Property

Description

Supports Custom
Compare

Enables a custom comparison of connection objects.

The isEqual() API takes the connection object as an input argument and compares it
with the current calling object. The API isEqual() returns true if both the objects are
similar. Else, it returns false.

The connector developer overrides the isEqual() method to provide a custom
comparison of connection objects.

Maximum Idle
Connections per
key

Determines the maximum number of connection handles that can remain idle in the
connection pool.

If there are one or more idle instances available in the sub-pool associated with a
given key, an idle instance is selected based on the LIFO principle and returned.

Maximum Total
Connections in the
pool

Determines the maximum number of objects that can be pooled for all distinct keys.

Maximum Total
Connections per
key

Determines the maximum number of objects that can be pooled for a particular key.

Minimum evictable
idle time in
milliseconds

Determines the time in milliseconds that makes the object eligible to get destroyed
when the time for the object in an idle state elapses.

Maximum wait time
in milliseconds

Maximum wait time for a particular request to get an object from the pool, before it
returns failure.

Abandoned time
out in milliseconds

Prevents an abandoned connection object from staying in the memory. If a connection
object that is borrowed from the pool is not returned to the pool within the specified
abandoned time out, that object is considered abandoned and then destroyed by the
pool.

Time between
eviction run in
milliseconds

Dictates the interval between successive eviction of idle objects from the pool.

Test on create

Tests the validity of objects before adding them to the pool.
Select the check box to test the objects for validity before adding them to the pool.

Test on borrow

Tests the validity of objects before borrowing them from the pool.

Select the check box to test the objects for validity before borrowing them from the
pool.

Chapter 3: Building a Connector

11.

12.
13.

14,

15.

Property Description

Test on return Tests the borrowed objects for validity before returning them to the pool.
Select the check box to test the borrowed objects for validity before returning them to
the pool.

Number of retries The number of times to retry the metadata operation on receiving an

for invalid InvalidConnectionHandleException from the connector.

connections For each retry attempt, the Secure Agent picks a fresh connection object from the
pool.
Default value is 3.

Click Next.
The Configure Libraries page appears.

Click Add to select each library that the connector requires to connect to the data source.

Click Generate Code.
After you define the connection attributes, the Informatica Connector Toolkit generates the following
Java files:

<ConnectorName>ConnectinfoAdapter.java

<ConnectorName>Connection.java

Update the ConnectinfoAdapter.java file to implement connection validation and attribute dependancies.
Also, update the Connection.java file to implement the methods that open and close connection to the
data source.

You can test and debug the connection to the data source.

Note: If you regenerate code for the connection project, the Informatica Connector Toolkit does not
regenerate code for the user-exposed source code visible in the Informatica perspective. You have to
manually edit the source code and make changes if you add, remove, or modify connection attributes.

Step 3. Define the Type System

Categorize each data type in the data source into one of the Cloud Data Integration data types or Java data
types supported by the Informatica Connector Toolkit API. Use the Informatica Connector Toolkit to create a
type system or generate and use a predefined type system.

Defining the Type System Manually

You can manually define a type system that maps the data types that the data source supports with the data
types that Cloud Data Integration supports.

1.

In the Connector Navigator view, right-click the project and select Define Typesystem.
The Define Type System dialog box appears.

To manually define a type system that matches the data types in the data source, select Manually Create
Type System.

To map the native data types to the Cloud Data Integration data types, select Native to Platform Type.
To map the native data types to the Java data types, select Native to Java Type.

Click Add to configure each type system attribute.
The Add Type dialog box appears.

Building a Connector for Cloud Data Integration 21

6. Enter the following properties for the type system attribute:

Property Value
Type Name Name for the native type system attribute.
Comments Comments for the native type system attribute.

Best Platform Type | The platform or Java data type that maps best to the native data type when the connector
for Read/ Best reads from the data source.
Java Type for Read

Properties Based on the selected best platform or Java type for read, you must set one or more of the

following native type properties:

- Precision properties such as maximum precision and default precision. By default, the
maximum precision is displayed for each data type.

- Scale properties such as maximum scale, default scale, and minimum scale.

- Length properties such as maximum length and default length.

The maximum length of any attribute cannot be greater than Integer. MAX_VALUE, which
is 2,147,483,647.

- Unit of length such as characters, bytes, and bits.

- Date properties such as hour, minute, second, year, month, day, and time zone.

7. If the platform data type or Java data type is the best match when writing to the native data type, select
Mapped and then select Best Native Type to Write.
For example, to map the Java INTEGER data type to the MySQL data type INT as one of the Best Native
Type to Write, select Mapped in the INTEGER row and then select Best Native Type to Write.

8. To map a platform data type or Java data type to the native data type but not as a best match, select
only Mapped.
For example, if the Java SHORT data type maps to the MySQL data type INT but might result in loss of
data when converted, select Mapped in the INTEGER row.

9. Click OK.
The Define Type System dialog box appears.

10. After you add and map the required native data types for the connector, click Generate Code.

Generating a Predefined Type System

You can generate a type system with the basic data types that Cloud Data Integration supports. Use the basic
data types in the predefined type system for use with REST-based procedures.

1. In the Connector Navigator view, right-click the project and select Define Typesystem.
The Define Type System dialog box appears.

2. To generate and use basic data types that the Cloud Data Integration supports, select Use Predefined
Type System.

3. To map the native data types to the Cloud Data Integration data types, select Native to Platform Type.
4. To map the native data types to the Java data types, select Native to Java Type.

Click Generate Code.

22 Chapter 3: Building a Connector

Step 4. Define the Common Metadata

You can specify additional metadata details, such as schema name and foreign key name for data sources in
which data is stored in a schema. The connector uses the specified schema name and foreign key name
during the read operation to retrieve data.

Note: By default, the Supports Schema option is enabled for all connectors. Disable the Supports Schema
option if your connector does not support schema, and click Save.

1. In the Connector Navigator view, right-click the project and select Edit Common Metadata.
The Edit Common Metadata dialog box appears.
2. If the connector supports schema, select Supports Schema and add the Schema Display Name.

3. If the connector supports foreign key, select Supports Foreign Key and add the Foreign Key Display
Name.

4. Click Generate Code.

Step 5. Define the Connector Metadata

The connector metadata represents the metadata in the data source for which you build the connector. You
can define metadata definitions to represent the differently structured metadata objects of the data source.

Use the Informatica Connector Toolkit to define the connector metadata. You can represent the metadata for
data sources in which data is stored as records and for procedures in data sources. You can manually create
native metadata for procedures or use swagger specifications to define the native metadata.

You can use the procedure pattern to define endpoint metadata objects for Informatica Intelligent Cloud
Services connectors.

Define the following connector components to specify the connector metadata:

¢ Endpoint metadata definition for the connector. You can define multiple native metadata definitions for a
connector. For example, you can create different endpoint metadata objects for tables, views, and
synonyms in a relational data source.

e Record extensions and field extensions. You can define record extensions and field extensions to define
additional metadata for records and fields.

e Read and write capability for the connector. You can add attributes that you can use to read from or write
to the data source.

¢ Pushdown capability for the connector. You can add attributes that you can use to push as much of the
transformation logic as possible to the target database.

Note: Before you enable pushdown capability for the connector, you must copy the
com.infa.products.expr.jexpr.jar file from

<ICT installation directory>/CCI/plugins/infa 10 <ICT installation directory>/ICT/
Application/plugins and restart the Informatica Connector Toolkit.

¢ Import dialog box settings. You can define import options that appear in Cloud Data Integration when a
connector consumer imports a data object.

Note: If you regenerate code for the endpoint metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica Connector perspective.
You have to manually edit the source code and make changes if you add, remove, or change the endpoint
metadata attributes.

Building a Connector for Cloud Data Integration 23

Defining the Connector Metadata for Record Pattern

For data sources in which data is stored as records, you can define the endpoint metadata definition for the
connector by using the record pattern type.

1. In the Connector Navigator view, right-click the project and select Add Endpoint Metadata Definition.
The Add Endpoint Metadata Definition dialog box appears.

2. Enter the endpoint metadata details.
The following table describes the properties to enter:

Property Description

Name Name for the endpoint metadata.
Display Name Display name for the endpoint metadata.
Description Description of the endpoint metadata.

3. Specify the pattern type as record to create a endpoint metadata object based on the record structure of
the data source.

4. To specify a custom query to import a data source, select Custom Query.
When you select Custom Query, you can select Query as the source type to import a data source.

Note: Custom Query capability is supported only for Informatica Intelligent Cloud Services. Custom query
is not applicable for Cloud Toolkit (CTK) connectors.

5. To validate the value of the parameter of the data source object, select Object Path Override.

Note: The Object Path Override capability is supported only for Informatica Intelligent Cloud Services.
Object Path Override is not applicable for CTK connectors.

6. Click Next.

7. To add additional metadata information for records, select Add Record Extension and add the following
properties for the attribute:

Attribute Property Description

Name Name of the attribute.

Display Name Display name for the connection attribute.

Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.
The maximum length of any attribute cannot be greater than
Integer. MAX_VALUE, which is 2,147,483,647.

Encrypted Indicates whether you can encrypt the attribute.

24 Chapter 3: Building a Connector

10.

11.
12.
13.

14.

15.
16.

Attribute Property Description

Mandatory Indicates whether a connection attribute requires a value.

If you set the Mandatory property to True but you do not display the attribute on
the connection management user interface, you must set a default value for the

attribute.
Hidden Indicates whether you can hide the attribute.
Allowed Values List of values allowed for the attribute.

Click Next.
The Endpoint Metadata Field page appears.

To add additional metadata information for fields, select Add Field Extension and add the attribute
properties.

Click Next.
The Read Capability page appears.

To define read capability for the endpoint metadata object, select Enable Read Capability.
Select whether the connector supports lookup of data when the connector reads from the data source.

Select Enable read in advanced mode to enable read capability for mappings in advanced mode.
For more information, see Chapter 9, “Mappings in advanced mode” on page 68.

Select whether the connector supports join and filter operations when the connector reads from the data

source.

e To specify operators and expression syntax recognized by the Cloud Data Integration for the join or
filter operation, select Platform Expression.

Note: If you plan to add key range partitioning capability for the connector, you must select support
for filter operation and platform expression.

