
Informatica® Data Clustering Engine
10.1

User Guide

Informatica Data Clustering Engine User Guide
10.1
June 2018

© Copyright Informatica LLC 1999, 2018

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2018-07-19

Table of Contents

Preface . 7
Informatica Resources. 7

Informatica Network. 7

Informatica Knowledge Base. 7

Informatica Documentation. 7

Informatica Product Availability Matrixes. 7

Informatica Velocity. 8

Informatica Marketplace. 8

Informatica Global Customer Support. 8

Chapter 1: Introduction. 9
Clustering Process. 9

Data Clustering Engine. 9

Terminology. 10

Clustering Suite. 11

Chapter 2: Installation. 13
Software Prerequisites. 13

Verify the Minimum System Requirements. 13

Install Java. 13

Set the Environment Variables. 14

Install the .NET Framework. 14

Install the ODBC Drivers. 14

Extract the Installer Files on Windows. 14

Extract the Installer Files on UNIX. 14

Set Up the X Window Server on UNIX. 15

Software Installation. 15

Post-Installation Tasks. 15

Configuring an ODBC Data Source. 15

Testing the Database Configuration. 18

Testing the Installation. 19

Cloning a Sample Project from a definition file (.SDF). 19

Cloning a Sample Project from a template file (.pr). 19

Chapter 3: Design. 21
Syntax. 21

Project Definition File. 22

SYSTEM Section. 22

IDT Definition. 23

IDX Definition. 24

Table of Contents 3

Logical File Definition. 25

Clustering Definition. 27

Search Definition. 29

Multi-Search Definition. 31

Multi-Clustering-Definition. 32

User-Job-Definition. 33

User-Step-Definition. 34

The Job Definition. 35

Search Logic. 41

Score Logic. 44

FILES and VIEWS Sections. 46

Data Source. 46

File Definition. 46

View Definition. 46

Syntax. 47

Field Formats. 47

Transformations. 49

Cluster File. 53

Output Views. 53

USER SOURCE TABLE Section. 54

General Syntax. 54

UST Data Types. 55

Single UST. 57

Joining USTs. 61

Merging USTs. 63

Defining Source Tables. 64

Flattening IDTs. 65

Syntax. 68

Flattening Process. 69

Flattening Options. 69

Tuning / Load Statistics. 69

Maintaining the Project. 70

Restarting or Continuing an Edit Session. 70

Editing a Project. 71

Project Editor. 71

Starting. 71

Editing. 72

Cloning and Adding. 72

Help. 72

Advanced Options. 72

Project Template. 72

Backing Up the Database and Index. 73

4 Table of Contents

Membership Attributes. 73

Performance Optimization. 74

Partitions. 75

Key Data / Key-Score-Logic. 75

Pre-Scoring. 76

Scoring Phases. 76

Utilizing multiple CPUs. 77

Reducing Database I/O. 78

Large File Support. 84

Chapter 4: Operation. 86
Environment Variables. 86

Limitations. 89

DCE Console. 90

Running the Console Server. 90

Running the Console Client. 90

Settings. 91

The Main Console Window. 93

The Options Explained. 93

How to Create and Run Jobs. 98

Job Options. 98

How to Run Clustering. 101

Requirements Analysis. 101

Launch the Console Server and DCE Console. 101

Create Project Definition. 102

Confirm Settings. 102

Create the Project. 102

Select (and Load) the Project. 104

Run the Clustering Process. 104

Review Results. 106

Adjust parameters and rerun if required. 106

Stopping and Restarting Clustering. 106

Stopping and Restarting Clustering Manually. 107

To restart a suspended job. 109

Stopping and Restarting Clustering Automatically. 110

Utilities. 110

Batch Search Client - Relate. 110

Report Formats. 112

Delimited Input. 113

SQL Input. 114

Batch Search Client - DupFinder. 114

Extra options for Relate and DupFinder. 115

Threads. 116

Table of Contents 5

Batch Process - Command Line. 116

Report Viewer. 117

Troubleshooting. 118

How To. 122

Index. 128

6 Table of Contents

Preface
The Data Clustering Engine Guide provides information about the DCE product.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you

7

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

8 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Introduction
This chapter discusses the general concepts and terminology associated with the Data Clustering Engine
(DCE).

Clustering Process
Clustering is the process of grouping similar or related records together. The logical rules, which define how
to cluster records together, are specified using definition files and are stored in a special database called
Rulebase.

For example, data records could be processed into the following groups:

• all records about the same person

• all records about the same family

• all records about the same household

• all records which have the same demographic attributes

Data may be clustered in many ways. Simple forms of clustering include records which:

• have the same account number

• have an identical name

• have the same match-code

Complex forms of clustering may include records which:

• could be about the same house

• could be safely accepted as the same person

• could possibly refer to the same person

Data Clustering Engine
The DCE is a suite of software application programs that facilitate the clustering process using userdefined
rules together with SSA-NAME3 search and matching technology.

The DCE reads input files and produces a database containing clustered records. The clusters can be output
to reports and/or read directly via an Application Programming Interface.

9

The DCE consists of:

• an input file processor

• a proprietary Rulebase and Database

• sort and merge utilities

• clustering programs

• report and statistics generator

The core of the DCE consists of a Rulebase and a Database. During the clustering process, the Rulebase is
loaded with information pertaining to how the data should be matched combined with the SSANAME3
algorithms to be used for , Searching and Matching. The Database is loaded with records from input file(s).

The Input File Processor and sort-merge utilities can be used to help load the database and optimize its
efficiency. The Input File Processor can reformat and restructure the input data for better clustering. The
Sort-Merge utilities can be used to sort the input file by key value. Loading the database in this sequence
helps to optimize I/O performance while clustering the data.

The Report and Statistics Generator helps to produce reports from the clustered data which can be viewed
from the DCE Console using the integrated report viewer tool.

Terminology
The DCE clusters records based upon user-defined rules. These rules are read from definition files and
loaded into the Rulebase. The following entities will be defined when creating a definition file.

Project

A Project represents the complete logical task that one wants to accomplish. It is used to record
information that affects the entire process. Many Projects may be defined per Rulebase and each
Project may contain many clusterings.

IDT

An Identity Table (IDT) is a DCE table stored in the database containing denormalized and transformed
data. It is created by extracting data from either database tables (User Source Tables) or a sequential
(flat) file.

IDX

An Identity Index (IDX) is an index stored in the database containing keys for each row of the IDT. It may
optionally store additional matching data (Key-Data) together with each key in order to improve
clustering performance.

Clustering

A clustering defines the application objectives and business rules for a single clustering process. It will
define the search and matching rules to be used.

The clustering also defines which DCE utilities are used to create the clustering result. This is done by
associating jobs with a clustering.

Job

A job represents a unit of work performed by the DCE. For example it might be the process of converting
the input file, loading it into the database, or clustering the records on the database.

10 Chapter 1: Introduction

A job entity is used to specify information that is particular to a job. If the job accesses an input or
output file, the job will refer to a logical-file entity.

Logical File

A logical-file entity is used to specify how the DCE will access a physical file. It describes the path to the
file, the file format, and the view to be used when accessing the file.

View

A view specifies the layout of a record and the rules for constructing and using that record. A view
definition controls what information is loaded to - or extracted from - the database.

Clustering Suite
The clustering suite consists of the following programs:
PRE

This program performs the pre-clustering formatting step. It is used to read the raw input file using a
view and creates records that conform to the database view of the data. This process can optionally add
a unique Source-Id field to each record if the input data does not already contain one. SORTIT, LOADIT
and CLUSTER are also capable of reading the input files, so under normal circumstances the PRE step
would be omitted. However, PRE should be run when you wish to process multiple input files, each with a
different format and/or you wish to allocate a different Source-Id to each input file.

SORTIT

This program can be used to sort the input file. This step is optional and is used to improve the
performance of the clustering phase. The input file can be either the output from the PRE program, or the
raw input-file. If the latter is the case, SORTIT will perform the PRE process (internally) prior to sorting the
records.

The records are sorted using the key field specified in the Clustering Definition.

Note: Sorting is used to reorder the input file by preferred key in order to place similar records close
together on disk, thereby improving performance due to locality of reference. However, if you use
negative keys or a negative search strategy, which is the default strategy in SSA-NAME3 standard
populations, you’ll be searching randomly over the disk, thereby negating the benefit. A SORTIT step
should be omitted in this situation.

LOADIT

This program pre-loads the input data to the database and generates keys (which are stored in a
database index). It is an optional process. It can read its input from either

a raw input file

the output from PRE

the output from SORTIT

If LOADIT reads its input from a raw input file it will internally perform the PRE process prior to loading the
records to the database.

CLUSTER

This program clusters the data records using the rules specified in the Clustering Definition. Data
records can be read from:

Clustering Suite 11

a raw input file

the output from PRE

the output from SORTIT

the database (output from LOADIT)

The result of the clustering process is held in the database in the form of the cluster relationship index.

EXTRACT

This program is used to create a database index required by the POST program. Normally this index is
created during the CLUSTER phase, unless you specify the DELAY option. In this case, you must schedule
an EXTRACT job prior to running POST.

POST

This is a general-purpose post-clustering extraction and reporting step. The layout of the report/file is
controlled using a sophisticated view processor

12 Chapter 1: Introduction

C h a p t e r 2

Installation
This chapter includes the following topics:

• Software Prerequisites, 13

• Software Installation, 15

• Post-Installation Tasks, 15

Software Prerequisites
Before you install Data Clustering Engine, set up the machine to meet the requirements to install and run Data
Clustering Engine. If the machine does not meet the pre-installation requirements, the installation might fail.

Verify the Minimum System Requirements
Verify that the machine meets the hardware and software requirements to install Data Clustering Engine.

The following table describes the minimum system requirements to install and run Data Clustering Engine:

Component Minimum requirement

CPU Cores 4

RAM 8 GB

The hardware requirements for a Data Clustering Engine implementation depend on the search strategies and
the number of identity tables, identity indexes, and concurrent users that you plan to use.

For more information about product requirements and supported platforms, see the Product Availability
Matrix on Informatica Network:
https://network.informatica.com/community/informatica-network/product-availability-matrices

Install Java
Install Java Development Kit (JDK) or Java Runtime Environment (JRE) version 1.6 or later.

13

https://network.informatica.com/community/informatica-network/product-availability-matrices

Set the Environment Variables
The following table describes the environment variables that you must configure if the variables are not
already configured:

Variable Description

JRE_HOME Specify the location of the directory that contains the supported JRE.

PATH Include the location of the bin directory of the JDK or JRE installation.

JAVA_OPTS Optional. Additional parameters that you want to pass to the JRE.

Install the .NET Framework
On Windows, install the .NET Framework version 2 or later.

Install the ODBC Drivers
If you use a database to source data, Data Clustering Engine requires an ODBC API to access the database.

Unless you use Oracle, install and configure the ODBC drivers for your database. Data Clustering Engine does
not use the Oracle ODBC driver and uses custom ODBC drivers for Oracle, ssaoci9.dll on Windows and
libssaoci9.so on UNIX. The custom drivers do not require any further configuration.

Extract the Installer Files on Windows
On Windows, the installer files are compressed and distributed as a zip file.

Use a zip utility to extract the installer files to a directory on your machine.

You can extract the installer files in the following ways:

• Installation DVD. Copy the Informatica zip file from the installation DVD to a directory on your machine
and then extract the installer files, or extract the installer files directly from the DVD to a directory on your
machine.

• FTP download. Download the Informatica installation zip file from the Informatica Electronic Software
Download (END) site to a directory on your machine and extract the installer files.

Extract the Installer Files on UNIX
On UNIX, the installer files are distributed as a tar file.

Use a native tar or GNU tar utility to extract the installer files to a directory on your machine.

You can extract the installer files in the following ways:

• Installation DVD. Copy the Informatica tar file from the installation DVD to a directory on your machine
and extract the installer files, or extract the installer files directly from the DVD to a directory on your
machine.

• FTP download. Download the Informatica installation tar file from the Informatica Electronic Software
Download (ESD) site to a directory on your machine and extract the installer files.

14 Chapter 2: Installation

Set Up the X Window Server on UNIX
On UNIX, when you run the installer in graphical mode, use a graphics display server. The graphics display
server is typically an X Window server. If you do not have the X Window server installed on the machine
where you want to install the product, you can use an X Window server installed on another machine or run
the installer in the console mode.

Software Installation
Follow the instructions in the Informatica Identity Resolution Installation and Configuration Guide to install
Data Clustering Engine.

Post-Installation Tasks
After you install Data Clustering Engine, perform the following tasks:

1. If you use a database to source data, configure the OBDC data source for your database, and test the
database configuration.

2. Test the Data Clustering Engine installation.

3. Clone a sample project from a system definition file or a template file.

Configuring an ODBC Data Source
If you use a database to source data, Data Clustering Engine requires an ODBC API to access the database.
During the run time, the database access layer of Database Clustering Engine tries to load an appropriate
ODBC driver for each database type. You must create ODBC data sources for each database that you plan to
access.

Oracle
Data Clustering Engine uses the following custom ODBC drivers for Oracle instead of the Oracle ODBC driver.

• On Windows: ssaoci9.dll
• On UNIX: libssaoci9.so

When you install Data Clustering Engine, the installer updates the odbc.ini file in the <Data Clustering
Engine Installation Directory>\bin directory on Windows or <Data Clustering Engine Installation
Directory>/bin directory on UNIX. The odbc.ini file contains the following entries, and you can edit them
based on your requirement:

[<Service Name>]
driver = <ODBC Driver>
server = <Native Database Service>

Configure the following parameters:
Service Name

Service name that Data Clustering Engine uses to refer to the database service.

Software Installation 15

ODBC Driver

Name of the ODBC driver, which is ssaoci9.dll on Windows and libssaoci9.so on UNIX. The driver
name does not include the directory path.

Note: In Data Clustering Engine versions earlier than 9.5.2, you can also use the ssadriver parameter on
Windows or the ssaunixdriver parameter on UNIX instead of the driver parameter. The ssadriver and
ssaunixdriver parameters are deprecated, and Informatica recommends that you use the driver
parameter.

Native Database Service

Name of the database service that you configure in the database.

You can find a sample configuration file, odbc.ini.ori, in the following directory:

• On Windows: <Data Clustering Engine Installation Directory>\bin
• On UNIX: <Data Clustering Engine Installation Directory>/bin

When you use ssaoci9.dll driver with Oracle Database Client 10g, the connectivity test might fail on UNIX
environments. The ssaoci9.dll driver is linked with libclntsh.so.9.0, which is not distributed with Oracle
10g. This issue causes the connectivity test failure. Oracle adds symbolic links to redirect requests for older
versions of a library to the current version. Oracle provides this backward compatibility only to the minor
versions of its release. To overcome this problem, identity the appropriate Oracle library directory such as
lib, lib32, or lib64, and add the symbolic link as follows:

cd $ORACLE_HOME/lib32
ln -s ./libclntsh.so libclntsh.so.9.0

Microsoft SQL Server
1. Open the odbc.ini file that you can find in the <Data Clustering Engine Installation Directory>

\bin directory, and add or update the following entries:

[<Service Name>]
DataSourceName = <ODBC DSN>
driver = <ODBC Driver>
server = <Native Database Service>

Configure the following parameters:
Service Name

Service name that Data Clustering Engine uses to refer to the database service.

ODBC DSN

Data Source Name. If you do not specify any value, it defaults to the service name.

ODBC Driver

Name of the ODBC driver that communicates with the database. The driver name does not include
the directory path. You can also use the Microsoft SQL Server Native Client as the ODBC driver.

Enter one of the following values:

• sqlsrv32 for any supported version of Microsoft SQL Server

• sqlncli for Microsoft SQL Server 2005

• sqlncli10 for Microsoft SQL Server 2008

• sqlncli11 for Microsoft SQL Server 2012

16 Chapter 2: Installation

Note: In Data Clustering Engine versions earlier than 9.5.2, you can also use the ssadriver
parameter instead of the driver parameter. The ssadriver parameter is deprecated, and
Informatica recommends that you use the driver parameter.

Native Database Service

Name of the database service that you configure in the database.

Note: You can find a sample configuration file, odbc.ini.ori, in the <Data Clustering Engine
Installation Directory>\bin directory.

2. Open the ODBC Data Source Administrator by performing the following tasks:

a. On the Start menu, click Control Panel.

b. In Control Panel, click Administrative Tools.

c. In Administrative Tools, click Data Sources (ODBC).

3. On the User DNS tab or Service DNS tab, click Add.

4. Select SQL Server or SQL Server Native Client, and click Finish.

5. Follow the instructions in the Wizard, and ensure that you enter the following values:

• Specify a data source name. Ensure that the data source name matches the data source name that
you specify in the odbc.ini file.

• Select the Microsoft SQL Server authentication and provide the user credentials that you created.

• Specify a default database.

• Ensure that you do not select the Use regional settings when outputting currency, numbers, dates
and times check box.

Note: If you want to use the Windows authentication to connect to Microsoft SQL Server, set the
SSA_DB_WINDOWS_AUTHENTICATION environment variable to Yes.

IBM DB2 UDB
1. Open the odbc.ini file that you can find in the <Data Clustering Engine Installation Directory>

\bin directory on Windows or <Data Clustering Engine Installation Directory>/bin on UNIX, and
add or update the following entries:

[<Service Name>]
DataSourceName = <ODBC DSN>
driver = <ODBC Driver>
server = <Native Database Service>

Configure the following parameters:
Service Name

Service name that Data Clustering Engine uses to refer to the database service.

ODBC DSN

Data Source Name. If you do not specify any value, it defaults to the service name.

ODBC Driver

Name of the ODBC driver. The driver name does not include the directory path. Enter one of the
following values:

• db2cli on Windows

• db2 on UNIX

Post-Installation Tasks 17

• libdb2.a(shr.o) on 32-bit AIX environments

• libdb2.a(shr_64.o) on 64-bit AIX environments

Note: In Data Clustering Engine versions earlier than 9.5.2, you can also use the ssadriver
parameter on Windows or ssaunixdriver parameter on UNIX instead of the driver parameter. The
ssadriver and ssaunixdriver parameters are deprecated, and Informatica recommends that you
use the driver parameter.

Native Database Service

Name of the database service that you configure in the database.

Note: You can find a sample configuration file, odbc.ini.ori, in the following directory:

• On Windows: <Data Clustering Engine Installation Directory>\bin
• On UNIX: <Data Clustering Engine Installation Directory>/bin

2. Open the ODBC Data Source Administrator by performing the following tasks:

a. On the Start menu, click Control Panel.

b. In Control Panel, click Administrative Tools.

c. In Administrative Tools, click Data Sources (ODBC).

3. On the User DNS tab or Service DNS tab, click Add.

4. Select IBM DB2 ODBC DRIVER, and click Finish.

5. Follow the instructions in the Wizard, and ensure that you enter the following values:

• Specify a data source name. Ensure that the data source name matches the data source name that
you specify in the odbc.ini file.

• Specify a default database.

Testing the Database Configuration
If you use a database to source data, verify the configuration to ensure that Data Clustering Engine
communicates with the database.

You can use the dblist utility to verify your ODBC configuration. You can find the dblist utility in the following
directory:

• On Windows: <Data Clustering Engine Installation Directory>\bin
• On UNIX: <Data Clustering Engine Installation Directory>/bin

The dblist utility uses the following syntax:

dblist -c -dodb:99:<User Name>/<Password>@<Service Name>

This utility uses the following parameters:
User Name

Name of the user that you created.

Password

Password for the user.

Service Name

Service name that Data Clustering Engine uses to refer to the database service.

18 Chapter 2: Installation

The following text shows a sample response of the dblist utility:

dblist -c -dodb:99:ssa/SSA@ora920
Maximum connections per module: 1024
Linked databases: odb: sdb:
Driver Manager: ’Informatica ODBC Driver Manager <revision>’
ODBC Driver: ’ssaoci9 SSADB8 2.7.0.00GCCLIBC2Feb 1 2010 14:22:57’
DBMS Name: ’Oracle DBMS (9.2.0.6.0)’
Native DB type: ’ora’
*** Connection successful ***

Testing the Installation
Launch the DCE Server in configuration mode from the shortcut in the Informatica’s folder created during the
software installation phase. Launch the Console Client in Admin mode. A quick test will start automatically to
verify the integrity of the installation.

Refer to the Using the Console Client section in Setup Mode for more detailed description of the installation
tests.

Cloning a Sample Project from a definition file (.SDF)
An easy way to get started on a new Project is to clone a sample Clustering Project that is similar to your
needs. The following steps are necessary to clone a Project from the dce/tests directory:

1. Create a new Project work directory (if you do not wish to use the default work directory dce).

2. Set the environment variable SSAWORKDIR to refer to the work directory

This can be done by modifying the DCE Server environment setting script <DCE Installation
Directory>\env\dces.bat on Windows and <DCE Installation Directory>/env/dces on Unix-based
systems.

3. Copy a sample Project file file dce/tests/testnn.sdf to the work directory

4. Start the DCE Server and Console

5. Select Project > New > Create a Project from an SDF and enter the name of your Project and the location
of your Project definition file.

6. After the new Project has been created, select it to make it the active Project (Project > Select)

Refer to the DCE Console section for details.

Cloning a Sample Project from a template file (.pr)
An alternative to using a Project definition file (SDF) is to create a Project by importing a Project template
and to modify it using the Project editor included in the Console. The following steps are necessary to create
a Project from a previously created template file:

1. Create a new Project work directory (if you do not wish to use the default work directory dce).

2. Set the environment variable SSAWORKDIR to refer to the work directory.

This can be done by modifying the DCE Server environment setting script <DCE Installation
Directory>\bin\dces.bat on Windows and <DCE Installation Directory>/env/dces on Unix-based
systems.

3. Start the DCE Server and Console.

4. Select Project > New > Import a Projectfrom a flat file and enter the name of your Project and the
location of the previously created (exported) Project template file.

5. After the new Project has been created, select it to make it the active Project (Project > Select).

Post-Installation Tasks 19

6. To start the Project Editor, click the Project > Edit button. Refer to the Editing a Project section for more
details.

If the clone Project has a different name than the original Project, it must be loaded either from Console
Client (Project > Load) or from the Project Editor (Load), before it can be used with the new name. The
load is a necessary step to create the clustering file for the new Project.

20 Chapter 2: Installation

C h a p t e r 3

Design
This chapter discusses the design of a DCE Project and includes information on creating and modifying the
Project Definition file (.sdf).

Syntax
A text based Project Definition File (.sdf) is used to specify options and parameters which define your
Project, clusterings, jobs, logical files, database files and views.

The Project Definition File has the following syntax:

• Each line is terminated by a newline.

• Each line has a maximum length of 255 bytes.

• Lines starting with an asterisk are treated as comments.

• All characters following two asterisks (**) on a line are treated as comments.

Quoted strings can be continued onto the next line by coding two adjacent string tokens. For example, the
COMMENT= keyword is another way of defining a comment inside the definition files. If a COMMENT field is
very long, it could be specified like this:

COMMENT="This is a very long comment that"
" continues on the next line."

