
Informatica® Mass Ingestion
May 2024

Mass Ingestion Streaming

Informatica Mass Ingestion Mass Ingestion Streaming
May 2024

© Copyright Informatica LLC 2019, 2024

Publication Date: 2024-05-23

Table of Contents

Chapter 1: Mass Ingestion Streaming . 5
Use cases. 5

Mass Ingestion Streaming sources. 6

Amazon Kinesis Streams sources. 6

AMQP sources. 7

Azure Event Hubs Kafka sources. 7

Flat File sources. 8

Google PubSub sources. 8

JMS sources. 8

Kafka sources. 9

MQTT sources. 9

OPC UA sources. 10

REST V2 sources. 10

Mass Ingestion Streaming targets. 10

Amazon Kinesis Data Firehose target. 11

Amazon Kinesis Streams target. 11

Amazon S3 target. 12

Databricks Delta target. 12

Flat file target. 13

Google BigQuery V2 target. 13

Google Cloud Storage V2 target. 14

Google PubSub target. 14

JDBC V2 target. 15

Kafka target. 15

Microsoft Azure Data Lake Storage Gen2 target. 16

Microsoft Azure Event Hubs target. 16

Transformations in Mass Ingestion Streaming. 16

Data formats. 17

Combiner transformation. 17

Filter transformation. 18

Format Converter transformation. 18

Java transformation. 18

Jolt transformation. 20

Python transformation. 20

Splitter transformation. 21

Configuring a streaming ingestion task. 21

Before you begin. 22

Defining basic task information. 22

Configuring a source . 23

Configuring a target . 32

Table of Contents 3

Configuring a transformation . 40

Configuring runtime options. 46

Deploying a streaming ingestion task. 47

Undeploying a streaming ingestion job. 47

Stopping and resuming streaming ingestion jobs. 48

Frequently asked questions for Mass Ingestion Streaming behavior. 48

Chapter 2: Mass Ingestion Streaming REST API. 50
Dataflows resource. 50

Deploying a streaming ingestion task. 50

Undeploying a streaming ingestion task. 51

Starting a streaming ingestion task. 51

Stopping a streaming ingestion task. 52

CopyEntities resource. 52

UpdateEntity resource. 54

POST request. 54

POST response. 69

jobs resource. 83

MIJobs resource. 84

status resource. 87

statistics resource. 88

history resource. 91

Index. 93

4 Table of Contents

C h a p t e r 1

Mass Ingestion Streaming
Mass Ingestion Streaming is a separately licensed ingestion type of the Mass Ingestion service. Mass
Ingestion Streaming can ingest data at scale from any streaming data sources, such as logs, clickstream,
social media, and IoT sources. Use Mass Ingestion Streaming to ingest high-volume, real-time data from
streaming sources to on-premises and cloud storage. You can also track and monitor the progress of the
ingestion.

To gather operational intelligence from streaming data or to perform real-time data warehousing, you need to
collect and analyze the data before it becomes obsolete or corrupted. Use Mass Ingestion Streaming to
combine or separate data from streaming sources in real time. You can apply simple transformations on the
data to ensure the data ingested is ready for analytics.

The Mass Ingestion service has an easy-to-use interface that runs in Informatica Intelligent Cloud Services.
Use the Mass Ingestion Streaming service to define, deploy, undeploy, and monitor ingestion jobs. A job is an
executable instance of an ingestion task. You can collect streaming and IoT data from different sources,
apply simple transformations to the data, and then ingest the data to different types of targets. You can
ingest data from sources, such as Amazon Kinesis, event logs, Google PubSub, JMS, Kafka, MQTT, OPC UA,
and REST V2. You can stream data to targets, such as Amazon Kinesis, Amazon S3, Azure Event Hubs,
Databricks Delta, Google BigQuery v2, Google Cloud Storage, Google PubSub, Kafka, and Microsoft Azure
Data Lake Storage.

Use cases
Mass Ingestion Streaming can help you fulfill multiple usage requirements.

Consider using Streaming ingestion in the following scenarios:

• Real-time analytics. Ingest streaming and IoT data into messaging systems, such as Apache Kafka or
Amazon Kinesis, for real-time analytics. Real-time analytics can help companies identify business
opportunities and revenue streams that can result in increased profits and improved customer service.

• Data integration. Ingest streaming and IoT data into cloud data lakes, such as Amazon S3, for integrating
data in real-time to provide up-to-the-minute information.

5

Mass Ingestion Streaming sources
You can ingest high volume, real-time data from supported streaming sources to on-premises and cloud
targets that Mass Ingestion Streaming supports. You can ingest data in the form of events or messages.

You can use the following data sources in a streaming ingestion task:

• Amazon Kinesis Streams

• AMQP

• Azure Event Hubs Kafka

• Flat File

• Google PubSub

• JMS

• Kafka

- Apache Kafka

- Confluent Kafka

- Amazon Managed Streaming (Amazon MSK)

• MQTT

• OPC UA

• REST V2

To determine the connectors to use for these source types, see Connectors and Connections > Mass
Ingestion Streaming connectors.

Amazon Kinesis Streams sources
Use a Kinesis Streams source to read data from an Amazon Kinesis Stream. To create a Kinesis Streams
source connection, use the Kinesis connection type.

Kinesis Streams is a real-time data stream processing service that Amazon Kinesis offers within the AWS
ecosystem. Kinesis Streams is a customizable option that you can use to build custom applications to
process and analyze streaming data. As Kinesis Streams cannot automatically scale to meet data in-flow
demand, you must manually provision enough capacity to meet system needs.

Before you use a Kinesis stream source, perform the following tasks:

1. In the Amazon Kinesis console, create and configure an Amazon Kinesis stream.

2. In the Amazon Web Services (AWS) Identity and Access Management (IAM) service, create a user.

3. Download the access key and secret access key that are generated during the user creation process.

4. Associate the user with a group that has permissions to write to the Kinesis stream.

Mass Ingestion Streaming does not support profile based and cross account authentication. Amazon Web
Services credentials used for Amazon Kinesis must have permissions to access to Amazon DynamoDB and
Amazon CloudWatch services.

6 Chapter 1: Mass Ingestion Streaming

AMQP sources
Use an Advanced Message Queuing Protocol (AMQP) source to read messages from an AMQP message
queue. To create an AMQP source connection, use the AMQP connection type.

AMQP is a message-oriented standard with queuing, routing, reliability and security features. AMQP is a wire-
level, platform-agnostic protocol that you can use to facilitate business transactions by passing real-time
message streams.

Using the AMQP connector, you can read messages from AMQP brokers, monitor a message queue, and
handle subscribe patterns for brokered messaging. The streaming ingestion task uses RabbitMQ as the
AMQP broker. RabbitMQ is a distributed message broker system that is fast, scalable, and durable. RabbitMQ
uses AMQP 0-9-1 messaging protocol for the secure transfer of messages.

In a streaming ingestion task, you can use an AMQP source to subscribe to a stream of incoming messages.
The AMQP broker stores the messages in the message queue until the streaming ingestion job receives the
message off the queue. When the streaming ingestion job receives a message, the job acknowledges the
receipt of the message. The acknowledged message is then removed from the message queue.

You can use the AMQP source when you have long-running tasks that you want to run as reliable background
jobs. You can also choose to use an AMQP source for communication between applications where one part
of the system needs to notify another part, such as order handling in a webshop.

Azure Event Hubs Kafka sources
You can configure a Kafka source to connect to Azure Event Hubs. To create an Azure Event Hubs Kafka
source connection, use the Kafka connection type.

When you create a standard or dedicated tier Event Hubs namespace, the Kafka endpoint for the namespace
is enabled by default. You can then use the Azure Event Hubs enabled Kafka connection as a source
connection while configuring a streaming ingestion task. Enter the Event Hubs name as the topic name.

The Azure Event Hubs source information that you enter while configuring a streaming ingestion task is same
as that of a normal Kafka source configuration. For more information about Azure Event Hubs Kafka source
properties, see “ Azure Event Hubs Kafka source properties” on page 25.

Configure the following properties while creating a Kafka connection in Administrator:

• Kafka Broker List: NAMESPACENAME.servicebus.windows.net:9093
• Additional Connection Properties:

security.protocol=SASL_SSL,sasl.mechanism=PLAIN,sasl.kerberos.service.name=Kafka
• SSL Mode: One-Way

• SSL TrustStore File Path: Path to a trusted root cert on your file system. For example,
<AGENT_HOME>/jdk/jre/lib/security/cacerts

• SSL TrustStore Password: Trustore password.

• Additional Security Properties: sasl.jaas.config=
org.apache.kafka.common.security.plain.PlainLoginModule required
username="$ConnectionString" password="Endpoint=sb://
mynamespace.servicebus.windows.net/;SharedAccessKeyName=XXXXXX;SharedAccessKey=XXXXXX";

For more information about creating an Azure Event Hubs Kafka source connection, see the Connections
help.

Note: Event Hubs for Kafka is available only on standard and dedicated tiers. The basic tier doesn't support
Kafka on Event Hubs.

Mass Ingestion Streaming sources 7

Flat File sources
Use a flat file as a source to read incoming real-time data. Configure a flat file connection to read data from
flat files that are stored in the same directory.

A streaming ingestion task reads each row in a flat file source and ingests the data to a configured target.
When a flat file is continuously updated in real time, the streaming ingestion task reads only the newly added
content instead of reading the complete file again.

Streaming ingestion can read data from the delimited flat files. The delimiter character must be a carriage
return (\r), a line feed (\n), or a combination of both.

Google PubSub sources
Use a Google PubSub source to read messages from the configured Google Cloud PubSub subscription. To
create a Google PubSub source connection, use the Google PubSub connection type.

Google PubSub is an asynchronous messaging service that decouples services that produce events from
services that process events. You can use Google PubSub as a messaging-oriented middleware or for event
ingestion and delivery for streaming analytics pipelines. Google PubSub offers durable message storage and
real-time message delivery with high availability and consistent performance at scale. You can run Google
PubSub servers in all the available Google Cloud regions around the world.

Before you use Google PubSub connector, you must ensure that you meet the following prerequisites:

• Your organization has the Google PubSub Connector license.

• You have a Google service account JSON key to access Google PubSub.

• You have the client_email, client_id, and private_key values for the Google service account. You need
these details when you create a Google PubSub connection in Administrator.

In a streaming ingestion task, you can use a Google PubSub source to subscribe to messages from a Google
PubSub topic.

JMS sources
Use a JMS source to read data from a JMS provider. To create a JMS source connection, use the JMS
connection type.

JMS providers are message-oriented middleware systems that send JMS messages. The JMS source reads
JMS messages either from a JMS provider message queue or from a JMS provider based on the message
topic.

The JMS source can read the following JMS message types:

• Message. Contains only header and properties fields

• TextMessage. Contains a string object. TextMessages can contain XML or JSON message data.

• BytesMessage. A stream of uninterpreted bytes. Use a BytesMessage for encoding a message body to
match an existing message format. BytesMessages generally do not include property fields.

• MapMessage. Contains a set of name or value pairs. The names are in string format. The values are of
Java primitive datatypes.

8 Chapter 1: Mass Ingestion Streaming

JMS message delivery destination types

You can choose one of the following JMS message delivery destination types:

• Queue. The JMS message producer delivers messages to a single consumer. The consumer must be
registered to consume messages from the queue. If no consumers are registered to the queue, the
queue retains the messages until a consumer registers to it.

• Topic. The JMS message producer delivers messages to all active consumers who subscribe to the
topic. Several producers can send messages to the topic destination, and each message can be
delivered to several subscribers. If no consumers are registered to the topic, the topic doesn't retain
the message. You can make the subscription sharable, durable or both. A sharable subscription
enables one or more consumers to access a single subscription. A durable subscription retains the
message for inactive subscribers until subscribers consume the message or until the message
expires.

Kafka sources
Use a Kafka source to read messages from a Kafka topic. To create a Kafka source connection, use the
Kafka connection type.

Kafka is a publish-subscribe messaging system. It is an open-source distributed streaming platform that
persists the streaming data in a Kafka topic. Any topic can then be read by any number of systems that need
data in real-time. Kafka can serve as an interim staging area for streaming data that can be consumed by
different downstream consumer applications can consume.

Kafka runs as a cluster comprised of one or more servers each of which is called a broker. Kafka brokers
stream data in the form of messages. These messages are published to a topic. When you create a Kafka
source, you create a Kafka consumer to read messages from a Kafka topic.

In a streaming ingestion task, you can use a Kafka source to subscribe to a stream of incoming data. When
you configure a Kafka source to read from a Kafka topic, you can specify the topic name or use a Java
supported regular expression to subscribe to all topics that match a specified pattern.

You can use the same Kafka connection to create an Amazon Managed Streaming for Apache Kafka
(Amazon MSK) or a Confluent Kafka source connection. You can then use the Amazon MSK source or the
Confluent Kafka source in a streaming ingestion task to read messages from an Apache Kafka or a Confluent
Kafka topic.

MQTT sources
Use an MQTT source to read data from an MQ Telemetry Transport (MQTT) broker. To create an MQTT
source, use the MQTT connection type.

MQTT is a publish-subscribe messaging system. It is a simple, lightweight, and persistent messaging
protocol. It is designed for constrained devices and low-bandwidth, high-latency, or unreliable networks. Both
publishers and subscribers are MQTT clients. MQTT decouples the publisher from the subscriber, so a broker
manages the client connections.

An MQTT broker receives all messages, filters the messages, determines which client subscribed to each
message, and then sends messages to the subscribed clients. If multiple MQTT sources connect to one
MQTT broker, each connection must have a unique identifier. When you run a streaming ingestion job to
ingest data from an MQTT source, Streaming Ingestion first writes the data to an internal queue before
writing the data to a target.

Note: An MQTT source must have a unique client identifier. If two MQTT sources have the same client
identifier, the MQTT broker rejects both the clients and the streaming ingestion job gets into running with
warning state.

Mass Ingestion Streaming sources 9

Mass Ingestion Streaming supports MQTT Quality of Service (QoS) level 1. Level 1 indicates that the client
sends the message to the broker at least once, but the message might be delivered more than once. After the
broker acknowledges the message receipt, the client deletes the message from the outbound queue. The
QoS Level is restricted to client to broker or broker to client communication.

OPC UA sources
Use an OPC UA source to read messages from an OPC UA application tag. To create an OPC UA source
connection, use the OPCUA connection type.

Open Platform Communications (OPC) is one of the important communication protocols for Industry 4.0 and
the IIoT (Industrial Internet Of Things). OPC Unified Architecture (OPC UA) is a machine-to-machine
communication protocol used for industrial automation. OPC UA provides a flexible and adaptable
mechanism to move data between enterprise systems, monitoring devices, and sensors that interact with
real-world data. You can use OPC UA to establish communication for simple downtime status or for massive
amounts of highly complex plant-wide information.

The OPC UA source is a client that collects data from OPC servers. Data points in OPC are tags that represent
data from devices and provide real-time access to data. In a streaming ingestion task, you can create an OPC
UA source to read the incoming data based on the list of tags that you provide. You must mention the tags in
a JSON array format.

REST V2 sources
Use a REST V2 source to read data from a web service application. To create a REST V2 source connection,
use the REST V2 connection type.

REST V2 source connector is a generic connector for cloud applications with REST API. It supports Swagger
specification version 2.0. The Swagger specification file contains operation ID, path parameters, query
parameters, header fields, and payload details.

When you can create a REST V2 source connection in Administrator, for a streaming ingestion task, you can
configure one of the following REST authentication types:

• Basic

• OAuth1.0

• OAuth2.0 Client Credentials

• OAuth2.0 Authorization Code

• JWT bearer token authentication

Mass Ingestion Streaming targets
You can ingest streaming data from a supported source to any on-premises and cloud targets that Mass
Ingestion Streaming supports.

You can use the following targets in a streaming ingestion task:

• Amazon Kinesis Data Firehose

• Amazon Kinesis Streams

• Amazon S3

10 Chapter 1: Mass Ingestion Streaming

• Databricks Delta

• Flat file

• Google BigQuery V2

• Google Cloud Storage

• Google PubSub

• JDBC V2

• Kafka

- Apache Kafka

- Confluent Kafka

- Amazon Managed Streaming (Amazon MSK)

• Microsoft Azure Data Lake Store Gen2

• Microsoft Azure Event Hubs

To determine the connectors to use for these target types, see Connectors and Connections > Mass Ingestion
Streaming connectors.

Amazon Kinesis Data Firehose target
Use a Kinesis target to receive data from a source and write the data to an Amazon Kinesis Data Firehose
target. To create a Kinesis target, use the Amazon Kinesis connection type.

Kinesis Firehose is a real-time data stream processing service that Amazon Kinesis offers within the AWS
ecosystem. Use Kinesis Firehose to batch, encrypt, and compress data. Kinesis Firehose can automatically
scale to meet system needs.

To configure access for Kinesis Firehose as a target, perform the following tasks:

• Create an AWS account with the required IAM permissions for the IAM user to use the AWS Kinesis Data
Firehose service.

• Define a Firehose delivery stream. Configure source as Direct PUT or other sources.

• Grant required permissions to the IAM user credentials based on the target the user is writing to.
For a list of permissions, see the AWS documentation at
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#access-to-firehose.

Amazon Kinesis Streams target
Use a Kinesis target to receive data from source services and write the data to an Amazon Kinesis Stream.
To create a Kinesis target, use the Amazon Kinesis connection type.

Kinesis Streams is a real-time data stream processing service that Amazon Kinesis offers within the AWS
ecosystem. Kinesis Streams is a customizable option that you can use to build custom applications to
process and analyze streaming data. As Kinesis Streams cannot automatically scale to meet data in-flow
demand, you must manually provision enough capacity to meet system needs.

Before you use a Kinesis stream target, perform the following tasks:

1. In the Amazon Kinesis console, create and configure an Amazon Kinesis stream.

2. In the Amazon Web Services (AWS) Identity and Access Management (IAM) service, create a user.

3. Download the access key and secret access key that are generated during the user creation process.

4. Associate the user with a group that has permissions to write to the Kinesis stream.

Mass Ingestion Streaming targets 11

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#access-to-firehose

Amazon S3 target
Use an Amazon S3 V2 connector to write the streaming data to an Amazon S3 target.

Amazon Simple Storage Service (Amazon S3) is storage service in which you can copy data from a streaming
source and simultaneously move data to any target. You can use Amazon S3 to transfer the data from a list
of configured source connections to an Amazon S3 target. You can accomplish these tasks by using the AWS
Management Console web interface.