* To specify an expression for the join or filter operation that is specific to the data source for which
you build the connector, select Native Expression.

Note: When a connector supports platform filter, you can use the default operators suchas =, !'=, >,
>=, <, and <= for filter conditions. You can specify advanced operators such as Contains, Starts
With, Ends With, Is Null,and Is Not Null for filters when you define the read capability for the
endpoint metadata object.

For the code changes to include the advanced operators, see the RuntimeDataAdapter class of
MySQL_Cloud sample connector in the following location:

source\ict\samples\MySQL Cloud
Select whether the connector supports sort to retrieve data from the data source in a specific order.

To add read capability attributes, click Add and add the attribute properties.

Building a Connector for Cloud Data Integration

25

26

17.

18.

19.

20.

You can also define the following parameterization and partitioning support for an attribute:

¢ When you specify the read attribute properties, you can define whether you can parameterize the
attribute. When you parameterize an attribute, you can assign values for the attribute at run time. For
example, you can parameterize the user name and add user names to a configuration file and then
run the same mapping to read data of different users.

You can define the following parameterization support for an attribute:
Full Parameterization

The attribute supports parameterization. You can parameterize the value of an attribute
completely.

Partial Parameterization

The attribute supports partial parameterization. You can parameterize a part of the attribute
value.

No
The attribute does not support parameterization.

e You can select Override Partitions to specify if the attribute can be overridden for each partition.
Implement the <ConnectorID><NMOName>AutoPartitioningMetadataAdapter file to define the
partition support.

You can also define whether the attribute supports parameterization and if the attribute can be
overridden for each partition.

Click Next.
The Write Capability page appears.

To define write capability for the endpoint metadata object, select Enable Write Capability and add the
attribute properties.

When you specify the write attribute properties, you can define whether you can parameterize the
attribute.

You can define the following parameterization support for an attribute:
Full Parameterization

The attribute supports parameterization. You can parameterize the value of an attribute completely.
Partial Parameterization

The attribute supports partial parameterization. You can parameterize a part of the attribute value.
No

The attribute does not support parameterization.

Select whether the connector supports upsert operation when the connector writes to the target.
When you select Enable 'Upsert' support, Informatica Connector Toolkit adds the UpdateMode attribute to
the write capability attribute list.

You can specify one of the following values for the UpdateMode attribute during runtime:

o Update As Update. If you specify the Update As Update value, you must implement the upsert logic
so that the connector updates an existing row while writing to the target.

* Update Else Insert. If you specify the Update Else Insert value, you must implement the upsert logic
so that the connector updates an existing row if the row exists in the target, else inserts a row while
writing to the target.

Select whether the connector supports bulk processing to write large amounts of data to the target.
When you select Enable Write Bulk API, specify the property -DENABLE WRITER BULK PROCESSING=true
in the Secure Agent properties.

Chapter 3: Building a Connector

21.

22.

23.

24.

25.

26.
27.

28.

29.

Note: Bulk processing capability is supported only for Informatica Intelligent Cloud Services. Bulk
processing is not applicable for CTK connectors.

Select Enable write in advanced mode to enable write capability for mappings in advanced mode.
For more information, see Chapter 9, “Mappings in advanced mode” on page 68.

Click Next.
The Pushdown Capability for the Native Metadata page appears.

To define pushdown capability for the endpoint metadata object using the native connection, select
Enable Pushdown Capability and add the attribute properties.

When you specify the pushdown attribute properties, you can define the adapter ID for the source. Define
whether the connector supports source or full pushdown or pushdown to single or multiple targets.
When you enable pushdown capability, you must add at least one source adapter ID.

Note: Pushdown capability is supported only for Informatica Intelligent Cloud Services. Pushdown
capability is not applicable for CTK connectors.

Select the transformations that the connector must support for pushdown optimization. You can select
from the following transformations:

o Filter

e Joiner

e Sorter

e Expression

e Aggregator

e Lookup

e Router

e Union

e Update Strategy

e Sequence Generator

Click Next.
The Native Metadata Partitioning Capability page appears.

Select whether the connector supports partitioning capability for the read operation.

To configure the connector to fetch partition information from the data source, select the Dynamic
partitioning method and implement the partition logic. Extend the AutoPartitioningMetadataAdapter
class to implement the partition logic.

To configure the connector to get partition information from the user, select the Static partitioning
method. The user enters the partition information, such as number of partitions or key range.

¢ |f you want to implement a partition logic based on the partition information that the user specifies,
select Fixed. Implement the partition logic in the DataAdapter class. The user can specify the
required partition information before the connector reads from the data source.

o If the tables in the data source support key range partitioning, select Key Range. The user can specify
the partition keys and key range type before the connector reads from the data source. If you add
support for key range partitioning, ensure that the connector supports filter operation and platform
expression. You need not implement the partition logic for key range partitioning because the
Informatica Connector Toolkit implements key range partitioning as a filter query.

Note: Key range partitioning is supported only for Big Data Management.

Select whether the connector supports partitioning capability for the write operation. By default, the
dynamic partitioning method is selected for partition-enabled write operations. Extend the
AutoPartitioningMetadataAdapter class to implement the partition logic.

Building a Connector for Cloud Data Integration 27

28

30. Click Next.
The Import Dialog Box Settings page appears.

31. Inthe Metadata Import Dialog Box Settings section, select the metadata import options that appear in
the client tool when a connector consumer creates a data object and click Save.

32. If you are developing a connector for the Informatica Intelligent Cloud Services, specify whether the
connector supports DDL generation and select the supported modifications to the data source schema
in the Metadata Write Settings section.

You can configure the connector to support the following modifications in the data source schema:
Supports DDL

You can choose how Data Integration handles changes that you make to the data object schemas.
To refresh the schema every time the mapping task runs, you can enable dynamic schema handling
in the task. You can select DDL support to create, update, and delete metadata in an external system
using the specified objects and options.

Create Object

To add the capability to create objects in the target, select Create Object. To add the capability to
drop the existing object and then create a new object, select Drop and Create.

Alter Object

To add the capability to alter objects in the target, select Alter Object. To add the capability to
create a object if the object to alter does not exist, select Alter Else Create.

Drop Object
To add the capability to drop objects in the target, select Drop Object.

33. Click Generate Code.
After you define the connector metadata, the Informatica Connector Toolkit generates the
<NMOName>MetadataAdapter.java file in the Metadata folder. Implement the following methods in the
<NMOName>MetadataAdapter.java file to import metadata.

populateObjectCatalog()
Populates metadata details in the import wizard for the connector consumer.

Note: Data preview in Cloud Data Integration does not work if the values of the Record.setName and
Record.setNativeName methods are different.

populateObjectDetails()
Gets metadata from the data source based on the import dialog options settings.

If you configured metadata write settings for the connector, implement the writeObjects method in the
<NMOName>MetadataAdapter.java file.

Note: If you regenerate code for the endpoint metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica perspective. You have
to manually edit the source code and make changes if you add, remove, or change the endpoint metadata
attributes.

Define the Connector Metadata for Procedure Pattern

For procedures and functions in data sources, you can define the endpoint metadata definition for the
Informatica Intelligent Cloud Services connectors by using the procedure pattern type.

You can use the manual method to create the endpoint metadata object for the procedure or use a REST-
based specification. You can choose to use an existing swagger specification or generate and use a swagger
specification.

Chapter 3: Building a Connector

Defining the Connector Metadata for Procedure Pattern Manually

When you use the procedure pattern type to define the endpoint metadata for the Connector, you can use the
manual method to define the endpoint metadata object.

1. Inthe Connector Navigator view, right-click the project and select Add Endpoint Metadata Definition.
The Add Endpoint Metadata Definition dialog box appears.

2. Enter the endpoint metadata details.
The following table describes the properties to enter:

Property Description

Name Name for the endpoint metadata.
Display Name Display name for the endpoint metadata.
Description Description of the endpoint metadata.

3. Specify the pattern type as procedure to create a endpoint metadata object for procedures or functions
in a data source.

4. To manually define the endpoint metadata object for the data source with procedure pattern type, select
Manual as the creation method.

5. Click Next.
The Endpoint Metadata Procedure Definition page appears.

6. To add additional metadata information for procedure, select Add Procedure Extension and add the
following properties for the attribute:

Attribute Property Description

Name Name of the attribute.

Display Name Display name for the connection attribute.
Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

Min Length Minimum length for the value of the attribute.
Max Length Maximum length for the value of the attribute.

The maximum length of any attribute cannot be greater than
Integer. MAX_VALUE, which is 2,147,483,647.

Encrypted Indicates whether you can encrypt the attribute.

Mandatory Indicates whether a connection attribute requires a value.

If you set the Mandatory property to True but you do not display the attribute on
the connection management user interface, you must set a default value for the
attribute.

Building a Connector for Cloud Data Integration 29

30

10.

11.

12.

13.

Attribute Property Description

Hidden Indicates whether you can hide the attribute.
Allowed Values List of values allowed for the attribute.
Click Next.

The Endpoint Metadata Parameter Definition page appears.
To add additional metadata information for parameters, select Add Parameter Extension and add the
attribute properties.

Click Next.
The Endpoint Metadata Call Capability Attributes page appears.

To add call capability attributes, click Add and add the attribute properties.

You can select Override Partitions to specify if the attribute can be overridden for each partition.
Implement the <ConnectorID><NMOName>AutoPartitioningMetadataAdapter file to define the partition
support.

Click Next.
The Import Dialog Box Settings page appears.

In the Metadata Import Dialog Box Settings section, select the metadata import options that appear in
the client tool when a connector consumer creates a data object and click Save.

Click Generate Code.

After you define the connector metadata, the Informatica Connector Toolkit generates the
<NMOName>MetadataAdapter.java file in the Metadata folder. Implement the following methods in the
<NMOName>MetadataAdapter.java file to import metadata.

populateObjectCatalog()
Populates metadata details in the import wizard for the connector consumer.

Note: Data preview in the PowerCenter client or Informatica Intelligent Cloud Services does not work
if the values of the Record.setName and Record.setNativeName methods are different.

populateObjectDetails()

Gets metadata from the data source based on the import dialog options settings.