Some definitions will require the specification of a character such as a filler character. It will be denoted as
<char> in the following text. The Definition Language permits a <char> to be specified in a number of ways:

• c - a printable character

• "c" - the character embedded in double quotes (")

• numeric(dd) - the decimal value dd of the character in the collating sequence

• numeric(x’hh’) - the hexadecimal value (hh) of the character in the collating sequence

Numeric data in the Project Definition File may be suffixed by an optional modifier to help specify large
numbers:

• k - units of 1000 (one thousand)

• m - units of 1000000 (one million)

• g - units of 1000000000 (one billion)

• k2 - units of 1024 (base 2 numbers)

• m2 - units of 1048576

21

• g2 - units of 1073741824

The Project Definition File is created using a text editor. Although it is recommended that you begin with one
of the example Project definition files supplied in the dce/tests subdirectory on the DCE Client. The Project
Definition File is then loaded into the DCE Rulebase during the Project > New step.

After the initial load, the Project Definition File is maintained using the Project Editor tool in the DCE Console.
Refer to the Editing a Project section for more details.

Project Definition File
This file contains 4 sections, each identified by a section heading:

Section: System Section: Files Section: User-Source-Tables Section: Views
A Project must have one Section System, at least one Section Files or User-Source-Table (or both) and one
optional Section Views.

SYSTEM Section
This section provides information about the System section.

Project Definition

This section begins with the Project-Definition keyword. The fields are as follows:

Field Description

NAME= A character string that defines the name of the Project. This is a mandatory
parameter.

ID= This is one or two digit number to be assigned to the Project. It must be unique
(different from other Projects defined to the same Rulebase). Rulebase or Projects in
the same work directory. The ID is used to name the clustering relationship indexes. If
they are not unique, the clustering of one Project will overwrite the clustering
relationship indexes of another Project with the same ID. This is a mandatory
parameter.

FILE= A character string that specifies the name of the DCE Identity Table. If this parameter
is omitted, then you must specify an otherwise optional idt-definition. For more
information, see the IDT Definition section below.

OPTIONS= An optional parameter used to set global options for all ID-Tables in this Project.
Currently, the only valid value is Compress-Method, which is described in the IDX
Definition section.

COMMENT= This is an optional text field that is used to describe the Project’s purpose.

22 Chapter 3: Design

Field Description

DEFAULT-PATH= DCE will create various files while processing some jobs. The PATH parameters can
be used to specify where those files will be placed. DCE will use the path specified in
the DEFAULT-PATH parameter. If DEFAULT-PATH has not been specified, the current
directory will be used. It is valid to specify a value of "+" for the path. This represents
the value associated with the environment variable SSAWORKDIR. This is especially
recommended when running the Project remotely, ie. from a directory other than the
SSAWORKDIR directory.
Note: DCE does not support spaces in file or PATH names.

FORMATTED-FILE-PATH= Optional path for the formatted data file fmt.tmp. Refer to the Reformat Input Data
section.

INDEXES-PATH= The path for all index files except the Rulebase index (default name rule.ndx), which
is always kept in the same directory as the Rulebase (default name rule.db).

CLUSTER-IDX1-PATH= The path to the index file created by the CLUSTER job.

CLUSTER-IDX2-PATH= The path to the index file created by the CLUSTER/EXTRACT job.

SORTED-FILE-PATH= Optional path for the temporary sort data file srt.tmp.

SORT-WORK1-PATH=, SORT-
WORK2-PATH=

DCE may create sort work files when sorting a large result set. These optional
parameters control the placement of these files and override the directory given in
DEFAULT-PATH.

IDT Definition
This optional section begins with the IDT-DEFINITION keyword and defines a DCE Identity Table. If you don’t
need to specify any other IDT parameters except its name, then you can omit this section and specify the IDT
name using the FILE= keyword under the Project-Definition section (see the Project Definition section above).

The fields are as follows:

Field Description

NAME= A character string that specifies the name of the IDT. This is a mandatory parameter (unless
the whole IDT-DEFINITION section is omitted).

DENORMALIZED-
VIEW=

A character string that specifies the name of the View-Definition that defines the layout of
the denormalized data for Flattening. Refer to the Flattening IDTs section for details. This is an
optional parameter.

FLATTEN-KEYS= A character string that defines the columns used to group denormalized rows during the
Flattening process. Refer to the Flattening IDTs section for details. This is an optional
parameter.

OPTIONS= This is used to specify various options to control the data stored in the IDT:
FLAT-KEEP-BLANKS - a flattening option that maintains positionality of columns in the
flattened record. Refer to the Flattening IDTs section for details.
FLAT-REMOVE-IDENTICAL - a flattening option that removes identical values from a flattened
row. Refer to the Flattening IDTs section for details.

SYSTEM Section 23

IDX Definition
This begins with the IDX-Definition keyword and defines a DCE Identity Index (IDX).

The IDX Definition fields are as follows:

Field Description

NAME= A character string that specifies the name of the IDX. This is a mandatory parameter.

COMMENT= An optional free-form description of this IDX.

ID= A two-letter character string used to generate the names of the actual database table that
represents the IDX. Each IDX must have a unique ID. This is a mandatory parameter.

KEY-INDEX Optional parameter to specify the name of the index file. If omitted, the value of the ID=
field will be used.

KEY-INDEX-PATH= Optional parameter to specify the location of the index file. If omitted, the index will be
created in the default work directory.
Note: DCE does not support spaces in file or PATH names

IDT-NAME= This is the name of the IDT (as defined in the File-Definition or User-Source-Table
sections) that this IDX will index. This is a mandatory parameter.

AUTO-ID-FIELD= This field is not required if loading data from a User Source Table.
This is the name of a field defined in the Files Section that contains a unique record label
referred to as the Record Source If no such field exists in the IDT, DCE can generate one. If
DCE is being asked to generate an Id, the user can choose the name of the AUTO-ID-
FIELD, however that name must be defined as a field in the Files section (if using a
transform clause, this happens automatically).
Note: Refer to the AUTO-ID-NAME= section under Logical File Definition.

KEY-LOGIC= This is a mandatory parameter describing the key-logic to be used to generate keys for the
IDT. It may differ from the SEARCH-LOGIC= defined in the Search-Definition or
Clustering-Definition. For more details refer to the Search Logic section.

PARTITION=(field[,leng
th,offset[,null-field-
value]]),. . .

For very large files, the key may not be selective enough (retrieves too many records). This
option instructs DCE to build a concatenated key from the Key-Field (defined by KEY-
LOGIC=) and up to five fields/sub-fields taken from the record. The field, length and
offset represent the field name, number of bytes to concatenate to the key and offset into
the field (starting from 0) respectively. The length and offset are optional. If omitted,
the entire field is used.
null-field-value is used to specify the value which represents an empty field. It
defaults to spaces. Records that contain a null partition value can be ignored by specifying
the NO-NULL-PARTITION option (defined below).

24 Chapter 3: Design

Field Description

KEY-
DATA=(field[,length,off
set]),. . .

Key-data is used to append redundant information from the data record to the key
generated from the key-field. Specifying key-data enables the search logic routine to access
and test that data, and therefore be able to quickly reject some records from the search
candidate list rather than pass them to the more expensive score logic routine. It is a
performance option.
Key-data uses the same syntax as the PARTITION= parameter to specify up to five fields, or
parts thereof, to be appended to the key. The Key-Score-Logic module can examine this
data and return a result without the need to read the IDT record. If key-scoring rejects
records at this early stage, the scoring overhead is reduced and the clustering’s
performance is improved.
Note: See also FULL-KEY-DATA option below.

OPTIONS= This is used to specify various options to control the keys and data stored in the IDX.
- ALT - Generate and store multiple keys for each record. This is the default value. When

disabled only the first key returned by SSA-NAME3 is stored in the IDX.
- FULL-KEY-DATA - Store all IDT fields in the IDX. The data is stored in uncompressed

form unless you specify the Compress-Key-Data option. This option is an alternative to
specifying KEY-DATA (see above).

- COMPRESS-KEY-DATA(n) - Store all IDT fields in compressed form using a fixed record
length of n bytes. n cannot exceed (256 - PartitionLength - KeyLength - 4).

Note: COMPRESS-KEY-DATA implies FULL-KEY-DATA.

- COMPRESS-METHOD(n) Methods are:
Method 0 (the default) will store overflow data as multiple adjacent index records. This
improves performance as it takes advantage of the locality of reference in the DBMS’
cache.
Method 1 will truncate compressed Key Data if its size exceeds the limit defined by the
COMPRESS-KEY-DATA option. This will cause additional I/O to access the data record,
when necessary.

- NO-NULL-FIELD do not store records that contain a Null-Field, as defined in the Key-
Logic section.

- NO-NULL-KEY do not store Null-Keys. A Null-Key is defined in the Key-Logic section.

- NO-NULL-PARTITION do not store keys that contain a Null-Partition value, as defined by
the PARTITION= keyword.

Logical File Definition
This begins with the Logical-File-Definition keyword. The fields are as follows:

Field Description

NAME= A character string that identifies the Logical-File. A Job object refers to a logical-file with
its FILE= parameter. This is a mandatory parameter.

COMMENT= A character string for documentation purposes only.

PHYSICAL-FILE= A character string that specifies the file name containing the input data. When reading
input from a flat file, this will specify the full filename including the path. When reading
input from User Source Tables it specifies the name of the IDT defined in the
CREATE_IDT clause of the User Source Table section. The name should be enclosed in
double-quotes. This is a mandatory parameter.
Note: DCE does not support spaces in file or PATH names.

SYSTEM Section 25

Field Description

VIEW=View The name of the Database View Definition to be used when reading the flat input file. It
must not be specified if data will be read from User Source Tables. The View is used to
translate the contents of the input file into the layout to be stored in the IDT (specified
by the KEY-INDEX= parameter of the IDX-Definition).

[INPUT-]FORMAT={SQL|
Text|Binary|Delimited}

Describes the format of the input file. When reading from a User Source Table, specify a
format of SQL. Otherwise, when reading from a flat-file, the following options may be
used:
- Text files contain records terminated by a newline.
- Binary files do not contain line terminators. Records must be fixed in length and

match the size of the input View.
- Delimited files contain variable length records and fields which are delimited. By

default, records are separated by a newline, fields are separated by a comma (,) and
the field delimiter is a double-quote ("). However, you may change this behaviour by
defining
FORMAT=Delimited, Record-Separator(<char>), Field-
Separator(<char>), Field-Delimiter(<char>)
All three values are always used when the Delimited format is processed. There is no
way of specifying that a particular delimiter should not be used. However, you may
specify a value that does not appear in your data such as a non-ASCII value. For
example, if a field delimiter is not used, the following could be specified:
Field-Delimiter(Numeric(255))

Record-
Separator=(<char>)Field-
Separator=(<char>)

These parameters are usually specified as sub-fields on the FORMAT definition. However,
for convenience, they may be defined as separate fields.
Note: For a delimited file using the default delimiters, there is no need to specify any of
the delimiters in either the Project (*.sdf) file or in the Relate dialog. The delimiter
definition should only be used when re-defining the default delimiters.

AUTO-ID-NAME= This parameter is used when DCE has been requested to generate a Record Source ID
field by defining the AUTO-ID clustering option (see the OPTIONS= section for
description of this option). The generated ID is composed of a text string concatenated
to a base 36 sequence number. The value for the text string portion is specified by using
the AUTO-ID-NAME= parameter. It is limited to 32 bytes. The sequence number is
supplied by DCE. The resulting ID field is stored on the IDT in the field defined by the
AUTO-ID-FIELD parameter. This field must be defined in the Files section.
We recommend defining an ID field with attributes F,10. This leaves ample room for an
Auto-Id-Name and several characters for the sequence number. Since the latter is a
base 36 number, it allows for 1.6 million records in 4 characters, 60 million using 5
characters, or up to 3.6 Gig with a 6 character sequence number.
The length attribute of the ID field is not limited to 10 bytes. It may be increased when
you have a large number of records and/or a long Auto-Id-Name prefix.
Note: Refer to the IDX Definition / AUTO-ID-FIELD= section.

26 Chapter 3: Design

Clustering Definition
This section begins with the Clustering-Definition keyword. The fields are as follows:

Field Description

NAME= A character string which identifies the Clustering-Definition. The name must not match any
Search-Definition nor Multi-Search-Definition names in the same Project. This is a
mandatory parameter.

CLUSTERING-
ID=

A unique two-character ID prefixed to all cluster numbers generated by this Clustering. This is a
mandatory parameter.
If the first Clustering definition is used for seeding and any subsequent Clusterings are adding to this
seeded Clustering then all these Clusterings should use the same CLUSTERING-ID. See the
CLUSTERING-METHOD=SEED section under User-Job-Definition for more information about seeding.

IDX= The name of the IDX used by the clustering step. If this parameter is not given, then the default IDX
name "kx" followed by the given CLUSTERING-ID is assumed. The IDX is defined in the IDX-definition
section (see the IDX Definition / NAME= section.

INDEXES-
PATH=

The path for Clustering index files.
Note: DCE does not support spaces in file or PATH names

FORMATTED-
FILE-PATH=

Optional path for the formatted data file fmt.tmp. Refer to the Reformat Input Data section.

COMMENT= An optional character string describing this clustering step.

SEARCH-
LOGIC=
(alias to KEY-
LOGIC=)

This parameter describes the logic to be used to generate search ranges to find candidate records
from the IDT. It may differ from the KEY-LOGIC= used to generate keys for the IDT (as defined in the
IDX-Definition). Refer to the Search Logic section for details. This is a mandatory parameter.

SCORE-
LOGIC

This parameter describes the normal matching logic used to refine the set of candidate records found
by the Search-Logic. This is a mandatory parameter unless at least one of the other SCORE-LOGIC
parameters is specified. Refer to the Score Logic section for details.

PRE-SCORE-
LOGIC

This optional parameter describes the lightweight matching logic used to refine the set of candidate
records found by the Search-Logic. Refer to the Score Logic section for details.

KEY-SCORE-
LOGIC=

This optional parameter describes the normal matching logic used to refine the set of candidate
records found by the Key-Logic. Refer to the Search Logic section for details.

KEY-PRE-
SCORE-
LOGIC=

This optional parameter describes the light-weight matching logic used to refine the set of candidate
records found by the Key-Logic. Refer to the Search Logic section for details.

SORTED-
FILE-PATH=

Optional path for the temporary sort data file srt.tmp.

SORT-
WORK1-
PATH=,
SORT-
WORK2-
PATH=

DCE may create sort work files when sorting a large result set. These parameters control the
placement of these files and override the values possibly given in the Project-Definition.

SYSTEM Section 27

Field Description

KEY-FIELD= The name of the field in the database file which is to be used for key generation purposes. This must
be a field defined in the File-Definition. It is recommended that any use of this keyword is
reviewed and converted to use the newer Field(List of keyfields) Search-Logic/Key-Logic
option. For more details, refer to the Search Logic section.

CANDIDATE-
SET-SIZE-
LIMIT=n

Informs the DCE Search Server to process searches by first building a list of candidate records,
eliminating duplicates, and then scoring the remainder. This process usually makes scoring more
efficient. n specifies the maximum number of unique entries in the list. The default limit is 10000
records. A value of 0 disables this processing.

SCHEDULE=<
list of jobs>

Comma-separated list of jobs scheduled for this clustering. The jobs listed must be defined in the
job-definition sections.

UNMATCHED
-FILE=

The name of the Logical-File entity that describes the Unmatched File. This file is created when
running a clustering job with the No-New-Clusters option. When this parameter is defined, the records
that did not match any existing clusters are written to the Unmatched File. An output view may be
used to format the output file.

OPTIONS= A comma separated list of keywords used to control various search options:
- ADD-NULL-KEY SORTIT processing is used to sort the input file into preferred key order. If an

input record generates a null key and the IDX-Definition option No-Null-Key has been specified,
the record is not written to the output file and therefore will not be loaded into the IDT. If you wish
this record to be loaded but do not want null keys added to the key index, specify the Add-Null-Key
option. This is useful if the record will be reindexed later using a different field.

- APPEND the input file is appended to an existing file in the database. This option is used to merge
two or more input files into one clustering database. Normally, the previous clustering information
is erased when a file is loaded to the database.

- AUTO-ID generate unique record source Id in the Id-field. This option is needed if source identifiers
(Source Id) will be used to identify records.

- IGNORE-NOTCH-OVERRIDE Ignore any adjustments made to the match levels by a search client
(Relate or DupFinder) that requests a particular Match-Tolerance. The tolerance is honored but the
adjustments are ignored.

- DELAY delay the building of cluster index 2 (used by POST); if you use this option and you wish to
run a POST job, you will need to schedule an EXTRACT job to create the index file.

- FORMAT run the PRE job to pre-format the raw input data. This option is needed if a job of type PRE
is used.

- PRE-LOAD run the LOADIT job to preload the input data to the database. This option is needed if a
job of type LOADIT is used.

- SEARCH-NULL-PARTITION any search for a record containing a Null-Partition value will search all
other partitions. Any search for a record with a non-null partition value will search the null-partition
as well. Note that the entire partition value must be null for this to work.

- SORT-IN run the SORTIT job to sort the input data. This option is needed if a job of type SORTIT is
used.

- TRUNCATE-SET modifies the behavior of CANDIDATE-SET-SIZE-LIMIT. Searches normally
continue until all candidates have been considered. Truncate-Set will terminate the search once
the candidate set is full, thereby limiting the number of candidates that will be considered.

28 Chapter 3: Design

Search Definition
A Search Definition is used to define parameters for a search executed by the Search Server. Search
Definitions are used exclusively by the Batch Relate or Batch DupFinder Utilities. It begins with the SEARCH-
DEFINITION keyword.

Field Description

NAME= This is a character string that identifies the Search-Definition. This is a mandatory parameter. The
name must not match any Clustering-Definition nor Multi-Search Definition names in
the same Project.

IDX= This is a character string that identifies the IDT to be searched. This is a mandatory parameter.

COMMENT= This is an optional text field that is used to describe the Search’s purpose.

SORT-WORK1-
PATH=, SORT-
WORK2-PATH=

DCE may create sort work files when sorting a large result set. These parameters control the
placement of these files and override the value possibly given in the Project-Definition.
Note: DCE does not support spaces in file or PATH names.

SEARCH-LOGIC= This parameter describes the Search-Logic to be used to generate search ranges to find candidate
records from the IDT. It may differ from the Key-Logic used to generate keys for the IDT (as
defined in the IDX-Definition). Refer to the Search Logic section for details. This is a
mandatory parameter.

SCORE-LOGIC= This parameter describes the normal matching logic used to refine the set of candidate records
found by the Search-Logic. This is a mandatory parameter unless at least one of the other
SCORE-LOGIC parameters is specified. Refer to the Score Logic section for details.

PRE-SCORE-
LOGIC=

This optional parameter describes the lightweight matching logic used to refine the set of
candidate records found by the Search-Logic. Refer to the Score Logic section for details.

KEY-SCORE-
LOGIC=

This optional parameter describes the normal matching logic used to refine the set of candidate
records found by the Key-Logic. Refer to the Search Logic section for details.

KEY-PRE-SCORE-
LOGIC=

This optional parameter describes the light-weight matching logic used to refine the set of
candidate records found by the Key-Logic. Refer to the Search Logic section for details.

SYSTEM Section 29

Field Description

SORT= A comma separated list of keywords used to control the sort order of records returned by the
search. Multiple sort keys are permitted. The keys will be used in the order of definition. If not
specified, the records will be sorted using a primary descending sort on Score, and a secondary
ascending sort using the whole record.
Memory(recs) - The maximum number of records to sort in memory. If the set contains more
than recs records, the sort will use temporary work files on disk. The default is 1000 records.
Field(fieldname) - The name of the field to be used as the sort key. In addition to IDT field
names, you may specify the following values:
- sort_on_score will sort on the Score
- sort_on_record will sort on the whole record.
Type(type) - The type of the sort for the previously defined key. Valid types are:
- A - Ascending
- D - Descending
Format(format)The format of the previously defined key. Valid formats are:
- FORMAT_TEXT
- FORMAT_SHORT native signed short
- FORMAT_USHORT native unsigned short
- FORMAT_LONG native long
- FORMAT_ULONG native unsigned long
- FORMAT_FLOAT native float
- FORMAT_DOUBLE native long float
- FORMAT_NN_SHORT non-native short
- FORMAT_NN_USHORT non-native unsigned short
- FORMAT_NN_LONG non-native long
- FORMAT_NN_ULONG non-native unsigned long

30 Chapter 3: Design

Field Description

CANDIDATE-SET-
SIZE-LIMIT=n

Informs the DCE Search Server to optimize the matching process by eliminating any duplicate
candidates that have already been processed. n specifies the maximum number of unique entries
in the list. The default limit is 10000 records. A value of 0 disables this processing. If there are
more than n unique candidates, only the first n duplicates are removed. Any candidates, which can
not fit into the list, may be processed several times, and if accepted by matching, added to the
final set several times.
The TRUNCATE-SET option will terminate the search for candidates once the list becomes full. It
is used to prevent very wide searches. However, if a search is terminated prematurely there is no
guarantee that any of the candidates will be accepted and/or the best candidates have been
found.

OPTIONS= A comma separated list of keywords used to control various search options:
- FIRST stop on first accepted match. Used for specialized applications where any acceptable

match should terminate the search process.
- HIDDEN prevents this search from being listed by the Search Clients such as Relate and

DupFinder if the search is not designed to be used independently (ie. it should only be used as
part of a Multi- Search).

- IGNORE-NOTCH-OVERRIDE Ignore any adjustments made to the match levels by a search client
(Relate or DupFinder) that requests a particular Match-Tolerance. The tolerance is honored
but the adjustments are ignored.

- SEARCH-NULL-PARTITION any search for a record containing a Null-Partition value will search
all other partitions. Any search for a record with a non-null partition value will search the null-
partition as well. Note that the entire partition value must be null for this to work.

- TRUNCATE-SET modifies the behavior of CANDIDATE-SET-SIZE-LIMIT. Searches normally
continue until all candidates have been considered. TRUNCATE-SET will terminate the selection
of candidates once the candidate set is full, thereby limiting the number of candidates that will
be considered.

- UNIQUE-KEYS specifies that no duplicate sort keys will be returned. Sort keys are defined with
the SORT= keyword.

- UNMATCHED-STATS Used when an output view contains performance counters (e.g. the number
of candidates) and the search result set is empty. When enabled, the Search Server will return a
dummy IDT record filled with asterisks as a vehicle to return the performance counters.
Otherwise statistics are not returned when the set is empty.

Multi-Search Definition
A MULTI-SEARCH-DEFINITION is used to define parameters for a cascade of searches to be executed by the
DCE Search Server. Multi-Search Definitions are used exclusively by the Batch Relate or Batch DupFinder
Utilities. It begins with the MULTI-SEARCH-DEFINITION keyword.

Field Description

NAME= This is a character string that identifies the Multi-Search. It is a mandatory parameter. The name
must not match any Clustering-Definition nor Search-Definition names in the same
Project.

COMMENT= This is a text field that is used to describe the Multi-Search’s purpose.

SEARCH-LIST= This is a string that contains the list of searches to perform. The searches should be separated by
commas and enclosed in double quotes. All searches must be run against the same IDT. Maximum
of 16 searches can be specified.
When the statistical output view field IDS-MS-SEARCH-NUM is used, the returned result refers to
the search names in this list so that the returned value 1 means the first search in this list, value 2
means the second search in this list etc. See the Statistical Fields section for more information.

SYSTEM Section 31

Field Description

IDT-NAME= This is a character string that identifies the IDT over which the Multi-Search is to be performed. It
is a mandatory parameter.

SOURCE-DEDUP-
MAX=

Multi-Search processing can keep track of the candidate records processed in a particular search
to avoid reprocessing them when they are retrieved as candidates in a later search (in the
Search-List). This is useful and appropriate only if all searches use the same Score-Logic.
This parameter specifies the number of records that will be remembered. The default value of 0
disables this feature.