You can use an Amazon S3 object as a target in a streaming ingestion task. You can configure the Amazon
S3 target and advanced properties for a target object.

Data partitioning

The streaming ingestion task can create partitions on the Amazon S3 V2 target and write data to the
partitions. To use partitioning, you must select a partitioning interval according to which the task creates
the partitions. Based on the selected time interval, the streaming ingestion job saves the incoming
message in an /<object name>/<Year>/<month>/<day>/<hour>/<minutes> partition in the Amazon S3 V2
bucket. The streaming ingestion job adds timestamp hierarchy folders in the Amazon S3 bucket.

You can enable partitioning in the following ways when you configure a task:

• Add the ${Timestamp} expression to the object name in the Object Name/Expression field and select
a time interval.
For example, enter /streaming/${Timestamp} in the Object Name/Expression field, select a
partitioning interval of five minutes, and run the streaming ingestion task at 15:20 on June 8, 2022.
The streaming ingestion job saves the incoming message in the /streaming/2022/06/08/15/20
partition in the Amazon S3 V2 bucket. The job saves data that streams during the next time interval
under the hour folder, that is, 2022/06/08/15/25.

Note: If you add a ${Timestamp} expression to the object name in the Object Name/Expression field
and don't select a partitioning interval, the streaming ingestion job saves the objects to the 0/ folder
in the Amazon S3 bucket.

• Use a regular expression in the Object Name/Expression field and select a partitioning interval. You
don't need to add the ${Timestamp} expression to a regular expression.
For example, run a streaming ingestion task at 12:10 on June 18, 2022 with a regular expression
$"SourceTable":"((.*?))"$, and a partitioning interval of five minutes. The incoming data is
{"SourceTable":"xyz"}. The streaming ingestion job saves the xyz object in the 2022/06/18 /12/10
folder hierarchy in the Amazon S3 bucket. The job saves data that streams during the next time
interval under the hour folder, that is, 2022/06/08/15/25.

For more information, see “Amazon S3 target properties” on page 33.

Databricks Delta target
Use a streaming ingestion task to write data to a Databricks Delta target. To create a Databricks Delta target,
use the Databricks Delta connection type. The Databricks Delta target requires a Databricks cluster version
6.3 or later.

Databricks Delta is an open source storage layer that provides ACID transactions and works on top of
existing data lakes. Databricks uses proprietary Delta software to manage stored data and allow fast access
to the data.

You can access Delta Lake tables built on top of the following storage types:

• Azure Data Lake Storage (ADLS) Gen2

• Amazon Web Services (AWS) S3

12 Chapter 1: Mass Ingestion Streaming

The Databricks Delta target writes data to one or more Delta Lake tables on Databricks. You can use the
Databricks Delta target in a streaming ingestion task for the following use cases:

• Ingest bulk data from all streaming sources into Databricks Delta tables

• Merge change data capture (CDC) from all streaming sources and write to Databricks Delta tables

The Databricks Delta connection uses a JDBC URL to connect to the Databricks cluster. When you configure
the target, you specify the JDBC URL and credentials to use to connect to the cluster. You also define the
connection information that the target uses to connect to the staging location in Amazon S3 or Azure Data
Lake Storage Gen2.

You specify the tables in Delta Lake to which you want to write the data. The target writes data from record
fields to table columns based on matching names.

Flat file target
Use a streaming ingestion task to write data from various sources to a flat file target. The task writes real-
time streaming data from various sources to the file system of the Secure Agent that runs the dataflow.

A streaming ingestion task writes the data to the staging directory with the file name that you provide. When
the task adds new content to the file, it precedes it with a New Line character (\n) in the target.

The flat file target performs the file rollover action and you can configure the rollover properties. The file
rollover process closes the current file and creates a new file on the basis of the file size, event count, or
time. To configure rollover, specify the Rollover Size, Rollover Events Count, or the Rollover Time properties
of the target service. The rollover process moves the file from the staging directory to the target and renames
the file. The file name format of the renamed file is the original file name with an addition of the time stamp
and counter information (yyyy_mm_dd-hh_mm_ss_counter). For example, during rollover, the file
streaming.txt is renamed to streaming-2021_08_16-17_17_30_4.txt.

You can implement a combination of the rollover properties. For example, if you set the rollover events count
to 1000, the rollover size to 1 GB, and the rollover time to 1 hour, the task rolls the file over when the file
reaches a size of 1 GB even if the 1000 events are not accumulated and the 1-hour period has not elapsed.

Google BigQuery V2 target
Use a streaming ingestion task to write data to a Google BigQuery V2 database target. To create a Google
BigQuery V2 target, use the Google BigQuery V2 connection type.

You can use a Google BigQuery V2 target to write data to a BigQuery table. The target consumes data in the
JSON format. The target ignores the records if the fields don't match the table columns of the database. The
Google BigQuery V2 target accepts data in a simple JSON format or in an array of a simple JSON format.

Before you use Google BigQuery V2 Connector, you must complete the following prerequisite tasks:

• Ensure that you have a Google service account to access Google BigQuery.

• Ensure that you have the client_email, project_id, private_key, and region ID values for the service account.
Enter the values in the corresponding Service Account ID, Project ID, Service Account Key, and Region ID
connection properties when you create a Google BigQuery V2 connection.

• You must specify the private_key_id and the client_id properties in the Provide Optional Properties field.
The Google BigQuery V2 connection test fails on providing these parameters. However, you can ignore the
failed test connection and run the streaming ingestion job. Use the following format:

"private_key_id":"<private key ID>" and "client_id":"<client ID>"
• If you want to configure a timeout interval for a Google BigQuery connection, specify the timeout interval

property in the Provide Optional Properties field of the connection properties. Use the following format:

"timeout": "<timeout_interval_in_seconds>"

Mass Ingestion Streaming targets 13

• A table to write the data to must exist before you deploy the streaming ingestion task.

• You must have read and write access to the Google BigQuery datasets that contain the target tables.

Google Cloud Storage V2 target
Use a streaming ingestion task to write data to a Google Cloud Storage target. To create a Google Cloud
Storage target, use the Google Cloud Storage V2 connection type.

You can use Google Cloud Storage to stream multimedia, store custom data analytics pipelines, or distribute
large data objects to users through direct download. You can write data to Google Cloud Storage for data
backup. In the event of a database failure, you can read the data from Google Cloud Storage and restore it to
the database.

Google Cloud Storage offers different storage classes based on factors such as data availability, latency, and
price. Google Cloud Storage has the following components:

• Projects. In Google Cloud Storage, all resources are stored within a project. Project is a top-level container
that stores billing details and user details. You can create multiple projects. A project has a unique project
name, project ID, and project number.

• Buckets. Each bucket acts like a container that stores data. You can use buckets to organize and access
data. You can create more than one bucket but you cannot nest buckets. You can create multiple folders
within a bucket and you can also nest folders. You can define access control lists to manage objects and
buckets. An access control list consists of permission and scope entries. Permission defines the access
to perform a read or write operation. Scope defines a user or a group who can perform the operation.

• Objects. Objects comprise the data that you upload to Google Cloud Storage. You can create objects in a
bucket. Objects consist of object data and object metadata components. The object data is a file that you
store in Google Cloud Storage. The object metadata is a collection of name-value pairs that describe
object qualities.

Before you use Google Cloud Storage V2 Connector, you must complete the following prerequisite tasks:

1. Ensure that you have a Google service account to access Google Cloud Storage.

2. Ensure that you have the client_email, project_id, and private_key values for the service account. You will
need to enter these details when you create a Google Cloud Storage connection in the Administrator.

3. Ensure that you have enabled the Google Cloud Storage JSON API for your service account. Google
Cloud Storage V2 Connector uses the Google API to integrate with Google Cloud Storage.

4. Verify that you have write access to the Google Cloud Storage bucket that contains the target file.

5. Ensure that you have enabled a license to use a Cloudera CDH or Hortonworks HDP package in your
organization.

When you deploy a streaming ingestion task, the Secure Agent uses the Google Cloud Storage API to perform
the specified operation and writes data to Google Cloud Storage files. You can write data into a Google Cloud
Storage target. You cannot perform update, upsert, or delete operations on a Google Cloud Storage target.

Google PubSub target
Use a streaming ingestion task to write data to a Google PubSub topic. To create a Google PubSub target,
use the Google PubSub connection type.

Google PubSub is an asynchronous messaging service that decouples services that produce events from
services that process events. You can use Google PubSub as a messaging-oriented middleware or for event
ingestion and delivery for streaming analytics pipelines. Google PubSub offers durable message storage and
real-time message delivery with high availability and consistent performance at scale. You can run Google
PubSub servers in all the available Google Cloud regions around the world.

14 Chapter 1: Mass Ingestion Streaming

Before you use Google PubSub connector, you must ensure that you meet the following prerequisites:

• Your organization has the Google PubSub Connector license.

• You have a Google service account JSON key to access Google PubSub.

• You have the client_email, client_id, and private_key values for the Google service account. You need
these details when you create a Google PubSub connection in Administrator.

In a streaming ingestion task, you can use a Google PubSub target to publish to messages to a Google
PubSub topic.

JDBC V2 target
Use a streaming ingestion task to write data to a database target. To create a JDBC V2 target, use the JDBC
V2 connection type.

You can use a JDBC V2 target to write data to a database table. The target consumes data in JSON format.
The target ignores fields that don't map to the table columns of the database.

Consider the following prerequisites before you configure JDBC V2 as a target:

• A table to write data must exist before deploying the streaming ingestion task.

• Copy the database driver files to the following directory:
<Secure Agent installation directory>/apps/Streaming_Ingestion_Agent/ext

Note: The JDBC V2 target accepts data only in a simple JSON or an array of a simple JSON format.

Kafka target
Use a streaming ingestion task to write data to a Kafka target. To create a Kafka target, use the Kafka
connection type.

Kafka is a publish-subscribe messaging system. It is an open-source distributed streaming platform. This
platform allows systems that generate data to persist their data in real-time in a Kafka topic. Any topic can
then be read by any number of systems who need that data in real-time. Kafka can serve as an interim
staging area for streaming data that can be consumed by different downstream consumer applications.

Kafka runs as a cluster that comprises of one or more Kafka brokers. Kafka brokers stream data in the form
of messages, publishes the messages to a topic, subscribes the messages from a topic, and then writes it to
the Kafka target.

When you create a Kafka target, you create a Kafka producer to write Kafka messages. You can use each
Kafka target in a streaming ingestion job that writes streaming Kafka messages. When you configure a Kafka
target, specify the topic to publish the messages and the IP address and port on which the Kafka broker runs.
If a Kafka topic does not exist in the target, instead of manually creating topics you can also configure your
brokers to auto-create topics when a non-existent topic is published to.

You can use the same Kafka connection to create an Amazon Managed Streaming for Apache Kafka
(Amazon MSK) or a Confluent Kafka connection. You can then use the Amazon MSK or the Confluent Kafka
target in a streaming ingestion task to write messages to an Apache Kafka or a Confluent Kafka target.

Mass Ingestion Streaming targets 15

Microsoft Azure Data Lake Storage Gen2 target
Use a streaming ingestion task to write data to a Microsoft Azure Data Lake Storage Gen2 target. To create a
Microsoft Azure Data Lake Storage Gen2 target, use the Microsoft Azure Data Lake Storage Gen2 connection
type.

Microsoft Azure Data Lake Storage Gen2 is a next-generation data lake solution for big data analytics. You
can store data in the form of directories and sub-directories, making it efficient for data access and
manipulation. You can store data of any size, structure, and format. You can process large volumes of data to
achieve faster business outcomes. Data scientists and data analysts can use data in the data lake to find out
specific patterns before you move the analyzed data to a data warehouse. You can use big data analytics
available on top of Microsoft Azure Blob storage.

The streaming ingestion task writes data to Microsoft Azure Data Lake Storage Gen2 based on the specified
conditions.

For more information about Microsoft Azure Data Lake Storage Gen2, see the Microsoft Azure Data Lake
Storage Gen2 documentation.

Microsoft Azure Event Hubs target
Use a streaming ingestion task to write data to an Azure Event Hubs target. To create an Azure Event Hubs
target, use the Azure Event Hubs connection type.

Azure Event Hubs is a highly scalable data streaming platform and event ingestion service that receives and
processes events. Azure Event Hubs can ingest and process large volumes of events with low latency and
high reliability. It is a managed service that can handle message streams from a wide range of connected
devices and systems.

Any entity that sends data to an event hub is an event publisher. Event publishers can publish events using
HTTPS or Kafka 1.0 and later. Event publishers use a Shared Access Signature (SAS) token to identify
themselves to an event hub and can have a unique identity or use a common SAS token.

For more information about Event Hubs, see the Microsoft Azure Event Hubs documentation.

Transformations in Mass Ingestion Streaming
Transformations are part of a streaming ingestion task. Transformations represent the operations that you
want to perform when ingesting streaming data.

Each transformation performs a specific function. For example, a Filter transformation filters data from the
ingested data based on a specified condition.

When you create a streaming ingestion task, adding a transformation is optional. Each transformation type
has a unique set of options that you can configure.

You can use the following transformations in streaming ingestion tasks:

• Combiner

• Filter

• Format Converter

• Java

• Jolt

16 Chapter 1: Mass Ingestion Streaming

• Python

• Splitter

You can add multiple transformations to a streaming ingestion task. In such a case, the order of
transformations is important because the source data undergoes each transformation in the given order. The
output of one transformation becomes the input to the next one in the task flow.

In a streaming ingestion task, you can add only one Combiner transformation and one Format Converter
transformation. The Format Converter transformation must be the last transformation in the task flow. If the
task includes both a Combiner transformation and a Format Converter transformation, the Format Converter
transformation must be the last transformation in the task flow, preceded by the Combiner transformation.

Data formats
Each transformation type processes a specific format of incoming streaming data.

Streaming ingestion transformations can process streaming data in the following formats:

• Binary. Any type of structured and unstructured data.

• JSON. Readable format for structuring data.

• XML. Structured text data.

If a task doesn't include a transformation, it consumes the incoming data in its original format.

Combiner transformation
A Combiner transformation combines multiple events from a streaming source into a single event based on
the specified conditions.

A Combiner transformation processes binary data and JSON data. For JSON message formats, the Combiner
transformation combines the incoming data into an array of data and returns JSON array objects as output.
For binary message formats, it combines the incoming data based on the specified conditions.

In a streaming ingestion task, you can add only one Combiner transformation. If the task includes both a
Combiner transformation and a Format Converter transformation, the Format Converter transformation must
be the last transformation in the task flow, preceded by the Combiner transformation. If the task doesn't
include a Format Converter transformation, the Combiner transformation must be the last transformation in
the task flow.

You can use one of the following conditions for a Combiner transformation:

• Minimum number of events

• Maximum aggregate size

• Time limit

For example, consider the following events:

• Record created

• Record published

If you use comma (,) as a delimiter, the Combiner transformation returns the following combined event:

Record created,Record Published

Note: When you process binary data with a Combiner transformation, you cannot use a regular expression as
a delimiter.

Transformations in Mass Ingestion Streaming 17

Filter transformation
The Filter transformation filters data out of the incoming streaming events based on a specified filter
condition.

You can filter data based on one or more conditions. For example, to work with data within a date range, you
can create conditions to remove data based on the specified dates.

Format Converter transformation
The Format Converter transformation converts the data format of XML and JSON incoming messages to
Parquet format, based on the specified conditions, before streaming them into the data lake.

You can add only one Format Converter transformation to a streaming ingestion task. The Format Converter
transformation must be the last transformation in the task flow.

You can specify the date, time, and timestamp format of incoming data. If the format is not specified, it is
considered in milliseconds since the epoch (Midnight, January 1, 1970, GMT).

Java transformation
A Java transformation runs the Java code to process incoming messages and send the processed data to
another transformation or a target.

You can use the Java transformation to define simple or moderately complex transformation functionality. A
Java transformation can process binary, JSON, and XML data.

Because you can import the Java code as snippets, you don't need to write an entire Java program. You can
import a sample Java code and create and compile the Java transformation.

When you import a non-standard Java package, you must set a classpath for each JAR file or the class file
directory associated with the Java package. You don't need to set a classpath for built-in Java packages. For
example, java.io is a built-in Java package. If you import java.io, you don't need to set the classpath for it.

The Java transformation uses the inputData variable and the outputData variable to store the incoming data
and outgoing data.

The following table shows the mapping between the data types:

Incoming data Java data type

JSON String

XML String

Binary Byte[]

Sample Java script for JSON

ClassPath: /<Secue Agent Location>/apps/Streaming_Ingestion_Agent/ext/json-
simple-1.1.1.jar

########/* Import Code */########
import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;

18 Chapter 1: Mass Ingestion Streaming

import org.json.simple.parser.ParseException;

########/* Main code */########
JSONParser parser = new JSONParser();
try {
 JSONObject object = (JSONObject) parser.parse(inputData);
 object.put("age", 23);
 outputData = object.toJSONString();
} catch (ParseException e) {
 throw new RuntimeException();
}
########/* inputData and outputData */########
inputData: {"name":"test"}
outputData: {"name":"test","age":23}

Sample Java script for binary
ClassPath:/<Secure Agent Location>/apps/Streaming_Ingestion_Agent/ext/binary-2.3.0.jar

########/* Import Code */########
import java.io.*;

########/* Main code */########
String temp = new String(inputData);
outputData = (temp+"-text").getBytes();
########/* inputData and outputData */########
inputData: Sample
outputData: Sample-text

Sample Java script for XML
/<Secure Agent Location>/apps/Streaming_Ingestion_Agent/ext/dom-0.9.4.jar

########/* Import Code */########
import java.io.*;
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.*;

########/* Main code */########
try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = null;
 builder = factory.newDocumentBuilder();
 StringBuilder xmlStringBuilder = new StringBuilder();
 xmlStringBuilder.append(inputData);
 ByteArrayInputStream input = new
ByteArrayInputStream(xmlStringBuilder.toString().getBytes("UTF-8"));
 Document doc = builder.parse(input);
 Node entreprise = doc.getFirstChild();
 Node employee = doc.getElementsByTagName("employee").item(0);
 Element job = doc.createElement("job");
 job.appendChild(doc.createTextNode("Commercial"));
 employee.appendChild(job);
 DOMSource domSource = new DOMSource(doc);
 StringWriter writer = new StringWriter();
 StreamResult result = new StreamResult(writer);
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer();
 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");
 transformer.transform(domSource, result);
 outputData = writer.toString();

Transformations in Mass Ingestion Streaming 19

} catch (Exception e) {}

########/* inputData and outputData */########
inputData: < entreprise > < employee id = "1" > < name > Alex < /name><age>25</age > <
address > San Francisco < /address></employee > < /entreprise>
outputData: < entreprise > < employee id = "1" > < name > Alex < /name><age>25</age > <
address > San Francisco < /address><job>Commercial</job > < /employee></entreprise >

Jolt transformation
Use the Jolt transformation to convert complex JSON data to simple JSON data.