If you configured metadata write settings for the connector, implement the writeObjects method in the
<NMOName>MetadataAdapter.java file.

Note: If you regenerate code for the endpoint metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica Connector perspective.
You have to manually edit the source code and make changes if you add, remove, or change the endpoint
metadata attributes.

Defining the Connector Metadata for Procedure Pattern by Using REST-based
Specification

You can define the endpoint metadata definition for the connector by using an existing REST-based
specification or generate and use a REST-based specification.

1.

2.

In the Connector Navigator view, right-click the project and select Add Endpoint Metadata Definition.
The Add Endpoint Metadata Definition dialog box appears.

Enter the endpoint metadata details.

Chapter 3: Building a Connector

The following table describes the properties to enter:

Property Description

Name Name for the endpoint metadata.
Display Name Display name for the endpoint metadata.
Description Description of the endpoint metadata.

3. Specify the pattern type as procedure to create a endpoint metadata object for procedures or functions
in a data source.

4. To create endpoint metadata object based on a REST-based specification, select REST-based creation
method.

5. To use an existing swagger specification, click Browse and open the JSON file. After you open the JSON
file, skip to step 7.

6. To generate a swagger specification by sampling, select Generate swagger specification by sampling
and then click Next.
Perform the following steps to sample the REST end point:

a. Enter the base URL.

b. Click Add to get the procedure details.

c. Specify the Path, Display Name, Method, Content Type, and Accept Type properties.
d. Add the parameter details.

e. Click Test to validate and sample the REST end point.

f. Click OK to add the procedure details.

7. Click Generate Code.
After you define the connector metadata, the Informatica Connector Toolkit generates the
<NMOName>MetadataAdapter.java file in the Metadata folder. To implement features specific to the data
source, you can also modify code in the following methods in the <NMOName>MetadataAdapter.java file
to import metadata.

populateObjectCatalog()
Populates metadata details in the import wizard for the connector consumer.

Note: Data preview in Cloud Data Integration does not work if the values of the Record.setName and
Record.setNativeName methods are different.

populateObjectDetails()
Gets metadata from the data source based on the import dialog options settings.

If you configured metadata write settings for the connector, implement the writeObjects method in the
<NMOName>MetadataAdapter.java file.

Note: If you regenerate code for the endpoint metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica perspective. You have
to manually edit the source code and make changes if you add, remove, or change the endpoint metadata
attributes.

Building a Connector for Cloud Data Integration 31

Defining the Connector Metadata for Procedure Pattern by Using SQL
Transformation

When you use the procedure pattern type to define the endpoint metadata for the connector, you can use an
SQL transformation to define the endpoint metadata object.

1. Inthe Connector Navigator view, right-click the project and select Add Endpoint Metadata Definition.
The Add Endpoint Metadata Definition dialog box appears.

2. Enter the endpoint metadata details.
The following table describes the properties:

Property Description

Name Name for the endpoint metadata.
Display Name Display name for the endpoint metadata.
Description Description of the endpoint metadata.

Use Existing Runtime | Determines if the endpoint metadata object uses an existing runtime or a new runtime.

Endpoint Metadata Displays a list of endpoint metadata objects for which you implemented runtime. If you
Object want to use the existing runtime, you can select one of the endpoint metadata objects
from the list.

Note: The list is displayed only when you select Use Existing Runtime option.

3. Specify the pattern type as procedure to create a endpoint metadata object for procedures or functions
in a data source.

4. To define the endpoint metadata object for the data source with procedure pattern type by using SQL
transformation, select SQL Transformation as the creation method.

5. Click Next.
The Endpoint Metadata Procedure Definition page appears.

6. To add additional metadata information for the procedure pattern type, select Add Procedure Extension
and add the following properties for the attribute:

Attribute Property Description

Name Name of the attribute.

Display Name Display name for the connection attribute.
Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

Min Length Minimum length for the value of the attribute.

32 Chapter 3: Building a Connector

10.
11.

12.

13.

Attribute Property Description

Max Length Maximum length for the value of the attribute.

The maximum length of any attribute cannot be greater than
Integer.MAX_VALUE, which is 2,147,483,647.

Encrypted Indicates whether you can encrypt the attribute.

Mandatory Indicates whether a connection attribute requires a value.

If you set the Mandatory property to True but you do not display the attribute on
the connection management user interface, you must set a default value for the

attribute.
Hidden Indicates whether you can hide the attribute.
Allowed Values List of values allowed for the attribute.

Click Next.
The Endpoint Metadata Parameter Definition page appears.

To add additional metadata information for parameters, select Add Parameter Extension and add the
attribute properties.

Click Next.
The Endpoint Metadata Call Capability Attributes page appears.

To add call capability attributes, click Add and add the attribute properties.

Click Next.
The Import Dialog Box Settings page appears.

In the Metadata Import Dialog Box Settings section, select the metadata import options that appear in
the client tool when you create a data object, and click Save.

Click Generate Code.

Note: No code changes are required in metadata connector. For more information, see “Code Changes
for SQL Transformation” on page 85.

Defining the Connector Metadata for Procedure Pattern by Using Stored
Procedures

A stored procedure is a prepared SQL code that you can save. Hence, the code can be reused multiple times.
Connectors can define the procedure-based endpoint metadata object by using the stored procedure
specification.

When you use the procedure pattern type to define the endpoint metadata for the connector, you can use a
stored procedure to define the endpoint metadata object

1.

2.

In the Connector Navigator view, right-click the project and select Add Endpoint Metadata Definition.
The Add Endpoint Metadata Definition dialog box appears.

Enter the endpoint metadata details.

Building a Connector for Cloud Data Integration

33

34

The following table describes the properties:

Property Description

Name Name for the endpoint metadata.
Display Name Display name for the endpoint metadata.
Description Description of the endpoint metadata.

Use Existing Runtime

Determines if the endpoint metadata object uses an existing runtime or a new runtime.

Endpoint Metadata
Object

Displays a list of endpoint metadata objects for which runtime is implemented. If you
want to use the existing runtime, you can select one of the endpoint metadata objects
from the list.

Note: The list is displayed only when you select the Use Existing Runtime option.

3. Specify the pattern type as procedure to create a endpoint metadata object for procedures or functions

in a data source.

4. To define the endpoint metadata object for the data source with procedure pattern type by using SQL
transformation, select SQL Transformation as the creation method.

5. Click Next.

The Endpoint Metadata Procedure Definition page appears.

6. To add additional metadata information for the procedure pattern type, select Add Procedure Extension
and add the following properties for the attribute:

Attribute Property

Description

Name Name of the attribute.

Display Name Display name for the connection attribute.
Description Description of the connection attribute.
Data Type Data type of the connection attribute.

Default Value

Default value for the attribute.

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.
The maximum length of any attribute cannot be greater than
Integer. MAX_VALUE, which is 2,147,483,647.

Encrypted Indicates whether you can encrypt the attribute.

Mandatory Indicates whether a connection attribute requires a value.

If you set the Mandatory property to True but you do not display the attribute on
the connection management user interface, you must set a default value for the
attribute.

Chapter 3: Building a Connector

Attribute Property Description

Hidden Indicates whether you can hide the attribute.
Allowed Values List of values allowed for the attribute.
7. Click Next.

The Endpoint Metadata Parameter Definition page appears.

8. To add additional metadata information for parameters, select Add Parameter Extension and add the

attribute properties.

9. Click Next.
The Endpoint Metadata Call Capability Attributes page appears.

10. To add call capability attributes, click Add and add the attribute properties.

11. Click Next.
The Import Dialog Box Settings page appears.

12. In the Metadata Import Dialog Box Settings section, select the metadata import options that appear in

the client tool when you create a data object, and click Save.

13. Click Generate Code.
After you define the adapter metadata, the Informatica Connector Toolkit generates the
MetadataAdapter.java file in the Metadata folder.

Implement the following methods in the MetadataAdapter.java file to import metadata:

e populateObjectCatalog(). Populates metadata details in the import wizard for the connector
consumer.

e populateObjectDetails(). Gets metadata from the data source based on the import dialog options
settings.

Note: If you regenerate the code for the endpoint metadata definition project, the Informatica Connector

Toolkit does not regenerate code for the user-exposed source code visible in the Informatica

perspective. You have to manually edit the source code and make changes if you add, remove, or change

the endpoint metadata attributes.

For more information, see “Code Changes for Stored Procedures” on page 91.

Package the resource or configuration files
You can package the resource or configuration files as part of the project jar.
Create a resources folder inside the project, and place the resource files.

For example, If you want to add a configuration file custom config.xml for the metadata.adapter project,
create a resources folder and place the configuration file in the following location:

<eclipse workspace>/<project name>/usr/metadata.adapter/src

When you build, test, and export the connector, the configuration file is included as part of the metadata
adapter jar.

Enable metadata logger
You can enable the logger to log messages in the metadata phase.

The following sample code shows the message string passed to the info() method of the Logger class:

logger.info ("Metadata Phase in progress");

Building a Connector for Cloud Data Integration

35

The messages are logged in the tomcat logs in the following directory of the agent machine:

<ICT installation directory>/apps/Data Integration Server/logs/tomcat

Test Metadata from the Data Source
After you define the endpoint metadata objects, you can test metadata that you import from the data source.

To debug when you test metadata from the data source, use the same debug configuration that you used to
test the connection to the data source. You can also set breakpoints in the code that you want to debug.

After you define the debug configuration, you can launch the Test Metadata dialog box to test the connection
definition and test the metadata import from the data source.

1. Inthe Connector Progress view, select Test<NMOName> under the Test Metadata section.

The Test Metadata dialog box appears with the connection attributes that you defined for the connector.
2. Enter values for the connection attributes to connect to the data source.
3. Click Connect.

The connector retrieves the metadata from the data source and the metadata appears in the Test
Metadata page.

4. Browse and verify the retrieved metadata.
5. Click Close.

Step 6. Implement the Connector Run-time Behavior

Use the Informatica Connector Toolkit to implement the connector run-time behavior in C/C++ or Java. The
connector run-time behavior defines how the connector performs operations, such as to establish a
connection, close a connection, prepare SQL statements, and run SQL statements.