DEDUP-
PROGRESS=

A parameter that controls the deduplication process. The DupFinder process treats each IDT
record as a search record instead of reading search records provided by a client. Normally the
search process does not return control to the client until a duplicate is found. This may take a long
time if the are very few duplicates in the IDT. This parameter is used to specify the maximum
number of IDT records to be processed before returning control to the client process. This gives
the client the opportunity to write progress messages. The default value of 0 disables this feature.

OPTIONS= A comma separated list of keywords used to control various search options:
- FULL-SEARCH specifies that a Multi-Search is to process all searches in the list rather then

returning on the first search that returns some data.

Multi-Clustering-Definition
Use multi-clustering definition to define parameters for a cascade of clusters. The Data Clustering Engine
clustering process uses the multi-clustering definition to run the cascade of clusters. The clustering process
starts with the multi-clustering definition keyword.

The following table lists the components of a multi-clustering definition:

Field Description

NAME= A unique character string that identifies the multi-clustering definition. The name field is
mandatory and must not match any clustering definition nor search definition names in the
same project.

CLUSTERING-ID= A unique two-character ID prefixed to all cluster numbers. The CLUSTERING-ID field is
mandatory. The clustering process verifies the Cluster ID value with cluster-id definition in the
CLUSTERING-LIST field.

COMMENT= Description of the purpose of the multi-clustering definition.

CLUSTERING-LIST= The string that contains the list of clustering to perform. Separate the clusters with commas
and enclose within double quotes. Run all clustering against the same Identity Table. The
maximum search value is 16 searches.

IDT-NAME= A character string that identifies the Identity Table over which the system should perform multi-
clustering. IDT-NAME field is mandatory.

32 Chapter 3: Design

Field Description

OPTIONS= A list of keywords used to control various search options. Separate each search option with a
comma.
FULL-SEARCH option specifies that a multi-clustering definition is to process all clusters in the
list else it returns on the first cluster that returns some data. When you enable the FULL-
SEARCH option, it executes all search defined in the clustering-list in parallel.

SCHEDULE=<list of
jobs>

A comma separated list of jobs in queue for multi-clustering. The jobs in the list must be
included in the job definition section. The list of jobs should contain jobs related to
clustering and post report processing.

Note: The jobs defined in multi-clustering definition should not schedule to perform a LOAD-IDT job.

The following definition lists a sample multi-clustering definition:

MULTI-CLUSTERING-DEFINITION
*======================
NAME= multi-clustering
CLUSTERING-ID= AA
IDT-NAME= IDT-100
CLUSTERING-LIST= clustering-name,
 clustering-address,
 clustering-company
Options= FULL-SEARCH
SCHEDULE= job-cluster,
 job-post-all
*
job-definition
*=============
NAME= job-cluster
TYPE= cluster
CLUSTERING-METHOD= Merge
*
job-definition
*=============
NAME= job-post-all
TYPE= post
FILE= lf-post-all
OUTPUT-OPTIONS= Trim, CR
*

User-Job-Definition
A User-Job-Definition is the SDF equivalent of a Console Job. Prior to version 2.6, User Jobs could only be
defined using the Console’s Jobs > Edit > New Job dialog. It is envisioned that customers will continue to use
the GUI to define Jobs. However, in order to facilitate the transfer of pre-defined jobs between Dev, Test, QA
and Prod environments a new mechanism was needed to export the definition from the Rulebase into an SDF,
and the SDF was enhanced by adding syntax for defining User-Jobs.

Note: User-Jobs are a new experimental feature of DCE. They are partially documented here to facilitate user
experimentation and feedback. The keywords and/or syntax may change in a future release.

Jobs are exported from the Rulebase into SDF format using System > Export > SDF. The parameters
associated with a Job Step mirror the parameter names in the equivalent GUI dialog used to create it. The
easiest way to get started is to define a Job using the Console and export it to an SDF.

SYSTEM Section 33

A User-Job-Definition contains two parameters:

Field Description

NAME= Defines the name of the User-Job. All subordinate User-Step-Definitions quote this name to
associate themselves with the User-Job-Definition.

COMMENT= This is an optional text field that is used to describe User-Job’s purpose.

User-Step-Definition
Each User-Job-Definition is associated with one or more User-Step-Definitions. They are equivalent to
Job Steps added with the Add Step button in the Console and contain the following parameters:

Field Description

COMMENT= This is a text field that is used to describe step’s purpose.

JOB= This is the name of the User-Job-Definition that this step belongs to.

NUMBER= This field is used to order steps within a User-Job-Definition. NUMBER is a printable numeric
value starting from 0. That is, the first step has NUMBER = 0. There must be no gaps in the
numbering of steps.

NAME= This is the type of Job step. A list of valid types is visible in the Console dialog when you click
New Step. Names containing spaces should be enclosed in quotes (").

TYPE= This is the type of step. A list of valid job types and their associated parameters can be
generated by running

%SSABIN%\pdf -ddce reportFileName
or

$SSABIN/pdf -ddce reportFileName

PARAMETERS= This is a list of parameters and values required by the step (if any). A list of valid job types and
their associated parameters can be generated by running

%SSABIN%\pdf -ddce reportFileName
or

$SSABIN/pdf -ddce reportFileName

For example:

user-job-definition
*==================
NAME= RunClustering1AndDupFinder
*
user-step-definition
*===================
COMMENT= "First step"
JOB= RunClustering1AndDupFinder
NUMBER= 0
NAME= "Reinitialize DB"
TYPE= "Reinitialize DB"
*
user-step-definition
*===================

34 Chapter 3: Design

COMMENT= "Second step"
JOB= RunClustering1AndDupFinder
NUMBER= 1
NAME= "Run Clustering 1"
TYPE= "Run Clustering"
PARAMETERS= ("Clustering Definition",
 clustering-1)
*
user-step-definition
*===================
COMMENT= "Third step"
JOB= RunClustering1AndDupFinder
NUMBER= 2
NAME= "Run DupFinder"
TYPE= DupFinder
PARAMETERS= ("Output File","dup00.rep"),
 ("Search Definition",
 clustering-1),
 ("Output Format",0),
 ("Append New Line",true),
 ("Trim Trailing Blanks",true),
 ("Return Search Records Only",
 false),
 ("Remove Search Record",false)

The Job Definition
This section begins with the Job-Definition keyword. The fields are as follows:

Field Description

NAME= A character string identifying the job. This is a mandatory parameter.

COMMENT= This is a text field that is used to describe the Job’s purpose.

IDX-LIST= This is a comma-separated list of IDX names used in conjunction with the Load-All-Indexes
option to limit the number of IDXs to be loaded. Normally Load-All-Indexes means that all IDXs
that have been defined are to be loaded.

FILE= A parameter used to define name of the Logical-File entity which describes either an input or
output file to be used by this job.

TYPE={PRE|SORTIT|
LOADIT|CLUSTER|
EXTRACT|POST}

A character string that describes the type of job. Refer to the Clustering Suite section in the
Introduction chapter for more details. This is a mandatory parameter.

The Job Definition 35

Field Description

CLUSTERING-
METHOD=method

Specifies how to assign records to clusters for a job of type CLUSTER. This setting is ignored
for other job types. The parameter method is one of the following:
BEST

A new record is added to the cluster that contains the best matching record, or is allocated
to a new cluster if its score does not reach the specified minimum for a successful (i.e.
accepted) match. Best is the default Clustering-Method Option.

MERGE

All clusters that the record is successfully matched with (i.e. are accepted) are merged into
a single cluster and the new record is added to that cluster.

SEED

Each record is allocated to a separate cluster. For example, if the only requirement is to
discover the records in one file which match to records in another file, then the larger of the
two files could be SEEDed first, then the second file APPENDed to that file using the
NONEWCLUSTERS option.

PRE-CLUSTERED[(FieldName[,Grouped,Ordered])]

The input file is pre-clustered. Each input record contains a field with a cluster number in it.
This FieldName defaults to cluster, although you may nominate any FieldName from
your view definition.

Unless the additional optional keywords Grouped and Ordered are used, the field must be
defined with a format of I,4 on the Database file, although it may have any compatible
format on the input view. Also, the original cluster numbers will be translated to new cluster
numbers when loaded into the database.

Consequently, if two or more input files contain records with the same cluster numbers,
these clusters will not be maintained when loaded into the database. Each file will be
allocated to a different range of cluster numbers.
Note: Cluster number 0 is not allowed.

An example of using PRE-CLUSTERED is when the input file already has duplicate id-
numbers, which define groupings of related records. This file may then be re-clustered using
a different key field, and the NO-ADD option.

If the additional optional keywords Grouped and Ordered are used, the pre-clustered field
can be any size and any format. The input file must have all records with the same ID value
consecutive (Grouped) and in ascending order (Ordered). Currently the Grouped option
cannot be used without the Ordered option. We will later introduce internal sorting to make
this ordering optional.

MANY

A record may become a member of multiple clusters. This option is not compatible with the
MERGE option. For example, if the requirement is to populate a prospect file with do not
mail or fraud records, the prospect file could be SEEDed, then the do not mail or fraud
records could be clustered to this file using the MANY option.

FIRST

The first candidate that achieves an Accepted score is accepted into a cluster. This option
introduces an order dependency. It is designed to be used only when the resulting clusters
are to be discarded and the unmatched file contains the records of interest.

36 Chapter 3: Design

Field Description

CHECKPOINT-
TIME=n[s|m|h|d]

This parameter informs the Data Clustering Engine to enter a Wait state after clustering
records for n seconds/minutes/hours/days. n is assumed to have units of seconds if it is not
qualified by the optional s, m, h or d unit parameter. Refer to the Stopping and Restarting
Clustering section for more information on how to use this parameter.

STATUS-TIME=n[s|
m|h|d]

This parameter informs the Data Clustering Engine to write a status report after clustering
records for n seconds/minutes/hours/days. n is assumed to have units of seconds if it is not
qualified by the optional s, m, h or d unit parameter.

INPUT-SELECT=n,
INPUT-
SELECT=[Count(n),]
[Skip(n),]
[Sample(n)]

This parameter is used to define input file processing options. When specified in the first form
above, the number n is treated as the number of records to be read from the input file. An
equivalent method of specifying this is Count(n). The value n must be a positive non-zero
number. You may skip some records before processing begins by specifying Skip(n). You
may also process every nth record by specifying Sample(n). Note that the INPUT-SELECT
statement is ignored by the Cluster step if the data has been preloaded. In this case you can
use the INPUT-SELECT statement in the LOADIT step.

INPUT-HEADER= Describes the number of bytes to ignore at the start of the input file. This is useful for some
types of files that contain a fixed length header before the actual data records.

The Job Definition 37

Field Description

OPTIONS= A comma separated list of option keywords for the job:
INPUT-APPEND

This causes the PRE job to append its output to an existing PRE output file. This allows
running multiple PRE steps before the SORTIT step.

NO-NEW-CLUSTERS

if a record does not successfully match any existing records, do not create a new cluster for
it. i.e. do not create any clustering relationship. In this case, the unmatched records can be
written to the file specified by the UNMATCHED-FILE Clustering parameter.

MATCH-ALL-MEMBERS

Match the record against all members of the cluster, not just the voting members.

LOAD-ALL-INDEXES

Instructs LOADIT to load all indexes declared in the Project definition file. This is useful
when there is only one clustering loading a file (seeding) and more than one search/
clustering has been defined using different indexes.

RE-INDEX

Instructs LOADIT to read records from an existing database file and generate a new key
index instead of reading from an input file. This is useful when there is a desire to re-cluster
the file using a new key field to improve the reliability of the clusters. Refer to the How To
Re-Cluster Data section for more details.
Note: If the data used for the new index is available during the initial load (first clustering
job), the option LOAD-ALL-INDEXES can be used to load all the indexes during the initial
load.

NO-ADD

Used to recluster records which were loaded as preclustered, or previously clustered. NO-
ADD prevents data records from being added to the database. Refer to the How To Re-
Cluster Data section on for more details.

USE-ATTRIBUTES

Honors the voting attribute. By default this option is turned off, except when Clustering-
Method, Many is used without the NO-ADD option, in which case this option is turned on.
Refer to the Voting Attribute section for more information.

SET-ALL-VOTE

All members that are added can vote. This is the default, except when Clustering- Method,
Many is used without the NO-ADD option, in which case SET-VOTE-NONE is the default.
Refer to the Voting Attribute section for more information.

SET-NONE-VOTE

All members that are added can not vote. This requires that there already are existing
cluster members that can vote (from a previous clustering). If not, the result would be that
all records would become single-member clusters. Any new clusters created will stay as
single-member clusters. Refer to the Voting Attribute section for more information.

38 Chapter 3: Design

Field Description

SET-HEADERS-VOTE

Only the founding member of the cluster can vote (one per cluster). Refer to the Voting
Attribute section for more information.

STATUS-APPEND

Append messages to the Clustering Status File instead of overwriting it.

REVERSE-SORTIN

Reverse the sort order of keys in the SORTIT job. PARTITION data is not reversed. KEY-
DATA is not used by the sort process.
Note: This option is only available for Beta testing. It may or may not be present in future
releases.

NO-PARTITIONS-STATS

Disable logging of Partitions statistics. If you have a very large number of partitions then it
is recommended since the logging will slow the process significantly.

THREADS(#)

Refer to the Utilizing multiple CPUs section for more details.

CANDIDATE-SET-
SIZE-LIMIT=n

Informs the CLUSTER step to process searches by building a list of candidate records,
eliminating duplicates, and then scoring the remainder. n specifies the maximum number of
unique entries in the list. The default limit is 10000 records. A value of 0 disables this
processing. Any candidates that do not fit in the list generate an Audit Trail record of type
Overflow.
This process makes scoring more efficient, when candidates are found more than once.
However, it can affect the clustering results if the Clustering-Method is sensitive to the order
in which records are scored. Example, the BEST method will select the record with the best
score, but if two or more records achieve the best score, then the first is selected. As deduping
can reorder the records, a different record might be selected and the clustering result may
differ over two otherwise identical runs.
The TRUNCATE-SET option will terminate the search for candidates once the list becomes full.
It is used to prevent very wide searches. However, if a search is terminated prematurely there
is no guarantee that any of the candidates will be accepted and/or the best candidates have
been found.

CANDIDATE-SET-
WARNING-LEVEL=n

This specifies a threshold value. If the set of candidate records is greater than or equal to this
limit n, an Audit Trail record (type SetWarning) is written. The default value is one quarter of
the CANDIDATE-SET-SIZE-LIMIT.

The Job Definition 39

Field Description

CANDIDATE-SET-
REPORT-LIMIT=n

The cluster step will tabulate the number of records in each candidate set. This parameter n
determines the size of the biggest set for which discrete counts will be maintained. At the end
of the CLUSTER job, a histogram will be displayed (entitled Histogram: ranges - candidates
count). The default value is equal to the CANDIDATE-SET-SIZE-LIMIT.

OUTPUT-OPTIONS= A comma separated list of options for the POST job.
Only-Singles

Only report single member clusters.

Only-Plurals

Only report clusters with more than one member.

Indent

Blank out the Cluster ID except for the first member in each cluster. The default is to fill in
DCE on all cluster members.

Trim

Remove trailing blanks from output records.

CR

Add carriage return to the end of output records.

Report

This enables the following combination of options: Indent, Trim, CR.

Layout

Write the view description used to generate the report into the report header.

Voting

Only report Voting records. To report only Non-Voting, use --Voting. Default is to report all
members.

The following table shows the options that are applicable to each job type.

 pre sortit loadit cluster extract post

NAME

COMMENT

TYPE

FILE

CLUSTERING-
METHOD

40 Chapter 3: Design

 pre sortit loadit cluster extract post

CHECKPOINT-
TIME

STATUS-TIME

INPUT-SELECT

INPUT-HEADER

OPT=INPUT-
APPEND

OPT=NO-NEW-
CLUSTERS

OPT=RE-INDEX

OPT=NO-ADD

OPT=USE-
ATTRIBUTES

OPT=SET-ALL-
VOTE

OPT=SET-NONE-
VOTE

OPT=SET-
HEADERS-VOTE

OPT=STATUS-
APPEND

OPT=REVERSE-
SORTIN

CANDIDATE-SET-
*

OUTPUT-
OPTIONS

Search Logic
Search-Logic or KEY-LOGIC defined in the Clustering-Definition and/or Search-Definition instructs DCE
how to build search ranges to access the IDT using the index.

Search Logic 41

There are two types of Search-Logic (Key-Logic):

• SSA

• User

Search Logic (SSA)

Search-logic (Key-Logic) facilities are provided by SSA-NAME3 Population Rules.

KEY|SEARCH-LOGIC=SSA,
System(system),
Population(population),
Controls(controls),
Field(keyfield_list),
[Null-Field(null-field-value)],
[Null-Key(null-key-value)]

where
system

Defines the System Name of the SSA-NAME Population Rule File. The system is a sub-directory of the
population rules directory. The location of the population rules directory is defined by the environment
variable SSAPR .

population

Defines the name of the Population file which is located in the system directory. The Population chosen
will depend on the data being processed.

controls

Used to describe the data type of the Key Field data and to control the thoroughness of the search

Note: For more details on the Controls, refer to the SSA-NAME3 API REFERENCE GUIDE under the
ssa_get_ranges heading within the Controls section.

keyfield_list

This is a comma separated list of IDT fields to be used to generate keys or ranges. If more than one field
is provided, the keyfield_list must be enclosed in quotes (").

null-field-value

An optional parameter that defines the null value for the Field. Records with a null value in their key field
can be ignored by using the NO-NULL-FIELD option to prevent them from being stored in the IDT. The
default value is spaces (blanks).

For example,

Null-Field("unknown")
null-key-value

An optional parameter that defines the value of a null key. Records with a null key can be ignored by
using the NO-NULL-KEY option to prevent them from being stored in the IDX. The default value is "K$$$$
$$$".

For example,

Null-Key("K$$$$$$$")
The above key value will be generated from a name containing null data or composed of only delete
words.

42 Chapter 3: Design

Controls

A Key-Logic in an IDX-Definition controls the generation of keys. Therefore the Controls should specify the
KEY_LEVEL. For example,

KEY-LOGIC=SSA,
 System(system), Population(population),
 Controls("FIELD=fieldname KEY_LEVEL=Standard"),
 Field(keyfield)

A Search-Logic in a Search-Definition controls the generation of search ranges. Therefore the Controls should
specify a SEARCH_LEVEL. For example,

SEARCH-LOGIC=SSA,
 System(system), Population(population),
 Controls("FIELD=fieldname SEARCH_LEVEL=Typical"),
 Field(keyfield)

Repeating Key Fields

The Field parameter of the Key- or Search-Logic can be used to generate keys or ranges for multiple fields (of
the same type). This is accomplished by specifying a list of fields.

For example,

IDX-Definition
*=============
KEY-LOGIC=SSA,
 System(system), Population(population),
 Controls("FIELD=fieldname KEY_LEVEL=Standard"),
 Field("field_1,field_2,field_3")

will generate keys for all three name fields and store them in the IDX.

For search:

SEARCH-LOGIC=SSA,
 System(system), Population(population),
 Controls("FIELD=fieldname SEARCH_LEVEL=Standard"),
 Field("field_1,field_2,field_3")

will generate search ranges for all three name fields.

For Matching:

SCORE-LOGIC=SSA,
 System(system), Population(population),
 Controls("PURPOSE=purpose_name MATCH_LEVEL=Loose"),
 Matching-Fields("fieldn ame_1:Person_Name",
 "fieldname_2:Person_Name","textitfieldname_3:Person_Name")

Will apply repeat logic to all three name fields.

When indexing a Group of repeating fields (or flattened fields), you must list each individual field name. For
example, the following source definition

test.person.nameName [5] C(20)
generates a Group in the File-Definition of this IDT, which is subsequently expanded to the following list of
field names:

FIELD=Name, C, 20
FIELD=Name_2, C, 20
FIELD=Name_3, C, 20

Search Logic 43

FIELD=Name_4, C, 20
FIELD=Name_5, C, 20

Therefore a Key-Logic that indexes these fields must list each individual field:

KEY-LOGIC=SSA,
 System(default), Population(test),
 Controls("FIELD=KeyFieldName KEY_LEVEL=Standard"),
 Field("Name,Name_2,Name_3,Name_4,Name_5")

A shorthand method of specifying repeating fields exists and takes the form of:

field [* | {x | y-z}, ...]
Some examples of this notation are (assuming a maximum of 5 occurrences):

Name[1-5] = Name,Name_2,Name_3,Name_4,Name_5
Name[2,3] = Name[2-3] = Name_2,Name_3
Name[1,4-5]= Name,Name_4,Name_5
Name[5] = Name_5
Name[*] = Name,Name_2,Name_3,Name_4,Name_5

Therefore some of the ways the above Key-Logic example could also be written are:

KEY-LOGIC=SSA,
 System(default), Population(test),
 Controls("FIELD=KeyFieldName KEY_LEVEL=Standard"),
 Field("Name[*]")
KEY-LOGIC=SSA,
 System(default), Population(test),
 Controls("FIELD=KeyFieldName KEY_LEVEL=Standard"),
 Field("Name[1-5]")
KEY-LOGIC=SSA,
 System(default), Population(test),
 Controls("FIELD=KeyFieldName KEY_LEVEL=Standard"),
 Field("Name[1,2,3,4,5]")

Key Logic (User)

For User logic the value of the key field fld is used as the key.

KEY-LOGIC=User, Field(KeyFieldName)

Score Logic
Score Logic is defined in the Clustering-Definition. It specifies how the DCE Search Server will select
records to be returned from the set of candidates. Score-logic facilities are provided by SSA-NAME3
Population Rules.

The score logic has four possible steps:

KEY-SCORE-LOGIC
KEY-PRE-SCORE-LOGIC
PRE-SCORE-LOGIC
SCORE-LOGIC

At least one score-logic step must be defined.

KEY-PRE-SCORE-LOGIC is used to define an optional "light weight" scoring scheme that is processed before
the KEY-SCORE-LOGIC. Its purpose is to make a fast and inexpensive decision as to whether or not the more
costly KEY-SCORE-LOGIC should be called to process the current record.

44 Chapter 3: Design

KEY-SCORE-LOGIC is used to define a scoring scheme to score KEY-DATA. Refer to the Key Data/Key-Score-
Logic section for details.

PRE-SCORE-LOGIC is used to define an optional "light weight" scoring scheme that is processed before the
SCORE-LOGIC. Its purpose is to make a fast and inexpensive decision as to whether or not the more costly
SCORE-LOGIC should be called to process the current record.

All the SCORE-LOGIC keywords share the following syntax:

SCORE-LOGIC = <type>,<parm-list>
where
<type>

This is SSA (currently only SSA Score-Logic is supported).

<parm-list>

This is a comma-separated list of parameters.

Parameter list:

System(system)
Population(population)
Controls(controls)
Matching-Fields(field-list)

where
system

Defines the System Name of the Population Rules.

population

Defines the population name. The population chosen will depend on the data being processed.

controls

Defines the controls to be used for the Score-Logic. Controls should specify the desired PURPOSE and
MATCH_LEVEL.

Note: For more details on the Controls, refer to the SSA-NAME3 API REFERENCE GUIDE under the
ssa_match heading within the Controls section.

Matching-Fields

Holds the list of fields and their data type used by the matching routine.

field-list

This is a comma-separated list of the form field_name:data_typewhere
field_name

This is the name of a field in the IDT.
data_type

This is the data type that this field represents, as defined in the Population Rules.