The Jolt transformation provides a set of operations that perform the JSON-to-JSON data conversion. You
can add multiple Jolt specifications sequentially (a chain) to an array of simple specifications to form an
overall JSON-to-JSON transformation. Based on the specification, the Jolt transformation transforms the
complex input structure to a simple JSON structure.

Python transformation
A Python transformation runs a Python script to transform incoming data from a streaming source.

A Python transformation processes binary, JSON, and XML data. The Python transformation uses two
variables, inputData and outputData to store the incoming data and outgoing data.

The inputData variable stores incoming data of the XML and JSON message formats as string. It stores
incoming data of binary message format as numpy.ndarray. Binary data in the inputData variable is encoded
as ASCII characters. You must decode the data accordingly. Ensure that the Python transformation script
handles non-ASCII characters present in the inputData variable.

The outputData variable stores outgoing data of the XML and JSON message formats as string. It stores
outgoing data of binary message format as bytearray.

Before using a Python transformation, create a directory, Python home, to install Python. After installing
Python in the Python home directory, ensure to install the third-party libraries, NumPy and Jep (Java
Embedded Python) in the same directory as Python home. For more information about the Python installation
steps, see the Knowledge Base article 000175168.

In one Secure Agent, you can't use two different versions of Python to run the same Python transformation.

Sample Python scripts for JSON

import json
temp=json.loads(inputData)
temp["name"]="Mr "+temp["name"]
outputData=json.dumps(temp)
###
inputData: { "name":"John", "age":30, "city":"New York"}
outputData: { "name":"Mr John", "age":30, "city":"New York"}

Sample Python scripts for binary
temp = ''.join(str(chr(c)) for c in inputData)
temp += " - this is edited again text"
outputData = bytearray(temp, 'utf-8')
###
inputData: Sample text
outputData: Sample text - this is edited again text

Sample Python scripts for XML
import xml.etree.ElementTree as ET
myroot = ET.fromstring(inputData)
for x in myroot:

20 Chapter 1: Mass Ingestion Streaming

https://knowledge.informatica.com/s/article/Which-Python-installation-package-must-be-used-for-CMI-Streaming?language=en_US

 if x.tag=="body":
 x.tag="Msg"
xmlstr = ET.tostring(myroot)
outputData=xmlstr.decode('utf-8')
###
inputData: <note><to>You</to><from>Me</from><heading>Message</heading><body>Happy
Coding</body></note>
outputData: <note><to>You</to><from>Me</from><heading>Message</heading><Msg>Happy
Coding</Msg></note>

Splitter transformation
A Splitter transformation splits multiline messages or message arrays into separate messages based on the
conditions that you specify before ingesting them into targets.

The Splitter transformation splits binary, JSON, and XML messages based on the condition that you specify
and passes the separated messages into new files before ingesting them into targets. Use the Splitter
transformation to split complex messages into logical components. For example, if a message contains an
error code and error message separated by a comma, you can use the comma to separate the code and
message into different files.

Binary messages

In binary message format, the Splitter transformation divides the messages based on line boundaries or
byte sequence. The maximum number of lines determines the line boundaries. Each output split file
contains no more than the configured number of lines or bytes. The default value for the line boundaries
is 1. The default for the byte sequence is ','.

JSON messages

In JSON message format, the Splitter transformation divides a JSON file into separate files based on the
array element specified by a JSONPath expression. Each generated file is comprised of an element of
the specified array. The generated file is transferred to the downstream target or transformation in the
task. If the specified JSONPath is not found or does not evaluate to an array element, the original file is
routed to failure and no files are generated. The default JSONPath Expression is '$'.

XML messages

In XML message format, the Splitter transformation splits an XML message into many files based on the
level of input depth. Each of these files contain a child or descendant of the original file.

Configuring a streaming ingestion task
In Data Integration, use the streaming ingestion task wizard to configure a streaming ingestion task. You
define a source and a target, and you can optionally define a transformation to transform the data.

On the wizard pages, complete the following configuration tasks:

1. Define the basic information of a task, such as the task name, project location and runtime environment.

2. Configure a source.

3. Configure a target.

4. Optionally, add one or multiple transformations.

5. Optionally, set the runtime options.

As you work through the task wizard, you can click Save to save your work at any time after you configure the
target. When you have completed the wizard, click Save to save the task.

Configuring a streaming ingestion task 21

Before you begin, verify that the conditions that are described in “Before you begin” on page 22.

Before you begin
Before you create streaming ingestion tasks, verify that the following conditions are met:

• Check that your organization has licenses for Mass Ingestion Streaming and the streaming ingestion
packages.

• The Mass Ingestion Streaming is running on the Secure Agent.

• Source and target connections exist.

Defining basic task information
To begin defining a streaming ingestion task, you must first enter some basic information about the task,
such as task name, project or project folder location, and runtime environment.

1. Start the task wizard in one of the following ways:

• On the Home page, click the Ingest panel and select Streaming Ingestion Task.

• In the navigation bar on the Explore page or the Home page, click New to open the New Asset dialog
box. Then, select Mass Ingestion > Streaming Ingestion Task and click Create.

The Definition page of the streaming ingestion task wizard appears.

22 Chapter 1: Mass Ingestion Streaming

2. Configure the following properties:

Property Description

Name A name for the streaming ingestion task.
The names of streaming ingestion tasks must be unique within the organization. Task
names can contain alphanumeric characters, spaces, and underscores. Names must begin
with an alphabetic character or underscore.
Task names are not case-sensitive.

Location The project folder to store the task.

Runtime
Environment

Runtime environment that contains the Secure Agent. The Secure Agent runs the task.

Description Optional. Description about the task. Maximum length is 4,000 characters.

3. Click Next

Configuring a source
To configure a source, select a source connection from which you want to ingest streaming data and then
configure source properties. Before you configure a source, ensure that the connection to the source is
created in the Administrator service.

1. On the Source page, select a connection.

The streaming ingestion task supports the following sources:

• Amazon Kinesis Streams

• AMQP

• Apache Kafka

• Flat file

• Google PubSub

• JMS

• MQTT

• OPC UA

• REST V2

The connection type populates automatically based on the connection that you select.

2. Based on the source that you select, enter the required details.

Options that appear on the Source tab of the task wizard vary based on the type of source that you
select.

3. Under Advanced Properties, enter the required information.

4. Click Next.

The Target tab appears.

Configuring a streaming ingestion task 23

Amazon Kinesis Streams source properties
The following table describes the Amazon Kinesis Streams source properties on the Source tab when you
define a streaming ingestion task:

Property Description

Connection Name of the Amazon Kinesis Stream source connection.

Connection Type The Amazon Kinesis connection type.
The connection type populates automatically based on the connection that you select.

Stream Name of the Kinesis Stream from which you want to read data.

The following table describes the advanced properties for Amazon Kinesis Streams sources in the Source tab
when you define a streaming ingestion task:

Property Description

Append GUID to
DynamoDB table
name

Specifies whether or not to add a GUID as a suffix to the Amazon DynamoDB table name. If
disabled, you must enter the Amazon DynamoDB table name. Default is enabled.

Amazon DynamoDB Amazon DynamoDB table name to store the checkpoint details of the Kinesis source data.
The Amazon DynamoDB table name is generated automatically. However, if you enter a name
of your choice, the streaming ingestion task prefixes the given name to the auto-generated
name.

For more information about Kinesis Streams, see the Amazon Web Services documentation.

AMQP source properties
The following table describes the Advanced Message Queuing Protocol (AMQP) source properties on the
Source tab when you define a streaming ingestion task:

Property Description

Connection Name of the AMQP source connection.

Connection Type The AMQP connection type.
The connection type populates automatically based on the connection that you select.

Queue Name of the existing AMQP queue from which the streaming ingestion task reads the
messages. This queue is pre-defined by the AMQP administrator.

Auto Acknowledge
messages

You can choose True or False. If you choose True, the AMQP broker automatically
acknowledges the received messages.

Batch Size The maximum number of messages that must be pulled in a single session.
Default is 10 messages.

24 Chapter 1: Mass Ingestion Streaming

Azure Event Hubs Kafka source properties
You can create a Kafka connection with Azure Event Hubs namespace.

When you create a standard or dedicated tier Event Hubs namespace, the Kafka endpoint for the namespace
is enabled by default. You can then use the Azure Event Hubs enabled Kafka connection as a source
connection while creating a streaming ingestion task. Enter the Event Hubs name as the topic name.

The following table describes the Kafka source properties on the Source tab when you define a streaming
ingestion task:

Property Description

Connection Name of the Kafka source connection.

Connection
Type

The Kafka connection type.
The connection type populates automatically based on the connection that you select.

Topic Name of the Event Hubs from which you want to read the events.
You can either enter the topic name manually or fetch the already created metadata of the Kafka
enabled Event Hubs connection.
1. Click Select.

The Select Source Object dialog box appears showing all the available topics.
2. Select the required topic and click OK.

The following table describes the advanced properties for Kafka sources in the Source tab when you define a
streaming ingestion task:

Property Description

Consumer
Configuration
Properties

Comma-separated list of configuration properties for the consumer to connect to Kafka.
Specify the values as key-value pairs. For example, key1=value1, key2=value2.
The group.id property of Kafka consumer is autogenerated. You can override this property.

Note: Event Hubs for Kafka is available only on standard and dedicated tiers. The basic tier doesn't support
Kafka on Event Hubs.

Flat File source properties
The following table describes the flat file source properties on the Source tab when you define a streaming
ingestion task:

Property Description

Connection Name of the flat file source connection.

Connection
Type

The Flat file connection type.
The connection type appears automatically based on the connection that you select.

Configuring a streaming ingestion task 25

Property Description

Initial Start
Position

Starting position from which the data is to be read in the file to tail. You can choose one of the
following positions to start reading:
- Beginning of File. Read from the beginning of the file to tail. Do not ingest any data that has

already been rolled over.
- Current Time. Read from the most recently updated part of the file to tail. Do not ingest any data

that has already been rolled over or any data in the file to tail that has already been written.

Tailing Mode Tail a file or multiple files based on the logging pattern.
You can choose one of the following modes:
- Single File. Tail only one file.
- Multiple Files. Tail all the files indicated in the base directory. In this mode, you can enter a

regular expression to indicate the files to tail.

File Absolute path with the name of the file you want to read.
Name of the file to tail or regular expression to find the files to tail. Enter the base directory for
multiple files mode.

The following table describes the advanced properties that you can configure for flat file sources on the
Source tab when you define a streaming ingestion task:

Connection
Property

Description

Rolling Filename
Pattern

Name pattern for the file that rolls over.
If the file to tail rolls over, the file name pattern is used to identify files that have rolled over. The
underlying streaming ingestion Secure Agent recognizes this file pattern. When the Secure Agent
restarts, and the file has rolled over, it picks up from where it left off.
You can use asterisk (*) and question mark (?) as wildcard characters to indicate that the files are
rolled over in the same directory. For example, ${filename}.log.*. Here, asterisk (*)
represents the successive version numbers that would be appended to the file name.

Google PubSub source properties
The following table describes the Google PubSub source properties on the Source tab when you define a
streaming ingestion task:

Property Description

Connection Name of the Google PubSub source connection.

Connection Type The Google PubSub connection type.
The connection type populates automatically based on the connection that you select.

Subscription Name of the subscription on the Google PubSub service from which messages should be pulled.
The Google PubSub connection supports only the pull delivery type for a subscription.

Batch Size Maximum number of messages that the Cloud service bundles together in a batch.
Default is 1.

26 Chapter 1: Mass Ingestion Streaming

JMS source properties
The following table describes the JMS source properties on the Source tab when you define a streaming
ingestion task:

Property Description

Connection Name of the JMS source connection.

Connection Type JMS connection type. The connection type populates automatically based on the connection that
you select.

Destination Type Type of destination that the source service sends the JMS message to. You can choose one of the
following destination types:
- Queue. The JMS provider delivers messages to a single consumer who is registered for the

queue.
- Topic. The JMS provider delivers messages to all active consumers who subscribe to the topic.

When you use this destination type, multiple consumers can read the message.
Default is Queue.

Shared
Subscription

Enables multiple consumers to access a single subscription. Applies to the topic destination type.
Default is false.

Durable
Subscription

Enables inactive subscribers to retain messages and deliver retained messages when the
subscribers reconnect. Applies to the topic destination type.
Default is false.

Subscription
Name

Name of the subscription. Applies to the topic destination type, when the topic subscription is
sharable, durable, or both. If no value is specified, the ingestion service generates a unique
subscription name.

JMS Destination Name of the queue or topic that the JMS provider delivers the message to.
Note: If a JMS connection is created with the JMS Weblogic server, the queue or topic JMS
Destination must start with a period, followed by a slash (./). For example: ./<JMS Server
module name>!<Queue or topic name>
For more information about connecting Mass Ingestion Streaming to an Oracle Weblogic JMS
server, see Informatica Knowledge Base article 000186952.

The following table describes the advanced properties for JMS sources in the Source tab when you define a
streaming ingestion task:

Property Description

Client ID Optional. Unique identifier that identifies the JMS connection.
The streaming ingestion task generates a unique client ID if a value isn't specified for an unshared durable
subscription.

Configuring a streaming ingestion task 27

https://knowledge.informatica.com/s/article/Connect-to-an-Oracle-Weblogic-JMS-server-from?language=en_US

Kafka source properties
When you define Kafka as the source of a streaming ingestion task, you must configure the mandatory Kafka
source properties on the Source tab. Optionally, provide a comma-separated list of consumer configuration
properties.

The following table describes the mandatory Kafka source properties:

Property Description

Connection Name of the Kafka source connection.

Connection
Type

The Kafka connection type.
The connection type populates automatically based on the connection that you select.

Topic Kafka source topic name or a Java supported regular expression for the Kafka source topic name
pattern to read the events from.
You can either enter the topic name manually or fetch the metadata of the Kafka connection. To
select the metadata of the Kafka connection perform the following actions:
1. Click Select.

The Select Source Object dialog box appears, showing all the topics or topic patterns available in
the Kafka broker.

2. Select the topic and click OK.
Note: When you add a new Kafka source topic to a streaming ingestion job that is in Up and Running
state, redeploy the job immediately to avoid data loss from the new topics.

Consumer Configuration Properties

On the Advanced Properties section of the Source tab, in Consumer Configuration Properties, you can
provide a comma-separated list of optional consumer configuration properties. Specify the values as
key-value pairs.

The following table describes the consumer configuration properties that you can configure for Kafka
sources:

Property Description

group.id Specifies the name of the consumer group the Kafka consumer belongs to. If group.id doesn't
exist when you construct the Kafka consumer, the task creates the consumer group
automatically. This property is auto-generated. You can override this property. Default is
key1=value1, key2=value2.

auto.offset.reset Specifies the behavior of the consumer when there is no committed position or when an offset is
out of range.
You can use the following types of auto offset reset:
- Earliest. Resets the offset position to the beginning of the topic.
- Latest. Resets the offset position to the latest position of the topic.
- None.
When you read data from a Kafka topic or use a topic pattern and the offset of the last
checkpoint is deleted during message recovery, provide the following property to recover the
messages from the next available offset:
auto.offset.reset=earliest
Otherwise, the streaming ingestion task reads data from the latest offset available.

28 Chapter 1: Mass Ingestion Streaming

Property Description

message-
demarcator

Kafka source receives messages in batches. You can contain all Kafka messages in a single
batch for a given topic and partition. This property allows you to provide a string to use as a
demarcation for multiple Kafka messages. If you don't provide a value, each Kafka message is
triggered as a single event.
You can use the following delimiters as demarcators:
- New line. Separates the new content with a new line feed. Enter the following value to use a

new line as a message demarcator:
message-demarcator=${literal('
'):unescapeXml()}

- Comma. Separates the new content with a comma. Enter the following value to use a comma
as a message demarcator:
message-demarcator=${literal(','):unescapeXml()}

- Semicolon. Separates the new content with a semicolon. Enter the following value to use a
semicolon as a message demarcator:
message-demarcator=${literal(';'):unescapeXml()}

- Tab. Separates the new content with a tab. Enter the following value to use a tab as a
message demarcator:
message-demarcator=${literal('	'):unescapeXml()}

max.poll.records Specifies the maximum number of records returned in a single call to poll.
For example, max.poll.records=100000

MQTT source properties
The following table describes the MQTT source properties on the Source tab when you define a streaming
ingestion task:

Property Description

Connection Name of the MQTT source connection.

Connection Type The MQTT connection type.
The connection type populates automatically based on the connection that you select.

Topic Name of the MQTT topic.

Configuring a streaming ingestion task 29

The following table describes the advanced properties for the MQTT source on the Source tab when you
define a streaming ingestion task:

Connection
Property

Description

Client ID Optional. Unique identifier that identifies the connection between the MQTT source and the MQTT
broker. The client ID is the file-based persistence store that the MQTT source uses to store
messages when they are being processed.
If you do not specify a client ID, the streaming ingestion task uses the client ID provided in the
MQTT connection. However, if you have not specified the client ID even in the MQTT connection,
the streaming ingestion task generates a unique client ID.

Max Queue Size Optional. The maximum number of messages that the processor can store in memory at the same
time.
Default value is 1024 bytes.

OPC UA source properties
The following table describes the OPC UA source properties on the Source tab when you define a streaming
ingestion task:

Property Description

Connection Name of the OPC UA source connection.

Connection Type The OPC UA connection type.
The connection type populates automatically based on the connection that you select.

Tag List Specified
As

Format in which the list of tags is specified.
Select one of the following formats:
- List of Tags. List of tags to be read by the OPC client, specified as a JSON array.
- Path for Tags File. File containing list of tags to be read by the OPC client, specified as a

JSON array.

Tags or File Path List of tags or path to the file containing the list of tags to be read, specified as a JSON array.
The list of tags or file path cannot exceed 2048 characters.

Minimum Publish
Interval

The minimum publish interval of subscription notification messages, in milliseconds.
Set this property to a lower value to detect the rapid change of data.
Default is 1,000 milliseconds.