You can set up the run-time implementation for each endpoint metadata object of the connector. For
example, if you define an endpoint metadata object with read capability and another endpoint metadata
object with write capability, you can choose to implement the run time for the first endpoint metadata object
with read capability in C++ and implement the run time for the other endpoint metadata object with write
capability in Java.

You can also define the connector run-time behavior to support pre and post commands to perform tasks
before and after a mapping run. For example, you can define the connector run-time behavior to support a pre
command that initializes environment variables before the mapping run.

Implement the Connector Run-Time Behavior in Java

You can use the Run-Time Implementation wizard in the Informatica Connector Toolkit to implement the run-
time behavior in Java.

1. In the Connector Navigator view, right-click the project and select Runtime > <NMOName> > Set Up.
The Run-Time Implementation wizard appears.
2. Choose to implement the run-time behavior in Java.

3. Add the required run-time library files and generate the <ConnectorID><NMOName>DataAdapter.java and

<ConnectorID>DataConnection.java files.

36 Chapter 3: Building a Connector

4. Implement the following methods in the <ConnectorID><NMOName>DataAdapter.java file:

e initDataSourceOperation. Implement this method to perform tasks before the mapping runs. For
example, you can implement code to initialize environment variables. The scope of the
RuntimeConfig and Metadata handles available in this method is within the initDataSourceOperation
method.

¢ deinitDataSourceOperation. Implement this method to perform tasks after the mapping runs. The
scope of the RuntimeConfig and Metadata handles available in this method is within the
deinitDataSourceOperation method.

e initDataSourceOperation
e deinitDataSourceOperation
e initDataSession
¢ deinitDataSession
e read
e write
e reset (Optional. Implement this method if the connector supports the lookup operation.)
e beginDataSession
e endDataSession
5. Implement the following methods in the <ConnectorID>DataConnection.java file:
e connect
e disconnect

6. To support data preview in the Informatica Intelligent Cloud Services, implement the following method in
the <ConnectorID>ASOOperationObjMgr. java file:

prepareRuntimeOperation

Create Messages

You can use the Informatica Connector Toolkit to create, edit, or delete messages and handle exceptions that
occur during the design time or run time of the connector.

When you create messages, you specify the message text and message code, and you can include
information on the message severity, cause, and user action. After you create messages, you can implement
the code to handle exceptions. When you implement the code to handle the exception, you pass the message
as an argument to the exception handing method.

Create design-time messages to handle design-time exceptions, such as service exceptions. Create run-time
messages to handle run-time exceptions.

To create messages, perform the following steps:

1. In the Connector Navigator view, right-click the project and select View and Create Messages. The
Messages dialog box appears.

2. Click Add.
The Add New Message dialog box appears.

3. Enter an ID for the message.

4. Enter a code for the message. At run time, the message code and the message text appears in the
session log.

5. Specify the severity of the message.

Building a Connector for Cloud Data Integration 37

38

6. Enter the message text.
You can include parameters in the message text and specify the parameters in Java message format.

The following example shows parameters used in Java message format:
Connection User [{0}], Port [{1,number,integer}], Connection time [{1,number}] milliseconds
7. Enter a description for the message.
8. Enter the cause of the error message.
9. Enter the suggested user action when the user encounters the error.
10. Specify whether the message is a design-time message or a run-time message.

11. Click OK.
The Messages dialog box appears.

12. Click Finish.
The message XML files appear under the Message folder in the Connector Navigator view.

Implement Design-Time Messages

You can use the methods in the com.informatica.sdk.exceptions.ExceptionManager class to implement
design-time messages.

To enable localization of messages, implement the createNIsAdapterSDKException() method in the
ExceptionManager class.

The following sample code shows the message parameters passed to the createNIsAdapterSDKException()
method:

ExceptionManager.createNlsAdapterSDKException (ExceptionManager.createNlsAdapterSDKExcepti
on (MessageBundle.getInstance(),
Messages.Test CONN SUCC 200, "admin", 5040, 138.76);

To implement design-time messages that do not require localization, implement the
createNonNIsAdapterSDKException() method in the ExceptionManager class.

The following sample code shows the message string passed to the createNonNIsAdapterSDKException()
method:

ExceptionManager.createNonNlsAdapterSDKException ("Unknown error:" + e.getMessage());

Implement Run-Time Messages

To implement run-time messages that require localization, implement the logMessage() helper method in the

<ConnectorID><NMOName>DataAdapter.java file. The logMessage() method logs messages to the session

log.

The following Java sample code shows the message parameters passed to the logMessage() method:
logMessage (Messages.Test CONN SUCC 200, "admin", 5040, 138.76);

The following C sample code shows the message parameters passed to the INFAADPLogMessage() method:

INFAADPLogMessage (infaDataSessionHandle, INFA MSG ERROR, INFA TRACE NONE,
CONN ID,"admin",12,12.3);

To implement the run-time messages that do not require localization, implement the logger.logMessage()
method.

Chapter 3: Building a Connector

Step 7. Test the Read and Write Capabilities of the Connector

Before you deploy the connector in the Informatica domain, you can test the read and write capabilities of the
connector.

After you define the connector run-time components, you can use the Test Read and Test Write wizards to
test the read and write capabilities of the connector. After you debug and fix issues in the read and write
capabilities of the connector, you can deploy the connector in the Informatica domain.

You can test the read and write capabilities of the connector only for the Windows platform.

Test the Read Capability of the Connector

When you test the read capability of the connector, you test the connection definition, metadata of the data
source, and operations that the connector supports. After you specify the test settings and run the test, you
can view the result of the read operation, read operation statistics, and the log file. You can test the read
capability of the connector only for the Windows platform.

To debug the code, use the same debug configuration that you used to test the connection and metadata
components of the connector. You can also set breakpoints in the code that you want to debug.

After you define the debug configuration, you can launch the Test Read dialog box to test the read
capabilities of the connector.

1. In the Connector Progress view, select the endpoint metadata object that appears under Test Read.

The Test Read dialog box appears with the default JVM environment settings and tracing level. The
Informatica Connector Toolkit uses the JVM settings to run the debug configuration.

2. If required, edit the JVM environment settings. Ensure that you use the same port number that appears
in JVM settings for the connection properties in the debug configuration.

3. Select the required tracing level. The default is normal. Based on the amount of detail that you require in
the log file, you can override the default tracing level.

You can set the following types of tracing level:
None
Does not override the default tracing level.
Terse
Logs initialization information and error messages and notification of rejected data.
Normal

Logs initialization and status information, errors encountered, and skipped rows due to
transformation row errors. Summarizes mapping results, but not at the level of individual rows.
Default is normal.

Verbose Initialization

In addition to normal tracing, logs additional initialization details, names of index and data files
used, and detailed statistics.

Verbose Data

In addition to verbose initialization tracing, logs each row. You can also get detailed statistics on
where string data was truncated to fit the precision of a column.

4. Click Next.
The connection attributes that you defined for the connector appears.

5. Enter values for the connection attributes to test the connection to the data source.

Building a Connector for Cloud Data Integration 39

40

10.

11.

12.

Click Connect.
The Test Metadata page appears with the metadata imported from the data source.

Select the endpoint metadata objects and the corresponding endpoint metadata fields to test the read
operation.

Click Next.
The Filter Condition page appears.
Select the Configure Filter option in the Filter Condition page and specify the filter condition.
e To specify an Informatica platform expression for the filter operation, perform the following steps:
1. In the Definition section, click Add to add an Informatica platform expression.
2. Inthe Field column, select the field to use in the expression.
3. Inthe Operation column, select a conditional operator to use in the expression.
4. Inthe Value column, enter a value for the conditional expression.
e To specify a native expression for the filter operation, enter the expression in the Definition section.
After you specify expressions for the endpoint metadata object, click Next.
The Read Capability page appears.
Specify values for the read capability attributes, and then click Run.

The Result page appears. You can view the result of the read operation, read operation statistics, and the
log file in the Result page.

Click Close.

Test the Write Capability of the Connector

When you test the write capability of the connector, you test the components of the connector and write
sample data to the data source. After you specify the test settings and run the test, you can view the result of
the write operation, write operation statistics, and the log file.

To debug the code, use the same debug configuration that you used to test the connection and metadata
components of the connector. You can also set breakpoints in the code that you want to debug.

After you define the debug configuration, you can launch the Test Write dialog box to test the write
capabilities of the connector.

1.

In the Connector Progress view, select the endpoint metadata object that appears under Test Write.

The Test Write dialog box appears with the default JVM environment settings and tracing level. The
Informatica Connector Toolkit uses the JVM settings to run the debug configuration.

If required, edit the JVM environment settings. Ensure that you use the same port number that appears
in JVM settings for the connection properties in the debug configuration.

Select the required tracing level. The default is normal. Based on the amount of detail that you require in
the log file, you can override the default tracing level.

You can set the following types of tracing level:
None

Does not override the default tracing level.
Terse

Logs initialization information and error messages and notification of rejected data.

Chapter 3: Building a Connector

10.

11.

12.

13.

14,

Normal

Logs initialization and status information, errors encountered, and skipped rows due to
transformation row errors. Summarizes mapping results, but not at the level of individual rows. This
is the default tracing level.

Verbose Initialization

In addition to normal tracing, logs additional initialization details, names of index and data files
used, and detailed statistics.

Verbose Data

In addition to verbose initialization tracing, logs each row. You can also get detailed statistics on
where string data was truncated to fit the precision of a column.

Click Next.

The connection attributes that you defined for the connector appears.

Enter values for the connection attributes to test the connection to the data source.
Click Connect.

The Test Metadata page appears with the metadata imported from the data source.
Select an endpoint metadata object to test the write operation.

The metadata of the endpoint metadata object along with the data type, scale, and precision appears in
the Test Write page.

Select the columns to which you want to write data.
Click Next.
The Test Data page appears.
In the Test Data page, you can load test data from a file or you can generate test data.
e To load the test data from a file, perform the following steps:
1. Select the Load from a File option. You must load a comma-delimited TXT file or CSV file.

Note: The date and time data types in the file must have the following timestamp format:
MM/DD/YYYY hh24:mm:ss

2. Click Browse and select the file that contains the test data.
e To generate test data, perform the following steps:
1. Select the Auto generate data option.
2. Enter the number of rows to generate. You can specify a maximum of 1000 rows.
3. Click Generate. The test data appears in the Data Preview section.
4. If required, you can edit the test data that appears in the Data Preview section.
Select an insert, update, or delete operation that you want to perform on the target object.