The field_list defines which IDT fields will be used for matching and the type of data they represent.
Matching will use repeat logic when two or more fields of the same data_type are specified. A run-time error
will occur if a data_type defined as mandatory for the PURPOSE has not been specified in the field_list.
Optional data_types may be omitted.

For example,

SCORE-LOGIC=SSA,
 System(system), Population(population),

Score Logic 45

 Controls ("PURPOSE=purpose_name MATCH_LEVEL=Loose"),
 Matching-Fields("fieldname:Person_Name",
 "field_date:Date",
 "field_sex:Attribute1",
 "field_postal_area:Postal_Area")

FILES and VIEWS Sections
These sections are used to define files and views. Files describe the layout of DCE IDT created from flat-file
input. Views are used to:

• describe the layout of flat-file input data

• transform flat-file input data

• format the output from the DCE Search Server

Data Source
When loading DCE data from User Source Tables, the Files Definition and View Definition files are created
automatically from the User Source Table Definition. The name of the generated Files definition is the same
as the IDT name in the CREATE_IDT clause. The View names(s) are created by concatenating the IDT name
with a sequence number starting from 1.

When loading DCE Tables from flat (external) files, the File and View definitions must be hand-coded. The File
definition describes the layout of the IDT, while the View Definition describes the layout of the input file.

File Definition
A set of one or more File Definitions begins with the section heading:

section: Files
A File Definition begins with the FILE-DEFINITION keyword. It is used to describe the layout of the IDT.
Although it is possible to specify more than one File Definition, only one definition can be in effect for each
IDT.

A File Definition contains one parameter which is unique to File Definitions. This is the ID= parameter. It is
mandatory and is used to allocate a unique number to the IDT (for internal use). Specify a positive, non-zero
number that is less than 2000. File numbers greater than 1999 are reserved for internal use.

View Definition
A set of one or more View Definitions begins with the section heading:

section: Views
A View Definition begins with the VIEW-DEFINITION keyword. As many views as necessary may be defined.

A view normally consists of a subset of fields taken from a File Definition. It may contain additional fields
that are added by user-defined Transformations (Refer to the Transformations section for more details).

46 Chapter 3: Design

Syntax
The definition starts with a name as described above. It is followed by:

Field Description

NAME= This character string names the file or view. It may be up to 32 bytes long.

ID= This parameter is only specified for File Definitions; see the File Definition section
above.

FIELD=name,format,length The parameter is used to define the fields that comprise the File or View. The maximum
number of fields is platform specific. The order of FIELD definition statements
determines the physical ordering of fields on the database record and/or view.
name

A character string that names a field. It may be up to 32 bytes in length.

format

The format of the field. This may be defined using a pre-defined format, or as
a customized format. See the Field Formats section below.

length

The length of the field in bytes. The maximum length is platform specific.
Refer to the Limitations section for details.

Field Formats
The format of a field may be specified in one of two ways:

• a pre-defined format

• a customized format definition

A pre-defined format is a shorthand way of selecting a pre-defined group of field attributes. It is selected by
specifying the pre-defined name for the <format> value.

A customized format definition is used when no pre-defined format exists for the combination of attributes
that you desire. You may combine various field attributes to your liking (as long as they do not conflict).

The following table lists the pre-defined formats and their attributes:

Format Compression Data Base Conv Just Filler

F Fixed Text N/A No Right ’ ’

C Variable Text N/A No Left ’ ’

V1 V-type Text N/A No Left ’ ’

B2 Variable Binary N/A No Left 0x00

I3 Variable Integer 0 Yes Right 0x00

G Fixed Integer 0 Yes Right 0x00

FILES and VIEWS Sections 47

Format Compression Data Base Conv Just Filler

N4 Variable Numeric 10 Yes Right ’0’

X4 Variable Numeric 16 Yes Right ’0’

Z4 Variable Numeric 36 Yes Right ’0’

R4,5 Variable Numeric 10 Yes Right ’ ’

1 V-type will compress multiple embedded blanks from the input view into one blank in the target field.
Therefore it should only be defined in a File-Definition. It has no effect in a View-Definition.

2The Binary data type can hold any unstructured data. It is not necessarily a base 2 number.

3Valid integer lengths are 1, 2, 3 or 4 bytes.

4The Numeric data type is the printed representation of an unsigned (positive) number.

5R format is equivalent to N, but with leading spaces instead of zeroes.

Compression

The compression attribute determines how a field is compressed/decompressed when writing to/reading
from the database. Fixed compression is effectively no compression at all; the field is stored/retrieved
without any compression or decompression. Variable compression means that the data will be compressed
when written to the database and decompressed (to match the view definition) when read from the database.
The filler character and justification determine which character is stripped /added from the record and from
which end.

V-type compression will compress multiple adjacent blanks into a single blank. This can occur anywhere
within the field. Note that this process is irreversible. Decompression will only add blanks at one end of the
field.

Filler Character/Justification

The decompression will add the filler character to the field to pad it to the necessary length.

The compression logic will remove the filler character from either the left or right end of the field (depending
on justification), until no more filler characters are left or the field is empty. The decompression will add the
filler character to the field to pad it to the necessary length (as specified in the view). If the field is left
justified, the truncation/padding occurs on the right. If the field is right justified, the truncation/padding
occurs on the left side of the field.

Data Type

Four data types are supported:

Text Character data

Binary Binary (unstructured) data

Integer 1, 2, 3 or 4 byte unsigned integers

Numeric Fields containing printable numeric digits ’0’ to ’9’, and ’a’ to ’z’ (when using base 36)

48 Chapter 3: Design

Base/Base Conversion

The Integer and Numeric data types support base conversion. Ie. the view may request a base which differs
from the base of the stored data. Base conversion is only possible for bases 2 through 36.

Customized Format Definition Syntax

A customized format definition has the following syntax.

format=([predefined fmt,] format specifier, ...)
You may base your definition on a predefined format and override certain attributes, or fully define a new
custom format using format specifiers.

The format specifier is one of the following:

Fixed fixed compression

Text text data

Ljust left justification

Rjust right justification

Filler(<char>) filler character

Base(nn) base nn

Here is an example of a field definition with explicit format:

Attributes, (Base(2), Filler(0)), 16
This will format a numeric field into 16 characters in base 2 (binary base). Each position will be either ’zero’
or ’one’ and leading zeroes (the filler) will extend the value on the left if it is shorter that 16 characters. If we
want the value as four hexadecimal digits instead then we should use this format:

Attributes, (Base(16), Filler(0)), 4
Which is the same as the short form (in the table above):

Attributes, X, 4

Transformations
Fields within a View Definition may specify an optional transformation. Only Transformations that manipulate
the source data are supported in output.

A transformation definition follows the field’s length attribute and has the following format:

Xform(transform [, parameter-list])
where transform is one of the following:
APPEND

Appends the current field with the target field by removing trailing spaces from the target field and
adding the current field. (input only)

APPEND-STRING

Appends a character string by removing all trailing space and adding the string. The parameter-list
contains the character string. (input only)

FILES and VIEWS Sections 49

CONCATENATE

Concatenate the current field with the target field by removing trailing spaces from the target field,
adding a space, and adding the current field. (input only)

FILL

Fills the target field with a given pattern. The parameter-list contains the character string pattern.

INSERT-CONSTANT

Inserts a character string into a field. The parameter-list contains the character string.

INSERT-FIELD

Inserts the current field to the target field at a specified fixed offset. (input only)

LOWERCASE

Convert a character field to lower case.

UPPERCASE

Convert a character field to upper case.

USER-EXIT

Calls a user-specified routine to perform the transformation. Refer to the Transformation User-Exit
section for more details.

Transformation can be applied to both input and output processes.

Multiple transformations can be defined on a single field. They are processed in the order of specification (ie
left to right).

A source field can populate multiple target fields by using the following syntax:

FIELD=name,format,length,Xform(transform[,parameter-list]),
 Xform(transform[,parameter-list])

Example:

FIELD=Lname, C, 15, Xform(INSERT-FIELD, "target LNAME1"),
 Xform(INSERT-FIELD, "target LNAME2")

The contents of field Lname will be copied to fields LNAME1 and LNAME2 in the Clustering IDT.

Append Syntax

The Append transform has the following syntax:

Xform (APPEND, "target field-name, order")
field-name specifies the field to which the current field will be appended. order specifies the order in which
to append multiple fields to field-name. Specify a number, starting from 1.

Example:

FIELD=Name1, C, 45, Xform(APPEND, "target NAME,1")
FIELD=Name2, C, 45, Xform(APPEND, "target NAME,2")

All trailing blanks from field Name1 will be removed and Name2 will be appended to it and the result inserted
into the field NAME.

50 Chapter 3: Design

Append-String Syntax

The Append transform has the following syntax:

Xform (APPEND-STRING, "string")
string will be appended to the source field string and copied to the target field.

Example:

FIELD=Surname, C, 15, Xform(APPEND-STRING, ":")
The character ":" will be appended to the Surname field.

Concatenate Syntax

The Concatenate transform has the following syntax:

Xform (CONCATENATE, "target field-name, order")
or
Xform (CONCAT, "target field-name, order")

The field-name specifies the field to which the current field will be concatenated. order specifies the order
in which to concatenate multiple fields to field-name. Specify a number, starting from 1.

Example:

FIELD=Name1, C, 45, Xform(CONCATENATE, "target NAME,1")
FIELD=Name2, C, 45, Xform(CONCATENATE, "target NAME,2")

Name2 will be concatenated to Name1 and the result inserted into NAME.

Fill Syntax

The Fill transform has the following syntax:

Xform (FILL, "string")
The target field will be populated with the pattern defined in parameter string.

Example:

FIELD=Filler, C, 45, Xform(FILL, "+-+")
The field Filler will be filled with the string "+-+" repeatedly until the whole 45 characters are used.

A special expression "Numeric(NUM)" can be used instead of a literal string. This means that the target field
will be filled with the character value of the decimal number NUM using the computer’s native character set.
For example,

FIELD=Tabs, C, 2, Xform(FILL, Numeric(9))
causes the field Tabs to be filled with the tab character (0x09) on computers using the ASCII character set.

Insert-Constant Syntax

The Insert-Constant transform has the following syntax:

Xform (INSERT-CONSTANT, "string")
The string will be inserted in the target field.

Example:

FIELD=Title, C, 10, Xform(INSERT-CONSTANT, "hello")
The Title field will contain the constant "hello".

FILES and VIEWS Sections 51

A special expression "Numeric(NUM)" can be used instead of a literal string. This means that the first position
of the target field will contain the character value of the decimal number NUM using the computer’s native
character set. For example,

FIELD=TabAndSpaces, C, 3, Xform(INSERT-CONSTANT, Numeric(9))
causes the first byte of the field TabAndSpace to contain a tab character (0x09) on computers using the
ASCII character set. The remaining bytes in the field - two in this example - are filled with spaces.

Insert-Field Syntax

The Insert-Field transform has the following syntax:

Xform (INSERT-FIELD, "target field-name, [offset]")
The field-name specifies the field to which the current field will be appended at offset. The default value of
offset is 0.

Example:

FIELD=Addr1, C, 45, Xform(INSERT-FIELD, "target ADDR")
FIELD=Addr2, C, 45, Xform(INSERT-FIELD, "target ADDR,45")

The contents of Addr1 will be copied to field ADDR at offset 0. The contents of field Addr2 will be copied to
field ADDR at offset 45.

Uppercase/Lowercase Syntax

The Uppercase/Lowercase transform has the following syntax:

Xform (UPPERCASE)
Xform (LOWERCASE)

It changes the string in the data to the specified case.

Example:

FIELD=Surname, C, 15, Xform(UPPERCASE)
FIELD=First, C, 45, Xform(LOWERCASE)

Fields Surname and First will be converted to upper and lowercase respectively

Transformation User-Exit

A Transform User-Exit (TUE) is used to alter a record prior to insertion into the IDT.

The TUE is called after reading a record from the source file and before any field level transforms have been
performed. The TUE is a "record level" exit, meaning that it has access to the entire record. Upon return from
the exit, Data Clustering Engine will perform field-level transforms while converting the view record into IDT
layout.

The normal use for a TUE is to insert data into a new field. Anew field can be created with the transform by
specifying a name, format and length. The field can then be referenced in the TUE.

The TUE is enabled by adding a user-exit transform definition. For example,

VIEW-DEFINITION
*==============
NAME=DATAIN
FIELD=Name, C, 60
FIELD=Myfield, C, 50, XFORM(user-exit, "mydll myfunc")

defines a field called Myfield which can be populated by the user-exit function myfunc, which is available in a
shared object called mydll.

52 Chapter 3: Design

User-Exits must conform to a specific protocol in order to communicate with Data Clustering Engine. A User-
Exit is written in C and compiled and linked as a DLL/shared library. DCE will load the User-Exit and call a
predefined entry point when a "service" is required from the exit.

The parameters and other details for Transformation User-Exits are only available on request.

Cluster File
The Cluster File is a database file used to record cluster membership information created by the Data
Clustering Engine. The clustering process creates at least one membership record for each Data record.

As stated earlier, the view processor will allow access to the fields in the Cluster File when they are requested
via a View Definition. The following fields are available:

Field Description

Clustering-Id, F,
2

The ClusteringId number associated with this Cluster (membership) record.

Cluster, G,4 The cluster number associated with this Cluster record. This field along with Clustering-Id
uniquely identifies a cluster.

Max-Score, G,1 The highest score achieved by this record.

Score-Count, I,4 The number of records that this record was scored against during the clustering process.

Score-Accepted,
I,4

The number of records that had an Accepted score when processing this member.

Record-Id, G,4 The physical address of the Data record that generated this Cluster record.

Attributes, I,4 The special attributes (if any) associated with this membership record. Refer to the Membership
Attributes section for details.

Output Views
Output views are used to format search results returned by the Search Server. Rows are returned in IDT
format when no output view has been specified or in a different format when an output view has been
defined.

Output Views are also used to inject search statistics into the output.

Statistical Fields

When the following field names are specified in the output view, the Search Server will provide statistics
gathered during the search process.

Note that some data in the output of a search is specific to each row. For example, the score is a property
that changes for each row. Other statistics are relevant to the search set as a whole. For example, the
number of candidates selected is the same for each row returned because it is a property of the set.

FILES and VIEWS Sections 53

Also note that it is not normally possible to retrieve search statistics if the search does not return any rows.
In this case, a dummy IDT row (filled with asterisks) can be returned, solely as a vehicle to return the
statistics. This feature is enabled with the Search Option, UNMATCHED_STATS.

Field Name Description

IDX-IO Number of IDX rows retrieved

IDT-IO Number of IDT rows retrieved

IDS-MS-SEARCH-NUM Ordinal number of the successful search within a multi-search definition (starting from 1;
0 is returned for unsuccessful searches; see Multi-Search parameter SEARCH-LIST= for
more details)

XXX-ACCEPTED-COUNT Number of records accepted by scoring

XXX-UNDECIDED-COUNT Number of undecided records

XXX-REJECTED-COUNT Number of rejected records

XXX-TOTAL-COUNT Total number of records scored

where

XXX is KPSL (Key-Pre-Score-Logic), KSL (Key-Score-Logic), PSL (Pre-Score-Logic) or SL (Score-Logic).

USER SOURCE TABLE Section
The User Source Table (UST) section specifies how to build the IDT by sourcing data from an SQL database.

The following types of SQL data extraction are supported. An IDT can be built from:

• a single UST

• multiple USTs with a join operation

• multiple USTs with a merge (union) operation

The Loader can transform fields while extracting them from the data source. It can concatenate fields, insert
text and change the case of the source fields, as described below (also refer to the Transformations section).

General Syntax
The UST section uses an SQL-like syntax. The following general points should be noted:

• lines beginning with two dashes "--" are treated as comments.

• tokens can be substituted with the value of an environment variable by specifying the environment
variable name surrounded by #s. eg the Source Schema could be specified as #myschema#. When parsed
it would be substituted with the value of the environment variable myschema’.

• each table definition is terminated by a semicolon.

• multiple table definitions are permitted in this section.

54 Chapter 3: Design

UST Data Types
The following tables show the data types supported for the various database types, and what they are
converted to for storage in the IDT.

The first column shows the native data types that can be read from User Source Tables.

The second column shows the equivalent DCE data type. Data read from USTs are converted to a common
data type to enable combining source data from multiple different database management systems.

Oracle

UST Data Type DCE Data Type

 F

CHAR
VARCHAR2
NUMBER (scale > 0)
DATE 6

C

 V

 B

 I

 G

NUMBER (scale=0)
INT
SMALLINT

N

 R

 X

 Z

6 DATEs are converted to C(64) fields by default. The length may be overridden. The default installation date
mask determines the date’s format. This is specified either explicitly with the initialization parameter
NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRITORY. It can also be set for a
session with the ALTER SESSION command.

USER SOURCE TABLE Section 55

UDB

UST Data Type DCE Data Type

 F

CHAR
VARCHAR
DATE7

TIMESTAMP
NUMBER (scale > 0)

C

 V

 B

 I

 G

NUMBER (scale=0)
DECIMAL
INTEGER
SMALLINT
BIGINT

N

 R

 X

 Z

7DATEs are converted to C(64) fields by default. The length may be overridden.

56 Chapter 3: Design

ODBC / Microsoft SQL Server

UST Data Type DCE Data Type

SQL_CHAR F

SQL_VARCHAR
SQL_DATE8

SQL_TIME
SQL_TIMESTAMP
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_TYPE_TIMESTAMP
SQL_NUMERIC9

SQL_DECIMAL9

SQL_FLOAT
SQL_REAL
SQL_DOUBLE
SQL_GUID

C

SQL_BINARY
SQL_VARBINARY

B

SQL_NUMERIC10

SQL_DECIMAL10

SQL_INTEGER
SQL_SMALLINT
SQL_TINYINT
SQL_BIGINT

N

8DATEs are converted to C(64) fields by default. The length may be overridden.

9scale > 0 (floating point numbers)

10scale = 0 (whole numbers)

Single UST
The simplest form of IDT is created from column values extracted from a single User Source Table. The
general form of the syntax is:

logical-file-definition
*======================
NAME= lf-input
PHYSICAL-FILE= "VirtualTable"
COMMENT= "input from SQL database"
FORMAT= SQL
...
Section: User-Source-Tables

CREATE_IDT VirtualTable,FileNo
SOURCED_FROM [connection_string]
source_clause
[TRANSFORM transform_clause]
[SELECT_BY select_clause]

USER SOURCE TABLE Section 57

[NOSYNC]
;

where
VirtualTable

This is the name specified by the PHYSICAL-FILE parameter of the Logical-File-Definition.

FileNo

This is a unique file number associated with this IDT. It must be in the range 1-14999, although some FileNos
are reserved for internal use (2000-2010).

Connection String

The connection_string is used to specify connection information for access to the UST on the source
database.

The format of the connection_string is as follows:

odb:99:Userid/Password@Service
where
Userid

DBMS user-id

Password

DBMS password

Service

This is the Service_Name defined in your odbc.ini file. Refer to the Configuring ODBC section for
details.

For example, odb:99:scott/tiger@ora920 specifies an Oracle host DBMS. DCE will connect to the
DBMS identified as "ora920" using the user id "scott" and a password of "tiger". Any valid userid with
SELECT privileges on the source tables may be used.

Source Clause

This section is used to specify the source of the data. The source_clause is used to nominate the UST
columns that are to be extracted when creating the IDT. Source fields can be either added directly into
the IDT or used in a transformation process, the result of which is added to the IDT.

The source_clause syntax is:

[src_schema.]table.column [tgt_fld [fmt(len)]] [,...]

58 Chapter 3: Design

where
src_schema

This is the name of the schema that the table.column belongs to. The default value is your userid.

table

The source table name that contains the column.

Oracle:

Synonyms (private, public, recursive) may be used but are converted to the real schema.table name
during parsing.

column

The name of the source column to be extracted.

tgt_fld

The name of the IDT field. If omitted, it defaults to the value of column. If tgt_fld begins with a $, it is
treated as a virtual field. Virtual fields are not stored in the IDT. They can only be referenced in a
transform_clause.

fmt(len)

The format and length of the tgt_fld in the IDT. When omitted, they default to the format and length of
the source column. Valid formats are defined in the File Definition section of this manual.

Transform Clause

A transform_clause is really an optional part of a source_clause or merge_clause. It is used to specify
how virtual fields are to be combined/transformed and characteristics of the resulting field stored in the
IDT.

The transform_clause syntax is:

transform_rule tgt_fld fmt(len) [order n] [,...]
where
transform_rule

Nominates the transformation process which will convert virtual fields into a value to be stored in
tgt_fld.

tgt_fld

This is the name of the field to be stored in the IDT.

fmt(len)

This is the format and length of the tgt_fld.

order n

This is used to override the default order of fields in the IDT. Normally fields are placed in the IDT in the
order of definition in the source_clause and transform_clause. You may override this order by
nominating an integer value for n, starting from 1.

Transform Rules

Transform rules fall into three categories:

1. rules that use no virtual fields (Source-Id, Insert-Constant)

2. rules that operate on a single virtual field (Upper, Lower)

USER SOURCE TABLE Section 59

3. rules that operate on many fields (Append, Concat,Insert-Field)

Each virtual field can only be referenced once in the transform_clause. In the unlikely event that the
same source column is to be used in more than one transform clause, add an extra source_clause for
that column but give it a different virtual field name.

A transform_rule is one of the following:

Source-Id
Insert-Constant ("text")
Upper (vf)
Lower (vf)
Insert-Field (vf, offset, ...)
Append (vf | lower (vf) | upper (vf) | "text" , ...)
Concat (vf | lower (vf) | upper (vf) | "text" , ...)

where
Source_Id

This is a transform that generates a unique ID into tgt_fld. It should only be used in conjunction with
the AUTO-ID option. The name of the tgt_fld must match that defined in AUTO-ID-FIELD in the IDX-
Definition section.

Insert-Constant

This will inject a string of text into tgt_fld.

vf

This is the name of a virtual field defined in the source_clause (including the leading ’$’).

Upper

This will convert the virtual field vf to upper case.

Lower

This will convert the virtual field vf to lower case.

Insert-Field

This is a transform that will combine a number of virtual fields into tgt_fld. Each field is stored at the
specified offset in tgt_fld. Offsets start from 0.

Append

This is a transform which will combine virtual fields and text by stripping trailing spaces from all fields
and joining them together into tgt_fld.

Concat

This is the same as Append but will add a single space between the fields when joining them.

Select Clause

Is any valid SQL expression that can be used to select a subset of records from the UST. Data Clustering
Engine does not parse this expression. It is simply added to the WHERE clause generated by DCE.
Therefore it is important to ensure its correctness, otherwise a run-time SQL error will occur in the
Loader.

Do not try to limit the number of rows loaded from the UST using a physical limit. For example,

select_by ROWNUM <= 1000

60 Chapter 3: Design

This approach instructs the SQL Optimizer to return the first 1000 rows but has the disadvantage that
the "first 1000 rows" may not be the same ones when the Project is loaded a second time. It will produce
inconsistent results.

Use a logical limit when selecting a subset of records from the UST. For example,

select_by EmpId >= 50000 AND EmpId <= 51000
This ensures a repeatable set of records.

NOSYNC Clause

DCE doesn’t support data source synchronisation. Only the data that is present in the UST(s) at the time
the Loader is started will end up in the clustering IDT. The NOSYNC keyword is optional.