30 Chapter 1: Mass Ingestion Streaming

REST V2 source properties
The following table describes the REST V2 source properties on the Source tab when you define a streaming
ingestion task:

Property Description

Connection Name of the REST V2 source connection.

Connection Type The REST V2 connection type.
The connection type populates automatically based on the connection that you select.

REST Endpoints List of REST endpoints specified in the input Swagger file.
These endpoints appear based on the chosen REST connection.

Scheme List of schemes specified in the Swagger definition.
The selected scheme is used to create a the URL.

Poll Interval Interval between two consecutive REST calls.
Default is 10 seconds.

Action on
Unsuccessful
Response codes

Action required for unsuccessful REST calls.
You can choose of the following actions:
- Raise Alert
- Route to Downstream. Route the response to the downstream processors.
- Route to Reject Directory: Route the response to the reject directory configured in Runtime

Options page.

Based on the defined operation ID in the selected REST Endpoints property, the dynamic properties such as,
Path, Query, and Payload appear at the lower section of the REST V2 source page.

• Headers. Adds header to a REST call.

• Path. Consists of multiple path parameters as specified in Swagger definition. You cannot edit the Path
Key. You can only enter corresponding values for the path keys.

• Query. Consists of query parameters. Query parameters are similar to path parameters.

• Payload.

- Sample Payload. A read-only text box that shows schema of request body for a PUT, POST, or PATCH
request. For example, { "name" : "string", "salary" : "string", "age" : "string" }.

- Body. The request body to be sent incase of PUT, POST, or PATCH request. You can copy a sample
request body from a sample payload and then can replace the values as appropriate.

You can define any of these properties as mandatory in the Swagger specification file. Then, the same
property is considered mandatory while configuring a streaming ingestion REST V2 source. If you do not
define a REST endpoint in the Swagger specification file, the corresponding section does not appear on the
streaming ingestion REST V2 page.

Note: When you configure a streaming ingestion task, the absolute path of the Swagger specification file you
provide must be available in the runtime environment.

Configuring a streaming ingestion task 31

Configuring a target
To configure a target, select a target connection to which you want to transfer the streaming data and then
configure the target properties. Before you configure a target, ensure that the connection to the target is
created in the Administrator service.

1. On the Target page, select a connection.

The streaming ingestion task supports the following targets:

• Amazon Kinesis Data Firehose

• Amazon Kinesis Streams

• Amazon S3 V2

• Apache Kafka

• Databricks Delta

• Flat file

• Google BigQuery V2

• Google PubSub

• Google Cloud Storage V2

• JDBC V2

• Microsoft Azure Data Lake Storage Gen2

• Microsoft Azure Event Hubs

2. Based on the target that you select, enter the required details.

Options that appear on the Target tab of the task wizard vary based on the type of target that you select.

3. Under Advanced Properties, enter the required information.

4. Perform one of the following tasks:

• To add a transformation, click Next.
The Transformation tab appears.

• To save the task, click Save.
You can then deploy the streaming ingestion task. For more information about deploying the
streaming ingestion task, see “Deploying a streaming ingestion task” on page 47.

Amazon Kinesis Data Firehose target properties
The following table describes the Amazon Kinesis Data Firehose target properties on the Target tab when
you define a streaming ingestion task:

Property Description

Connection Name of the Amazon Kinesis Data Firehose target connection.

Connection Type The Amazon Kinesis connection type.
The connection type populates automatically based on the connection that you select.

Stream Name/
Expression

Kinesis stream name or a regular expression for the Kinesis stream name pattern.
Use the $expression$ format for the regular expression. $expression$ evaluates the data
and sends the matching data to capturing group 1.

For more information about Kinesis Data Firehose, see the Amazon Web Services documentation.

32 Chapter 1: Mass Ingestion Streaming

Amazon Kinesis Streams target properties
The following table describes the Amazon Kinesis Streams target properties on the Target tab when you
define a streaming ingestion task:

Property Description

Connection Name of the Amazon Kinesis Stream target connection.

Connection Type The Amazon Kinesis connection type.
The connection type populates automatically based on the connection that you select.

Stream Name/
Expression

Kinesis stream name or a regular expression for the Kinesis stream name pattern.
Use the $expression$ format for the regular expression. $expression$ evaluates the data
and sends the matching data to capturing group 1.

For more information about Kinesis Streams, see the Amazon Web Services documentation.

Amazon S3 target properties
The following table describes the Amazon S3 target properties on the Target tab when you define a
streaming ingestion task:

Property Description

Connection Name of the Amazon S3 target connection.

Connection Type The Amazon S3 V2 connection type.
The connection type populates automatically based on the connection that you select.

Object Name/
Expression

Amazon S3 file name or a regular expression for the Amazon S3 file name pattern.
Use the $expression$ format for a regular expression. $expression$ evaluates the data and
sends the matching data to capturing group 1.

The following table describes the Amazon S3 advanced target properties that you can configure on the
Target tab when you define a streaming ingestion task:

Property Description

Partitioning
Interval

Optional. The time interval according to which the streaming ingestion task creates partitions in
the Amazon S3 bucket. To use this option, you must add a ${Timestamp} expression to the
object name in the Object Name/Expression field.
Default is none.
For more information, see “Amazon S3 target” on page 12.

Minimum Upload
Part Size

Optional. Minimum upload part size when uploading a large file as a set of multiple independent
parts, in megabytes. Use this property to tune the file load to Amazon S3.
Default value is 5120 MB.

Multipart Upload
Threshold

Optional. Multipart download minimum threshold to determine when to upload objects in
multiple parts in parallel.
Default value is 5120 MB.

Configuring a streaming ingestion task 33

Azure Event Hubs target properties
The following table describes the Azure Event Hubs target properties on the Target tab when you define a
streaming ingestion task:

Property Description

Connection Name of the Azure Event Hubs target connection.

Connection Type The Azure Event Hubs connection type.
The connection type populates automatically based on the connection that you select.

Event Hub The name of the Azure Event Hubs.

The following table describes the Azure Event Hubs advanced target properties that you can configure on the
Target tab when you define a streaming ingestion task:

Property Description

Shared Access Policy
Name

Optional. The name of the Event Hub Namespace Shared Access Policy.
The policy must apply to all data objects that are associated with this connection.
To read from Event Hubs, you must have Listen permission. To write to an Event Hub, the
policy must have Send permission.

Shared Access Policy
Primary Key

Optional. The primary key of the Event Hub Namespace Shared Access Policy.

Databricks Delta target properties
The following table describes the Databricks Delta target properties on the Target tab when you define a
streaming ingestion task:

Property Description

Connection Name of the Databricks Delta target connection.

Connection Type The Databricks Delta connection type.
The connection type populates automatically based on the connection that you select.

Staging Location Relative directory path to store the staging files.
- If the Databricks cluster is deployed on AWS, use the relative path of the Amazon S3 staging

bucket.
- If the Databricks cluster is deployed on Azure, use the relative path of the Azure Data Lake

Store Gen2 staging file system name.

Target Table Name Name of the Databricks Delta table to append.

34 Chapter 1: Mass Ingestion Streaming

The following table describes the Databricks Delta target advanced properties that you can configure on the
Target tab when you define a streaming ingestion task:

Property Description

Target Database Name Overrides the database name provided in the Databricks Delta connection in Administrator.

For a Databricks Delta target, the source messages must be only in JSON format.

Note: In a streaming ingestion job with Databricks Delta target, when you change the source schema to
include additional data columns, Informatica recommends that you redeploy the job to include the change
data capture.

When you use a Filter transformation in a streaming ingestion task with a Databricks Delta target, ensure that
the ingested data conforms to a valid JSON data format. The Filter transformation with JSONPath filter type
validates the incoming data. If the incoming data does not conform to a valid JSON data format, the
streaming ingestion task rejects the data. The rejected data then moves into the configured reject directory.
If you do not have a reject directory already configured, the rejected data is lost.

Informatica recommends that you use a Combiner transformation in the streaming ingestion task that
contains a Databricks Delta target. Add the Combiner transformation before writing to the target. The
streaming ingestion task then combines all the staged data before writing into the Databricks Delta target. To
optimize performance, batch 100 records or more.

Flat file target properties
The following table describes the flat file target properties on the Target tab when you define a streaming
ingestion task:

Property Description

Connection Name of the flat file target connection.

Connection Type The flat file connection type.
The connection type appears based on the connection that you select.

Staging Directory
Location

Path to the staging directory on the Secure Agent.
Specify the staging directory where to stage the files when you write data to a flat file target.
Ensure that the directory has sufficient space and you have write permissions to the directory.

Rollover Size * The file size, in KB, at which the task moves the file from the staging directory to the target.
For example, set the rollover size to 1 MB and name the file target.log. If the source service
sends 5 MB to the target, the streaming ingestion task first creates the
target.log.<timestamp> file. When the size of target.log.<timestamp> reaches 1 MB, the task
rolls the file over.

Rollover Events
Count *

Number of events or messages to accumulate for file rollover.
For example, if you set the rollover events count to 1000, the task rolls the file over when the
file accumulates 1000 events.

Rollover Time * Length of time, in milliseconds, for a target file to roll over. After the time period has elapsed,
the target file rolls over.
For example, if you set rollover time as 1 hour, the task rolls the file over when the file reaches
a period of 1 hour.

Configuring a streaming ingestion task 35

Property Description

File Name The name of the file that the task creates on the target.

* Specify a value for at least one rollover option to perform target file rollover.

Google BigQuery V2 target properties
The following table describes the Google BigQuery V2 target properties on the Target tab when you define a
streaming ingestion task:

Property Description

Connection Name of the Google BigQuery V2 target connection.

Connection Type The Google BigQuery V2 connection type.
The connection type populates automatically based on the connection that you select.

Dataset Name Name of the Google BigQuery dataset. The dataset must exist in the Google Cloud Platform.

Table name Name of the Google BigQuery table to insert data to in JSON format.

Google Cloud Storage target properties
The following table describes the Google Cloud Storage target properties on the Target tab when you define
a streaming ingestion task:

Property Description

Connection Name of the Google Cloud Storage target connection.

Connection Type The Google Cloud Storage connection type.
The connection type populates automatically based on the connection that you select.

Number of Retries The number of times the streaming ingestion task retries to write to the Google Cloud Storage
target.
Default is 6.

Bucket The container to store, organize, and access objects that you upload to Google Cloud Storage.

Key Name of the Google Cloud Storage target object.

The following table describes the Google Cloud Storage advanced target properties on the Target tab when
you define a streaming ingestion task:

Property Description

Proxy Host Host name of the outgoing proxy server that the Secure Agent uses.

Proxy Port Port number of the outgoing proxy server.

36 Chapter 1: Mass Ingestion Streaming

Property Description

Content Type The file content type.
You can specify any MIME types, such as application.json, multipart, text, or html. These values
are not case sensitive.
Default is text.

Object ACL Access control associated with the uploaded object.
Choose one of the following types of authentication:
- Authenticated Read. Gives the bucket or object owner FULL_CONTROL permission and gives

all authenticated Google account holders READ permission.
- Bucket Owner Full Control. Grants full control permission to the bucket or object owner and

grants read permission to all the authenticated Google account holders.
- Bucket Owner Read Only. Grants full control permission to the object owner and grants read

permission to the bucket owner. Use this type only with objects.
- Private. Gives the bucket or object owner FULL_CONTROL permission for a bucket or object.
- Project Private. Gives permission to the project team based on their roles. Anyone who is part

of the team has READ permission and project owners and project editors have FULL_CONTROL
permission. This is the default ACL for newly created buckets.

- Public Read Only. Gives the bucket owner FULL_CONTROL permission and gives all
anonymous users READ and WRITE permission. This ACL applies only to buckets. When you
apply this to a bucket, anyone on the Internet can list, create, overwrite, and delete objects
without authenticating.

Server Side
Encryption Key

Server-side encryption key for the Google Cloud Storage bucket. Required if the Google Cloud
Storage bucket is encrypted with SSE-KMS.

Content
Disposition Type

Type of RFC-6266 Content Disposition to be attached to the object. Choose either Inline or
Attachment.

Google PubSub target properties
The following table describes the Google PubSub target properties on the Target tab when you define a
streaming ingestion task:

Property Description

Connection Name of the Google PubSub target connection.

Connection Type The Google PubSub connection type.
The connection type populates automatically based on the connection that you select.

Topic Name of the target Google PubSub topic.

Batch Size Maximum number of messages that the Cloud service bundles together in a batch.
Default is 1.

Configuring a streaming ingestion task 37

JDBC V2 target properties
The following table describes the JDBC V2 target properties on the Target tab when you define a streaming
ingestion task:

Property Description

Connection Name of the JDBC V2 target connection.

Connection Type The JDBC V2 connection type.
The connection type populates automatically based on the connection that you select.

Table name Name of the table to insert data to in JSON format.

Kafka target properties
The following table describes the Kafka target properties that on the Target tab when you define a streaming
ingestion task:

Property Description

Connection Name of the Kafka target connection.

Connection
Type

The Kafka connection type.
The connection type populates automatically based on the connection that you select.

Topic Name/
Expression

Kafka topic name or a Java supported regular expression for the Kafka topic name pattern.
Use the $expression$ format for the regular expression. $expression$ evaluates the data and
sends the matching data to capturing group 1.
You can either enter the topic name manually or fetch the already created metadata of the Kafka
connection.
1. Click Select.

The Select Target Object dialog box appears showing all the topics available in the Kafka broker.
However, Kafka topic name patterns do not appear in the list.

2. Select the required topic and click OK.

The following table describes the Kafka advanced target properties on the Target tab when you define a
streaming ingestion task:

Property Description

Producer Configuration Properties The configuration properties for the producer.

Metadata Fetch Timeout in
milliseconds

The time after which the metadata is not fetched.

Batch Flush Size in bytes The batch size of the events after which a streaming ingestion task writes
data to the target.

38 Chapter 1: Mass Ingestion Streaming

Microsoft Azure Data Lake Storage Gen2 target properties
The following table describes the Microsoft Azure Data Lake Storage Gen2 (ADLS Gen2) target properties on
the Target tab when you define a streaming ingestion task:

Property Description

Connection Name of the Microsoft Azure Data Lake Storage Gen2 target connection.

Connection
Type

The ADLS Gen2 connection type.
The connection type populates automatically based on the connection that you select.

Write Strategy The operation type to write data to ADLS Gen2 file.
If the file exists in ADLS Gen2 storage, you can select to overwrite, append, fail, or rollover the
existing file.
Default is Append.
- Append. Add data to an existing file inside a directory.
- Overwrite. Delete existing data in an existing file and insert newly read data.
- Fail. Write data to an existing file fails.
- Rollover. Close the current file to which data is being written to and create a new file based on

the configured rollover value.
Note: When you edit or redeploy a streaming ingestion job that contains a target with the rollover
strategy, all the files in the staging directory are moved to the target directory even if the defined
rollover conditions are not met.

Interim
Directory

Path to the staging directory in ADLS Gen2.
Specify the staging directory where you want to stage the files when you write data to ADLS Gen2.
Ensure that the directory has sufficient space and you have write permissions to the directory.
Applicable when you select the Write Strategy as Rollover.
While configuring an ADLS Gen 2 target in a streaming ingestion job, if you do not specify any value
for the rollover properties, the files remain in the interim directory. When you stop or undeploy the
streaming ingestion job, these files in the interim directory are moved to the target location, by
default.

Rollover Size Target file size, in kilobytes (KB), at which to trigger rollover.
Applicable when you select the Write Strategy as Rollover.

Rollover Events
Count

Number of events or messages that you want to accumulate for the rollover.
Applicable when you select the Write Strategy as Rollover.

Rollover Time Length of time, in milliseconds, for a target file to roll over. After the time period has elapsed, the
target file rolls over.
Applicable when you select the Write Strategy as Rollover.

File Name/
Expression

File name or a regular expression for the file name pattern.
Use the $expression$ format for the regular expression. $expression$ evaluates the data and
sends the matching data to capturing group 1.

Configuring a streaming ingestion task 39

The following table describes the Microsoft Azure Data Lake Storage Gen2 (ADLS Gen2) advanced target
properties on the Target tab when you define a streaming ingestion task:

Property Description

Filesystem Name
Override

Overrides the default file system name provided in connection. This file system name is used
write to a file at run time.

Directory Override Overrides the default directory path.
The ADLS Gen2 directory that you use to write data.
Default is root directory.
The directory path specified while creating the target overrides the path specified while creating
a connection.

Compression
Format

Optional. Compression format to use before the streaming ingestion task writes data to the
target file.
Use one of the following formats:
- None
- Gzip
- Bzip2
- Zlib
- Deflate
Default is None.
To read a compressed file from the data lake storage, the compressed file must have specific
extensions. If the extensions used to read the compressed file are not valid, the Secure Agent
does not process the file.

Configuring a transformation
You can specify the data format of the streaming data. Based on the data format, you can configure a
transformation.

1. On the Transformation page, select the format of the streaming data.

The streaming ingestion transformations support the following data formats:

• Binary

• JSON

• XML

2. Based on the selected data format, select one of the supported transformations, and configure it.

3. To add more than one transformation, click Add Transformations.

a. On the Transformation tab, click Add Transformation.

The New Transformation dialog box appears.

b. Based on the transformation type you select, enter the required properties.

c. Click Save.

The saved transformation appears under Transformations in the Transformation Details wizard.

4. Perform one of the following tasks:

• To configure the runtime options for the task, click Next.
The Runtime Options tab appears.

• To save the task, click Save.

40 Chapter 1: Mass Ingestion Streaming

You can then deploy the streaming ingestion task. For more information about deploying the
streaming ingestion task, see “Deploying a streaming ingestion task” on page 47.

Adding a transformation

1. On the Transformation tab, click + to add a transformation.

The New Transformation dialog box appears.

2. Based on the transformation type you select, enter the required properties.

3. Click Save.

The saved transformation appears under Transformations in the Transformation Details wizard.

Combiner transformation properties
The following table describes the properties you can configure for a Combiner transformation:

Property Description

Transformation Type Select Combiner.

Transformation Name Name of the Combiner transformation.

Minimum Number of Events Minimum number of events to collect before the transformation combines the events
into a single event.
Default is 1.

Maximum Aggregate Size Maximum size of the combined events in megabytes.
If not specified, this transformation waits to meet any of the other two conditions
before combining the events.

Time Limit Maximum time to wait before combining the events.
If not specified, this transformation waits for the other conditions before combining
the events or waits forever.