To perform an update or delete operation, the target object must contain a primary key. If you auto-
generate the data, edit the value of the primary key column in the preview section to match with a record
in the target object.

After you load a test data file or generate test data, click Next.
The Write Capability page appears.
Specify values for the write capability attributes and then click Run.

The Result page appears. You can view the result of the write operation, write operation statistics, and
the log file in the Result page.

Click Close.

Building a Connector for Cloud Data Integration 41

42

Step 8. Publish the Connector

Use the Informatica Connector Toolkit to publish the connector. You can publish the connector files to a
location.

1. In the Connector Navigator view, right-click the project, and select Publish.
The Publish Informatica Connector dialog box appears.

2. Click Browse and specify a location to publish the connector.
The Publish Location defaults to the connector project workspace.

3. To publish the connector for Cloud Data Integration service, specify a plugin ID and connector version.
If the connector package already exists, the following warning is displayed:

Connector package with same version exists in the publish location. Click on override
connector package to proceed or change the connector version.

4. Select Override Connector Package to override the existing package or change the connector version.
5. Click Next to view the contents of the client and server bundles.
6. Click Finish.

When you publish the connector, the Informatica Connector Toolkit bundles connector artifacts and
generates the connector package that you can use for Cloud Data Integration.

If you encounter any error or fail to export the connector, refer to the <connector name> codebuilder.log
file for more information. The <connector name> codebuilder.log file is available in the <Eclipse
workspace>/<connector project> folder.

When you publish the connector, the Informatica Connector Toolkit restarts the Secure Agent. The Secure
Agent can connect to the data source and you can create connections to the data source in Cloud Data
Integration service. If you fail to publish the connector, install the connector manually.

Naming Convention
A naming convention makes it easy to identify the files that belong to a connector.
Use the following guidelines when you name the connector files:

e Determine a name for the connector. Use the connector name as a prefix for the connector file names.
The connector name is an alphanumeric string that can include the uppercase and lowercase letters A to
Z and the numbers 0 to 9. The first character of the name must be a letter.

e Determine a unique name to identify the company building the connector. The company name is included
in the package name for the connector classes.
¢ Use the connector name when you create a directory for the connector in the Informatica directory:
INFA HOME\plugins\dynamic\ConnectorName

The following table lists the recommended naming convention for connector files:

Component Naming Format

Package for the connector definition and type com.vendorname.connectorname.connection
system classes

Connector definition class ConnectorNameDefn

Chapter 3: Building a Connector

Component Naming Format

Type system class ConnectorNameTypeSystem
Resource file for the connection management ConnectorNameBundle.properties or
user interface ConnectorNameBundle_lang.properties

Step 8. Test the Connector

After you create and export a new connector, you can test the connector using the automation framework.
The framework generates and runs the test cases.

After you export a connector, perform the following tests:

e Code Acceptance Test (CAT) or Unit Test.
Units tests are standalone tests. You can generate the test case after you upload data in the project
explorer. After the test run, a status report is generated without any external dependency.

e Product Acceptance Test (PAT) or Integration Test.
Integration tests require the configuration details to generate and execute the test cases. It requires user
intervention for manual upload of data to the pod.

When the automation framework runs, it performs the following tasks:

1. Analyzes the connector package and generates the test suite. You can use the test suite to test the
functionalities in a connector. For example, you can test the connection, verify the record and field
details, search records, and test the read, write, filter operations.

2. Runs the test cases to validate the unit and integration tests. You can run the test cases separately.

3. Populates a single unified test report for both the unit and integration tests. You can see the PASS and
FAIL status in the report.

Building a Connector for Data Loader

The Informatica Connector Toolkit consists of the libraries, plug-ins, and sample code to assist you in
developing a connector for a data loader task.

You can build a connector to connect to a data source and define how the connector reads from the data
source. Also, you can only use data sources in which data is stored as records.

If you built a connector for Cloud Data Integration using Informatica Connector Toolkit and need to use the
connector in a data loader task, contact the Informatica administrator.

To build a connector for a data loader task, use the Informatica Connector Toolkit and perform the following
tasks:

1. Create a connector project and select the product type. Then, select the creation method and define the
basic properties of the connector such as name, ID, and vendor name.

2. Define the connection attributes to connect to the data source. Implement the methods to open or close
the connection to the data source, validate the connection, and specify the attribute dependencies.
Before you define the type system for the connector, you can test and debug the connection components
of the connector.

Building a Connector for Data Loader 43

44

3. Define the type system for the connector. Specify the data types supported by the data source and the
corresponding data types supported by Informatica.

4. Define the connector metadata, create endpoint metadata object, operations for the endpoint metadata
object, and partition methods for the operations. Implement the methods to fetch metadata from the
data source. You can also test and debug the metadata components of the connector.

5. Define the connector run-time behavior that defines how the connector reads from the data source.
Before you deploy the connector, you can test and debug the read capability of the connector.

6. Deploy the connector to the data loader task.

Step 1. Select the Product Type and Define the Connector
Properties

The connector properties describe and identify the connector in the data loader task.
Use the Informatica Connector Toolkit to create a connector project and define the connector properties.
1. From the Eclipse IDE, click the Create New Connector button (L).
The Create Informatica Connector Project dialog box appears.
2. To create a connector for a data loader task, select Data Loader as the product type.
3. Select one of the following creation methods to create a connector:
e JDBC. Create a JDBC driver-based connector.
¢ Client Libraries. Create a connector using a third-party library SDK.
o Applications. Create a connector for REST API-based application.
4. Select the authentication type for the Applications creation method. Default is no authentication.
e Basic. Uses user name and password for authentication.
¢ Token.Uses token-based authentication.
e OAuth 1.0. Uses OAuth 1.0 for authentication.
e OAuth 2.0. Uses OAuth 2.0 for authentication.
o API Key. Uses API key for authentication.

5. Click Next.
The Create Informatica Connector Project dialog box appears.

6. Enter the following connector project details:

Property Description
Connector ID An identifier that uniquely identifies the connector.
Connector Name Name of the connector. The connector name is an alphanumeric

string. The first character of the name must be a letter.

Vendor Name Name of the vendor building the connector.

Vendor ID A unique identifier for the vendor.

Chapter 3: Building a Connector

Property Description

Version The version number of the connector must have the format x.x.x
and must include numeric characters. For example: 1.0.0.

Description Description of the connector.

7. Click Finish.
The connector project appears in the Connector Navigator view of the Eclipse IDE.

Step 2. Define the Connection Attributes

The connection attributes of a connector determine how the connector connects to the data source. Use the
Informatica Connector Toolkit to define the connection attributes and specify the libraries required to
connect to the data source.

1. In the Connector Navigator view, right-click the project and select Add Connection.
2. Inthe Connection Attributes page, specify the connection attributes based on the creation method.

e For the JDBC creation method, attributes that are common among the JDBC connectors are
populated. You can add, edit, or delete the attributes.

¢ For the Client Libraries creation method, attributes are not populated and you need to configure the
attributes.

* For the Applications creation method, if you do not select any authentication type, attributes are not
populated and you need to configure the attributes.
If you select any authentication type, attributes that are common among the Application connectors
are populated. You can add, edit, or delete the attributes.

3. Click Next.
The Configure Connection Pages page appears.

a. Group the connection attributes under one or more connection sections.

b. To create a new connection section, click Add Section and enter the section name, section title, tool
tip, and section description.

c. To create a new connection page, click Add Page and enter the page name and page description.

d. To change the order in which the connection sections appear in a connection page, use Move Up or
Move Down.

4. Click Next.
The Configure Libraries page appears.

5. Click Add to select each library that the connector requires to connect to the data source.

6. Click Generate Code.
After you define the connection attributes, the Informatica Connector Toolkit generates the following
Java files:
<ConnectorName>ConnectInfoAdapter.java

<ConnectorName>Connection.java

7. Update the ConnectInfoAdapter.java file to implement connection validation and attribute
dependencies.
Also, update the Connection.java file to implement the methods that open and close the connection to
the data source.

8. You can test and debug the connection to the data source.

Building a Connector for Data Loader 45

Note: If you regenerate code for the connection project, the Informatica Connector Toolkit does not
regenerate code for the user-exposed source code visible in the Informatica perspective. You have to
manually edit the source code and make changes if you add, remove, or modify connection attributes.

Step 3. Define the Type System

Categorize each data type in the data source into one of the data loader task data types or Java data types
supported by the Informatica Connector Toolkit API. Use the Informatica Connector Toolkit to create a type
system or generate and use a predefined type system.

Defining the Type System Manually

You can manually define a type system that maps the data types that the data source supports with the data
types that the data loader task supports.

1. In the Connector Navigator view, right-click the project and select Define Typesystem.
The Define Type System dialog box appears.

2. To manually define a type system that matches the data types in the data source, select Manually Create
Type System.

3. To map the native data types to the data loader task data types, select Native to Platform Type.
4. To map the native data types to the Java data types, select Native to Java Type.

5. Click Add to configure each type system attribute.
The Add Type dialog box appears.

6. Enter the following properties for the type system attribute:

Property Value
Type Name Name for the native type system attribute.
Comments Comments for the native type system attribute.

Best Platform Type | The platform or Java data type that maps best to the native data type when the connector
for Read/ Best reads from the data source.
Java Type for Read

Properties Based on the selected best platform or Java type for read, you must set one or more of the

following native type properties:

- Precision properties such as maximum precision and default precision. By default, the
maximum precision is displayed for each data type.

- Scale properties such as maximum scale, default scale, and minimum scale.

- Length properties such as maximum length and default length.
The maximum length of any attribute cannot be greater than Integer. MAX_VALUE, which
is 2,147,483,647.

- Unit of length such as characters, bytes, and bits.

- Date properties such as hour, minute, second, year, month, day, and time zone.

7. If the platform data type or Java data type is the best match when writing to the native data type, select
Mapped and then select Best Native Type to Write.
For example, to map the Java INTEGER data type to the MySQL data type INT as one of the Best Native
Type to Write, select Mapped in the INTEGER row and then select Best Native Type to Write.