Example

CREATE_IDT
 SQLinput,1
SOURCED_FROM ora:99:scott/tiger@server734
 SCOTT.EMP.EMPNO EmpNo,
 SCOTT.EMP.ENAME EmployeeName
SELECT_BY
 scott.emp.empno > 7800
;

The example will create a virtual input table named SQLinput. This table can then be referred to in a logical-
file-definition as the logical input file for a clustering job:

logical-file-definition
*======================
NAME= lf-input
PHYSICAL-FILE= "SQLinput"
COMMENT= "input from Oracle database"
FORMAT= SQL
AUTO-ID-NAME= JobN

Data will be extracted from an Oracle service named server734 using the userid scott whose password is
tiger. The IDT will contain two fields, EmpNo and EmployeeName. They will have identical formats and lengths
as their corresponding source fields, EMPNO and ENAME taken from table SCOTT.EMP. Only employees with
employee numbers greater than 7800 will be extracted and loaded into the IDT.

Joining USTs
A virtual input table may be created by joining two or more USTs from a single source database. This would
normally be done if the source tables were normalized into multiple tables but the IDT requires data from all
source tables. The syntax is identical to the Single USTs syntax with the addition of a join_expression:

CREATE_IDT VirtualName,FileNo
 SOURCED_FROM connection_string
 source_clause
 [TRANSFORM transform_clause]
 JOIN_BY join_expression
 [SELECT_BY select_expression]
 [NOSYNC]
 ;

Source Clause

Refer to the Source Clause description in the Single UST section.

Transform Clause

Refer to the Transform Clause description in the Single UST section.

USER SOURCE TABLE Section 61

Join Expression

The primary table is the first UST table mentioned in the SOURCED_FROM clause. A secondary table is a UST
joined to the primary table using a foreign key stored in the primary.

A join_expression is used to specify how to join the primary table to one of the secondary tables or more
generally, how to join a parent table to a child.

A join_expression must be provided for each pair of tables to be joined. It defines the relationship between
tables, where the parent contains the foreign key of the child.

It is of the form,

parent_table_column = child_table_column [AND p_col = c_col] ,...
where,
parent_table_column

This is a fully qualified column name in the parent table.

child_table_column

This is a fully qualified column name in the child table.

p_col

This is an unqualified column name in the parent table (for compound keys).

c_col

This is an unqualified column name in the child table (for compound keys).

All parent_table_columns specified in a join_expression must be included in the created virtual table as
non-virtual fields.

An outer join is performed on the primary table, meaning that all rows in the primary table will be added to the
virtual table even if they failed to be joined to any secondary tables. In this case, the columns extracted from
the secondary table are set to NULL.

Example

The virtual input table SQLinput is to be created. Columns are extracted from two tables, NAMEADDR and
OTHERDETAILS. These tables belong to schema #SSA_UID# which is evaluated at parse time using the
environment variable SSA_UID. The tables are joined using the EMPNO column in NAMEADDR and the SSN column
in table OTHERDETAILS.

Various transformations are used. Columns given and family are concatenated to form a field called NAME.
The order parameter is used to change the default ordering of fields in the IDT to: myid, NAME, EMPNO, SSN,
TITLE, Addr and Phone.

CREATE_IDT
 SQLinput,50
SOURCED_FROM ora:99:scott/tiger@server734
 #SSA_UID#.NAMEADDR.EMPNO EmpNo N(25),
 #SSA_UID#.NAMEADDR.given $given,
 #SSA_UID#.NAMEADDR.family $family,
 #SSA_UID#.NAMEADDR.ADDR $addr,
 #SSA_UID#.OTHERDETAILS.SSN,
 #SSA_UID#.OTHERDETAILS.PHONE $phone
TRANSFORM
 source-id myid f(10) order 1,
 insert-constant("hello there") title c(15),
 upper($addr) Addr c(30),
 lower($phone) Phone c(12),
 concat($given,$family) NAME c(50) order 2
JOIN_BY
 #SSA_UID#.NAMEADDR.EMPNO = #SSA_UID#.OTHERDETAILS.SSN

62 Chapter 3: Design

NOSYNC
;

Merging USTs
A virtual input table file can be created by merging the contents of two or more User Source Tables. Multiple
heterogeneous source databases are permitted. The columns extracted from the tables are mapped into a
common format using multiple merge_clause and transform_clause pairs (one pair per UST).

CREATE_IDT VirtualTable,FileNo
 MERGED_FROM [connection_string] merge_clause
 [TRANSFORM transform_clause] ...
[NOSYNC]
;

Source Clause

Refer to the Source Clause description in the Single UST section.

Transform Clause

Refer to the Transform Clause description in the Single UST section.

Merge Clause

The merge_clause is identical to the source_clause in syntax but its semantics differ:

• The first merge_clause/transform_clause pair is used to define the virtual table column names, formats,
lengths and order.

• The second and subsequent pairs define the mapping from source columns in other USTs to the tgt_flds
defined in the first pair. They can not specify format, length nor order. The tgt_fld names must match
those defined by the first pair.

Example

The virtual input table SQLinput is to be created from data extracted from tables EXEMPL and EMPLOYEES.
These tables are found on different databases (mars and jupiter respectively).

The common layout of the virtual table is defined by the first merge_clause / transform_clause pair as:

MyId C(10)
NAME C(50)
Addr C(50)
SSN format/length same as EXEMPL.SSN

Columns ADDR_L1, ADDR_L2, ZIP from table EXEMPL will be concatenated to form a value for Addr.

Columns GIVEN and FAMILY from table EMPLOYEES will be concatenated to form a value for NAME. The field
EMPNO in EMPLOYEES maps to SSN.

CREATE_IDT
 SQLinput,51
MERGED_FROMora:99:scott/tiger@mars
 #SSA_UID#.EXEMPL.FULL_NAME NAME C(50),
 #SSA_UID#.EXEMPL.SSN SSN,
 #SSA_UID#.EXEMPL.ADDR_L1 $a1,
 #SSA_UID#.EXEMPL.ADDR_L2 $a2,
 #SSA_UID#.EXEMPL.ZIP $zipcode
TRANSFORM
 source-id MyId c(10) order 1,
 concat($a1,$a2,$zipcode) ADDR c(50) order 3

MERGED_FROMora:99:buzz/lightyear@jupiter

USER SOURCE TABLE Section 63

 #SSA_UID#.EMPLOYEES.EMPNO SSN,
 #SSA_UID#.EMPLOYEES.GIVEN $given,
 #SSA_UID#.EMPLOYEES.FAMILY $family,
 #SSA_UID#.EMPLOYEES.ADDR ADDR
TRANSFORM
 concat($given,$family) NAME;

Defining Source Tables
The UST Section is also used to define database source tables to be used to supply input records to a Relate
batch search process. The syntax is similar to the CREATE_IDT clause, with a few minor differences:

• DEFINE_SOURCE replaces CREATE_IDT,

• File-Ids are not required

The syntax is:

DEFINE_SOURCE SrcName
SOURCED_FROM [connection_string] source_clause
[TRANSFORM transform_clause]
[JOIN_BY join_expression]
[SELECT_BY select_clause]
[NOSYNC]
;

where
SrcName

This is the name of the data source.

When the Project is loaded, a File and View named SrcName are created.

The View is used as an input view for Relate to describe the input records. The target field names in the
source_clause (and therefore View) must match the field names in the IDT in order for these fields to be
mapped to IDT fields.

Example

define_source SRC05
sourced_from ora:99:uid/pwd@svc
 #SSA_UID#.TESTX05A.RECNUM RecNum C(5),
 #SSA_UID#.TESTX05A.LASTNAME $last,
 #SSA_UID#.TESTX05A.FIRSTNAME $first,
 #SSA_UID#.TESTX05A.MIDDLENAME $middle,
 #SSA_UID#.TESTX05A.ADDR1 $a1,
 #SSA_UID#.TESTX05A.ADDR2 $a2,
transform
 concat ($last,$first,$middle) Name C(50),
 concat ($a1, $a2) Addr C(40)
;

The following View-Definition is generated automatically to define the record layout for relate:

VIEW-DEFINITION
NAME=src05
FIELD=RecNum,C,5
FIELD=Name,C,50
FIELD=Addr,C,40

64 Chapter 3: Design

Flattening IDTs
Flattening is the process of packing denormalized data created by joining tables in a "one to many" (1:M)
relationship, into repeating groups in the IDT. It can significantly increase search performance.

The problem

A typical database design consists of multiple tables that have been normalized to some degree. While full
normalization is logically elegant and efficient to update, it performs poorly for read access when the tables
need to be joined to satisfy a query.

DCE provides very fast search performance by storing all search, matching and display data together in the
same table, thereby avoiding the need for costly joins at search time. The DCE Loader denormalized the data
while creating the IDT.

A disadvantage of denormalization is the explosion in the number of rows that occurs when joining tables
that have a 1:M relationship, as the SQL engine produces one row for every possible combination.

As a result, storage and retrieval costs increase.

To overcome this problem, DCE can collapse (flatten) related denormalized rows into one IDT row that
contains repeating groups. This means:

• significantly faster search performance

• less database storage for the IDT and IDXs

The most significant performance benefits occur when the Key-Field for the IDX is sourced from the 1 table in
the 1:M relationship. This is due to the fact that the use of repeating groups for the M data reduces the
number of rows containing the same Key-Field value, which in turn produces less keys to index (at load time)
and less candidates to retrieve and match at search time.

Logical Design

Consider the following logical design where the tables have been fully normalized. Each employee of a
contracting business can work for many clients. Each client’s business premises may have many phone lines.

Suppose there is only one employee currently:

Emp_Id Name

E001 Joe Programmer

Flattening IDTs 65

Joe contracts his services to three companies located around the state:

Company_Id Address FK_Emp_Id

C001 3 Lonsdale St E001

C002 19 Torrens St E001

C003 4 Rudd St E001

Each company has the following phone numbers:

Company_Id Phone

C001 62575400

C001 62575401

C002 98940000

C003 52985500

C003 52985501

C003 52985502

Denormalized Data

A simple SQL query to denormalize this information will generate six rows of data because Joe Programmer
works at three offices, each having multiple phone numbers.

Table 1. The denormalized data from a join operation.

Emp_Id Name Company_Id Address Phone

E001 Joe Programmer C001 3 Lonsdale St 62575400

E001 Joe Programmer C001 3 Lonsdale St 62575401

E001 Joe Programmer C002 19 Torrens St 98940000

E001 Joe Programmer C003 4 Rudd St 52985500

E001 Joe Programmer C003 4 Rudd St 52985501

E001 Joe Programmer C003 4 Rudd St 52985502

If the search application needs to search on Name, DCE will create fuzzy keys on the Name column. As there
are many rows with the same value, duplicate keys will be created and maintained. At search time, multiple
rows will be retrieved and matched.

66 Chapter 3: Design

Flattened Data

To reduce the number of rows, DCE can flatten the six rows into one. This is achieved by declaring some
columns in the IDT as repeating fields . If data sourced from the M tables (Company_Id, Address and Phone)
were defined to repeat up to six times, all of the data could be flattened into one row.

Note: The table below has been turned on its side due to space limitations. It represents a single row of data
with column names on the left and data values on the right. Note how the data from the "1" Table no longer
repeats.

Table 2. A single flattened row

Column Value

Emp_Id E001

Name Joe Programmer

Company_Id [1] C001

Company_Id [2] C002

Company_Id [3] C003

Address [1] 3 Lonsdale St

Address [2] 3 Lonsdale St

Address [3] 19 Torrens St

Address [4] 4 Rudd St

Address [5] 4 Rudd St

Address [6] 4 Rudd St

Phone [1] 62575400

Phone [2] 62575401

Phone [3] 98940000

Phone [4] 52985500

Phone [5] 52985501

Phone [6] 52985502

An IDT with this structure would have only one row and the IDX would contain six times fewer Name keys. The
number of candidates selected during a search on the Name IDX would also decrease by a factor of six.

Note: This structure does not improve the performance of an IDX created on the Address fields, as they
contain duplicate values. However, Flattening-Options (discussed later) can be defined to remove duplicate
entries from the repeating fields in order to provide some benefit as well.

Flattening IDTs 67

Syntax
Flattening is enabled by defining

• the layout of the denormalized (joined) data,

• the layout of the IDT including the maximum number of occurrences for repeating fields,

• the columns used to determine how to group denormalized data (Flattening-Keys), and

• Flattening-Options.

Note: When flattening is enabled, the input must be read and processed using LOADIT. Do not schedule any
utilities that read the input more than once. For example, using a PRE or SORTIT step will run flattening
multiple times, producing incorrect results.

IDT-Definition

The Denormalized-View keyword is used to define the name of the View that provides the layout of the
denormalized data. The denormalized data can be read from either a flat-file or UST. If read from a flat-file,
you must provide a View-Definition. If the data is sourced from USTs, a View-Definition is generated
automatically from the User-Source-Tables section. The generated view’s name is the IDT name, suffixed
with "-DENORM".

The Flatten-Keys keyword is used to define the columns used to group denormalized rows. The denormalized
data is sorted by the Flatten-Keys and all rows with the same key value are packed into the same flattened
row. Refer to the Flattening Process section for details.

The Options keyword in the IDT-Definition is used to specify various flattening options that affect how data
is packed into the repeating groups. Refer to the Flattening Options section for details.

For example,

IDT-Definition
*=============
NAME= IDT112
DENORMALIZED-VIEW= IDT112-DENORM
FLATTEN-KEYS= "EmpId"
OPTIONS= Flat-Remove-Identical

IDT Layout

The IDT layout can be provided as a File-Definition (when sourcing from a flat-file) or from the User- Source-
Table section when sourcing from USTs. The IDT layout must be identical to the Denormalized- View (same
column names, types, and order) with the exception that some columns are defined to repeat.

Repeating fields are defined by immediately following the target-field name with [n] where n represents the
maximum number of occurrences for a repeating field.

For example,

Section: User-Source-Tables

Create_Idt
 IDT112
sourced_from odb:99:ssa/ssa@ora817
 Employee.EmpId EmpId,
 Employee.Name Name,
 Address.CompanyId CompanyId [6],
 Address.Address Address [6],
 Phone.Num Phone [6]
join_by
 Employee.EmpId = Address.EmpFK,
 Address.CompanyId = Phone.CompanyId
;

68 Chapter 3: Design

Flattening Process
Denormalized rows are read using the Denormalized-View and then sorted by the flattening keys.

The sorted data is used to build IDT rows. Data is moved from denormalized rows into an IDT row. An IDT
row is written out either

• at the break of a flattening key value, or

• when the IDT row is full.

The latter will occur when a repeating field is full. If more data arrives with the same key value, additional IDT
rows are built with the same key value.

The construction phase also verifies that non-repeating fields have the same value in all denormalized rows
because it is not possible to store more than one value. An incorrect design or selection of the flattening keys
can result in this situation. If this occurs the load will issue warnings similar to this:

Warning: Illegal break in denormalized record n, field f: ’xxx’

Flattening Options
Options for controlling how data is packed into repeating fields can be specified with the IDTDefinition’s
OPTION= parameter:
Flat-Keep-Blanks

By default, blank fields are not moved into a repeating group. This option keeps blank fields, thereby
maintaining positionality within the repeating fields. This makes it possible to relate data from two
repeating fields. For example, the nth Company_Id is related to the nth Address.

Flat-Remove-Identical

By default, identical values in a repeating field are kept, making it possible to relate data from two
repeating fields. It requires the same number of repeats for all repeating groups.

With this option enabled duplicate values are removed, so each repeating group can be sized according
to the number of unique values it is expected to hold. This option does not maintain positionality.

Removal of identical values only applies to the current IDT row under construction. If a repeating field
overflows causing another IDT row to be created with the same key values, the values stored in the
previous row are not considered when searching for duplicates.

Tuning / Load Statistics
The Loader produces statistics that can be used to select appropriate values for repeat counts. For example:

Flatten:................................Denormalized-In 4196
Flatten: Unique-Keys 2094
Flatten: IDT Out 2894
Flatten: alt_ent_num [2]
Flatten:................................ [0] 1585 75.69%
Flatten: [1] 363 93.03%
Flatten: [2] 71 96.42%
Flatten: [3] 24 97.56%
Flatten:................................ [4] 14 98.23%
Flatten: [5] 9 98.66%
Flatten: [6] 9 99.09%
Flatten: [7] 3 99.24%
Flatten:................................ [8] 2 99.33%
Flatten: [9] 7 99.67%
Flatten: [10] 3 99.81%
Flatten: [11] 0 99.81%

Flattening IDTs 69

Flatten:................................ [12] 0 99.81%
Flatten: [13] 0 99.81%
Flatten: [14] 0 99.81%
Flatten: [15] 2 99.90%
Flatten:................................ [16] 0 99.90%
Flatten: [17] 0 99.90%
Flatten: [18] 1 99.95%
Flatten: [19] 0 99.95%
Flatten:................................ [20] 0 99.95%
Flatten: [21] 0 99.95%
Flatten: [22] 0 99.95%
Flatten: [23] 0 99.95%
Flatten:................................ [24] 0 99.95%
Flatten: [25] 0 99.95%
Flatten: [26] 0 99.95%
Flatten: [27] 1 100.00%

This report shows that 4196 rows were created as a result of the denormalization (SQL join) process, while
2094 of those rows contained unique keys (FLATTEN_KEYS=). After flattening, 2894 rows were loaded to the
IDT. This means that 800 rows overflowed to secondary rows because the number of repeats was
insufficient to hold all occurrences.

The next part of the report shows a histogram for each repeating field. The field alt_ent_num was defined to
have two repeats ([2]) for this load test. The histogram tabulates the actual number of repeats in each
normalized row (prior to flattening) and a cumulative percentage of rows. For example, the line

Flatten: [1] 363 93.03%
states that 363 rows has only one occurrence, and this accounts for 93% of the total rows. The table also
tells us that the maximum number of occurrences was 27, and that 1585 rows had no value for this field.

The cumulative percentage can be used to select an appropriate value for the number of repeats. For
example, if alt_ent_num were defined to have six repeats, over 99% of values would fit into one IDT row (no
overflows).

Maintaining the Project
The Project Definition File is initially created with a text editor and loaded into the Clustering Rulebase when
the Project is created.

After the Project Create step, it is possible to edit the Project using the Edit option under the Project heading
in the Console window. This will launch the Project Editor where any amendments can be made to the
selected Project. See the Editing a Project section for more details.

Once you are done with your changes you can either select Save, which will just save your changes but not
actually load the Project, or select Save & Load, which will perform the Project load task committing your
changes to the Project. You can then reinitialize the database and run the Clustering tasks with the
amendments you have just made.

Restarting or Continuing an Edit Session
Editing a Project works by making a copy of the Project, allowing the user to modify the copy, saving the copy
and, finally, loading the Project, which involves replacing the Project with the modified copy. This mechanism
allows a partially edited Project to be saved without any affect on the original Project.

Only when the Save & Load option is selected, an attempt is made to commit the changes to the Project. If
the Load fails for any reason, the original Project is restored to its original, pre-Load condition. The edited

70 Chapter 3: Design

copy of the Project is kept so that the user can re-edit the Project, correct the error and try the Load process
again.

• If Save was selected at the end of the last Edit Session, or if an error occurred when Save & Load was last
selected, then the next time the Project > Edit option is selected the following dialog will be displayed:

• Choose the Continue editing option to carry on editing where you left off previously. Or choose Restart
editing to discard your earlier changes. Choose this option with care.

Note: After Save & Load, before re-running Clustering tasks, you must re-initialize the database to remove
records from previous runs. Any alterations, which you make to the Project using the Project editor, will
NOT be reflected back to your .sdf text file. In other words, this action only affects the Projects currently
contained in the Rulebase.

Editing a Project
This section provides information how to edit a Project.

Project Editor
The Project Editor provides an easy to use interface to change the rules that define a Project. It is sensitive to
the state of objects and prevents editing an object’s definition when it has already been implemented. For
example the layout of an IDT cannot be changed if it has been loaded. Similarly, you cannot change key
building rules for an IDX if it is already loaded.

Note: The Project Editor can only be used to edit Projects created using the Console. A Project loaded using
low-level batch utilities cannot be edited.

Starting
The Project Editor is invoked from the Console Client’s Project > Edit button. The Editor works on a copy of
the rules for a given Project. If you have ended a previous editing session without Loading the rules, or the
Load failed, the Editor will prompt you to either:

• Keep previous changes and continue editing, or

• Discard previous changes and restart editing

Editing a Project 71

Editing
A tree structure is used to navigate to the object you wish to edit. Objects that belong in a logical hierarchy
will appear in the tree structure in two places:

• as an individual node attached to the root of the tree, and

• as part of a hierarchy.

For example, IDXs are attached to their parent IDT and also to the root of the tree. The individual nodes
attached to the root may be edited, cloned, etc. The nodes in the hierarchical tree structure are present only
to highlight the relationship between objects and can not be modified.

If you make any changes to an object you must either Save Changes or Discard Changes before moving to
another object. Saving and discarding only effects the copy of the rules.

The copy of the rules is not parsed until you click the Load button. A successful Load process will replace the
existing rules with the copy and deletes the copy of the rules. If the Load process fails, the original Project
remains in effect and the copy of the rules you have been editing is available for correction by restarting the
Editor.

The Close button will exit the editor without saving the most recent changes you have made.

Cloning and Adding
An existing object can be cloned to create a new object of the same type. You will be prompted to name the
new object after which you can edit it.

If you wish to add a new object that does not already exist, you will need to use the Add button. Click the
Project name in the tree structure and then click the Add button. Select the type of object you wish to add
and enter a name for it.

Help
Help is available as tool tips. Hover the mouse pointer over the item that you want help for and a tool tip
appears.

Advanced Options
By default, the Editor will only show the most common options that the average user will want to see. If you
wish to use some of the more advanced options, click the Show Advanced button to enable access to all
options for a given object.

Project Template
The GUI Project Editor uses a project template to add new components (IDTs, IDXs, Searches, etc). A project
template is provided in the (DCE Server) installation in dce/projects/project_template.pr. A new template
is shipped with every Fix CD. The console performs verification of the template when the console is started,
when a new Rulebase is created or when a different Rulebase is selected. If the current template is not up to
date then the template will be imported from the new template file. The template must not be edited.

72 Chapter 3: Design

Backing Up the Database and Index
For performance reasons the Clustering database does not have any restart / recovery features as would be
found on many commercial database systems. In the event of a power failure or disk crash during a long
clustering task the database and index will most likely be corrupted and the task would need to begin from
the start again.

To avoid such a situation it is possible to create a backup of the necessary files, but the CLUSTER step needs
to be in the wait state (refer to the Stopping and Restarting Clustering section) for you to do this. Once in a
wait state, close the Console Client, bring down the DCE Server and create a backup copy of the following
files from the Server Working Directory:

• *.db

• *.ndx

If a problem occurs, then these files can be restored to their original location and the Resume Clustering
feature of the Console used to start again from the time that the backup was taken.

Note: Some environment variables such as the work directory name are expanded and file names are stored
in the Rulebase in expanded form. This means that the backed up files must be restored to the original
location.

Membership Attributes
The clustering process creates Cluster membership records. Each record contains status information about
the "membership" of a data record in a particular cluster.

The layout of the fields used to store membership information is documented in the Customized Format
Definition Syntax section.

A member in a cluster is assigned certain attributes that determine how it behaves during the clustering
process:

• Voting / Non-Voting

• Undecided

Attributes are set when a membership record is created. Attributes are used while determining new members
for a cluster.