Delimiter Symbols used to specify divisions between data strings in the transformed data.
Applicable only for the binary data format.

Append the delimiter
character to the last record
in each batch

When there are many batches with events or records, you can choose whether to use
the delimiter character at the end of the last record in each batch. This enables the
delimiter character to act as the division between each batch.

Configuring a streaming ingestion task 41

Filter transformation properties
The following table describes the properties you can configure for a Filter transformation:

Property Description

Transformation Type Select Filter.

Transformation Name Name of the Filter transformation.

Filter Type Type of filter to evaluate the incoming data.
Use one of the following filter types:
- JSON Path. An expression that consists of a sequence of JSON properties.
- Regular Expression. A range or pattern of values.
- XPath. An expression that selects nodes or node-sets in an XML document.

Expression Expression for the filter type that you select.

Format Converter transformation properties
When you define a streaming ingestion task and add a Format Converter transformation, provide values for
transformation properties on the New Transformation page of the task wizard.

The following table describes the properties you can configure for a Format Converter transformation:

Property Description

Transformation Type Select Format Converter.

Transformation Name Name of the Format Converter transformation.

Convert to Format The streaming ingestion task converts incoming data to the selected format. Currently, the
Format Converter transformation converts the incoming data only to Parquet format.

Date Format * Enter the format of dates in input fields. For example, MM/dd/yyyy.

Time Format * Enter the format of time in input fields. For example, HH/mm/ss.

Timestamp Format * Enter the format of timestamps in input fields.
For example, the epoch timestamp for 10/11/2021 12:04:41 GMT (MM/dd/yyyy HH:mm:ss)
is 1633953881 and the timestamp in milliseconds is 1633953881000.

Expect Records as Array Determines whether to expect a single record or an array of records. Select this property to
expect arrays in each record. Applies only to XML incoming messages. By default, this
property is deselected.

* If the format is not specified, it is considered in milliseconds since the epoch (Midnight, January 1, 1970, GMT).

42 Chapter 1: Mass Ingestion Streaming

Java transformation properties
The following table describes the properties you can configure for a Java transformation:

Property Description

Transformation
Type

Select Java.

Transformation
Name

Name of the Java transformation.

Classpath The JAR file used to run the Java code. You can use a separator to include multiple JAR files.
On UNIX, use a colon to separate multiple classpath entries. On Windows, use a semicolon to
separate multiple classpath entries.
For example, /home/user/commons-text-1.9.jar; /home/user/json-
simple-1.1.1.jar

Import code Import third-party, built-in, and custom Java packages. You can import multiple packages. Use a
semicolon to separate multiple packages. You can use the following syntax to import packages:
import <package name>
For example, import java.io.*;

Main code A Java code that provides the transformation logic.
For example,

JSONParser parser = new JSONParser();
 try {
 JSONObject object = (JSONObject) parser.parse(inputData);
 object.put("age", 23);
 outputData=object.toJSONString();
 } catch (ParseException e) {
throw new RuntimeException();
}

Configuring a streaming ingestion task 43

Jolt transformation properties
The following table describes the properties you have to configure for a Jolt transformation:

Property Description

Transformation Type Select Jolt.

Transformation
Name

Name of the Jolt transformation.

Jolt Specification Enter a JSON structure to add a chain of multiple operations using the following operations:
- shift. Reads values of the input JSON and adds them to specified locations in the output

JSON.
For example,
[{ "operation": "shift", "spec": { "breadbox": "counterTop" } }]

- default. Adds values or arrays of values to the output JSON.
For example,
[{ "operation": "default", "spec": { "counterTop": { "loaf1":
{ "slices": ["slice1", "slice2", "slice3", "slice4] } } } }] }

- cardinality. Transforms elements in the input JSON to single values or to arrays (lists) in the
output JSON.
For example,
[{ "operation": "cardinality", "spec": { "counterTop": { "loaf1":
{ "slices": "ONE" } } } }]

- remove. Deletes elements if found in the input JSON.
For example,
[{ "operation": "remove", "spec": { "counterTop": { "loaf2": "",
"jar1": "" } } }]

- modify. Writes calculated values to elements in the output JSON.
For example,
[{ "operation": "modify-overwrite-beta", "spec": { "counterTop":
{ "jar2": { "contents": "=toUpper" } } } }]

- sort. Sorts all arrays and maps from the input JSON into the output JSON.
For example,
[{ "operation": "sort" }]

The following is an example of a Jolt specification involving multiple operations:

Input: {"name":"test"}

[{
 "operation": "shift",
 "spec": { "name": "testname"
 }
 }, {
 "operation": "default",
 "spec": {
 "city": ["Anantapur", "Bangalore", "Hyderabad"]
 }
 }, {
 "operation": "cardinality",
 "spec": {
 "city": "ONE"
 }
 }, {

44 Chapter 1: Mass Ingestion Streaming

Property Description

 "operation": "remove",
 "spec": {
 "age": ""
 }

 }, {
 "operation": "modify-overwrite-beta",
 "spec": {
 "city": "=toUpper"
 }
 }, {
 "operation": "sort"}]

Note: If the input records doesn't match the Jolt specification, the transformation writes null
records to the target.

Python transformation properties
The following table describes the properties you can configure for a Python transformation:

Property Description

Transformation Type Select Python.

Transformation Name Name of the Python transformation.

Script Input Type Python script input type. You can either enter the Python script in Script Body or provide the
path to the Python script available in the Script Path.

Python Path Directory to the Python path libraries.

Splitter transformation properties
The following table describes the properties you can configure for a Splitter transformation for binary
message format:

Property Description

Transformation Type Select Splitter.

Transformation Name Name of the Splitter transformation.

Split Type Split condition to evaluate the incoming data.
Use one of the following split types:
- Line Split.
- Content Split.

Line Split Count The maximum number of lines that each output split file contains, excluding header lines.

Byte Sequence Specified sequence of bytes on which to split the content.

Configuring a streaming ingestion task 45

The following table describes the properties you can configure for a Splitter transformation for JSON
message format:

Property Description

Split Expression Split condition to evaluate the incoming data.
Use one of the following split types:
- Array Split.
- JSONPath Expression.

JSONPath
Expression

A JSONPath expression that specifies the array element to split into JSON or scalar
fragments.
The default JSONpath Expression is $.

The following table describes the properties you can configure for a Splitter transformation for XML message
format:

Property Description

Split Depth The XML nesting depth to start splitting the XML fragments.
The default split depth is 1.

Configuring runtime options
You can configure additional runtime options for the streaming ingestion task. Runtime options include
settings to manage reject events and to notify users about errors.

1. On the Runtime Options page, under Notification Management, select to either disable the notifications
or set the time limit after which you want to receive a notification if an error occurs.

You can set the time in minutes or hours. Default is 10 minutes.

2. Enter a list of email addresses to which you want to send notifications if a task runs with error.

Use commas to separate a list of email addresses. Note that email notification options configured for
the organization are not used here.

3. Under Agent Parameters, perform the following tasks:

a. Specify a directory to store the rejected events.

Rejected events are not stored by default.

Note that filtered events in a regular expression are not moved to the reject directory.

b. To purge the log files, specify the maximum file size for the log file after which the log file is purged.

You can set the file size in megabytes or gigabytes. Default is 10 MB.

c. Choose the severity of an event that you want to log.

The default log level is Info.

The supported log levels are:

• Debug. Logs all messages along with additional debug level messages.

• Error. Logs only the error messages.

• Info. Logs all errors, warnings, and important informational messages.

46 Chapter 1: Mass Ingestion Streaming

• Warn. Logs all errors and warning messages.

4. Under Advanced Parameters, perform the following tasks to improve the performance of the streaming
ingestion task:

a. Click the icon next to Advanced Parameters.

The Key and Value fields appear.

b. Specify a valid parameter property and its value.

5. To save the task, click Save.

You can then deploy the streaming ingestion task. For more information about deploying the streaming
ingestion task, see “Deploying a streaming ingestion task” on page 47.

Deploying a streaming ingestion task
After you create a streaming ingestion task, you must deploy it on the Secure Agent for the task to run as a
job. Before deploying the task, ensure that the Secure Agent configured for the task is running.

u To deploy a task, perform one of the following actions:

• After you save a task, click Deploy.

• In Data Integration, on the Explore page, open the project that contains the task, and then select
Deploy from the Actions menu for the task.

A message about successful deployment of the task appears. Your job is now queued to run.

When you edit or undeploy a job, deploying the job again does not affect any other jobs running on the
same Secure Agent or Secure Agent group.

When you edit or redeploy a streaming ingestion job that contains a target with the rollover strategy, all
the files in the staging directory are moved to the target directory even if the defined rollover conditions
are not met.

Undeploying a streaming ingestion job
You can undeploy a streaming ingestion job from the Secure Agent.

In Data Integration, on the Explore page, open the project that contains the job, and then select Undeploy
from the Actions menu for the job.

Navigate to the row for the job that you want to undeploy in any of the following monitoring interfaces:

• My Jobs page that's accessed from the navigation bar of the Home page

• All Jobs page in Monitor

• All Jobs tab on the Mass Ingestion page in Operational Insights

When you undeploy a streaming ingestion job, the Secure Agent does not save the previous state histories of
the job. So, when you deploy the streaming ingestion task again, the task runs as completely new job.

Configuring a streaming ingestion task 47

Stopping and resuming streaming ingestion jobs
You can stop and resume streaming ingestion jobs. Stop or resume a job on the My Jobs page in Data
Integration, the All Jobs and Running Jobs pages in Monitor, or the Mass Ingestion page in Operational
Insights.

Stop a job.

You can stop a streaming ingestion job that is Up and Running, Running with Error, or Running with
Warnings.

To stop a job, open the My Jobs page in Data Integration, or the All Jobs and Running Jobs pages in
Monitor, and then select Stop from the Actions menu for the job.

Alternatively, you can stop a streaming ingestion job from the Actions menu in a job row on the Mass
Ingestion page in Operational Insights.

You can also use the Stop icon beside the Actions menu to stop the job.

Resume a job.

You can resume a stopped streaming ingestion job.

To resume a job, open the My Jobs page in Data Integration, or the All Jobs and Running Jobs pages in
Monitor, and then select Resume from the Actions menu for the job.

Alternatively, you can resume a streaming ingestion job from the Actions menu in a job row on the Mass
Ingestion page in Operational Insights.

You can also use the Resume icon beside the Actions menu to resume the job.

When you stop a streaming ingestion job, the Secure Agent saves the previous state histories of the job.
When you resume the stopped streaming ingestion job, the job starts running from the last saved state.

Frequently asked questions for Mass Ingestion
Streaming behavior

Review the following frequently asked questions to understand the product behaviour.

Are the checkpoints stored on the Secure Agent, cloud repository, source, or target?

Depending on the source and target, the checkpoints are stored on the Secure Agent, cloud repository,
source, or target. The storage of checkpoints varies for different sources and targets.

For example, for an Amazon Kinesis Streams source, streaming ingestion creates a DynamoDB
checkpoint table in a data warehouse such as Amazon S3.

Can I set the checkpoint after deploying or undeploying a task?

No, you can't set the checkpoint after deploying or undeploying a task.

In a streaming ingestion task with a Kafka source and a Kafka target, can I rely on the offset stored in Kafka as a restart
checkpoint?

Yes, you can treat the offset stored in Kafka as a restart checkpoint.

48 Chapter 1: Mass Ingestion Streaming

In a streaming ingestion task with a Kafka source and a Kafka target, does the group.id property help to restart the
checkpoint after the tasks are undeployed and deployed?

The group.id is a shared property in Kafka that helps in checkpoint recovery. When a Kafka source within
a group processes a message successfully, it updates its offset in the topic partition. This offset is
stored along with the group.id. When a Kafka dataflow transitions from the undeployed to the deployed
status, and is up and running, it uses the same group.id and the stored offset to resume processing from
where the dataflow stopped.

Can you guarantee At least once delivery allowing potential duplicates in the target after a task failure?

Yes, At least once delivery is guaranteed.

Is there any difference in delivery depending on the source and target connectors?

Each connector has a unique implementation, but all are designed to ensure At least once delivery
guaranteed delivery.

How does recovery occur after a failure?

After the Secure Agent recovers from a failure, the runtime engine restarts, and the reconciliation
process takes place.

Does Mass Ingestion Streaming support a Secure Agent group with more than one Secure Agent?

Mass Ingestion Streaming supports multiple Secure Agents under a single agent group. However, a
dataflow can't run across multiple Secure Agents at the same time.

Does Mass Ingestion Streaming support shared Secure Agent groups?

Mass Ingestion Streaming doesn't support shared Secure Agent groups.

Frequently asked questions for Mass Ingestion Streaming behavior 49

C h a p t e r 2

Mass Ingestion Streaming REST
API

Use streaming ingestion resources to deploy, undeploy, start, stop, copy, and update streaming ingestion
tasks and to monitor streaming ingestion jobs.

When you use the streaming ingestion resource, use the following request header format:

<METHOD><base URL>
Content-Type: application/json
Accept: application/json
IDS-SESSION-ID: <SessionId>

Dataflows resource
Use the Dataflows resource to deploy, undeploy, start, and stop streaming ingestion tasks.

Use the following base URL:

<server URI>/sisvc/api/v1/Dataflows('<dataflow ID>')/OData.SI.<API name>
Note: If you use a tool such as Postman that automatically includes the HTTP version, do not enter the HTTP
version in the URL. If the HTTP version appears twice in the URL, the request fails.

Deploying a streaming ingestion task
Use a POST request to deploy a streaming ingestion task.

POST request

To deploy a streaming ingestion task, use the following URL:

<server URI>/sisvc/api/v1/Dataflows('<dataflow ID>')/OData.SI.Deploy
A request body is not required because the URL passes the dataflow ID.

POST request example

To deploy a streaming ingestion task, you might send a request similar to the following example:

POST <serverUrl>/sisvc/api/v1/Dataflows('50077311-d4a4-437c-9218-c3596d1f182f')/
OData.SI.Deploy
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

50

POST response example

If the request is successful, you might receive a response similar to the following example:

{
 "@odata.context": "$metadata#OData.SI.DeploymentResult",
 "successful": true,
 "code": null,
 "errorMessage": null
}

Undeploying a streaming ingestion task
Use a POST request to undeploy a streaming ingestion task.

POST request

To undeploy a streaming ingestion task, use the following URL:

<server URI>/sisvc/api/v1/Dataflows('<dataflow ID>')/OData.SI.Undeploy
A request body is not required because the URL passes the dataflow ID.

POST request example

To undeploy a streaming ingestion task, you might send a request similar to the following example:

POST <serverUrl>/sisvc/api/v1/Dataflows('50077311-d4a4-437c-9218-c3596d1f182f')/
OData.SI.Undeploy
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

POST response example

If the request is successful, you might receive a response similar to the following example:

{
 "@odata.context": "$metadata#OData.SI.DeploymentResult",
 "successful": true,
 "code": null,
 "errorMessage": null
}

Starting a streaming ingestion task
Use a POST request to start a streaming ingestion task.

POST request

To start a streaming ingestion task, use the following URL:

<server URI>/sisvc/api/v1/Dataflows('<dataflow ID>')/OData.SI.Start
A request body is not required because the URL passes the dataflow ID.

POST request example

To start a streaming ingestion task, you might send a request similar to the following example:

POST <serverUrl>/sisvc/api/v1/Dataflows('50077311-d4a4-437c-9218-c3596d1f182f')/
OData.SI.Start
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

Dataflows resource 51

POST response example

If the request is successful, you might receive a response similar to the following example:

{
 "@odata.context": "$metadata#OData.SI.DeploymentResult",
 "successful": true,
 "code": null,
 "errorMessage": null
}

Stopping a streaming ingestion task
Use a POST request to stop a streaming ingestion task.

POST request

To stop a streaming ingestion task, use the following URL:

<server URI>/sisvc/api/v1/Dataflows('<dataflowID>')/OData.SI.Stop
A request body is not required because the URL passes the dataflow ID.

POST request example

To stop a streaming ingestion task, you might send a request similar to the following example:

POST <serverUrl>/sisvc/api/v1/Dataflows('d7572789-dc4c-4c56-bbeb-3772736d61aa')/
OData.SI.Stop
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

POST response example

If the request is successful, you might receive a response similar to the following example:

{
 "@odata.context": "$metadata#OData.SI.DeploymentResult",
 "successful": true,
 "code": null,
 "errorMessage": null
}

CopyEntities resource
Use the CopyEntities resource to copy streaming ingestion tasks.

POST request

To copy streaming ingestion tasks, use the following URL:

<server URI>/sisvc/restapi/v1/CopyEntities

52 Chapter 2: Mass Ingestion Streaming REST API

You can include the following fields in the request:

Field Type Required Description

targetLocationID String Yes ID of the target location to copy the objects to.

sourceEntities Array Yes Configuration of the source and target connections.

sourceId String Yes ID of the source object.

targetName String Yes Name of the target object.

targetDescription String - Description of the target object.

POST request example

To copy two streaming ingestion tasks, you might send a request similar to the following example:

POST <serverUrl>/sisvc/restapi/v1/CopyEntities
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT
{
 "targetLocationID": "2RGmVdwN15PbfnQP5PSoSB",
 "sourceEntities": [
 {
 "sourceId": "5Ff6jeaSh2UfAqiV01ldKD",
 "targetName": "Test_Copy_A",
 "targetDescription": "Description_1"
 },
 {
 "sourceId": "fZnCSqcWTOQkJOr8VCWZQE",
 "targetName": "Test_Copy_B",
 "targetDescription": "Description_2"
 }
]
}

If the request is unsuccessful, the response includes a reason for the failure.

POST response

When you use a POST request to copy streaming ingestion tasks, it returns a success response if successful
or an error object if an error occurs.

POST response example

If the request is successful, you might receive a response similar to the following example:

{
 "Status Message": "Operation succeeded on 2 artifacts.",
 "Success": {
 "Test_Copy_A": "ideNJw6l54gizxofF53HQH",
 "Test_Copy_B": "cOQ3gcWKSYikzVqqg6IOok"
 }
}

CopyEntities resource 53

UpdateEntity resource
Use the UpdateEntity resource to update a streaming ingestion task. You can update streaming ingestion
tasks that use the following connectors: Amazon Kinesis, Amazon S3 V2, Microsoft Azure Event Hub,
Microsoft Azure Data Lake Storage Gen2, Flat file, JDBC V2, JMS, Kafka, or MQTT.