8. To map a platform data type or Java data type to the native data type but not as a best match, select
only Mapped.

46 Chapter 3: Building a Connector

10.

For example, if the Java SHORT data type maps to the MySQL data type INT but might result in loss of
data when converted, select Mapped in the INTEGER row.

Click OK.
The Define Type System dialog box appears.

After you add and map the required native data types for the connector, click Generate Code.

Generating a Predefined Type System

You can generate a type system with the basic data types that the data loader task supports. Use the basic
data types in the predefined type system for use with REST-based procedures.

1.

In the Connector Navigator view, right-click the project and select Define Typesystem.
The Define Type System dialog box appears.

To generate and use basic data types that the data loader task supports, select Use Predefined Type
System.

To map the native data types to the data loader task data types, select Native to Platform Type.
To map the native data types to the Java data types, select Native to Java Type.

Click Generate Code.

Step 4. Defining the Connector Metadata

The connector metadata represents the metadata in the data source for which you build the connector. You
can define metadata definitions to represent the differently structured metadata objects of the data source.
You can represent the metadata for data sources in which data is stored as records.

In the Connector Navigator view, right-click the project and select Add Endpoint Metadata Definition.
The Read Capability page appears.

To define read capability for the endpoint metadata object, select Enable Read Capability.

Select whether the connector supports filter operations when the connector reads from the data source.
Select Platform to specify operators and expression syntax recognized by the data loader task for the
filter operation.

Note: When a connector supports the platform filter, you can use the default operators suchas =, !=,
>, >=, <, and <= as filter conditions.

Select whether the connector supports sort to retrieve data from the data source in a specific order.
To add read capability attributes, click Add and add the attribute properties.

Click Generate Code.
After you define the connector metadata, the Informatica Connector Toolkit generates the
<NMOName>MetadataAdapter.java file in the Metadata folder.

Implement the following methods in the <NMOName>MetadataAdapter.java file to import metadata:
populateObjectCatalog()

Populates metadata details in the import wizard for the connector consumer.
populateObjectDetails()

Gets metadata from the data source based on the import dialog options settings.

Note: If you regenerate code for the endpoint metadata definition project, the Informatica Connector Toolkit
does not regenerate code for the user-exposed source code visible in the Informatica perspective. You have
to manually edit the source code and make changes if you add, remove, or change the endpoint metadata
attributes.

Building a Connector for Data Loader 47

Edit Endpoint Metadata Object

You can edit the endpoint metadata to update the metadata properties and add additional metadata
information for records.

1. Click Edit for the endpoint.

2. Enter the endpoint metadata details.
The following table describes the properties:

Property Description

Name Name for the endpoint metadata.

Display Name Display name for the endpoint metadata.

Description Description of the endpoint metadata.
3. Click Next.

4. To add additional metadata information for records, select Add Record Extension and add the following
properties for the attribute:

Property Description

Name Name of the attribute.

Display Name Display name for the connection attribute.

Description Description of the connection attribute.

Data Type Data type of the connection attribute.

Default Value Default value for the attribute.

Min Length Minimum length for the value of the attribute.

Max Length Maximum length for the value of the attribute.
The maximum length of any attribute cannot be greater than Integer. MAX_VALUE, which is
2,147,483,647.

Encrypted Indicates whether you can encrypt the attribute.

Mandatory Indicates whether a connection attribute requires a value.

If you set the Mandatory property to True but you do not want to display the attribute on the
connection management user interface, you must set a default value for the attribute.

Hidden Determines whether you want to display or hide the attribute.

Allowed Values | List of values allowed for the attribute.

5. Click Next.
The Endpoint Metadata Field page appears.

6. To add additional metadata information for fields, select Add Field Extension and add the attribute
properties.

48 Chapter 3: Building a Connector

7. Click Save.
8. Click Generate Code.

Package the resource or configuration files
You can package the resource or configuration files as part of the project jar.
Create a resources folder inside the project, and place the resource files.

For example, If you want to add a configuration file custom config.xml for the metadata.adapter project,
create a resources folder and place the configuration file in the following location:

<eclipse workspace>/<project name>/usr/metadata.adapter/src

When you build, test, and export the connector, the configuration file is included as part of the metadata
adapter jar.

Enable metadata logger

You can enable the logger to log messages in the metadata phase.

The following sample code shows the message string passed to the info() method of the Logger class:
logger.info("Metadata Phase in progress");

The messages are logged in the tomcat logs in the following directory of the agent machine:

<ICT installation directory>/apps/Data Integration Server/logs/tomcat

Test Metadata from the Data Source
After you define the endpoint metadata objects, you can test metadata that you import from the data source.

To debug when you test metadata from the data source, use the same debug configuration that you used to
test the connection to the data source. You can also set breakpoints in the code that you want to debug.

After you define the debug configuration, you can launch the Test Metadata dialog box to test the connection
definition and test the metadata import from the data source.

1. In the Connector Progress view, select Test<NMOName> under the Test Metadata section.

The Test Metadata dialog box appears with the connection attributes that you defined for the connector.
2. Enter values for the connection attributes to connect to the data source.
3. Click Connect.

The connector retrieves the metadata from the data source and the metadata appears in the Test
Metadata page.

4. Browse and verify the retrieved metadata.
5. Click Close.

Step 5. Implement the Connector Run-time Behavior

Use the Informatica Connector Toolkit to implement the connector run-time behavior in Java. The connector
run-time behavior defines how the connector performs operations, such as to establish a connection, close a

Building a Connector for Data Loader 49

50

connection, prepare SQL statements, and run SQL statements. You can use the Run-Time Implementation
wizard in the Informatica Connector Toolkit to implement the run-time behavior in Java.

1. In the Connector Navigator view, right-click the project and select Runtime > <NMOName> > Set Up.
The Run-Time Implementation wizard appears.

2. Add the required run-time library files and generate the <ConnectorID><NMOName>DataAdapter.java and

<ConnectorID>DataConnection.java files.
3. Implement the following methods in the <ConnectorID><NMOName>DataAdapter.java file:

e initDataSourceOperation. Implement this method to perform tasks before the mapping runs. For
example, you can implement code to initialize environment variables. The scope of the
RuntimeConfig and Metadata handles available in this method is within the initDataSourceOperation
method.

¢ deinitDataSourceOperation. Implement this method to perform tasks after the mapping runs. The
scope of the RuntimeConfig and Metadata handles available in this method is within the
deinitDataSourceOperation method.

e initDataSession
¢ deinitDataSession
e read
e write
e reset. Optional. Implement this method if the connector supports the lookup operation.
e beginDataSession
e endDataSession
4. Implement the following methods in the <ConnectorID>DataConnection.java file:
e connect

e disconnect

Create Messages

You can use the Informatica Connector Toolkit to create, edit, or delete messages and handle exceptions that
occur during the design time or run time of the connector.

When you create messages, you specify the message text and message code, and you can include
information on the message severity, cause, and user action. After you create messages, you can implement
the code to handle exceptions. When you implement the code to handle the exception, you pass the message
as an argument to the exception handing method.

Create design-time messages to handle design-time exceptions, such as service exceptions. Create run-time
messages to handle run-time exceptions.

To create messages, perform the following steps:

1. In the Connector Navigator view, right-click the project and select View and Create Messages. The
Messages dialog box appears.

2. Click Add.
The Add New Message dialog box appears.

Enter an ID for the message.

4. Enter a code for the message. At run time, the message code and the message text appears in the
session log.

5. Specify the severity of the message.

Chapter 3: Building a Connector

6. Enter the message text.
You can include parameters in the message text and specify the parameters in Java message format.

The following example shows parameters used in Java message format:
Connection User [{0}], Port [{1,number,integer}], Connection time [{1,number}] milliseconds
7. Enter a description for the message.
8. Enter the cause of the error message.
9. Enter the suggested user action when the user encounters the error.
10. Specify whether the message is a design-time message or a run-time message.

11. Click OK.
The Messages dialog box appears.

12. Click Finish.
The message XML files appear under the Message folder in the Connector Navigator view.

Implement Design-Time Messages

You can use the methods in the com.informatica.sdk.exceptions.ExceptionManager class to implement
design-time messages.

To enable localization of messages, implement the createNIsAdapterSDKException() method in the
ExceptionManager class.

The following sample code shows the message parameters passed to the createNIsAdapterSDKException()
method:

ExceptionManager.createNlsAdapterSDKException (ExceptionManager.createNlsAdapterSDKExcepti
on (MessageBundle.getInstance(),
Messages.Test CONN SUCC 200, "admin", 5040, 138.76);

To implement design-time messages that do not require localization, implement the
createNonNIsAdapterSDKException() method in the ExceptionManager class.

The following sample code shows the message string passed to the createNonNIsAdapterSDKException()
method:

ExceptionManager.createNonNlsAdapterSDKException ("Unknown error:" + e.getMessage());

Implement Run-Time Messages

To implement run-time messages that require localization, implement the logMessage() helper method in the

<ConnectorID><NMOName>DataAdapter.java file. The logMessage() method logs messages to the session

log.

The following Java sample code shows the message parameters passed to the logMessage() method:
logMessage (Messages.Test CONN SUCC 200, "admin", 5040, 138.76);

The following C sample code shows the message parameters passed to the INFAADPLogMessage() method:

INFAADPLogMessage (infaDataSessionHandle, INFA MSG ERROR, INFA TRACE NONE,
CONN ID,"admin",12,12.3);

To implement the run-time messages that do not require localization, implement the logger.logMessage()
method.

Building a Connector for Data Loader 51

52

Step 6. Test the Read Capability of the Connector

When you test the read capability of the connector, you test the connection definition, metadata of the data
source, and operations that the connector supports. After you specify the test settings and run the test, you
can view the result of the read operation, read operation statistics, and the log file. You can test the read
capability of the connector only for the Windows platform.

To debug the code, use the same debug configuration that you used to test the connection and metadata
components of the connector. You can also set breakpoints in the code that you want to debug.

After you define the debug configuration, you can launch the Test Read dialog box to test the read
capabilities of the connector.

1.

In the Connector Progress view, select the endpoint metadata object that appears under Test Read.