Some of the Attributes are also present in the indexes. This allows efficient processing of the database while
selecting records for a nominated set of membership attributes. This subset is referred to as the Selection
Attributes.

Voting Attribute

A cluster member can be either Voting or Non-Voting. If it has voting rights, it can be used in the scoring
process when new records are being matched to the cluster it participates in. Non-voting members do not
participate in the scoring process and therefore can not attract new members to the cluster. The following
Job Options are used to control the Voting rules.

Set Attributes

• SET-ALL-VOTE - all members, which are added, can vote

• SET-NONE-VOTE - all members, which are added, can not vote

Backing Up the Database and Index 73

• SET-HEADERS-VOTE- only the founding member of the cluster can vote (one per cluster)

Use Attributes

USE-ATTRIBUTES honour the voting attribute

Defaults

The default is SET-ALL-VOTE, --USE-ATTRIBUTES meaning do not honour the attributes and set all new
members as Voting. To enable the use of attributes, specify USE-ATTRIBUTES.

When running CLUSTERING-METHOD=MANY without specifying the job option NO-ADD (ie. we are adding
new records), some restrictions are enforced: SET-ALL-VOTE can not be specified and neither can --
USE-ATTRIBUTES. If you explicitly specify these parameters an error message will be produced. It is
assumed that you have seeded or preclustered a database and then want to run the MANY clustering to
add new records.

Post

You may select output records for the POST phase based on the Attributes by specifying the following
Output-Options:

VOTING means report only Voting records.

--VOTING means report only Non-Voting records.

Undecided Attribute

When a record is found to score below the Accept limit but not below the Reject limit then it is added to the
Cluster as a Non-Voting member. It is also marked with the Undecided Attribute. When processing Non-
Voting (or all records), records with this Attribute will be retrieved.

This Attribute can be used to determine how a record came to be added as a Non-Voting member:

• an undecided record has the Undecided attribute,

whereas,

• records added with a Set-None-Vote option, or

• a non-header record added with the Set-Headers-Vote option

do not have this attribute.

Performance Optimization
The Clustering Process reads records from the database or input file. For each record, it generates a search
range using the KEY-FIELD. The Name Index is searched to create a list of candidate records with similar
keys. The set of candidates are then read from the database and scored against the search record.

The process can be optimized by

• reducing the size of the candidate set, thereby reducing the amount of scoring required, and/or

• reducing the cost of scoring two records

• utilizing multiple CPUs

• reducing database I/O

The following sections discuss ways in which to achieve these goals.

74 Chapter 3: Design

Partitions
This approach is used to reduce the size of the candidate set.

For very large files, the key generated from the KEY-FIELD may have a high selectivity due to the sheer
volume of data present on the file. Therefore searching for candidates using the key will create very large
candidate sets.

If the nature of the data is well understood, it may be possible to qualify the key with additional data from the
record so that the "qualified key" becomes more selective.

The PARTITION option instructs the Data Clustering Engine to build a concatenated key from the KEY-FIELD
and up to five fields/sub-fields taken from the data record. The partition information forms a high-order
qualifier for the key (it is prefixed to the key).

For example, an application may wish to cluster all names in a telephone directory. If we are willing to only
examine candidates from a particular region, we could partition the data using a post-code or some other
information that can group the candidates into regions. Performance is improved by reducing the size of
candidate sets. The disadvantage is that candidates will only be selected from within regions; not outside. If
this makes sense from the perspective of the "business problem" being solved then partitioning can be used.

The Data Clustering Engine has an option to write statistics to the database log. If this option is set and you
choose to cluster using a partition with many values, statistics will be written for each partition.

This overhead can become prohibitive for very many partitions. In this case, database logging should be
turned off, otherwise the cost of logging might undo the gains made by partitioning. Refer to the Verbosity
Options section.

Key Data / Key-Score-Logic
You can use this approach to reduce the size of the candidate set.

Use KEY-DATA to append redundant information from the Data record to the key generated from KEY-FIELD. It
is stored in the index. The additional information appended to the key is passed to a Score-Logic routine,
which can then decide whether or not this particular record should be included in the candidate set.

Up to five fields from the Data record can be appended to the key. Refer to the IDX-Definition’s KEY-DATA
parameter for the syntax.

A Score-Logic routine, which examines the KEY-DATA from the search and file records, can be provided in one
of these forms:

• a standard SSA-NAME3 matching logic enabled using KEY-PRE-SCORE-LOGIC=
• a standard SSA-NAME3 matching logic enabled using KEY-SCORE-LOGIC=
See also the FULL-KEY-DATA under IDX-Definition’s | OPTIONS= section.

Note: Scoring with KEY-DATA can be much more efficient than scoring with data from the Data Record (as
used by Pre-Score-Logic and Score-Logic).

Key-Pre-Score-Logic / Key-Score-Logic

The SSA-NAME3 matching logic is nominated using the Clustering-Definition’s KEY-PRE-SCORE-LOGIC or
KEY-SCORE-LOGIC keywords.

The matching routine is called with the search and file records KEY-DATA fields. If the returned score is less
than the limit defined for the scoring logic, the file record is rejected from the candidate set.

Performance Optimization 75

For example, to append the first two bytes of a postal-code field to the key and then score it using a SSA-
NAME3 matching scheme, perform the following tasks:

1. Code the following definitions in Clustering-Definition:

KEY-SCORE-LOGIC=SSA,
System(default),
Population(test),
Controls ("PURPOSE=Fields MATCH_LEVEL=Conservative"),
Matching-Fields("post-code:Postal_Area")

2. Code the following definition in IDX-Definition:

KEY-DATA = (POST-CODE,2,0)

Pre-Scoring
This approach is used to reduce the cost of scoring two records.

The most expensive part of the matching process is the Scoring. Once a set of candidate records is chosen,
each candidate is scored against the search record. In practice, the scoring is often complex in nature and
involves several methods scoring several fields on the search and file records. If it is possible to quickly
reject a candidate record by scoring it with a "light weight" (inexpensive) scoring scheme, we can avoid the
need to call a more complex scheme.

The Clustering’s PRE-SCORE-LOGIC is used to define an optional "light weight" scoring scheme which is
processed before the normal SCORE-LOGIC. If it returns a "no match" condition, the more expensive SCORE-
LOGIC is not called.

Note that it is possible to apply this two stage scoring approach to Key Data by using the Key-Pre-Score-
Logic and Key-Logic parameters.

Scoring Phases
The previous sections discuss the different phases at which records may be scored.

This section brings them together and discusses the use of the Accept and Reject limits. Accept and Reject
limits are defined by SSA-NAME3 Population Rules and can be adjusted using the CONTROLS parameter in
the Project definition.

Scoring happens in four distinct phases known as Key Pre Scoring, Key Scoring, Pre Scoring and Scoring
respectively. There are three possible outcomes as a result of the score in each phase. A record may be

• rejected,

• accepted,

• passed to the next scoring phase.

Rejection occurs when the score is less than the Reject limit for that phase. A rejected record is not passed
to any other phases. It is simply discarded.

A record is accepted when its score is greater than or equal to the Accept limit for that phase. A record that
is accepted is assigned the score from the accepting phase. It does not participate in any further scoring
phases.

A record that has a score which is >= Reject limit and < Accept limit is passed to the next scoring phase. If
no more phases exist then the record is considered undecided . It is then added to the cluster but with a non-
voting status.

76 Chapter 3: Design

Multiple Accept Phases

Although uncommon, some Projects use this mechanism to accept records early, rather then reject them. In
the case where we have multiple accept phases and we use CLUSTERING-METHOD=BEST the DCE behaves in
the following fashion: As it is possible for records to be accepted by multiple scoring phases, each with a
different scheme and/or options and weights, the scores from the different phases can not be directly
compared (when we wish to rank the records).

To overcome the problem of comparing apples to oranges, the DCE assigns a score of 100 to a record that
has been accepted by an early phase. It assigns a score of 0 if the record is rejected by an early phase. Any
records that are passed to the next phase are assigned the score returned by that phase.

Adjusting the Accept and Reject limits

Accept and Reject limits are defined by SSA-NAME3 V2 Population Rules. The standard Populations usually
define an Accept limit to be less than or equal to 100. If a record reaches a score that is greater than or equal
to the Accept limit for that phase, the record is accepted and the record does not take part any further
scoring phases as explained above. However, if the reason for using multiple scoring phases is only to reject
early and never to accept until the final scoring phase, then the default Accept limit is not useful. In order to
never accept records in a scoring phase, one should specify a scoring phase with the Accept limit of 101,
which can be never reached. This can be done using the following syntax in the CONTROLS parameter in the
Scoring phase definition:

Where AdjA is the Accept level adjustment and AdjR is the Reject level adjustment. To force the Accept limit
to become 101 the exact value of +101 must be used as in the following example:

where the special value +101 is forcing the Accept level to become exactly 101. The Reject adjustment
should also be specified. Omitting the Reject limit adjustment means that the Reject level is adjusted by the
same amount as the Accept level and the value 101 would cause all records to be rejected, which is clearly
not useful. By specifying the value +0 the Reject limit is not changed from the original value specified in the
Population Rules.

See the SSA-NAME3 POPULATIONS and CONTROLS manual for further details.

Utilizing multiple CPUs
If you run the Data Clustering Engine on a multi-processor computer, the number of processors is
automatically detected and used as the default value for the number of key-scoring threads created. If you
need to alter this behaviour, you can to do one of the following:

Note: The multi-threaded clustering feature is only available with Key-Scoring.

1. Set the environment variable SSA_DCETHREADS=#, where # is the number of threads. This environment
variable should be set before the DCE Server is started or optionally you can set this variable using the
Console’s Settings > Environment Settings dialog.

2. Add the THREADS(#) keyword in the clustering job options in the Project definition file. The # indicates
the number of threads that you want to make available to the key-scoring process. e.g.

job-definition
NAME=job-cluster
TYPE=cluster
OPTIONS=Threads(4)

Note: The environment variable SSA_DCETHREADS setting overrides the THREADS(#) keyword. If neither
is specified, DCE automatically detects the number of CPUs available.

It is recommended that the number of key-scoring threads does not exceed the number of CPUs on your
system.

Performance Optimization 77

Reducing Database I/O
This section provides information on reducing database input and output operation.

IDX Size

The physical size of the IDX will determine how efficiently the database cache will operate. Reducing the size
of the IDXs will improve performance. This is achieved by selecting the most appropriate Compressed-Key-
Data value as described in the Compressed Key Data section below and using flattening to reduce the number
of rows (Refer to the Flattening IDTs section for more information).

Compressed Key Data

The IDX stores fuzzy keys and identity data for matching. The identity data is compressed and stored using
an algorithm selected with the IDX-definition’s Compress-Method parameter. All methods will compress the
identity data and store it in the IDX together with its fuzzy key.

If the length of the IDX record exceeds the DBMS’s maximum segment length (256 bytes) DCE can either,

• Method 0 split the IDX record into multiple adjacent segments (which are all shorter than the length limit).

• Method 1 truncate the IDX record at the length limit and only store one segment. This forces additional
I/O at run time if the IDX record is selected for matching, as the matching data must be read from the IDT
record.

IDX segments are fixed in length and have the following layout:

Partitions Fuzzy SSA-NAME3 Key Compressed Identity Data

The segment length is the sum of

1. partition length (optional, user defined)

2. SSA key length (5 or 8 bytes)

3. Compress-Key-Data(n) parameter

4. 4 bytes of additional overhead

Since the segment length is fixed, choosing an appropriate value for n is important because it affects the
total amount of space used and the I/O performance of the index. Determining an optimal value for n requires
knowledge of the characteristics of the source data and how well it can be compressed. If n is set too high,
all segments will use more space than necessary. If n is too low, records will be split into multiple segments,
incurring extra overhead for the duplication of the Partition and Fuzzy Key in each segment.

Measuring Compression

The Table Loader can be used sample the source data and produce a histogram of the Compressed Identity
Data lengths. A sample table appears below:

loadit> Histogram: KG KeyLen Count Percent
loadit> Histogram-KG:........................... 78 2 0.21%
loadit> Histogram-KG: 81 4 0.64%
loadit> Histogram-KG: 83 1 0.75%
loadit> Histogram-KG: 85 6 1.39%
loadit> Histogram-KG:........................... 86 1 1.49%
loadit> Histogram-KG: 87 4 1.92%
loadit> Histogram-KG: 88 3 2.24%
loadit> Histogram-KG: 89 14 3.73%
loadit> Histogram-KG:........................... 90 10 4.80%
loadit> Histogram-KG: 91 16 6.50%
loadit> Histogram-KG: 92 9 7.46%
loadit> Histogram-KG: 93 17 9.28%
loadit> Histogram-KG:........................... 94 19 11.30%

78 Chapter 3: Design

loadit> Histogram-KG: 95 15 12.90%
loadit> Histogram-KG: 96 32 16.31%
loadit> Histogram-KG: 97 31 19.62%
loadit> Histogram-KG:........................... 98 29 22.71%
loadit> Histogram-KG: 99 40 26.97%
loadit> Histogram-KG: 100 45 31.77%
loadit> Histogram-KG: 101 25 34.43%
loadit> Histogram-KG:........................... 102 31 37.74%
loadit> Histogram-KG: 103 28 40.72%
loadit> Histogram-KG: 104 34 44.35%
loadit> Histogram-KG: 105 46 49.25%
loadit> Histogram-KG:........................... 106 30 52.45%
loadit> Histogram-KG: 107 34 56.08%
loadit> Histogram-KG: 108 40 60.34%
loadit> Histogram-KG: 109 21 62.58%
loadit> Histogram-KG:........................... 110 34 66.20%
loadit> Histogram-KG: 111 37 70.15%
loadit> Histogram-KG: 112 48 75.27%
loadit> Histogram-KG: 113 27 78.14%
loadit> Histogram-KG:........................... 114 28 81.13%
loadit> Histogram-KG: 115 21 83.37%
loadit> Histogram-KG: 116 18 85.29%
loadit> Histogram-KG: 117 6 85.93%
loadit> Histogram-KG:........................... 118 17 87.74%
loadit> Histogram-KG: 119 16 89.45%
loadit> Histogram-KG: 120 23 91.90%
loadit> Histogram-KG: 121 25 94.56%
loadit> Histogram-KG:........................... 122 7 95.31%
loadit> Histogram-KG: 123 10 96.38%
loadit> Histogram-KG: 124 15 97.97%
loadit> Histogram-KG: 125 3 98.29%
loadit> Histogram-KG:........................... 126 3 98.61%
loadit> Histogram-KG: 128 3 98.93%
loadit> Histogram-KG: 129 3 99.25%
loadit> Histogram-KG: 132 2 99.47%
loadit> Histogram-KG:........................... 134 2 99.68%
loadit> Histogram-KG: 144 2 99.89%
loadit> Histogram-KG: 145 1 100.00%

Field Description

KeyLen This is the length of the Identity Data after compression

Count This is the number of records with that length

Percent This is the cumulative percentage of the number of records having lengths less than
or equal to the current KeyLen

Segment Lengths

The histogram can be converted into more useful data by running

%SSABIN%\histkg ReportFile
where ReportFile is the name of the log file containing the Table Loader output. It will produce a report
similar to the one below:

Block Size 1792
Block Overhead 0
Index Name idx_addr_fullkeydata
KeyData 225
CompLen 200

 key len count % bytes comp-1 comp-2 segs
 78 2 0.21 156 430 440 2
 81 4 0.64 324 860 880 4

Performance Optimization 79

 83 1 0.75 83 215 220 1
 85 6 1.39 510 1290 1320 6
 86 1 1.49 86 215 220 1
 87 4 1.92 348 860 880 4
 88 3 2.24 264 645 660 3
 89 14 3.73 1246 3010 3080 14
 90 10 4.8 900 2150 2200 10
 91 16 6.5 1456 3440 3520 16
 92 9 7.46 828 1935 1980 9
 93 17 9.28 1581 3655 3740 17
 94 19 11.3 1786 4085 4180 19
 95 15 12.9 1425 3225 3300 15
 96 32 16.31 3072 6880 7040 32
 97 31 19.62 3007 6665 6820 31
 98 29 22.71 2842 6235 6380 29
 99 40 26.97 3960 8600 8800 40
 100 45 31.77 4500 9675 9900 45
 101 25 34.43 2525 5375 5500 25
 102 31 37.74 3162 6665 6820 31
 103 28 40.72 2884 6020 6160 28
 104 34 44.35 3536 7310 7480 34
 105 46 49.25 4830 9890 10120 46
 106 30 52.45 3180 6450 6600 30
 107 34 56.08 3638 7310 7480 34
 108 40 60.34 4320 8600 8800 40
 109 21 62.58 2289 4515 4620 21
 110 34 66.2 3740 7310 7480 34
 111 37 70.15 4107 7955 8140 37
 112 48 75.27 5376 10320 10560 48
 113 27 78.14 3051 5805 5940 27
 114 28 81.13 3192 6020 6160 28
 115 21 83.37 2415 4515 4620 21
 116 18 85.29 2088 3870 3960 18
 117 6 85.93 702 1290 1320 6
 118 17 87.74 2006 3655 3740 17
 119 16 89.45 1904 3440 3520 16
 120 23 91.9 2760 4945 5060 23
 121 25 94.56 3025 5375 5500 25
 122 7 95.31 854 1505 1540 7
 123 10 96.38 1230 2150 2200 10
 124 15 97.97 1860 3225 3300 15
 125 3 98.29 375 645 660 3
 126 3 98.61 378 645 660 3
 128 3 98.93 384 645 660 3
 129 3 99.25 387 645 660 3
 132 2 99.47 264 430 440 2
 134 2 99.68 268 430 440 2
 144 2 99.89 288 430 440 2
 145 1 100 145 215 220 1
 Total 938 99537 201670 206360 938

Keydata Offset 11
Key Overhead 4
Block Size 1792
Block Overhead 0

 compLen bytes segs segs/key DB-bytes DB-blocks
 1 2090277 99537 106.116 2488425 1389
 2 1099868 49994 53.299 1299844 726
 3 770201 33487 35.700 904149 505
 4 605232 25218 26.885 706104 395
 5 506825 20273 21.613 587917 329
 6 441220 16970 18.092 509100 285
 7 394659 14617 15.583 453127 253
 8 360136 12862 13.712 411584 230
 9 332717 11473 12.231 378609 212
 10 311280 10376 11.062 352784 197
 11 293942 9482 10.109 331870 186
 12 279552 8736 9.313 314496 176
 13 267465 8105 8.641 299885 168

80 Chapter 3: Design

 14 256088 7532 8.030 286216 160
 15 247660 7076 7.544 275964 154
 16 239544 6654 7.094 266160 149
 17 233137 6301 6.717 258341 145
 18 226822 5969 6.364 250698 140
 19 221871 5689 6.065 244627 137
 20 216280 5407 5.764 237908 133
 21 212052 5172 5.514 232740 130
 22 209622 4991 5.321 229586 129
 23 205497 4779 5.095 224613 126
 24 203016 4614 4.919 221472 124
 25 198360 4408 4.699 215992 121
 26 196834 4279 4.562 213950 120
 27 193687 4121 4.393 210171 118
 28 191040 3980 4.243 206960 116
 29 189728 3872 4.128 205216 115
 30 189150 3783 4.033 204282 114
 31 187884 3684 3.928 202620 114
 32 187668 3609 3.848 202104 113
 33 185712 3504 3.736 199728 112
 34 183654 3401 3.626 197258 111
 35 181115 3293 3.511 194287 109
 36 178472 3187 3.398 191220 107
 37 176358 3094 3.299 188734 106
 38 173478 2991 3.189 185442 104
 39 173696 2944 3.139 185472 104
 40 173280 2888 3.079 184832 104
 41 173362 2842 3.030 184730 104
 42 174840 2820 3.006 186120 104
 43 176841 2807 2.993 188069 105
 44 179072 2798 2.983 190264 107
 45 180180 2772 2.955 191268 107
 46 181302 2747 2.929 192290 108
 47 181637 2711 2.890 192481 108
 48 181016 2662 2.838 191664 107
 49 179469 2601 2.773 189873 106
 50 176120 2516 2.682 186184 104
 51 174660 2460 2.623 184500 103
 52 172656 2398 2.557 182248 102
 53 169506 2322 2.475 178794 100
 54 166352 2248 2.397 175344 98
 55 164475 2193 2.338 173247 97
 56 160208 2108 2.247 168640 95
 57 158081 2053 2.189 166293 93
 58 157092 2014 2.147 165148 93
 59 157289 1991 2.123 165253 93
 60 156160 1952 2.081 163968 92
 61 155520 1920 2.047 163200 92
 62 155390 1895 2.020 162970 91
 63 156787 1889 2.014 164343 92
 64 158424 1886 2.011 165968 93
 65 160055 1883 2.007 167587 94
 66 161766 1881 2.005 169290 95
 67 163473 1879 2.003 170989 96
 68 165352 1879 2.003 172868 97
 69 167231 1879 2.003 174747 98
 70 169110 1879 2.003 176626 99
 71 170989 1879 2.003 178505 100
 72 172684 1877 2.001 180192 101
 73 174468 1876 2.000 181972 102
 74 176344 1876 2.000 183848 103
 75 178220 1876 2.000 185724 104
 76 180096 1876 2.000 187600 105
 77 181972 1876 2.000 189476 106
 78 183652 1874 1.998 191148 107
 79 185526 1874 1.998 193022 108
 80 187400 1874 1.998 194896 109
 81 188870 1870 1.994 196350 110
 82 190740 1870 1.994 198220 111
 83 192507 1869 1.993 199983 112

Performance Optimization 81

 84 194376 1869 1.993 201852 113
 85 195615 1863 1.986 203067 114
 86 197372 1862 1.985 204820 115
 87 198806 1858 1.981 206238 116
 88 200340 1855 1.978 207760 116
 89 200669 1841 1.963 208033 117
 90 201410 1831 1.952 208734 117
 91 201465 1815 1.935 208725 117
 92 202272 1806 1.925 209496 117
 93 202157 1789 1.907 209313 117
 94 201780 1770 1.887 208860 117
 95 201825 1755 1.871 208845 117
 96 199868 1723 1.837 206760 116
 97 197964 1692 1.804 204732 115
 98 196234 1663 1.773 202886 114
 99 193137 1623 1.730 199629 112
 100 189360 1578 1.682 195672 110
 101 187913 1553 1.656 194125 109
 102 185684 1522 1.623 191772 108
 103 183762 1494 1.593 189738 106
 104 181040 1460 1.557 186880 105
 105 176750 1414 1.507 182406 102
 106 174384 1384 1.475 179920 101
 107 171450 1350 1.439 176850 99
 108 167680 1310 1.397 172920 97
 109 166281 1289 1.374 171437 96
 110 163150 1255 1.338 168170 94
 111 159558 1218 1.299 164430 92
 112 154440 1170 1.247 159120 89
 113 152019 1143 1.219 156591 88
 114 149410 1115 1.189 153870 86
 115 147690 1094 1.166 152066 85
 116 146336 1076 1.147 150640 85
 117 146590 1070 1.141 150870 85
 118 145314 1053 1.123 149526 84
 119 144143 1037 1.106 148291 83
 120 141960 1014 1.081 146016 82
 121 139449 989 1.054 143405 81
 122 139444 982 1.047 143372 81
 123 138996 972 1.036 142884 80
 124 137808 957 1.020 141636 80
 125 138330 954 1.017 142146 80
 126 138846 951 1.014 142650 80
 127 139797 951 1.014 143601 81
 128 140304 948 1.011 144096 81
 129 140805 945 1.007 144585 81
 130 141750 945 1.007 145530 82
 131 142695 945 1.007 146475 82
 132 143336 943 1.005 147108 83
 133 144279 943 1.005 148051 83
 134 144914 941 1.003 148678 83
 135 145855 941 1.003 149619 84
 136 146796 941 1.003 150560 85
 137 147737 941 1.003 151501 85
 138 148678 941 1.003 152442 86
 139 149619 941 1.003 153383 86
 140 150560 941 1.003 154324 87
 141 151501 941 1.003 155265 87
 142 152442 941 1.003 156206 88
 143 153383 941 1.003 157147 88
 144 153996 939 1.001 157752 89
 145 154770 938 1.000 158522 89

82 Chapter 3: Design

The first section of the report summarizes the histogram.