POST request
Use a POST request to update a streaming ingestion task.

To update a streaming ingestion task, use the following URL:

<server URI>/sisvc/restapi/v1/UpdateEntity/Documents('<document ID>')
You can include the following fields in the request:

Field Type Required Description

name String Yes Name of the task.

description String - Description of the task.

runtimeId String Yes ID of the runtime environment.

currentVersion String Yes The latest dataflow object version.

nodes Array Yes Details of the task source and target connections.

Fields of the nodes array

The fields in the array provide the name, type, and connection ID of the connection. It includes the
configuration of the source and target connections in key-value pairs which you can edit. You can include the
following fields in the nodes array:

Field Type Required Description

name String Yes Name of the connection.

type String Yes The connection type, source or target.

connectionId String Yes ID of the connection.

transformationType String - Not applicable.

config Array Yes Configuration of the source and target connections.

54 Chapter 2: Mass Ingestion Streaming REST API

Connection configuration for tasks with MQTT as a source
When the source connection of the task source is MQTT, you can include the following fields and key-value
pairs in the config array of the source connection:

Key Type Required Description

ClientID String - Unique identifier of the connection between the MQTT source and the MQTT
broker. The client ID is the file-based persistence store that the MQTT source
uses to store messages while they are processed.
You can enter a string of up to 255 characters.

MaxQueueSize Integer - The maximum number of messages that the processor can store in memory.
You can enter a value between 1 and 2147483647.

Topic String Yes Name of the MQTT topic.

POST request example

To update a streaming ingestion task with an MQTT source and a flat file target, you might send a request
similar to the following example:

{
 "name": "mqtt to flatfile",
 "description": "mqtt to flatfile",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "mqtt to flatfile_source",
 "type": "source",
 "connectionId": "012MGS0B00000000001O",
 "transformationType": "",
 "config": [
 {
 "key": "ClientID",
 "value": "test"
 },
 {
 "key": "MaxQueueSize",
 "value": 1024
 },
 {
 "key": "Topic",
 "value": "test"
 }
]
 },
 {
 "name": "mqtt to flatfile_target",
 "type": "target",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "interimDirectory",
 "value": "/home/agent/test"
 },
 {
 "key": "rolloverSize",
 "value": 1024
 },
 {

UpdateEntity resource 55

 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 300000
 },
 {
 "key": "File Name",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "mqtt to flatfile_source",
 "to": "mqtt to flatfile_target"
 }
]
}

Connection configuration for tasks with JMS as a source
When the source connection of the task source is JMS, you can include the following fields and key-value
pairs in the config array of the source connection:

Key Type Required Description

destinationType String Yes Type of destination that the source service sends JMS messages to.
Enter one of the following values:
- QUEUE. The JMS provider delivers messages to a single consumer who

is registered for the queue.
- TOPIC. The JMS provider delivers messages to all active consumers

that subscribe to the topic.

clientId String Yes Unique ID of the JMS connection. You can enter a string of up to 255
characters.

sharedSubscription String Yes Enables multiple consumers to access a single subscription. Applies to
the TOPIC destination type. Enter one of the following values:
- True
- False

durableSubscription String Yes When set to True, the JMS source service enables inactive subscribers to
retain messages and then deliver them when the subscriber reconnects.
Applies to the TOPIC destination type. Enter one of the following values:
- True
- False

subscriptionName String Yes Name of the subscription. Applies to the TOPIC destination type, when
the topic subscription type is shared, durable, or both.

JMS Destination String Yes Name of the queue or topic that the JMS provider delivers messages to.

POST request example

To update a streaming ingestion task with an JMS source and a flat file target, you might send a request
similar to the following example:

{
 "name": "crud",

56 Chapter 2: Mass Ingestion Streaming REST API

 "description": "JMS to FileToFile",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "crud_source",
 "type": "source",
 "connectionId": "012MGS0B000000000003",
 "transformationType": "",
 "config": [
 {
 "key": "destinationType",
 "value": "QUEUE"
 },
 {
 "key": "clientId",
 "value": ""
 },
 {
 "key": "JMS Destination",
 "value": "test"
 }
]
 },
 {
 "name": "crud_target",
 "type": "target",
 "connectionId": "012MGS0B00000000000H",
 "transformationType": "",
 "config": [
 {
 "key": "interimDirectory",
 "value": "/home/agent/test"
 },
 {
 "key": "rolloverSize",
 "value": 1024
 },
 {
 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 300000
 },
 {
 "key": "File Name",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "crud_source",
 "to": "crud_target"
 }
]
}

UpdateEntity resource 57

Connection configuration for tasks with Microsoft Azure Data Lake Storage
Gen2 (ADLS Gen2) as a target
When the target connection of the task target is ADLS Gen2, you can include the following fields and key-
value pairs in the config array of the target connection:

Key Type Required Description

writeStrategy String Yes The action to take when a file by the same name exists in the ADLS
Gen2 storage.
Enter one of the following values:
- Append. Add data to the existing file.
- Overwrite. Replaces the existing file with the new file.
- Fail. Fail the request.
- Rollover. Close the current file and create a new file based on the

configured rollover value.

rolloverSize * Integer - Target file size, in KB, at which to trigger rollover. Applies to a
Rollover write strategy.
You can enter a value between 1 and 2147483647.

rolloverEvents * Integer - Number of events or messages to accumulate before a rollover.
Applies to a Rollover write strategy.
You can enter a value between 1 and 2147483647.

rolloverTime * Integer - Length of time, in milliseconds, after which to trigger a rollover.
Applies to a Rollover write strategy.
You can enter a value between 1 and 2147483647.

filesystemNameOverride String - Overrides the default file system name provided in the connection.
This file system name is used write to a file at run time.
You can enter a string of up to 1,280 characters.

directoryOverride String - Overrides the default directory path. The ADLS Gen2 directory path
to write data to. If left blank, the default directory path is used.
You can enter a string of up to 1,280 characters.

compressionFormat String - Compression format to use before the streaming ingestion task
writes data to the target file.
Enter one of the following values:
- None
- GZIP
- BZIP2
- DEFAULT1

Enter this value to use the Zlib format.
- DEFAULT2

Enter this value to use the Deflate format.

File Name/Expression String Yes ADLS Gen2 file name or a regular expression.
You can enter a string of up to 249 characters.

* Enter a value for at least one of the fields.

58 Chapter 2: Mass Ingestion Streaming REST API

POST request example

To update a streaming ingestion task with a flat file source and an ADLS Gen2 target, you might send a
request similar to the following example:

{
 "name": "flatfile to adls",
 "description": "flatfile to adls",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to adls_source",
 "type": "source",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "logfile"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "rolloverPattern",
 "value": "test"
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 }
]
 },
 {
 "name": "flatfile to adls_target",
 "type": "target",
 "connectionId": "012MGS0B00000000003D",
 "transformationType": "",
 "config": [
 {
 "key": "writeStrategy",
 "value": "Rollover"
 },
 {
 "key": "filesystemNameOverride",
 "value": "test"
 },
 {
 "key": "File Name/Expression",
 "value": "test"
 },
 {
 "key": "compressionFormat",
 "value": "NONE"
 },
 {
 "key": "directoryOverride",
 "value": "/test"
 },
 {
 "key": "interimDirectory",
 "value": "/home/agent/test"
 },
 {
 "key": "rolloverSize",
 "value": 1024
 },

UpdateEntity resource 59

 {
 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 300000
 }
]
 }
]
}

Connection configuration for tasks with Amazon S3 as a target
When the target connection of the task target is Amazon S3, you can include the following fields and key-
value pairs in the config array of the target connection:

Key Type Required Description

partitionTime String - The time interval according to which the streaming ingestion task
creates partitions in the Amazon S3 bucket.
Enter one of the following values:
- None
- 5min
- 10min
- 15min
- 20min
- 30min
- 1hr
- 1day

minUploadPartSize Integer - Minimum part size when uploading a large file as a set of multiple
independent parts, in megabytes. Use this property to tune the file
load to Amazon S3.
You can enter a value between 50 and 5120.

multipartUploadThreshold Integer - Multipart threshold when uploading objects in multiple parts in
parallel.
You can enter a value between 50 and 5120.

Object Name/Expression String Yes Amazon S3 target file name or a regular expression for the
Amazon S3 file name pattern.

POST request example

To update a streaming ingestion task with a flat file source and an Amazon S3 as target, you might send a
request similar to the following example:

{
 "name": "flatfile to amazon S3",
 "description": "flatfile to amazon S3",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to amazon S3_source",
 "type": "source",
 "connectionId": "012MGS0B00000000002N",

60 Chapter 2: Mass Ingestion Streaming REST API

 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "logfile"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "rolloverPattern",
 "value": "test"
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 }
]
 },
 {
 "name": "flatfile to amazon S3_target",
 "type": "target",
 "connectionId": "012MGS0B0000000000I7",
 "transformationType": "",
 "config": [
 {
 "key": "partitionTime",
 "value": "None"
 },
 {
 "key": "minUploadPartSize",
 "value": 5120
 },
 {
 "key": "multipartUploadThreshold",
 "value": 5120
 },
 {
 "key": "Object Name/Expression",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "flatfile to amazon S3_source",
 "to": "flatfile to amazon S3_target"
 }
]
}

UpdateEntity resource 61

Connection configuration for tasks with Azure Event Hubs as a target
When the target connection of the task target is Azure Event Hubs, you can include the following fields and
key-value pairs in the config array of the target connection:

Key Type Required Description

sasPolicyName String - The name of the Event Hub Namespace Shared Access Policy.
You can enter a string of up to 255 characters.

sasPolicyPrimaryKey String - The primary key of the Event Hub Namespace Shared Access Policy.
You can enter a string of up to 255 characters.

Event Hub String Yes The name of the Azure Event Hubs.
You can enter a string up to 255 characters. The name can contain lower
case characters, upper case characters, numbers, and the special
characters - and _.

POST request example

To update a streaming ingestion task with a flat file source and an Azure Event Hubs target, you might send a
request similar to the following example:

{
 "name": "flatfile to azure event hub",
 "description": "flatfile to azure event hub",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to azure event hub_source",
 "type": "source",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "logfile"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "rolloverPattern",
 "value": "test"
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 }
]
 },
 {
 "name": "flatfile to azure event hub_target",
 "type": "target",
 "connectionId": "012MGS0B00000000001S",
 "transformationType": "",
 "config": [
 {
 "key": "sasPolicyName",
 "value": "test"
 },

62 Chapter 2: Mass Ingestion Streaming REST API

 {
 "key": "sasPolicyPrimaryKey",
 "value": "test"
 },
 {
 "key": "Event Hub",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "flatfile to azure event hub_source",
 "to": "flatfile to azure event hub_target"
 }
]
}

Connection configuration for tasks with JDBC V2 as a target
When the target connection of the task target is JDBC V2, you can include the following fields and key-value
pairs in the config array of the target connection:

Key Type Required Description

Table Name String Yes Name of the table to insert data to in JSON format.
Enter a string of up to 988 characters.

POST request example

To update a streaming ingestion task with a flat file source and a JDBC V2 target, you might send a request
similar to the following example:

{
 "name": "FileFile to jdbc",
 "description": "FileToFile to jdbc_target",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to jdbc_source",
 "type": "source",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 },
 {
 "key": "rolloverPattern",
 "value": "test"
 },
 {
 "key": "File",
 "value": "logfile"
 }
]

UpdateEntity resource 63

 },
 {
 "name": "flatfile to jdbc_target",
 "type": "target",
 "connectionId": "012MGS0B0000000000KF",
 "transformationType": "",
 "config": [
 {
 "key": "Table Name",
 "value": "table"
 }
]
 }
],
 "edges": [
 {
 "from": "flatfile to jdbc_source",
 "to": "flatfile to jdbc_target"
 }
]
}

Connection configuration for tasks with Amazon Kinesis Streams as a source
and as a target
When the source and target connection of the task is Amazon Kinesis Streams, you can include the following
fields and key-value pairs in the config array of the source and target connection:

Key Type Required Description

appendGUID Boolean Specifies whether or not to add a GUID as a suffix to the Amazon
DynamoDB table name.
Enter one of the following values:
- true
- false

dynamoDB String Amazon DynamoDB table name where to store the checkpoint details of
the Kinesis source data.
You can enter a string of up to 128 characters.

Stream String Yes Name of the Kinesis Stream to read data from.
Enter a string of up to 128 characters.
Appears in the source node.

Stream Name/
Expression

String Yes Kinesis Stream name or a regular expression to write data to.
Enter a string of up to 128 characters.
Appears in the target node.

POST request example

To update a streaming ingestion task with an Amazon Kinesis Streams source and target, you might send a
request similar to the following example:

{
 "name": "kinesis to kinesis",
 "description": "kinesis to kinesis",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [

64 Chapter 2: Mass Ingestion Streaming REST API

 {
 "name": "kinesis to kinesis_source",
 "type": "source",
 "connectionId": "012MGS0B00000000000F",
 "transformationType": "",
 "config": [
 {
 "key": "appendGUID",
 "value": true
 },
 {
 "key": "dynamoDB",
 "value": "table"
 },
 {
 "key": "Stream",
 "value": "test"
 }
]
 },
 {
 "name": "kinesis to kinesis_target",
 "type": "target",
 "connectionId": "012MGS0B00000000000F",
 "transformationType": "",
 "config": [
 {
 "key": "Stream Name/Expression",
 "value": "trgt"
 }
]
 }
],
 "edges": [
 {
 "from": "kinesis to kinesis_source",
 "to": "kinesis to kinesis_target"
 }
]
}

Connection configuration for tasks with flat file as a source and as a target
When the source and target connection of the task is flat file, you can include the following fields and key-
value pairs in the config array of the source and target connection:

Key Type Required Description

File String Yes Absolute path and name of the source file. Enter the base directory for
multiple files mode.

initialPosition String Yes Starting position to read data from the file to tail. Enter one of the following
values:
- Beginning of File. Read from the beginning of the file. Don't ingest any

data that has already been rolled over.
- Current Time. Read from the most recently updated part of the file. Don't

ingest data that was rolled over or data in the file that was written.

UpdateEntity resource 65

Key Type Required Description

rolloverPattern String - File name pattern for the file that rolls over.
If the file to tail rolls over, the Secure Agent uses the file name pattern to
identify files that have rolled over. If the Secure Agent stops during a file
rollover, when it restarts, it picks up the file where it was left off.
You can use asterisk (*) and question mark (?) as wildcard characters to
indicate that the files are rolled over in the same directory. For example,$
{filename}.log.*. Here, asterisk (*) represents the successive version
numbers that would be appended to the file name.

tailingMode String Yes Tail a file or multiple files based on the logging pattern. Enter one of the
following values:
- Single file. Tail one file.
- Multiple files. Tail all the files indicated in the base directory. You can

enter a regular expression to indicate the files to tail.

File Name String Yes The name of the target file.

interimDirectory String Yes Path to the staging directory on the Secure Agent.

rolloverSize Integer Yes The file size, in KB, at which the task moves the file from the staging
directory to the target.
You can enter a value between 1 and 2147483647.

rolloverEvents Integer Yes Number of events or messages to accumulate before a file rollover.
You can enter a value between 1 and 2147483647.

rolloverTime Integer - Length of time, in milliseconds, after which the target file rolls over.
You can enter a value between 1 and 2147483647.

edges Array - Sequence of dataflow execution.

POST request example

To update a streaming ingestion task with a flat file source and target, you might send a request similar to
the following example:

{
 "name": "FileToFile",
 "description": "FileToFile_V2",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "FileToFile_source",
 "type": "source",
 "connectionId": "0100000B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "siagent.log"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {

66 Chapter 2: Mass Ingestion Streaming REST API

 "key": "rolloverPattern",
 "value": ""
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 }
]
 },
 {
 "name": "FileToFile_target",
 "type": "target",
 "connectionId": "0100000B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "File Name",
 "value": "testing.log"
 },
 {
 "key": "interimDirectory",
 "value": "/home/agent/infa/test_file_target"
 },
 {
 "key": "rolloverSize",
 "value": 100
 },
 {
 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 100
 }
]
 }
],
 "edges": [
 {
 "from": "FileToFile_source",
 "to": "FileToFile_target"
 }
],
 "runtimeOptions": {
 "maxLogSize": {
 "value": 10,
 "unit": "MB"
 },
 "logLevel": "INFO"
 }
}

UpdateEntity resource 67

Connection configuration for tasks with Kafka as a source and as a target
When the source and target connection of the task is Kafka, you can include the following fields and key-
value pairs in the config array of the source and target connection:

Key Type Required Description

Topic String Yes Kafka source topic name or a Java supported regular expression for
the Kafka source topic name pattern to read the events from.
Enter a string of up to 249 characters.

consumerProperties String - Provide a comma-separated list of optional consumer configuration
properties. Specify the values as key-value pairs. For example,
key1=value1, key2=value2 .
You can enter a string of up to 4000 characters.

producerProperties String - The configuration properties for the producer.
Provide a comma-separated list and specify the values as key-value
pairs.
You can enter a string of up to 4000 characters.

mdFetchTimeout Integer - The time after which the metadata is not fetched.
Enter a value between 1 and 2147483647.

batchSize Integer - The batch size of the events after which a streaming ingestion task
writes data to the target.
Enter a value between 1 and 2147483647.

Topic Name/
Expression

String Yes Kafka topic name or a Java supported regular expression for the
Kafka topic name pattern.
You can enter a string of up to 249 characters.

POST request example

To update a streaming ingestion task with a Kafka source and target, you might send a request similar to the
following example:

{
 "name": "kafka to kafka",
 "description": "kafka to kafka",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "kafka to kafka_source",
 "type": "source",
 "connectionId": "012MGS0B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "consumerProperties",
 "value": "key=value"
 },
 {
 "key": "Topic",
 "value": "test"
 }
]
 },

68 Chapter 2: Mass Ingestion Streaming REST API

 {
 "name": "kafka to kafka_target",
 "type": "target",
 "connectionId": "012MGS0B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "producerProperties",
 "value": "key=value"
 },
 {
 "key": "mdFetchTimeout",
 "value": 5000
 },
 {
 "key": "batchSize",
 "value": 1048576
 },
 {
 "key": "Topic Name/Expression",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "kafka to kafka_source",
 "to": "kafka to kafka_target"
 }
]
}

POST response
When the REST API successfully performs an action, it returns a 200 or 201 success response. When the
REST API encounters an error, it returns an appropriate error code.