The Test Read dialog box appears with the default JVM environment settings and tracing level. The
Informatica Connector Toolkit uses the JVM settings to run the debug configuration.

If required, edit the JVM environment settings. Ensure that you use the same port number that appears
in JVM settings for the connection properties in the debug configuration.

Select the required tracing level. The default is normal. Based on the amount of detail that you require in
the log file, you can override the default tracing level.

You can set the following types of tracing level:
None
Does not override the default tracing level.
Terse
Logs initialization information and error messages and notification of rejected data.
Normal

Logs initialization and status information, errors encountered, and skipped rows due to
transformation row errors. Summarizes mapping results, but not at the level of individual rows.
Default is normal.

Verbose Initialization

In addition to normal tracing, logs additional initialization details, names of index and data files
used, and detailed statistics.

Verbose Data

In addition to verbose initialization tracing, logs each row. You can also get detailed statistics on
where string data was truncated to fit the precision of a column.

Click Next.

The connection attributes that you defined for the connector appears.

Enter values for the connection attributes to test the connection to the data source.
Click Connect.

The Test Metadata page appears with the metadata imported from the data source.

Select the endpoint metadata objects and the corresponding endpoint metadata fields to test the read
operation.

Click Next.
The Filter Condition page appears.

Select the Configure Filter option in the Filter Condition page and specify the filter condition.

Chapter 3: Building a Connector

e To specify an Informatica platform expression for the filter operation, perform the following steps:
1. In the Definition section, click Add to add an Informatica platform expression.
2. Inthe Field column, select the field to use in the expression.
3. Inthe Operation column, select a conditional operator to use in the expression.
4. Inthe Value column, enter a value for the conditional expression.
e To specify a native expression for the filter operation, enter the expression in the Definition section.
10. After you specify expressions for the endpoint metadata object, click Next.
The Read Capability page appears.
11. Specify values for the read capability attributes, and then click Run.

The Result page appears. You can view the result of the read operation, read operation statistics, and the
log file in the Result page.

12. Click Close.

Step 7. Publish the Connector

Use the Informatica Connector Toolkit to publish the connector. You can export the connector files to a
location or publish the connector on a data loader task.

1. In the Connector Navigator view, right-click the project, and select Publish.
The Publish Informatica Connector dialog box appears.

2. Click Browse and specify a location to publish the connector.
The Publish Location defaults to the connector project workspace.

3. To publish the connector for a data loader task, specify a the plugin ID and connector version.
If the connector package already exists, the following warning is displayed:

Connector package with same version exists in the publish location. Click on override
connector package to proceed or change the connector version.

4. Select Override Connector Package to override the existing package or change the connector version.
5. Click Next to view the contents of the client and server bundles.
6. Click Finish.

When you publish the connector, the Informatica Connector Toolkit bundles the connector artifacts and
generates the connector package that you can use for Cloud Data Loader.

If you encounter any error or fail to publish the connector, refer to the <connector name> codebuilder.log
file for more information. The <connector name> codebuilder.log file is available in the <Eclipse
workspace>/<connector project> folder.

When you publish the connector, the Informatica Connector Toolkit restarts the Secure Agent. The Secure
Agent can connect to the data source and you can create connections to the data source in a data loader
task. If you fail to publish the connector, install the connector manually.

Naming Convention
A naming convention makes it easy to identify the files that belong to a connector.
Use the following guidelines when you name the connector files:

e Determine a name for the connector. Use the connector name as a prefix for the connector file names.
The connector name is an alphanumeric string that can include the uppercase and lowercase letters A to
Z and the numbers 0 to 9. The first character of the name must be a letter.

Building a Connector for Data Loader 53

54

e Determine a unique name to identify the company building the connector. The company name is included
in the package name for the connector classes.

e Use the connector name when you create a directory for the connector in the Informatica directory:

INFA HOME\plugins\dynamic\ConnectorName

The following table lists the recommended naming convention for connector files:

Component

Naming Format

Package for the connector definition and type
system classes

com.vendorname.connectorname.connection

Connector definition class

ConnectorNameDefn

Type system class

ConnectorNameTypeSystem

Resource file for the connection management
user interface

ConnectorNameBundle.properties or
ConnectorNameBundle_lang.properties

Step 8. Test the Connector

After you create and export a new connector, you can test the connector using the automation framework.
The framework generates and runs the test cases.

After you export a connector, perform the following tests:

e Code Acceptance Test (CAT) or Unit Test.

Units tests are standalone tests. You can generate the test case after you upload data in the project
explorer. After the test run, a status report is generated without any external dependency.

e Product Acceptance Test (PAT) or Integration Test.
Integration tests require the configuration details to generate and execute the test cases. It requires user
intervention for manual upload of data to the pod.

When the automation framework runs, it performs the following tasks:

1. Analyzes the connector package and generates the test suite. You can use the test suite to test the
functionalities in a connector. For example, you can test the connection, verify the record and field
details, search records, and test the read, write, filter operations.

2. Runs the test cases to validate the unit and integration tests. You can run the test cases separately.

3. Populates a single unified test report for both the unit and integration tests. You can see the PASS and

FAIL status in the report.

Chapter 3: Building a Connector

CHAPTER 4

Connection Attributes

This chapter includes the following topics:

e Connection Attribute Overview, 55

e Connection Attribute Properties, 55

Connection Attribute Overview

The connector connection attributes determine the behavior and capabilities of a connector when it connects
to a data source.

The Relational Data connector API provides a set of pre-defined connection attributes that you can use for
the connector. You can enable any of the pre-defined attributes to use for the connector. When you enable a
pre-defined attribute, you can set its default value or mark it as a required attribute. You can disable
attributes that are not applicable to the relational database you want to connect to.

You can also define custom connection attributes for the connector. Define a custom attribute if the
relational database has a connection requirement that is not represented by one of the pre-defined attributes.

Connection Attribute Properties

For each connection attribute that you define for a connector, you can set a number of properties. The
properties allow you to specify whether an attribute is required, provide the default, maximum, and minimum
values, or specify a list of possible values for the attribute. You can override these properties for pre-defined
attributes or set these properties for custom attributes.

All connection management user interfaces, including command line programs, validate the values set for the
properties of a connection attribute.

55

56

The following table describes the properties of a connection attribute:

Attribute Property

Description

isUsed

Indicates whether the connector uses the connection attribute.
Set to true to include the connection attribute in the connector. Set to false to
exclude the connection attribute from the connector.

If this property is set to false, the connection attribute will be ignored by the
connector. The attribute values cannot be set or validated and the attribute cannot
be displayed on the connection management user interface.

attributeDescription

Description of the connection attribute.

isMandatory

Indicates whether a connection attribute is required and must have a value.

Set to true if the connection attribute is required. Set to false if the attribute value
can be null.

If you set the isMandatory property to true but you do not display the attribute on the
connection management user interface, you must set a default value for the
attribute.

defaultValue

Default value for the attribute.

maxLength

Maximum length of a character string.

minLength

Minimum length of a character string.

minRangeValue

Lower limit of a numeric range.

maxRangeValue

Upper limit of a numeric range.

validList

List of values allowed for the attribute.

attributeCLIDisplayName

Option name for the connection attribute. This name is used when the attribute is
passed as an option to an Informatica command line program. The display name
cannot contain spaces.

Chapter 4: Connection Attributes

CHAPTER 5

Type System

This chapter includes the following topics:

e Type System Overview, 57

o Native Types and Semantic Categories, 57

e Cloud Data Integration Types, 59

Type System Overview

A type system is a framework that specifies characteristics of data types. The connector type system must
define the data types that the data source supports, the semantic category that matches the data type, and
how they map to the data types that the Informatica platform supports.

The type system you define for a connector consists of the following sets of data types:

¢ Native types. Data types that the data source supports.

e Semantic types. Semantic category that matches the native data type. For example, the semantic type
Length matches the native data types, such as Char, Varchar2, Binary, Varbinary, Blob, and Clob.

¢ Informatica platform types. Data types that the Informatica platform supports. The Informatica Connector
Toolkit APl uses ODBC as a model for describing Informatica platform data types.

Native Types and Semantic Categories

The native types included in the type system are all possible data types in the data source for which the
connector is built.

You must define the semantic category of each data type in the data source. The Informatica Connector
Toolkit APl defines each semantic category. Check the data source documentation to verify the data types
that are available in the data source.

Use the Informatica Connector Toolkit to associate native data types with semantic categories. The data type
name must match the character string that corresponds to the type name returned during the metadata
import process, such as Integer, Varchar2, or Blob.

When you define the semantic category for a data type, you can modify the precision and scale returned by
the import process so that the data type matches the requirements of the type system.

Use the following semantic categories to classify the native types:

57

58

Length semantics

Use this category for native types where length is the principal characteristic. This category can include
data types such as Char, Varchar2, Binary, Varbinary, Blob, and Clob.

Integer semantics

Use this category for native types that can contain signed integers. The length of the data type is the
number of decimal digits specified in the data type precision. This category can include data types such
as Integer, Smallint, Bigint, and Tinyint.

Machine integer semantics

Use this category for native types that can contain signed or unsigned integers. The length of this data
type is measured in bytes. The precision of a machine integer type is the maximum number of decimal
digits that fits within the length of the data type, regardless of whether all possible values can be stored.
For example, a 32-bit (4 byte) machine integer can store up to 10 digits but if the value of each digit is 9,
then the value of the integer can result in an overflow.

Decimal semantics

Use this category for native types that can contain an exact real number where precision is the total
number of digits and scale is the number of digits to the right of the decimal point. The precision for this
semantic category must be greater than or equal to the scale. This category can include data types such
as Decimal and Numeric.

Scientific decimal semantics

Use this category for native types that can contain an exact real number where precision is the number
of digits stored rather than the total number of digits represented by the number. The total number of
digits represented by the number can exceed the precision. The scale of the data type can exceed
precision and can be positive or negative. A positive scale represents digits to the right of the decimal
point. A negative scale represents the rounding position to the left of the decimal point. This category
can include data types such as the Number data type in Oracle with precision and scale specified.

Float semantics

Use this category for binary or decimal floating point data types. An example of a binary floating point
type is the binary_float type in Oracle. An example of a decimal floating point number is the Number data
type in Oracle with precision and scale not specified.