Field Description

Block Size Database Block Size. Information only.

Block
Overhead

Database overhead when storing records within a block including control structures and padding.
Information only.

Index Name The name of the IDX

KeyData The sum of the length of the IDT columns (the Identity Data, uncompressed)

CompLen Compress-Key-Data(n) value

KeyLen The length of the Identity Data after compression

Count The number of records with this KeyLen

Bytes KeyLen * Count

Comp-1 Total bytes to store Count records with KeyLen using Method 1 (1 segment only)

Comp-2 Total bytes to store Count records with KeyLen using Method 0 (multiple segments)

Segs The number of segments required to store Count records of KeyLen

The second part of the report gives space estimates for various values of Compress-Key-Data.

Field Description

KeyDataOffset Length of the Fuzzy Key including any partition

KeyOverhead The overhead associated with storing the segment in the database

Block Size Database Block Size. Information only.

Block
Overhead

Database overhead when storing records within a block including control structures and padding.
Information only.

compLen n from Compress-Key-Data(n)

Bytes The number of bytes required to store segments of this size

Segs The number of segments used

Segs/Key The average number of segments per IDX record.

DB-Bytes The number of bytes for segment of this size (scaled up by KeyOverhead)

DB-Blocks The number of blocks for segments of this size (based on the Blocksize and BlockOverhead)

To optimize performance, select the largest compLen value that minimizes DB-blocks and set Compress-Key-
Data to this value (126 in the example above).

Performance Optimization 83

Large File Support
Some computer operating systems limit the maximum file size to 2GB. We will refer to these as "small
systems". Other operating systems have native support for files larger than 2GB. We will refer to these as
"large systems".

To overcome the file size limitation the Data Clustering Engine can combine the free space on a number of
file systems into one large logical file . A logical file larger than 2GB is composed of a number of small files
known as "extents ". Each extent must be less than 2GB in size.

Although this feature is not necessary on "large systems", it can be used to distribute the data over multiple
file systems thereby making use of fragmented space.

Large File Support is designed for binary files such as the database and index files. Restrictions apply to its
use for text files, as described later.

Directory File

The management of extents can default to internal rules or can be user-supplied. A file known as the
"directory file " can be defined to specify the number of extents as well as their names and sizes.

Each large file’s directory file is named using OS-specific rules. Currently the file, if present, is the name of
the large file with .dir appended. For example, the directory file for match.db would be called match.db.dir.
Directory files contain multiple lines of text. Each line contains two blank separated fields used to define an
extent. The size of the extent (in bytes) is followed by the name of the extent. The maximum extent size is
limited to 2GB - 1. An asterisk (*) may be used as a shorthand notation for the maximum extent size.

For example, these definitions define two extents. The first is limited to 1MB and the second extent defaults
to 2GB - 1.

1048576match.db.ext1
*match.db.ext2

If all extents are to be of equal size, you can define a template for the base name of the extents. For example

048575match.db.ext
*

will allocate extents of size 1048575 and name them using the rules documented in the Default Extent Names
section below. Note that the second line containing the asterisk enables this type of processing. Also, this
mode of processing requires the extent size (1048575 in this example) to be a power of 2 (1048576 in this
example) minus 1. To allow all extents to have the maximum size of 2GB-1 use:

*match.db.ext
*

To allow all large files to have maximum size extents, create a file called extents.dir with the following
text:

*%f
*

Note: It is possible to set the maximum extent size using the environment variable, SSAEXTENTSIZE. Eg.
SSAEXTENTSIZE=256k will limit the size of all extent to 256kB (minus 1).

Default Extent Names

If a directory file does not exist when a large file is opened, default rules are used to name the extents. Each
extent size defaults to 2GB - 1.

84 Chapter 3: Design

The first extent has the same name as the large file. Second and subsequent extents are created by
appending two characters to the file name. The extensions are named aa, ab, ac,. . . az, ba,. . . zz. This means
that (1+26*26) extents are possible giving a maximum logical file size of 1.3TB.

Using the example above, the extents would be named

match.db
match.db.extaa
match.db.extab
...

Small System Rules

Small systems support large files using the rules above. Extents are defined using a directory file. If a
directory file does not exist default sizes and names are used.

Large System Rules

Large systems have native support for files larger than 2GB. Operating systems such as Windows-NT 4.0,
HPUX and Digital/Compaq Unix are in this category.

Large files do not use extents on these Projects unless a directory file is defined. In the latter case, extents
are still limited to 2GB - 1.

Restrictions

Large file support was designed for binary files. In general, text files are not supported by the extent
mechanism.

Text files do not default to use extents when a directory file is not present. Even if a directory file is defined
and extents are used, correct results can not be guaranteed on every platform. If you wish to use large text
files, you should use an operating system that supports them natively.

POST will create a text file if either the Trim or CR OUTPUT-OPTIONS are used. If neither is specified, the output
is binary (fixed length records) and can therefore use the extent mechanism.

Large File Support 85

C h a p t e r 4

Operation
This chapter includes the following topics:

• Environment Variables, 86

• Limitations, 89

• DCE Console, 90

• How to Create and Run Jobs, 98

• How to Run Clustering, 101

• Stopping and Restarting Clustering, 106

• Utilities, 110

• Batch Process - Command Line, 116

• Report Viewer, 117

• Troubleshooting, 118

• How To, 122

Environment Variables
Environment variables are used to control certain aspects of the Data Clustering Engine’s behaviour. Most of
them are set in various scripts, which are modified when the DCE is installed and/or initially configured. They
can also be added or changed from the Settings window within the DCE Console, except the SSA_XXHOST
and SSA_XXPORT variables, which must be set before the DCE Server is launched.

SSA_DCETHREADS

Used to define the maximum number of threads used by the clustering process. Refer to the Utilizing
multiple CPUs section for more details.

SSACACHEOPT

Defines the internal workings of the database cache(For internal use only).

SSACACHEOPT=option-string
where option-string is a series of characters, one per option:

86

Option1: file buffering

d default buffering

o no buffering

b buffer size set to SSABSIZE

Option2: cache allocation strategy

n preallocate whole cache at startup

l lazy allocation (demand based)

SSACACHESIZE

Defines the size of the memory cache established by SSA-DB. The default size is operating system
dependent and is 4MB in almost all cases.

SSACACHESIZE=n[b|k|m|g]
where

n Represents the number of allocation units

b Blocks (2048 bytes)

k Kilo-bytes (kB)

m Mega-bytes (MB)

g Giga-bytes (GB)

SSAEXTENTSIZE

Defines the maximum extent size when creating a Large File.

SSAEXTENTSIZE=n[k|m|g]
where

n Represents the number of allocation units

k Kilo-bytes (kB)

m Mega-bytes (MB)

g Giga-bytes (GB)

Note: The actual size of each extent is actually one less that the size nominated by this parameter. Refer
to the Large File Support section for more details.

SSAJAVA

The name of the Java executable. Usually set to "java".

Environment Variables 87

SSALDR_KEYTH

The Loader utility LOADIT automatically creates n key generation threads, where n is the number of CPUs
available. You may override this value by setting an environment variable SSALDR_KEYTH=n .

SSALDR_RBSIZE

The Loader utility LOADIT uses this environment variable to control the memory usage of its Reader
thread. For example,

SSALDR_RBSIZE=5000 allocates enough memory for 5000 input records (which is the default value for
this setting).

This variable is also used to calculate the size of the key generation output queues. They are calculated
as

SSALDR_RBSIZE / number_of_key_threads * 8
SSAOPTS

This environment variable is used for setting tracing and logging level.

The default value is +L which causes all possible program error messages to be logged to a file called
SSAWORKDIR/dce.dbg.

Some times Informatica Corporation Technical Support personnel may ask you to set this to other values
to help Informatica to assist you in any problem situations. Refer to the Troubleshooting section for
further details.

SSAPR

When using the SSA-NAME3 Version 2 Standard Populations rules, the SSAPR variable needs to be set to
the pr directory. This variable is normally set during the DCE installation procedure. If using a SSA-
NAME3 population directory from another location, this variable can be set from the DCE Console’s
Settings Environment Settings dialog.

SSASORTMEM

Used to define the maximum amount of memory to be used by SSA-SORT. It accepts sizes in bytes/k-
B/MB/GB.

SSASORTMEM=n[k|m|g]
SSAWORKDIR

The DCE Server uses the value of the SSAWORKDIR environment variable as its default working directory.
All the files that the Server creates are placed in to this directory unless the Console Client or the Project
definition override this setting.

SSA_CSHOST

The TCP/IP host:port address of the DCE Console Server.

SSA_CSPORT

The TCP/IP port number on which the DCE Console Server is listening.

SSA_RBHOST

The TCP/IP host:port address of the DCE Rulebase Server.

SSA_RBPORT

The TCP/IP port number on which the DCE Rulebase Server is listening.

SSA_SEHOST

The TCP/IP host:port address of the DCE Search Server.

88 Chapter 4: Operation

SSA_SEPORT

The TCP/IP port number on which the DCE Search Server is listening.

SSA_RBNAME

The default value for the Rulebase name in format

sdb:file:path/filename
When the DCE Console is launched, it connects to the Rulebase Server listening on the address specified
in SSA_RBHOST and tries to open the Rulebase named in this parameter. The file name extension ".db"
is automatically added to the given filename.

If this Rulebase does not exist, the user is prompted whether or not it should be automatically created at
that point.

Note: This environment variable should contain the name of the Rulebase as seen on the computer
running the Rulebase Server.

Note: You cannot use the same filename for the Rulebase and a Project to be stored in the same
SSAWORKDIR as this will lead to a file naming conflict.

Limitations
The Data Clustering Engine’s design imposes some limits. The maximum values for some components are
documented here:

Field Description

Database file size 32 GB with the default space management granularity of 8 bytes. Raising the granularity while
creating the database raises the maximum file size correspondingly. Default Large File
Support extends the size to 1.3TB

Database index size 8 TB

Records / logical file 4 G (= 232)

Field length 32767 bytes

Record length 64 kB - 1 (in compressed form)

Cluster number 4 G - 1 (= 232 - 1; zero is not a valid Cluster number)

Partition Data 255 bytes per component field

SDF Line Length 255 bytes

Object Names (for Sourced Data)

When sourcing data from Oracle, DB2/UDB or other ODBC compliant databases, the object names of tables,
indexes and columns must conform to the conventions of the host DBMS with the following additional
restrictions:

• Only Regular Identifiers are supported

• Regular Identifiers must not exceed 32 bytes in length

Limitations 89

This means the table, index or column name cannot be defined as a Delimited or Quoted Identifier. A
Delimited or Quoted Identifier is surrounded by double quotes and contains characters which cannot be used
with Regular Identifiers. The column name: Father’s Country of Birth in SQL is structured as "Father’s Country
of Birth" and is regarded as a delimited or quoted identifier due to the use of an apostrophe and spaces in the
name. Other characters used with delimited or quoted identifiers include commas, slashes, dashes etc.

To overcome these limitations create a view of the table using regular identifiers, which do not exceed 32
characters, and source from this view.

DCE Console
The DCE Console provides the user with centralized control of the various components that make up the DCE
Project.

The Console is a client/server application.

The Console server is a non-interactive program, which would normally run on the machine where the
database resides. When it is run, the Console server will establish its environment and then wait for clients to
connect. Once one or more clients are connected, the server launches and monitors the progress of the
various DCE programs at the request of these clients.

The Console Client is a Java GUI program. It can be launched on any machine which is connected via TCP/IP
to the Console Server’s machine.

Running the Console Server
Before running the Console Server, ensure that the license server is running. Refer to the instructions in
INFORMATICA IR PRODUCT INSTALLER manual to start the license server.

On a Win32 Computer
An icon for the Console Server is placed in the Informatica’s Products Program Folder by the Installation
process.

u Click on this icon to start the server.

On a Unix Computer
Before running the Console server on a Unix computer, ensure that the DCE environment variables are
correctly set. These are provided in the env/dces script.

1. To start the Console Server use this command:

$SSABIN/dceup
2. To stop it use this command:

$SSABIN/dcedown

Running the Console Client
This section provides information about running the console client.

90 Chapter 4: Operation

On a Win32 Computer
When you finish the installation process, you see an icon for the Console Client in the Informatica’s Products
Program Folder.

u Click this icon to start the client.

On a Unix Computer
Once the Console Server is running, the Console Client can be started using this command:

$SSABIN/dceconc

Using the Console Client in Setup Mode
When the Console Client is run, it interrogates the Server to determine the Server’s mode of operation. If the
Server is in "setup" mode, the Client initiates the setup test process. You are prompted to supply the required
information such as the Rulebase name and selection of the tests to be run. It is recommended that you run
all the setup tests.

1. After you fill in each of the required fields, click OK.

Console will then go through the steps involved in completing the installation testing of DCE.
These include:

1. creating and initializing a Rulebase

2. running the standard tests

The Setup mode serves to confirm that the DCE installation is working correctly. Upon successful
completion, the Server and Client change to "normal" mode of operation. The Client can then be used to
carry out normal DCE operations. There is no need to restart either the Client or the Server.

On the other hand, if an error should occur, the Server remains in setup mode and the install process can
be repeated if required.

2. After the test procedure is completed, click Finish to switch to the normal mode of operation.

Using the Console Client in Mode
When the Console Client is started it connects to the Console Server determined by the -h parameter. It then
determines from the Server the mode of operation, either install or normal.

Having determined that the mode of operation is normal the Client opens the main console window.

Settings
This section provides information on how to set variables.

DCE Console 91

• Click the Settings button presents a list of user-settable variables. These variables are described below.

Option Description

Server Work Directory The name of the directory on the server’s machine where output files will be
placed. This field is mandatory. Note that this value can be set using the -w
command line option when launching the Console Client.

Client Work Directory This defines the name of the Work Directory to be used by Client programs. If
specified, it must specify a directory which is accessible to the machine on which
the Client is running. At present, this parameter is used only by the Relate and
DupFinder Clients. So, if you are not planning to run one of these, then there is no
need to supply this parameter.

Service Group Directory SSA-NAME3 v2 (or later) users may leave this value blank. If a value is given, the
Console checks that this directory exists.

Rulebase Server The name or the TCP/IP address of the host where the Rulebase Server to be used
during this session is running.

Port The port number on which the Rulebase Server is listening.

Connection Server The name of the host where the Connection Server to be used during this session
is running.
Note: This information is currently not used.

Port The port number on which the Connection Server is listening.
Note: This information is currently not used.

Search Server The name of the host where the Search Server to be used during this session is
running.

Port The port number on which the Search Server is listening.

Verbosity Options:

Option Description

Statistics If selected, the log files will include statistics mainly used for performance tuning
and/or troubleshooting.

Usage Summary Select this option to produce database usage statistics mainly used for
performance tuning and/or troubleshooting.

Server Trace If selected the Console Server produces verbose output. This is for troubleshooting
purposes and should normally be disabled.

Live Progress If selected the Console Client monitors and shows the progress of the jobs as they
are running on the server.

92 Chapter 4: Operation

Option Description

Automatically Open Job
Window

If selected the Console Client opens a new window for messages from each job.

Environment Settings Click this button and it will open a separate Environment Settings dialog in which
you can set additional environment variables that might be used to control various
DCE tasks. These environment variables are documented for each task as required.
For simplicity the Console Client shows only those environment variables that have
been set from this dialog. In other words all the environment variables that were
set at the time of the Server start-up also exist.

All the above controls are used by the Console Server to serve requests from the Client. Therefore, you
should take care to see that the values are correct.

• After making any required changes, click Ok. At this point the Main Console Window is displayed.

The Main Console Window
You may now make a selection from the various buttons to perform the desired task. The buttons are
arranged in two groups. The row of buttons along the top of the Console window are associated with the
various objects with which a user might want to work, such as Project, Rulebase, etc.

• Click one of these buttons causes a second group of buttons to appear down the left-hand side of the
Console window. These buttons are associated with various actions that can be carried out on the object
selected from the first button group. For example, if you click Rulebase then the possible actions will be
Select, Edit and Create and three buttons will appear in the second button group to allow you to select the
desired action. In addition, there is a group of four buttons at the bottom of the left-hand panel. These
buttons are independent of the top row of buttons and provide quick access to some basic functions,
such as the Settings dialog described above.

In addition to the buttons there is a menu bar. By and large, the options available using the menu bar mirror
those available via the buttons mentioned above.

To the right of the second button group is the messages panel. This is a read-only area where Console will
display any progress messages, error messages, etc.

Along the bottom of the window is the status bar. This contains the current settings for Work Directory,
Rulebase and Project.

The Options Explained
This section provides information on the Options.

Project Options

New

Allows you to create a new Project from a project.sdf file, from a flat (exported) file or by cloning the
currently selected Project. The Console Server then loads the Project definitions into the Rulebase. This
new Project will then be added to the list of available Projects.

The parameters are as follows:
Project Name

The name of the new Project. This name must match the name specified in the Project definition file.

DCE Console 93

Note: Using the same name for the Rulebase and Project is not allowed. (The default Rulebase name is
"rule".)

Definition File

The name of the Project definition file which describes the new Project.

Database Directory

The directory into which the database for this Project will be created. The name of the database file will
be the same as the Project Name with the file name extension .db automatically added to the name. If
this field is left blank, then the default DCE working directory, controlled by the SSAWORKDIR
environment variable, will be used.

Maximum DB Size

Select the maximum database size for this Project. The default is 32 GB. Note that the created database
will not allocate the chosen amount of disk space but the size will grow as required.

Cloning a Project is possible if the Project exists in the current Rulebase. You must supply a new Project
Name and the Database parameter as when creating a Project from a .SDF file.

Importing a Project from a flat file requires that the flat file have been created using the Export option
(explained below). You must supply the Input File name, Project Name and Database parameters as
when creating a Project from an .SDF file. It is also possible to retain the Project name that was used in
the exported Project if you check the Match Project Name selection. If a different Project name is used,
it is necessary to load the Project to create the clustering file with the new Project name before the new
Project can be run. An exported Project may contain run time information from the original Project, if
runtime information is not desired during cloning, the option Import As Template should be checked to
import only the Project definition information.

Select

You can select a Project from the current Rulebase. The selected Project will be used in any subsequent
operations.

The parameters are as follows:
Project Name

The name of the Project to be used.

Edit

Opens the Project Editor that allows editing all Project settings. Refer to the Editing a Project section for
more details.

Load

Activates a Project that was imported from a flat file. See the Export option below.

Reset DB

Replace the current Project database with an empty one. The results of any Clusterings that you may
have run so far will be discarded.

Delete

Delete the current Project from the Rulebase.

94 Chapter 4: Operation

Status

Displays the status of the current Project and allows the user to change it. The below table describes the
meaning of each status selection:

Status Description Read Upd Del Run

Build Under construction -
unusable

yes yes yes no

Test Uncontrolled - any use yes yes yes yes

Production Relaxed Production yes yes no yes

Locked Frozen production yes no no yes

Prototype Secured prototype -
read-only use

yes no no no

Export

Export an existing Project and/or SSA-NAME3 v1.8 Service Group to a flat file. This is useful for example
if you wish to transfer the Project and/or SSA-NAME3 v1.8 Service Group to another Rulebase. You may
also want to use this option to create "templates" for your future Projects.

The parameters are as follows:
Output file

The name of the flat file which will contain the exported Project or SSA-NAME3 v1.8 Service Group.

Service Group

The name of the SSA-NAME3 v1.8 Service Group to be exported.

Run Clustering

Opens a window from which you can choose a Clustering step defined for the currently selected Project
to be run.

Rulebase Options

Select

Allows you to select an existing Rulebase.

Note: Rulebase > Edit feature should be used only if so instructed by Informatica Corporation technical
support. Making changes to the Rulebase may render it unusable.

Edit

Invokes the Rulebase Editor to edit the current Rulebase, defined by Rulebase Name and Rulebase
Server.

Create

Allows you to create and initialize a new Rulebase.

Note: When creating a new Rulebase, you cannot share the Rulebase and Project names as this will lead
to a file naming conflict.

DCE Console 95

Tools Options

Run Clustering

Runs a selected clustering.

The parameter is, Clustering definition name.

Relate

Runs the Relate client. Refer to the Batch Search Client - Relate section for detailed description.

DupFinder

Runs the Duplicate Finder client. Refer to the Batch Search Client - DupFinder section for detailed
description.

Report Viewer

Runs the Report Viewer client. Refer to the Report Viewer section for detailed description.

Run Program

Runs a user-specified program on the server.

The parameters is as follows:
Command Line

The program to run, followed by its parameters.

Common Common Functions

The following describes the functionality provided by the four buttons Server Status, Settings, View Logs and
Clear Messages.

Server Status

This button activates the Server Status dialog, which reports the status of the DCE server programs, the
Rulebase and the database associated with the current Project.

Settings

This option will display the dialog containing the current environment of the client. This is the same
dialog as the one presented when the Client is first started. You may make any required changes to the
environment variables.

View Logs

Use this button to activate the Log Viewer. The Log Viewer allows the various output files produced by
DCE to be viewed.

The Log Views displays the files in a tree layout with the file size rounded to the nearest kilobyte. If the
file is empty, the file is marked with an icon resembling letter X and no file size appears.

The Log Viewer also gives the user the ability to delete individual logs as well as all the logs associated
with the run itself.

See further information about the Log Viewer and its usage below.

Clear Messages

Click this button to clear the main message window.

Launched Jobs

This is a list of all the jobs launched during the current session. You can access more information about a
particular job in the list by click the Open button or double-clicking the job details in the list.

96 Chapter 4: Operation

When reconnecting the client to the console server, the list will display all the currently running jobs for all
console clients using the same Rulebase.

The progress messages for each job are not displayed automatically when a Client reconnects. The user
must select a running job from the list and click Open (or double-click the item). This will open the usual
progress window.

Options

Open

Opens a status window for the selected job.

Delete

Remove the selected job from the list. Note: only completed jobs may be removed from the list.

Refresh

Refreshes the list with the currently running jobs for the same Rulebase.

Log Viewer

Every time a procedure such as Clustering, Relate or a user-defined Job is started, a Run Number is
assigned to that run and all relevant information is stored in the Rulebase. This information includes the
completion status and details of any output files created during the run. The Run Number is used to uniquely
identify the run.

The Log Viewer provides the user with the ability to access the run information for previously run jobs.

There are two classes of Jobs: Project Jobs and Global Jobs.

• Project Jobs are jobs which are run against a particular Project, such as Relate.

• Global Jobs are jobs which are not run against a particular Project. These jobs either involve more than 1
Project (eg. Clone Project) or are responsible for setting up a Project (eg. Create Project)

Choosing The Run To Be Viewed

Select the type of Job, either Project Jobs or Global Jobs, using the radio buttons. If Project Jobs is
selected, select the required Project using the dropdown list of Projects. If Global Jobs was selected,
then the Project need not be selected. Now choose the job name from the dropdown list of jobs. User-
defined jobs are identified by their user-assigned names. Other procedures, such as Relate, are
identified by the procedure name surrounded by asterisks, eg. *Import Project*.