If the request is successful, the response returns the following fields:

Field Type Description

name String Name of the task.

description String Description of the task, if available.

runtimeId String ID of the runtime environment.

currentVersion String The latest dataflow object version.

nodes Array Details of the task source and target connections.

Fields of the nodes array

The response includes the following fields in the nodes array:

Field Type Description

name String Name of the connection.

type String The connection type.

UpdateEntity resource 69

Field Type Description

connectionId String ID of the connection.

transformationType String The type of transformation.

config String Configuration of the source and target connections in key-value pairs. The keys in the
array depend on the type of source and target connections.

If the request is unsuccessful, the response includes a reason for the failure.

Configuration information in the config array MQTT as a source
If the request is successful, the response returns the following fields:

Key Type Description

ClientID String Unique identifier that identifies the connection between the MQTT source and the MQTT
broker. The client ID is the file-based persistence store that the MQTT source uses to
store messages when they are being processed.

MaxQueueSize Integer The maximum number of messages that the processor can store in memory.

Topic String Name of the MQTT topic.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example in a Success node:

{
 "Success": {
 "name": "mqtt to flatfile",
 "description": "mqtt to flatfile",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "mqtt to flatfile_source",
 "type": "source",
 "connectionId": "012MGS0B00000000001O",
 "transformationType": "",
 "config": [
 {
 "key": "ClientID",
 "value": "test"
 },
 {
 "key": "MaxQueueSize",
 "value": 1024
 },
 {
 "key": "Topic",
 "value": "test"
 }
]
 },
 {

70 Chapter 2: Mass Ingestion Streaming REST API

 "name": "mqtt to flatfile_target",
 "type": "target",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "interimDirectory",
 "value": "/home/agent/test"
 },
 {
 "key": "rolloverSize",
 "value": 1024
 },
 {
 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 300000
 },
 {
 "key": "File Name",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "mqtt to flatfile_source",
 "to": "mqtt to flatfile_target"
 }
]
 }
}

Configuration information in the config array for JMS as a source
The response returns only the fields that you entered in the request.

If the request is successful, the response returns the following fields:

Key Type Description

destinationType String Type of destination that the source service sends JMS messages to.

clientId String Unique ID of the JMS connection.

sharedSubscription String Enables multiple consumers to access a single subscription. Applies to the TOPIC
destination type.

durableSubscription String The JMS source service enables inactive subscribers to retain messages and then
deliver them when the subscriber reconnects. Applies to the TOPIC destination type.

subscriptionName String Name of the subscription. Applies to the TOPIC destination type, when the topic
subscription type is shared, durable, or both.

JMS Destination String Name of the queue or topic that the JMS provider delivers messages to.

If the request is unsuccessful, the response includes a reason for the failure.

UpdateEntity resource 71

POST response example

If the request is successful, you might receive a response similar to the following example in a Success node:

{
 "Success": {
 "name": "crud",
 "description": "JMS to FileToFile",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "crud_source",
 "type": "source",
 "connectionId": "012MGS0B000000000003",
 "transformationType": "",
 "config": [
 {
 "key": "destinationType",
 "value": "QUEUE"
 },
 {
 "key": "clientId",
 "value": ""
 },
 {
 "key": "JMS Destination",
 "value": "test"
 }
]
 },
 {
 "name": "crud_target",
 "type": "target",
 "connectionId": "012MGS0B00000000000H",
 "transformationType": "",
 "config": [
 {
 "key": "interimDirectory",
 "value": "/home/agent/test"
 },
 {
 "key": "rolloverSize",
 "value": 1024
 },
 {
 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 300000
 },
 {
 "key": "File Name",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "crud_source",
 "to": "crud_target"
 }
]
 }
}

72 Chapter 2: Mass Ingestion Streaming REST API

Configuration information in the config array for ADLS Gen2 as a target
The response returns only the fields that you entered in the request.

If the request is successful, the response returns the following fields:

Key Type Description

writeStrategy String The action to take when a file exists in the ADLS Gen2 storage.

rolloverSize * Integer Target file size, in KB, at which to trigger rollover. Applies to a Rollover write
strategy.

rolloverEvents * Integer Number of events or messages to accumulate before a rollover. Applies to a
Rollover write strategy.

rolloverTime * Integer Length of time, in milliseconds, after which to trigger a rollover. Applies to a
Rollover write strategy.

filesystemNameOverride String Overrides the default file system name provided in the connection. This file
system name is used write to a file at run time.

directoryOverride String Overrides the default directory path. The ADLS Gen2 directory path to write data
to. If left blank, the default directory path is used.

compressionFormat String Compression format to use before the streaming ingestion task writes data to
the target file.

File Name/Expression String ADLS Gen2 file name or a regular expression.

* Enter a value for at least one of the fields.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example in a Success node:

{
 "Success": {
 "name": "flatfile to adls",
 "description": "flatfile to adls",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to adls_source",
 "type": "source",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "logfile"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "rolloverPattern",
 "value": "test"

UpdateEntity resource 73

 },
 {
 "key": "tailingMode",
 "value": "Single file"
 }
]
 },
 {
 "name": "flatfile to adls_target",
 "type": "target",
 "connectionId": "012MGS0B00000000003D",
 "transformationType": "",
 "config": [
 {
 "key": "writeStrategy",
 "value": "Rollover"
 },
 {
 "key": "filesystemNameOverride",
 "value": "test"
 },
 {
 "key": "File Name/Expression",
 "value": "test"
 },
 {
 "key": "compressionFormat",
 "value": "NONE"
 },
 {
 "key": "directoryOverride",
 "value": "/test"
 },
 {
 "key": "interimDirectory",
 "value": "/home/agent/test"
 },
 {
 "key": "rolloverSize",
 "value": 1024
 },
 {
 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 300000
 }
]
 }
]
 }
}

Configuration information in the config array for Amazon S3 as a target
The response returns only the fields that you entered in the request.

74 Chapter 2: Mass Ingestion Streaming REST API

If the request is successful, the response returns the following fields:

Key Type Description

partitionTime String The time interval according to which the streaming ingestion task creates
partitions in the Amazon S3 bucket.

minUploadPartSize Integer Minimum part size when uploading a large file as a set of multiple independent
parts, in megabytes. Use this property to tune the file load to Amazon S3.

multipartUploadThreshold Integer Multipart threshold when uploading objects in multiple parts in parallel.

Object Name/Expression String Amazon S3 target file name or a regular expression for the Amazon S3 file
name pattern.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example in the Success
node:

{
 "Success": {
 "name": "flatfile to amazon S3",
 "description": "flatfile to amazon S3",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to amazon S3_source",
 "type": "source",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "logfile"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "rolloverPattern",
 "value": "test"
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 }
]
 },
 {
 "name": "flatfile to amazon S3_target",
 "type": "target",
 "connectionId": "012MGS0B0000000000I7",
 "transformationType": "",
 "config": [
 {
 "key": "partitionTime",
 "value": "None"
 },
 {
 "key": "minUploadPartSize",

UpdateEntity resource 75

 "value": 5120
 },
 {
 "key": "multipartUploadThreshold",
 "value": 5120
 },
 {
 "key": "Object Name/Expression",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "flatfile to amazon S3_source",
 "to": "flatfile to amazon S3_target"
 }
]
 }
}

Configuration information in the config array for Azure Event Hubs as a target
The response returns only the fields that you entered in the request.

If the request is successful, the response returns the following fields:

Key Type Description

sasPolicyName String The name of the Event Hub Namespace Shared Access Policy.

sasPolicyPrimaryKey String The primary key of the Event Hub Namespace Shared Access Policy.

Event Hub String The name of the Azure Event Hubs.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example in a Success node:

{
 "Success": {
 "name": "flatfile to azure event hub",
 "description": "flatfile to azure event hub",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to azure event hub_source",
 "type": "source",
 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "logfile"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {

76 Chapter 2: Mass Ingestion Streaming REST API

 "key": "rolloverPattern",
 "value": "test"
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 }
]
 },
 {
 "name": "flatfile to azure event hub_target",
 "type": "target",
 "connectionId": "012MGS0B00000000001S",
 "transformationType": "",
 "config": [
 {
 "key": "sasPolicyName",
 "value": "test"
 },
 {
 "key": "sasPolicyPrimaryKey",
 "value": "test"
 },
 {
 "key": "Event Hub",
 "value": "test"
 }
]
 }
],
 "edges": [
 {
 "from": "flatfile to azure event hub_source",
 "to": "flatfile to azure event hub_target"
 }
]
 }
}

Configuration information in the config array for JDBC as a target
The response returns only the fields that you entered in the request.

If the request is successful, the response returns the following field:

Key Type Description

Table Name String Name of the table to insert data to in JSON format.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example in a Success node:

{
 "Success": {
 "name": "FileFile to jdbc",
 "description": "FileToFile to jdbc_target",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "flatfile to jdbc_source",
 "type": "source",

UpdateEntity resource 77

 "connectionId": "012MGS0B00000000002N",
 "transformationType": "",
 "config": [
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "tailingMode",
 "value": "Single file"
 },
 {
 "key": "rolloverPattern",
 "value": "test"
 },
 {
 "key": "File",
 "value": "logfile"
 }
]
 },
 {
 "name": "flatfile to jdbc_target",
 "type": "target",
 "connectionId": "012MGS0B0000000000KF",
 "transformationType": "",
 "config": [
 {
 "key": "Table Name",
 "value": "table"
 }
]
 }
],
 "edges": [
 {
 "from": "flatfile to jdbc_source",
 "to": "flatfile to jdbc_target"
 }
]
 }
}

Configuration information in the config array for Amazon Kinesis Streams as a
source and as a target
The response returns only the fields that you entered in the request.

If the request is successful, the response returns the following fields:

Key Type Description

appendGUID Boolean Specifies whether or not to add a GUID as a suffix to the Amazon DynamoDB table
name.

dynamoDB String Amazon DynamoDB table name where to store the checkpoint details of the Kinesis
source data.

78 Chapter 2: Mass Ingestion Streaming REST API

Key Type Description

Stream String Name of the Kinesis Stream from where to read data.
Applies when you use Amazon Kinesis Streams as a source.

Stream Name/
Expression

String Kinesis stream name or a regular expression for the Kinesis stream name pattern.
Applies when you use Amazon Kinesis Streams as a target.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example in a Success node:

{
 "Success": {
 "name": "kinesis to kinesis",
 "description": "kinesis to kinesis",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "kinesis to kinesis_source",
 "type": "source",
 "connectionId": "012MGS0B00000000000F",
 "transformationType": "",
 "config": [
 {
 "key": "appendGUID",
 "value": true
 },
 {
 "key": "dynamoDB",
 "value": "table"
 },
 {
 "key": "Stream",
 "value": "test"
 }
]
 },
 {
 "name": "kinesis to kinesis_target",
 "type": "target",
 "connectionId": "012MGS0B00000000000F",
 "transformationType": "",
 "config": [
 {
 "key": "Stream Name/Expression",
 "value": "trgt"
 }
]
 }
],
 "edges": [
 {
 "from": "kinesis to kinesis_source",
 "to": "kinesis to kinesis_target"
 }
]
 }
}

UpdateEntity resource 79

Configuration information in the config array for flat file as a source and as a
target
The response returns only the fields that you entered in the request.

If the request is successful, the response returns the following fields:

Key Type Required Description

File String Yes Absolute path and name of the source file you want to read.

initialPosition String Yes Starting position to read data from the file to tail.

rolloverPattern String - File name pattern for the file that rolls over.

tailingMode String Yes Tail a file or multiple files based on the logging pattern.

File Name String Yes The name of the target file.

interimDirectory String Yes Path to the staging directory on the Secure Agent.

rolloverSize Integer Yes The file size, in KB, at which the task moves the file from the staging
directory to the target.

rolloverEvents Integer Yes Number of events or messages to accumulate before a file rollover.

rolloverTime Integer - Length of time, in milliseconds, after which the target file rolls over.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example:

{
 "Success": {
 "name": "FileToFile",
 "description": "FileToFile_V2",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "FileToFile_source",
 "type": "source",
 "connectionId": "0100000B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "File",
 "value": "siagent.log"
 },
 {
 "key": "initialPosition",
 "value": "Current Time"
 },
 {
 "key": "rolloverPattern",
 "value": ""
 },
 {
 "key": "tailingMode",
 "value": "Single file"

80 Chapter 2: Mass Ingestion Streaming REST API

 }
]
 },
 {
 "name": "FileToFile_target",
 "type": "target",
 "connectionId": "0100000B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "File Name",
 "value": "testing.log"
 },
 {
 "key": "interimDirectory",
 "value": "/home/agent/infa/test_file_target"
 },
 {
 "key": "rolloverSize",
 "value": 100
 },
 {
 "key": "rolloverEvents",
 "value": 100
 },
 {
 "key": "rolloverTime",
 "value": 100
 }
]
 }
],
 "edges": [
 {
 "from": "FileToFile_source",
 "to": "FileToFile_target"
 }
],
 "runtimeOptions": {
 "maxLogSize": {
 "value": 10,
 "unit": "MB"
 },
 "logLevel": "INFO"
 }
 }
}

Configuration information in the config array for Kafka as a source and as a
target
The response returns only the fields that you entered in the request.

If the request is successful, the response returns the following fields:

Key Type Description

Topic String Kafka source topic name or a Java supported regular expression for the Kafka
source topic name pattern to read the events from.

consumerProperties String A comma-separated list of optional consumer configuration properties.

producerProperties String The configuration properties for the producer.

UpdateEntity resource 81

Key Type Description

mdFetchTimeout Integer The time after which the metadata is not fetched.

batchSize Integer The batch size of the events after which a streaming ingestion task writes data
to the target.

Topic Name/Expression String Kafka topic name or a Java supported regular expression for the Kafka topic
name pattern.

If the request is unsuccessful, the response includes a reason for the failure.

POST response example

If the request is successful, you might receive a response similar to the following example in a Success node:

{
 "Success": {
 "name": "kafka to kafka",
 "description": "kafka to kafka",
 "runtimeId": "01000025000000000003",
 "locationId": "5sJ0JDyJyWLlrosS5qJjsQ",
 "currentVersion": "2",
 "messageFormat": "binary",
 "nodes": [
 {
 "name": "kafka to kafka_source",
 "type": "source",
 "connectionId": "012MGS0B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "consumerProperties",
 "value": "key=value"
 },
 {
 "key": "Topic",
 "value": "test"
 }
]
 },
 {
 "name": "kafka to kafka_target",
 "type": "target",
 "connectionId": "012MGS0B000000000002",
 "transformationType": "",
 "config": [
 {
 "key": "producerProperties",
 "value": "key=value"
 },
 {
 "key": "mdFetchTimeout",
 "value": 5000
 },
 {
 "key": "batchSize",
 "value": 1048576
 },
 {
 "key": "Topic Name/Expression",
 "value": "test"
 }
]
 }
],
 "edges": [

82 Chapter 2: Mass Ingestion Streaming REST API

 {
 "from": "kafka to kafka_source",
 "to": "kafka to kafka_target"
 }
]
 }
}

jobs resource
Use the jobs resource to get the details of a streaming ingestion job.

GET request

To request the details of a streaming ingestion job, use the following URL:

<server URI>/sisvc/monitor/v1/jobs/<dataflow ID>/<run ID of the job>
GET request example

To request the details of a streaming ingestion job, you might send a request similar to the following
example:

POST https://usw1-ing.dm2-us.informaticacloud.com/sisvc/monitor/v1/jobs/
1948938e-3923-4602-aba8-f122e3d66faf/42559
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

GET response

Returns the jobs object if successful or an error object if an error occurs.

If successful, the response includes the following information about a streaming ingestion job:

Parameter Type Description

assetId String ID of the streaming ingestion job.

assetName String Name of the streaming ingestion job.

duration Integer The time it took to deploy the job.

endTime Integer End time of deploying the job, in UTC time.

startTime Integer Start time of deploying the job, in UTC time.

extraData String Additional information including the task ID, deployed version, and the Secure Agent group ID.

runId Integer Run ID of the streaming ingestion job. The ID changes for every deployment.

orgId String ID of the organization the logged in user belongs to.

runtimeEnv String ID of the Secure Agent that deployed the streaming ingestion job.

jobs resource 83

Parameter Type Description

startedBy String Name of the user who created the streaming ingestion task.

status String The status of the streaming ingestion job. A job can be in one of the following status:
- Deploying. The job is being deployed.
- Up and Running. The job is running.
- Running with Warning. The job is running with warnings.
- Running with Error. The job is running with error.
- Undeployed. The job is undeployed.
- Stopped. The job was intentionally stopped.

GET response example

If the request to get the details of a streaming ingestion job is successful, you might receive a response
similar to the following example:

{
 "assetId": "1948938e-3923-4602-aba8-f122e3d66faf",
 "assetName": "testmonitor",
 "assetType": "SI_DATAFLOW",
 "correlationId": null,
 "duration": 1543,
 "endTime": "2022-02-14T04:04:13.000+0000",
 "extraData": "{\"id\":\"0RwiUUb9bVwjL67dWOKjoI\",\"version\":1,\"agentGroupId
\":null}",
 "location": "Default",
 "runId": 42559,
 "orgId": "2lFy0UUNnlnbjhaoT3TSqw",
 "runtimeEnv": "011ZFB2500000000000N",
 "startedBy": "siqa_new",
 "status": "Undeployed",
 "startTime": "2022-02-14T03:38:30.000+0000",
 "deployedVersion": 1
}

MIJobs resource
Use the MIJobs resource to get a list of the available streaming ingestion jobs.

GET request

To request a list of the available streaming ingestion jobs, use the following URL:

<server URI>/mijobmonitor/api/v1/MIJobs

84 Chapter 2: Mass Ingestion Streaming REST API

You can include the following query parameters in the URI:

Parameter Type Required Description

$count Boolean No Displays the number of ingestion jobs in the database.

$filter String No Filters the job based on the input. You can filter using one of the following
fields:
- assetName
- assetType
- startedBy
- status
You can filter jobs using single or multiple fields.

$orderby String No Sorts the order of the jobs. You can sort the jobs using the following fields:
- assetName
- assetType
- status
- runtimeEnv
- startTime
You can sort jobs using single or multiple fields.

$skip Integer No Skips the number of streaming ingestion jobs that you specify. For example, you
might want to skip the first five streaming ingestion jobs.
Consider the $filter and $orderby parameter values, if specified.

$top Integer No Displays the number of top streaming ingestion jobs that you specify. For
example, you might want to view the top ten streaming ingestion jobs.
Consider the $filter and $orderby parameter values, if specified.