Gregorian date semantics

Use this category for date types that the connector can expose as Gregorian dates, times, and
timestamps.

Native Type Properties

Depending on the semantic category, you must set one or more of the following native type properties:

Maximum precision

Minimum precision

Default precision

Support for changes to precision
Maximum scale

Minimum scale

Default scale

Support for changes to scale

Chapter 5: Type System

¢ Unit of length, such as characters, bytes, and bits
e For Gregorian date semantics, support for hour, minute, second, year, month, day, or time zone
¢ For float semantics, radix of the precision and exponent

Set the maximum and minimum values for precision and scale to validate the following:

e Imported database metadata
¢ Data type of a column that an end user adds to a table in a mapping

The default precision, default scale, and the specification of whether the precision and scale can be modified
apply to metadata that is manually defined by the user. If the precision or scale cannot be modified, then the
default value and the maximum value must be set to the same value.

Cloud Data Integration Types

Cloud Data Integration types include all the data types that are recognized by Informatica. The Informatica
Connector Toolkit APl uses ODBC as a model to describe the Cloud Data Integration data types.

In addition to assigning semantic categories to native types, you must match each semantic category with
one or more Cloud Data Integration data types. The Cloud Data Integration uses ODBC types to determine
what type of data buffers to bind to the run-time connector for data access. In some cases, the match
between a semantic type and a Cloud Data Integration type is not exact. For example, the Cloud Data
Integration always binds a timestamp buffer if the semantic category is mapped to an Cloud Data Integration
date, time, or timestamp data type.

In many cases, a semantic category matches one of the available Cloud Data Integration types. In cases
where there is no exact match between types, select the best possible match.

In addition to defining the best mappings to convert native types to Cloud Data Integration types, you can
specify alternate mappings. An alternate mapping allows the end user to select alternate transformation data
types to associate with the input and output ports of a data source used in a mapping.

Use the Informatica Connector Toolkit to add matching Cloud Data Integration data types for the semantic
category. You can indicate whether the mapping is the exact match or whether the mapping can resultin a
lossy data conversion due to a match that is not exact.

Note: Cloud Data Integration types are not the same as the transformation data types that appearin a
transformation that you add to a mapping. Cloud Data Integration types are internal data types used only
within the connector type system. Informatica can convert Cloud Data Integration types to transformation
data types.

Cloud Data Integration Types 59

CHAPTER 6

Metadata Objects

This chapter includes the following topics:

e Connector Metadata Overview, 60

e Metadata Components, 60

e |Import Dialog Box Settings, 61

Connector Metadata Overview

Define the Connector metadata components to represent the metadata of the data source. After you define
the metadata components, you can fetch and display the metadata in Cloud Data Integration with information
on the native data type, precision, and scale.

Use the Informatica Connector Toolkit to define one or more native metadata definitions for the Connector to
read from and write to the data source. The Informatica Connector Toolkit internally uses a metadata model
that represents the metadata.

Metadata Components

The metadata model contains components that represent the metadata of the data source.
The metadata model consists of the following components:
Flat Record

A flat record represents a structure that contains columns, unique keys, and primary keys. The structure
of a flat record is similar to a database table that contains columns and keys.

A flat record contains attributes that store the following information:
o Name of the endpoint metadata object

e Type of endpoint metadata object

¢ Related records for the flat record

o Primary key for the flat record

e Unique keys for the flat record

¢ Indexes for the flat record

60

Field

Any additional record attributes specific to the data source

A field is a data structure for a single unit of data in a data source.

A field contains attributes that store the following information:

Name of the field

Default value of the field

Precision of the field

Scale of the field

Boolean value that indicates whether the field can contain a null value

Any additional field attributes specific to the data source

Constraints

Constraints represent the primary key and unique keys for a flat record.

The primary key and unique key contain attributes that store the following information:

Index

Name of the key
Native name of the key defined in the native metadata

List of fields that form the key

Index represents a native index that orders the flat records or uniquely identifies a row in the flat record.

An
L]
[]

index contains attributes that store the following information:
Name of the index

Native name of the index

Boolean value that indicates whether the index is unique

List of index fields

Index order to retrieve the data

Import Dialog Box Settings

Use the

Informatica Connector Toolkit to define the import options that appear in Cloud Data Integration

when a connector consumer creates a data object.

The following tables describes the import options:

Option Description

Allow Multi Select Allows selection of multiple importable objects. Default is false.
Display Filter By Name Displays the filter by name option. Default is true.

Display Filter By Description Displays the filter by description option. Default is true.

Import Dialog Box Settings 61

62

Option

Description

Display Filter By Path

Displays the filter by path option. Default is true.

Display Skip Description

Displays the skip descriptions check box. Default is true.

Show Entity

Shows entity details. Default is true.

Show Hierarchy

Shows metadata hierarchy. Default is true.

Show Related Records

Shows related records. Default is true.

Chapter 6: Metadata Objects

CHAPTER 7

Partitioning Capability

This chapter includes the following topics:

e Partition Capability Overview, 63

e Automatic Partitioning, 63

e Static Partitioning, 64

Partition Capability Overview

You can use the Informatica Connector Toolkit to specify the partition type and implement the partition logic
to use when the Cloud Data Integration reads or writes data.

Based on the partition logic you implement for a connector, the Data Integration Service dynamically divides
the underlying data into partitions and processes all of the partitions concurrently.

You can specify the following partitioning types for a connector:
Dynamic
A partitioning logic that determines the number of partitions at run time based on the partition

information from the data source. If the data source provides partition information, you can use dynamic
partitioning to increase the performance of connector read and write operations.

Static
A partitioning logic that is based on the partition information that the user specifies, such as number of
partitions or key range. If you require the user to specify the partition information, you can implement

fixed partitioning for the connector. If the tables in the data source support key range partitioning, you
can add key range partitioning capability for the connector.

Automatic Partitioning

You can use the Informatica Connector Toolkit to configure a connector to dynamically determine partition
information from the data source. Connectors with dynamic partitioning capability do not require partition
information from the user when the connector reads or writes data.

If you implement dynamic partitioning for a connector, the connector queries the data source for the number
of source or target partitions and other partition-specific attributes. For example, if the data source is a

63

relational database, you can make use of the partition information from the database to implement the
partition logic.

When you define a endpoint metadata object, you can implement dynamic partitioning for both read and write
capabilities of the endpoint metadata object.

Static Partitioning

64

You can use the Informatica Connector Toolkit to configure static partitioning if you require the user to
specify the partition information before the connector reads data.

When you define a endpoint metadata object, you can implement static partitioning for read capabilities of
the endpoint metadata object. Based on the data source, you can implement following static partitioning
types:

Fixed

If you require partition logic based on the partition information specified by the user, implement fixed
partitioning capability. For example, if the data source does not provide partition information, you can
implement partitioning logic based on the user inputs. The user enters the partition information, such as
the number of partitions, before the connector reads data from the data source.

Key range

If the tables in the data source support key range partitioning, you can add support for key range
partitioning capability. Before you add support for key range partitioning, you must ensure that the
connector supports filter operation and platform expression. The Informatica Connector Toolkit
implements key range partitioning as a filter query. The connector user enters the partition keys and key
range when the connector reads data from the data source.

You can implement static partitioning only for connectors with read capability.

Chapter 7: Partitioning Capability

CHAPTER 8

Pushdown Capability

This chapter includes the following topics:

e Pushdown Capability Overview, 65

e Pushdown Optimization Execution Flow, 65

e Classes and Methods for Pushdown Capabilities, 66

Pushdown Capability Overview

You can use the Informatica Connector Toolkit to configure pushdown logic for a connector to push
transformation logic to source or target databases for processing using the native connection.

You can specify the following pushdown types for a connector:

Full
A pushdown logic where the task pushes as much of the transformation logic as possible to the target
database.

Source

A pushdown logic where the task pushes down as much as the transformation logic as possible to
process in the source database. When you select source pushdown optimization, the task pushes the
transformation logic for all the supported transformations downstream in the mapping.

Note: The Informatica Connector Toolkit currently does not implement the source pushdown logic for a
connector.

Pushdown Optimization Execution Flow

You can use the Informatica Connector Toolkit to configure full pushdown using the native database
connection to push the entire mapping logic to target databases for execution.

The Informatica Connector Toolkit performs pushdown optimization with the following execution flow:

1. During runtime, the source and the target connectors are invoked to validate if the current
transformation is supported. You must declare the support for pushdown to the source in
adapter.contribution.plugin.xml file.

65

2. When source pushdown support is enabled, the transformation might get pushed to the source database
instead of the target database. An additional flag is marked in the intermediate result to indicate that
source handles the transformations.

3. Additional validation callback configured in the target connector checks if the target database can
support the current transformation. If the target connector returns true, the flag in the intermediate result
is updated to indicate that target performs full pushdown provided the forward data flow reaches the
target.

4. If the data flow does not reach the target and the additional flag is marked in the intermediate result in
Step 2, the source database will handle the transformations.
You cannot push partial mapping logic to the target database using source pushdown.

5. If the forward data flow reaches the target, the mapping is updated to replace the source with a
placeholder source and the target transformation contains a new data object with a reference to the
source object. If the data flow does not reach target, the mapping runs without pushdown. You cannot
partially push down transformation logic with full pushdown.

Classes and Methods for Pushdown Capabilities

After you define the connector metadata for pushdown capability and generate the code, the Informatica
Connector Toolkit adds the pushdown specific parameters to the adapter.contribution.plugin.xml.
Changes to adapter.contribution.plugin.xml

Informatica Connector Toolkit adds the following section to the adapter.contribution.plugin.xml file:

e The SourceToTargetPushdown section defines the connections for which you want to support full
pushdown.
The SourceToTargetPushdown section is populated with the following attributes as defined in the
connector metadata:

eadapterID. Specifies the connector ID of the source.
esourcePushdown. Set to true if you enable Support Source Pushdown in the connector metadata.

Note: The Informatica Connector Toolkit currently does not implement the source pushdown logic
for a connector.

emultiTargetSupport. Set to true if you enable Support Multi Target in the connector metadata.

¢ The InputProjectionSupport section defines the support for full pushdown for different
transformations.
The InputProjectionSupport section includes the followi