GET request example

To get a list of the available streaming ingestion jobs, you might send a request similar to the following
example:

POST https://usw1-ing.dm2-us.informaticacloud.com/mijobmonitor/api/v1/MIJobs?$count=true&
$filter=(startedBy eq 'siqa_new')&$orderby=deployTime desc&$skip=0&$top=25
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

GET response

Returns the MIjobs object if successful or an error object if an error occurs.

If successful, the response includes the following information about the streaming ingestion job:

Parameter Type Description

assetName String Name of the streaming ingestion job.

runId Integer Run ID of the streaming ingestion job. The ID changes for every deployment.

orgId String ID of the organization the logged in user belongs to.

runtimeEnv String ID of the Secure Agent that deployed the streaming ingestion job.

startTime Integer Date and start time of deploying the job, in UTC time.

MIJobs resource 85

Parameter Type Description

endTime Integer Date and end time of deploying the job, in UTC time.

deployTime Integer Date and time of deploying the job, in UTC time.

undeployTime Integer Date and time of undeploying the job, in UTC time.

startedBy Integer Name of the user who created the streaming ingestion task.

status String The status of the streaming ingestion job. A job can be in one of the following status:
- Deploying. The job is being deployed.
- Up and Running. The job is running.
- Running with Warning. The job is running with warnings.
- Running with Error. The job is running with error.
- Undeployed. The job is undeployed.
- Stopped. The job was intentionally stopped.

extraData String Additional information including the task ID, the location of the streaming ingestion job,
and the Secure Agent ID.

GET response example

If the request to get a list of available streaming ingestion jobs is successful, you might receive a response
similar to the following example:

{
 "@odata.context": "$metadata#Collection(OData.MI.JobMonitor.MIJob)",
 "@odata.count": 421,
 "value": [
 {
 "assetId": "7ce6bbc7-f0e2-4278-bd6d-d1187f4a1420",
 "assetName": "SIdeployJms",
 "assetType": "SI_DATAFLOW",
 "runId": 33015,
 "duration": 300000,
 "orgId": "1Pm6cSfPcAqfgeV57Fn3u4",
 "runtimeEnv": "011U5M08000000000003",
 "startTime": "2021-04-29T13:09:48.000+0000",
 "endTime": "2021-04-29T13:14:48.000+0000",
 "deployTime": "2021-04-29T13:09:48.000+0000",
 "undeployTime": "2021-04-29T13:14:48.000+0000",
 "startedBy": "siqa_new",
 "status": "Undeployed",
 "outOfSync": true,
 "extraData": "{\"taskId\":\"7Z4ZZjXc9QViT4t2okiHuz\",\"runtimeEnv
\":\"011U5M25000000000002\",\"location\":\"RestAutomation\"}",
 "deployedVersion": 1,
 "replace": null,
 "lastUpdateTime": 0
 },
 {
 "assetId": "a03b9aa1-4a4a-47ee-808d-ddc0ee7b3a4a",
 "assetName": "kafka to kafka test",
 "assetType": "SI_DATAFLOW",
 "runId": 33527,
 "duration": 204988000,
 "orgId": "1Pm6cSfPcAqfgeV57Fn3u4",
 "runtimeEnv": "011U5M08000000000002",
 "startTime": "2021-05-04T05:41:39.000+0000",
 "endTime": "2021-05-06T14:38:07.000+0000",
 "deployTime": "2021-05-04T05:41:39.000+0000",
 "undeployTime": "2021-05-06T14:38:07.000+0000",
 "startedBy": "siqa_new",
 "status": "Undeployed",

86 Chapter 2: Mass Ingestion Streaming REST API

 "outOfSync": true,
 "extraData": "{\"taskId\":\"8V21nib7Sqgiw3QoDRi5uK\",\"runtimeEnv
\":\"011U5M25000000000002\",\"location\":\"Default\"}",
 "deployedVersion": 1,
 "replace": null,
 "lastUpdateTime": 0
 }
]
}

status resource
Use the status resource to get the status of a streaming ingestion job.

GET request

To request the status of a streaming ingestion job, use the following URL:

<server URI>/sisvc/monitor/v1/status/dataflows/<dataflow ID>
GET request example

To get the status of a streaming ingestion job, you might send a request similar to the following example:

POST https://usw1-ing.dm2-us.informaticacloud.com/sisvc/monitor/v1/status/dataflows/
1948938e-3923-4602-aba8-f122e3d66faf
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

GET response

Returns the job status object if successful or an error object if an error occurs.

If successful, the response includes the following information about the status of a streaming ingestion job:

Parameter Type Description

dataflowName String Name of the streaming ingestion job.

dataflowId Integer ID of the streaming ingestion job.

status String The status of the streaming ingestion job. A job can be in one of the following status:
- Deploying. The job is being deployed.
- Up and Running. The job is running.
- Running with Warning. The job is running with warnings.
- Running with Error. The job is running with error.
- Undeployed. The job is undeployed.
- Stopped. The job was intentionally stopped.

timestamp Integer Time, in milliseconds, when the Secure Agent records the status of the streaming
ingestion job.

reports Array Status details of each node.

status resource 87

Parameter Type Description

graph String The throughput information for the source and target of the job.

runId Integer Run ID of the streaming ingestion job. The ID changes for every deployment.

GET response example

If the request to get the status of a streaming ingestion job is successful, you might receive a response
similar to the following example:

{
 "dataflowName": "testmonitor",
 "dataflowId": "1948938e-3923-4602-aba8-f122e3d66faf",
 "status": "Running",
 "timestamp": 1644839755000,
 "reports": [
 {
 "name": "testmonitor_testmonitor_source",
 "id": "a5684428-f41f-4d24-b73f-33c232314a91",
 "status": "Running",
 "timestamp": 1644839756000,
 "message": null
 },
 {
 "name": "testmonitor_testmonitor_target",
 "id": "4f59b5fb-b5b2-4b83-994b-0d3e56f67e22",
 "status": "Running",
 "timestamp": 1644839756000,
 "message": null
 }
],
 "graph": "{\"agentId\":\"011ZFB0800000000000N\",\"nodes\":[{\"id\":\"a5684428-
f41f-4d24-b73f-33c232314a91\",\"name\":\"testmonitor_source\",\"serviceType\":\"source
\",\"config\":[{\"key\":\"_nativeName\",\"value\":\"src\"},{\"key\":\"consumerProperties
\",\"value\":null}],\"connectionId\":\"011ZFB0B0000000000KJ\",\"type
\":\"\",\"metaMetadata\":\"\"},{\"id\":\"4f59b5fb-b5b2-4b83-994b-0d3e56f67e22\",\"name
\":\"testmonitor_target\",\"serviceType\":\"target\",\"config\":[{\"key\":\"_nativeName
\",\"value\":\"trgt\"},{\"key\":\"batchSize\",\"value\":\"1048576\"},{\"key
\":\"mdFetchTimeout\",\"value\":\"5000\"},{\"key\":\"producerProperties\",\"value
\":null}],\"connectionId\":\"011ZFB0B0000000000KJ\",\"type\":\"\",\"metaMetadata
\":\"\"}],\"edges\":[{\"id\":\"6ae185ea-7e6e-4bf6-bd9e-0be5ef3a8e78\",\"name
\":\"testmonitor_source_testmonitor_target\",\"from\":\"testmonitor_source\",\"to
\":\"testmonitor_target\",\"type\":\"success\",\"config\":[],\"metaMetadata
\":\"\"}],\"runtimeOptions\":null}",
 "version": 1,
 "runId": 42563
}

statistics resource
Use the statistics resource to get the statistics of a streaming ingestion job.

The streaming ingestion job should be in one of the following status before you can view its statistics:

• Deploying

• Up and Running

• Running with Warning

88 Chapter 2: Mass Ingestion Streaming REST API

• Running with Error

• Stopped

GET request

To request the statistics of a streaming ingestion job, use the following URL:

<server URI>/sisvc/monitor/v1/statistics/dataflows/<dataflow ID>
You can include the following query parameters in the URI:

Parameter Type Required Description

intervals Integer Yes Time, in seconds, to display statistics for a streaming ingestion job. For
example, if you specify 30 seconds, the response displays job statistics for the
last 30 seconds.

overall Boolean No Displays the statistics from the time the job is deployed.

GET request example

To request the statistics of a streaming ingestion job, you might send a request similar to the following
example:

POST https://usw1-ing.dm2-us.informaticacloud.com/sisvc/monitor/v1/statistics/
dataflows/7f1daca9-3983-4677-930f-a9529802c56b?intervals=30&overall=true
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

GET response

Returns the statistics object if successful or an error object if an error occurs.

If successful, the response includes the following information about the statistics of a streaming ingestion
job:

Parameter Type Description

dataflowId String ID of the streaming ingestion job.

dataflowRunId Integer Run ID of the streaming ingestion job.

startTime Integer Start time of the streaming ingestion job, in milliseconds.

stopTime Integer Stop time of the streaming ingestion job, in milliseconds.

inMessages Integer The number of messages that arrive at a node. A node is a source, transformation, or
target, that is used in the streaming ingestion task.
The value is zero for a source node.

outMessages Integer The number of messages that transfer from a node.
The value is zero for a target node.

inBytes Integer The total size of incoming messages in bytes.
The value is zero for a source node.

statistics resource 89

Parameter Type Description

outBytes Integer The total size of outgoing messages in bytes.
The value is zero for a target node.

nodes Array Information about streaming data in the source and the target used in the task.

intervals Integer The statistics of the job for the time interval you specify in the request. Applies when you
set an interval.

GET response example

If the request to get the statistics of a streaming ingestion job is successful, you might receive a response
similar to the following example:

{
 "dataflowId": "7f1daca9-3983-4677-930f-a9529802c56b",
 "dataflowName": "newnew",
 "dataflowVersion": 1,
 "dataflowRunId": 54231,
 "snapshotCount": 171,
 "overall": {
 "dataflowId": "7f1daca9-3983-4677-930f-a9529802c56b",
 "dataflowName": "newnew",
 "dataflowVersion": 1,
 "dataflowRunId": 54231,
 "traits": {},
 "interval": 6007,
 "startTime": 1646649995000,
 "stopTime": 1646656000000,
 "nodes": [
 {
 "name": "newnew_newnew_source",
 "id": "17a51cdf-1f27-481e-81b8-d2e8ff60ec28",
 "inMessages": 0,
 "outMessages": 0,
 "inBytes": 0,
 "outBytes": 0,
 "nodeType": "Unknown"
 },
 {
 "name": "newnew_newnew_target",
 "id": "c30d6db4-6a3b-40d3-adfb-88779a972098",
 "inMessages": 0,
 "outMessages": 0,
 "inBytes": 0,
 "outBytes": 0,
 "nodeType": "Unknown"
 }
]
 },
 "intervals": {
 "30": {
 "dataflowId": "7f1daca9-3983-4677-930f-a9529802c56b",
 "dataflowName": "newnew",
 "dataflowVersion": null,
 "dataflowRunId": 54231,
 "traits": {},
 "interval": 30,
 "startTime": 1646655972683,
 "stopTime": 1646656002683,
 "nodes": []
 }
 }
}

90 Chapter 2: Mass Ingestion Streaming REST API

history resource
Use the history resource to get the history of a streaming ingestion job.

GET request

To request the history of a streaming ingestion job, use the following URL:

<server URI>/sisvc/monitor/v1/history/dataflows/<dataflow ID>
GET request example

To get the history of a streaming ingestion job, you might send a request similar to the following example:

POST https://usw1-ing.dm2-us.informaticacloud.com/siscv/monitor/v1/history/dataflows/
1948938e-3923-4602-aba8-f122e3d66faf
Content-Type: application/json
Accept:application/json
IDS-SESSION-ID:2l0oeVx22Rujiej7yTokmT

GET response

Returns the job history object if successful or an error object if an error occurs.

If successful, the response includes the following information about the history of a streaming ingestion job:

Parameter Type Description

dataflowName String Streaming ingestion job name.

dataflowId Integer Streaming ingestion job ID.

deployedAt Integer The start time of deploying the job, in UTC time.

undeployedAt Integer The time when the job finished undeploying, in UTC.

runID Integer Run ID of the streaming ingestion job. The ID changes for every deployment.

GET response example

If the request to get the history of a streaming ingestion job is successful, you might receive a response
similar to the following example:

[
 {
 "dataflowId": "1948938e-3923-4602-aba8-f122e3d66faf",
 "dataflowName": "testmonitor",
 "deployedAt": 1644809910000,
 "undeployedAt": 1644811453000,
 "dataflowVersion": 1,
 "runId": 42559,
 "overall": null,
 "intervals": {},
 "graph": null
 },
 {
 "dataflowId": "1948938e-3923-4602-aba8-f122e3d66faf",
 "dataflowName": "testmonitor",
 "deployedAt": 1644811513000,
 "undeployedAt": 1644838813000,
 "dataflowVersion": 1,
 "runId": 42561,
 "overall": null,
 "intervals": {},
 "graph": null

history resource 91

 }
]

92 Chapter 2: Mass Ingestion Streaming REST API

I n d e x

A
Amazon MSK

target 15
Apache Kafka

source properties 28
Azure Event Hub

target 16
Azure Event Hubs Kafka

source 7

C
Confluent Kafka

source 9
target 15

D
Databricks Delta

target 12
target properties 34

G
Google Cloud Storage

target 14
target properties 36

Google PubSub
source 8
source properties 26
target 14
target properties 37

J
JMS

source 8

K
Kafka

source 9
target 15

M
Mass Ingestion Streaming

overview 5
Transformations 16

Mass Streaming Ingestion
use cases 5

mass streaming ingestion tasks
AMQP 6
Azure Event Hubs Kafka 6
Google PubSub 6
Kinesis 6
OPC UA 6
REST V2 6

source types
Flat files 6
JMS 6
Kafka 6
MQTT 6

Microsoft Azure Data Lake Storage Gen2
target 16

O
OPC UA

source 10
source properties 30

R
REST API

copy streaming ingestion task 52
deploy streaming ingestion task 50
details of a streaming ingestion jobs 83
history 91
history of a streaming ingestion job 91
list of available streaming ingestion jobs 84
MIJobs 83, 84
start a streaming ingestion task 51
statistics 88
statistics of a streaming ingestion job 88
status 87
status of a streaming ingestion job 87
stop a streaming ingestion task 52, 69
undeploy a streaming ingestion task 51
update a streaming ingestion task 54
update streaming ingestion task 54–56, 58, 60, 62–65, 68, 70, 71,
73, 74, 76–78, 80, 81

S
source

Amazon Kinesis Streams 6
AMQP 7

source properties
flat file

rolling filename pattern 25

93

source properties (continued)
MQTT

Client ID 29
Max Queue Size 29

streaming ingestion
data format

binary 17
JSON 17
XML 17

source
Amazon MSK 9
Azure Event Hubs Kafka 7
Confluent Kafka 9
flat file 8
Google PubSub 8
Google PubSub properties 26
JMS 8

Kafka
Azure Event Hubs

Azure Event Hubs source 25, 28
namespace 25, 28

Kafka Azure Event Hub properties 25
Kafka properties 28
MQTT 9
OPC UA 10
OPC UA properties 30

target
Databricks Delta properties 34
flat file 13
Google Cloud Storage properties 36
Google PubSub properties 37

Target
Amazon MSK 15
Azure Event Hub 16
Confluent Kafka 15
Databricks Delta 12
Google Cloud Storage 14
Google PubSub 14
Kafka 15
Microsoft Azure Data Lake Storage Gen2 16

transformations
combiner transformation 17
filter transformation 18
Java transformation 18
jolt transformation 20
Python transformation 20
Splitter transformation 21

Streaming ingestion
Target

Amazon S3 12
Amazon S3 properties 33

Streaming Ingestion
target

Azure SQL Database 15
Google BigQuery V2 Database 13
JDBC V2 15
Kinesis Firehose 11

streaming ingestion jobs
REST API 84, 87, 88, 91

streaming ingestion task
add transformation 40, 41
Agent Parameters 46
defining 22
deploy 47
email addresses 46
Log level 46
purge 46
redeploy 47
reject directory 46
rollover 47
runtime options 46
source configuration 23
target configuration 32
transformation configuration 40
undeploy 47

streaming ingestion tasks
Microsoft Azure Data Lake Storage Gen2 target properties 39
prerequisites 22
REST API 50–52, 54–56, 58, 60, 62–65, 68–71, 73, 74, 76–78, 80, 81

streaming injestion
resume 48
stop 48

T
target

Amazon Kinesis Streams 11
target properties

flat file
rolling filename pattern 35

Transformations
combiner transformation 17
filter transformation 18
Format Converter transformation 18
Java transformation 18
jolt transformation 20
Python transformation 20
Splitter transformation 21

94 Index

	Table of Contents
	Chapter 1: Mass Ingestion Streaming
	Use cases
	Mass Ingestion Streaming sources
	Amazon Kinesis Streams sources
	AMQP sources
	Azure Event Hubs Kafka sources
	Flat File sources
	Google PubSub sources
	JMS sources
	Kafka sources
	MQTT sources
	OPC UA sources
	REST V2 sources

	Mass Ingestion Streaming targets
	Amazon Kinesis Data Firehose target
	Amazon Kinesis Streams target
	Amazon S3 target
	Databricks Delta target
	Flat file target
	Google BigQuery V2 target
	Google Cloud Storage V2 target
	Google PubSub target
	JDBC V2 target
	Kafka target
	Microsoft Azure Data Lake Storage Gen2 target
	Microsoft Azure Event Hubs target

	Transformations in Mass Ingestion Streaming
	Data formats
	Combiner transformation
	Filter transformation
	Format Converter transformation
	Java transformation
	Jolt transformation
	Python transformation
	Splitter transformation

	Configuring a streaming ingestion task
	Before you begin
	Defining basic task information
	Configuring a source
	Configuring a target
	Configuring a transformation
	Configuring runtime options
	Deploying a streaming ingestion task
	Undeploying a streaming ingestion job
	Stopping and resuming streaming ingestion jobs

	Frequently asked questions for Mass Ingestion Streaming behavior

	Chapter 2: Mass Ingestion Streaming REST API
	Dataflows resource
	Deploying a streaming ingestion task
	Undeploying a streaming ingestion task
	Starting a streaming ingestion task
	Stopping a streaming ingestion task

	CopyEntities resource
	UpdateEntity resource
	POST request
	POST response

	jobs resource
	MIJobs resource
	status resource
	statistics resource
	history resource

	Index