When the job has been selected a list of runs for this job will be listed on the left hand side of the Log
Viewer. The runs will be sorted in ascending order, so the most recent run will appear at the bottom of
the list. The title for each run consists of the date and time when the job started and the Run Number
which was assigned to this run. Select the run in which you are interested.

A list of the output files created by this run will appear below the list of runs. The most recently created
output file will be automatically displayed in the right hand pane of the Log Viewer. To view other files in
the list simply click on the required file in the tree display.

Note: The Log Viewer will truncate log files larger than 960k for display.

DCE Console 97

Other Functions Provided By The Log Viewer

The options are as follows:

Option Description

Delete File Use this option to physically delete the currently selected file.

Delete Run Use this option to delete all output files and run information for the currently selected
run.

Refresh Use this option to reread the run information from the Console Server. This option is
useful if a job is currently running and you want to check if anymore output has been
created.

Close Use this option to close the Log Viewer and return to the Main Console Window.

Parameters
Project Name

Select a Project from the list of available Projects in the current Rulebase, to view the list of job names
belonging to the Project.

Job Name

Select a job name from the list of available jobs in the selected Project, to view the run information.

Project Logs

Check this option to see the Project dependant logs.

Global Logs

Check this option to see the Project independent logs.

Run-Information

The user is presented with a run information list of the selected Project job. The user can at this time
make a selection to view the relative step information.

Step Logs

The user is presented with a list of steps belonging to the selected job. The user can now view the run
logs, error logs, output files (if any) of each step by selecting the desired option.

How to Create and Run Jobs
A job is a collection of steps, where each step refers to a unit of work that needs to be performed. Jobs can
be easily created, modified or deleted using the Job Editor that can be launched from the Console Client.

Job Options
• Run

This option allows the user to select and run a job, from a list of predefined jobs.

• Edit

98 Chapter 4: Operation

This option allows the user to

1. Define a new job

2. Edit a predefined job; and also

3. Delete a pre-existing job.

Screen Shot:

New Job

• Allows the user to create a new job. This new Job will then be added to the list of available Jobs for
the current Project. Jobs can also be global ie. not attached to any particular Project. To make a job
global, select the appropriate radio button before you click the New Job button.

Parameters
Job Name

The name of the new Job.

Comment

The user may specify a brief note about the purpose of the job.

New Step

• Allows the user to create and add new steps to the existing job. When the user chooses to add a new
step a dialog will pop up with the list of available steps. A selection can then be made which will result
in the respective input screen.

Parameters

Step Name

The name of the new Step.

Comment

The user may specify a brief note about the purpose of the step.

Input Parms

Input parameters required for the step.

Screen Shot:

How to Create and Run Jobs 99

• Edit - The user can either modify the Name, Comment or the Input Parameters of any step using this
option.

• Delete - The user can either delete a job or step using this option.

• Clone - The user can clone an existing job or a step within a job.

• Up/Down - The order of steps within a job can be reorganised using the up and down buttons.

• Close - Use this option to close the Job Editor.

100 Chapter 4: Operation

How to Run Clustering
The clustering process can be summarized by these steps:

• Requirements Analysis

• Launch the Console Server and DCE Console

• Create Project Definition (using a .sdf file or the Project Editor)

• Create the Project in the DCE Rulebase

• Select (and Load) the Project

• Run the Clustering Process

• Review Results

• Adjust parameters and rerun if required

Requirements Analysis
Determine business requirements. Define an objective and choose a suitable SSA-NAME3 population to
implement that strategy.

Launch the Console Server and DCE Console
Launch the Console Server process on the machine where the server components have been installed. Refer
to the Running the Console Server section for details.

On the client machine launch the DCE Console program. The first time you run the Console you will be
prompted for a Rulebase name. The Rulebase will contain the rules for your Clustering Project(s) being used.

For example:

If you have an existing Rulebase you wish to use from a previous Clustering Project then specify it at this
point. It is optional whether you specify the Rulebase filename with or without a file extension as an
extension of .db will be automatically added to the Rulebase name.

Otherwise, enter the name of the new Rulebase and hit OK. You will be warned that the Rulebase does not
exist but continue and you will be able to create the Rulebase within the main console window.

Note: When creating a new Rulebase, you cannot share the Rulebase and Project names as this will lead to a
file naming conflict.

How to Run Clustering 101

Create Project Definition
Create the Project Definition File using a text editor. It is useful to begin with a copy of an example Project
and modify it to suit your own Project. You can also import an existing template Project and use the GUI
Project Editor to adjust any settings.

Confirm Settings
At the Settings window confirm that the Server Work Directory and any other settings are correctly specified.
It is important to note that the directory paths for the Server Work Directory and SSA-NAME3 v1.8 Service
Group Directory (if used) are from the perspective of the Server machine. For example, if the Service Group is
located on the E drive of the Server Machine, then it is referred to as E drive from the Console Client even if
the local DCE installation was on the C drive.

The Server Work Directory is the location where the DCE will create the Rulebase, database and where the
working files will be stored during the Clustering process.

The Environment Settings button will lead to a screen allowing further environment details to be specified.
Refer to the Environment Settings section for further details.

Once you are satisfied that the correct details are entered then you can proceed into the main DCE Console
window.

Create the Project
After you provide the required settings, you can create a project.

1. In the main DCE Console window, choose New under the Project heading to create your Project within
the Rulebase.

2. Choose the appropriate option Create a Project from an SDF or Import a Project from a flat file.

102 Chapter 4: Operation

Create the Project from an SDF
If you chose to use a Project Definition File (SDF file), you will be prompted for the name of this file, for
example:

If the SDF file is located in a directory other than the Server Work Directory then the full path needs to be
specified here. The Project definition file test01.sdf used in the above example is in a Server Work Directory
subdirectory called tests.

u After you click OK, the Project is read and loaded into the Rulebase.

Create the Project by importing a template
If you chose to import a Project from a flat file, you will see this slightly different dialog:

u After filling in the details, click OK, the Project (template) is read into the Rulebase. However the Project
is not loaded at this stage, as it is assumed that you wish to change some settings using the Project
Editor first.

How to Run Clustering 103

Select (and Load) the Project
This section provides information on how to select and load the project.

1. Choose Select under the Project heading to select the Project you have just created. You will be able to
select from all Projects which are a stored in the current Rulebase.
For example, this particular Rulebase contains 3 different Projects:

2. If you wish to change any Project settings at this stage, you may do so by starting the Project Editor from
the Edit button. See further details in the Editing a Project section. After any changes and also if you
have imported the Project from a flat file ("Project template"), you must load the Project. Click Load
button to make the finalized Project runnable.

Run the Clustering Process
You now have a choice as to how you wish to initiate the Clustering Process. The choice will largely depend
on how many Clusterings are contained in your Project.

Tools / Run Clustering
If you wish to run each Clustering separately or if your Project only contains one Clustering, then choose the
Run Clustering option from under the Tools heading. You can then select which individual Clustering you
want to run:

To run subsequent Clusterings, follow the same procedure for each.

104 Chapter 4: Operation

Create a Job

To run multiple Clusterings as a serial process, a Job can be setup to do so.

1. Select the Edit option from under the Jobs heading. This will invoke the Job Editor. Click the New Job
button and type a name for the Job then click Add Job. You should see the new Job name listed:

2. Click the New Step button and Select the option to Run Clustering as follows:

3. Select the required Clustering.
For example:

How to Run Clustering 105

For each Clustering you wish to run, follow the procedure of adding steps to the job in the order that you
require the Clusterings to be run.

4. Once all required jobs are added then close the Job Editor and select Run from the main Console
window.

5. Choose the correct Job and click OK.

For a complete explanation of various Job options see the How to Create and Run Jobs / Job Options
sections.

Review Results
The Results of the Clustering Project can be viewed by selecting the Report Viewer from the Tools menu.
Refer to the Report Viewer section for more details.

Adjust parameters and rerun if required
If you discover that some results are not satisfactory or wish to try a different scenario, you may use the
Project Editor to adjust any Clustering parameters. After doing so you must reload the Project and reset the
database to remove the old results before running the same Clustering steps again.

Stopping and Restarting Clustering
The clustering job may be stopped and/or restarted. The clustering process can only be stopped in between
the steps or during the CLUSTER phase itself, not during other steps such as loading keys, sorting, etc.
This can be useful in the following circumstances:

• While you are running a large clustering and you wish to take periodic backups of the database and index
files

• You wish to stop the clustering process before it finishes so that you may view the intermediate results
and assess its performance

106 Chapter 4: Operation

Stopping and Restarting Clustering Manually
The job can be interrupted manually and placed into a "" by using the relevant features available in the DCE
Console window:

Monitor the Clustering Job

While the clustering process is running, make sure that the Clustering job progress window, such as below, is
visible. If it is not visible, double-click the row that contains the details of the Clustering job in the Launched
Jobs panel in the main console window.

Figure 1. Clustering Progress Window indicating "running" status

Pause the job
Click the Options button, choose "Place the current step into a wait state" option and click OK.

Stopping and Restarting Clustering 107

Note: If the Clustering process is not running when you click the Options button, only the option "Pause the
job after completion of the current step is available".

Figure 2. Clustering Progress Window

108 Chapter 4: Operation

Shortly the Clustering process enters the wait state, which is indicated by the "Job suspended" message in
the progress window.

Figure 3. Clustering Progress window indicating "suspended" status

At this point it is safe to close the Console, shutdown the server and perform any maintenance tasks such as
a backup. For backing up the Clustering work done so far by the suspended job refer to the Backing Up the
Database and Index section.

To restart a suspended job
Restart the DCE Server and Console Client and select the Project that you were working on. Click the Run
Clustering button and choose the suspended Clustering name from the list of available Clusterings. You are
offered the following options:

Stopping and Restarting Clustering 109

u Click Continue to restart the Clustering from the suspended point.

It is not possible to reliably suspend and restart a Clustering job that reads its input from a changing
source, such as a SQL database. If you expect that you need to suspend such a job, then it is
recommended that you extract the data temporarily to a sequential file and use this file as the input for
the Clustering process.

Stopping and Restarting Clustering Automatically
The Clustering job will stop itself periodically when the Job parameter CHECKPOINT-TIME= has been
specified in the SDF. When a checkpoint is to be taken, the job will save restart information and enter a ’wait’
state, just as if the Wait option had been selected from the Console.

The job will stop when

• it is time for a checkpoint, or

• it has finished processing all of the input.

The sample Project in test04.sdf demonstrates this procedure.

Utilities
DCE Search Server
The DCE Search Server is a multi-threaded application that provides search and match facilities to the Relate
and DupFinder Utilities.

Batch Search Client - Relate
The batch search client , Relate , is a batch search application which reads the search transactions from a
flat input file, uses the nominated Search Definition to find matching records from the Clustering Database
and writes the search results to a flat file.

Starting from the Console

Relate can be started from the Console Client by selecting Tools > Relate. This brings up the relate options
screen:

110 Chapter 4: Operation

Parameter Description

Input File The name of the input file. The records in this file must be separated by a newline unless
the Binary Input option is checked. By default their format must match the layout of the
clustering IDT to be searched. If the format differs from the clustering data layout, you
must select an appropriate input view. This is a mandatory parameter.
Note: The input and output files are read/written by the Client, so the files will generally
be on the Client machine, or at least accessible from the Client machine.

Output File Normally all records returned by the Search Server, i.e. those records that have an
acceptable score as determined by the Search Definition, are written to the output file. If
you also specify No Match File and/or One Match File (see below), then this file will hold
all matching records not written to No Match and One Match files. This is a mandatory
parameter.

Search Definition You must choose the Search Definition to be used from this drop-down list.

Search Width If you have predefined search widths (Narrow, Typical or Exhaustive) you can choose
one here. Otherwise, if left blank, the control defined in the relevant search is used.

Match Tolerance If you have predefined match tolerances (Conservative, Typical or Loose) you can
choose one here. Otherwise, if left blank, the control defined in the relevant search is
used.

Output Format Choose the output report format from here. Values 0 - 7 are valid and are described
below.

Utilities 111

Parameter Description

No Match File Name of the output file to hold records that had no matches. This is an optional
parameter.

One Match File Name of the output file to hold records that had one match. This is an optional
parameter.

Input View If the input IDT layout does not match the clustering IDT layout, then choose the
predefined layout from this drop-down list.

Lower/Upper Score Limit You can alter the score limits defined in the Search Definition using the Lower and Upper
Score Limit options. Default values are 0 for the Lower Score Limit and 100 for the
Upper Score Limit.

Field Delimiter Character Field delimiter character (Refer to the Delimited Input section for more details).

Field Separator Character Field separator character (Refer to the Delimited Input section for more details).

Record Delimiter Record delimiter character (Refer to the Delimited Input section for more details).

Record Layout Record layout (Refer to the Delimited Input section for more details).

Extra Options This field can be used to enter extra command line switches supported by future versions
of the Relate program. Refer to the Extra options for Relate and/or DupFinder section for
more information.

Append New Line Append a newline to the output report after each record. This option has effect only on
report formats 0, 1, 3, 4 and 6. Without specifying this option all the output records are
written into a single line and the output should be treated as fixed length records.

Trim Trailing Blanks Remove trailing blanks from each output record. This option has effect only on report
formats 0, 3, 4 and 6. This option also implies Append New Line so that the boundaries
between the output records are not lost.

Binary Input Select this option if the input file is binary or if the input records are not terminated by
newlines (ie. if the records are fixed length). If this option is chosen the record length
must match the clustering IDT record length.

Report Formats
This section provides information on Report Formats.

0 Emit each returned record on a new line (if the Append New Line option was selected) . Eg:

JobN000005A ALGER COLLINS
JobN000032A COLLINS

1 For each record returned emit the search record, a "#", the search number, the score and the search result.

JobN000005A ALGER COLLINS#000033064 100 JobN000005A ALGER COLLINS
JobN000005A ALGER COLLINS#000033064 099 JobN000032A COLLINS

112 Chapter 4: Operation

2 For each search, emit the search and its number, followed by the list of records returned by that search together
with the search number and the score returned for that record.

JobN000005A ALGER COLLINS #000033064
 JobN000005A ALGER COLLINS #000033064 100
 JobN000032A COLLINS #000033064 099

3 For each search, emit the search number, then the search record and then a list of the scores and records
returned.

********** 000033064 **********
---JobN000005A ALGER COLLINS
100JobN000005A ALGER COLLINS
099JobN000032A COLLINS

4 For each record emit the search number and the record, both on the same line.

00033064JobN000005A ALGER COLLINS
00033064JobN000032A COLLINS

5 For each search, emit the best record only. The format is the search followed by the record, both on the same
line.

JobN000005A ALGER COLLINS JobN000005A ALGER COLLINS

6 For each record emit 8 zeroes followed by the record.

00000000JobN000005A ALGER COLLINS
00000000JobN000032A COLLINS

7 Same as 5, but each record is preceded by the score returned:

100JobN000005A ALGER COLLINS JobN000005A ALGER COLLINS

Delimited Input
Relate can read the input file if it contains delimiters. The field delimiter, field separator and record separator
can be defined on the console. You can specify either a printable character or an escape sequence such as
\n or \x0a.

The input data must be transformed into IDT layout (or into Input View layout if Input View is also specified).

The record layout is a comma-separated list of the following items:

• Field length (decimal)

• R/L justification (optional, L is the default)

• Filler character preceded by a dash (optional, default is a blank)

The following example defines two fields. The first is 30 bytes using the default justification and filler. The
second field is 10 bytes, right justified and filled with 0.

30,10R-0

Utilities 113

SQL Input
Relate can read input records from an SQL database instead of a file. In order to do this you must:

• Define source table(s) in the UST Section of the SDF using the define_source clause.

• Create a Logical-File Definition with INPUT-FORMAT=SQL
• Run Relate with the input file parameter set to "lfile=xxx" where xxx is the name of the Logical- File

Definition.

The source definition should match the layout of the IDT (same field names, offsets and lengths). If it does
not, specify an input view so that the Search Server will convert the input record into IDT format prior to
searching. Note that a define_source clause automatically creates an input-view with the same name as the
source.

Batch Search Client - DupFinder
The DupFinder function is a batch search application designed to discover duplicate records within data
previously loaded into the Clustering Database. It does so by using each record in the Clustering Database as
a search transaction against the same database. It uses the nominated Search Definition to find duplicate
records from the Clustering Database and writes the search results to a flat file.

Because every search transaction will have an identical record on the file, the report will display such
matches unless the correct run-time option is used to remove the Source Record (see below).

Starting from the Console

DupFinder can be started from the Console Client by selecting Tools > DupFinder. This brings up the
DupFinder options screen:

Field Description

Output File All duplicate records that have an acceptable score as determined by the Search
Definition are written to the output file.

Search Definition You must choose the Search Definition to be used from this drop-down list.

114 Chapter 4: Operation

Field Description

Search Width If you have predefined search widths (Narrow, Typical or Exhaustive) you can
choose one here. Otherwise, if left blank, the control defined in the relevant search is
used.

Match Tolerance If you have predefined match tolerances (Conservative, Typical or Loose) you can
choose one here. Otherwise, if left blank, the control defined in the relevant search is
used.

Output Format Choose the output report format from here. Values 0 - 7 are valid and are described in the
Relate - Report Formats section.

Starting Record ID Enables commencement of the deduplication process at a nominated Record ID value.

Extra Options This field can be used to enter extra command line switches supported by future versions
of the DupFinder program. See the Extra options for Relate and/or DupFinder section
below for more information.

Return Search Records
Only

Only return the Search Record for which a match was found.

Remove Search Record By implication of matching the same file against itself, the report will show matches
caused by identical records. This is probably not desired so the search record can be
hidden.

Append New Line Append a newline to the output report after each record. This option has effect only on
report formats 0, 1, 3, 4 and 6. Without specifying this option all the output records are
written into a single line and the output should be treated as fixed length records.

Trim Trailing Blanks Remove trailing blanks from each output record. This option has effect only on report
formats 0, 3, 4 and 6. This option also implies Append New Line so that the boundaries
between the output records are not lost.

Extra options for Relate and DupFinder
The following are the currently supported extra options that you can use in the Relate and DupFinder dialog
box:

Option Description

-n Runs Relate and DupFinder in the multithreaded mode. For more information about the
multithreaded Relate/DupFinder, see the Threads section.

-c<OutputView> Nominates the name of the output view to format the records returned by the search. If you do
not specify, records return in the IDT layout.

-y Shows the layout of the chosen OutputView in the output reports. Applicable if you specify -
cOutputView.

-b Binary (fixed length) input file. The record length must match the IDT record length or input view
length.

You can leave this field blank unless you have instructions from the Informatica Corporation technical staff.

Utilities 115

Threads
Relate and DupFinder can run in a multi-threaded mode when the -n option is specified. Each search thread
will independently connect to the Search Server and process searches in parallel.

There are two optional parameters associated with the -n switch: input queue and output queue. The syntax
of the -n switch is as follows:

• -nx[:y[:z]]- use x search threads with an input queue of y records and an output queue of z records per
thread.

The input queue specifies the length of queue that each thread will use to store the search records in. This
queue must be long enough to allow the thread not to wait for I/O on the local relate input file. In general the
default of 100 will be ample.

The output queue specifies the length of the queue that will hold each search thread’s results. If any
individual searches are expected to generate many matches, increasing the output queue size may improve
performance.

Note: The output order of duplicate sets in a multi-threaded DupFinder report is dependent on the number of
threads used to create the report.

Batch Process - Command Line
This section provides information on the command lines for Batch Processing.

bin\dcebatch

This script starts a Console job and waits for it to complete. The script indicates the completion status of the
job by returning 0 for success or 1 for failure.

Make sure that java is in the current path. If not then it may be necessary to modify the %SSATOP%\dce
\dceenvc.bat(Windows) or $SSATOP/bin/dcebatch (Unix) script to use the correct java executable.

set SSABIN=<DCE installation directory>\bin
%SSABIN%\dcebatch command [cmd args] options

Valid commands are:

Run job <Project Name> <Job Name>
<Project Name>

The name of the Project containing the job to be run.

<Job Name>

The name of the job to be run.

116 Chapter 4: Operation

Valid options are:
-hcs<host>

Required. Console Server host:port
-w<workdir>

Required. Server Work Directory

-r<rbname>

Required. Rulebase Name (e.g sdb:file:c:\InformaticaIR\dce\rule)

-hse<host>

Optional. Search Server host:port
-hrb<host>

Optional. Rulebase Server host:port
-m-

Optional. Returns immediately after launching the job. The default is to wait for the job to complete.

-l{0|1|2|3}

Optional. Controls live progress messages.0=none, 1=messages, 2=progress, 3=both

-u<usgdir>

Optional. Server Name3 Service Group Directory

-v<[su]>

Optional. Server Verbosity setting, where s sets statistics and u sets usage summary. Refer to the Verbosity
Options section for a description of this parameter.

Running from the Command Line

After defining a Job called MyJob1 (Refer to the How to Create and Run Jobs section), start the job from the
command line using this command:

%SSABIN%\dcebatch run job test01 MyJob1
 -hcslocalhost:2669
 -wc:\InformaticaIR\test1
 -rsdb:file:c:\InformaticaIR\test1\rule

where
localhost:2669

This is pointing to the Localserver.

c:\InformaticaIR\test1

This is the Work Directory.

sdb:file:c:\InformaticaIR\test1\rule

This is the Rulebase.

Report Viewer
The Report Viewer can be used to view the results of various Clustering runs.

Report Viewer 117

Starting from the Console

Report Viewer can be started from the Console Client by selecting Tools > Report Viewer.

The File menu will allow you to open a Post Report or a Database. You can open the same one several times
if you wish. This makes it easier to visually compare different parts of the same report at the same time.

Troubleshooting
The DCE includes a low-level tracing/monitoring utility dumpshr, which Informatica Corporation support staff
might ask you to run in some circumstances. It is used to view the call stacks of all DCE server and utility
programs. It is enabled by setting an environment variable of the shell that is used to launch the servers/
utilities.

Since dumpshr uses shared memory to communicate with the servers and utility programs, it must be run on
the same machine as the processes that it is monitoring. On Unix make sure that at least 15MB of shared
memory can be allocated (SHMMAX kernel parameter).

Enable Tracing

1. Shutdown the DCE Server

2. On Win32 platforms:

set SSAOPTS=+t

118 Chapter 4: Operation

On Unix platforms:

SSAOPTS=+t ; export SSAOPTS
3. Restart the DCE Server from the command prompt in which you set the SSAOPTS environment variable:

<DCE Installation Directory>\bin\ds
Disable Tracing

1. Shutdown the DCE Server.

2. On Win32 platforms:

set SSAOPTS=
On Unix platforms

unset SSAOPTS
3. Restart the DCE Server.

SSAOPTS environment variable

The following options may be set to enable trace and debugging features:

Option Description

+t Process/thread/stack tracing. Required for dumpshr operation. Also used to enable server stack trace
for crashes (found in dcexxsv.dbg).

+L Logs all error messages to *.dbg files. These files are either in the server work directory or in /tmp.

+u logs process resource usage (threads, sockets, stack space, etc) to *.dbg files

Multiple options are enabled by concatenating them, eg. SSAOPTS=+tL (note these options are case
sensitive).

Running dumpshr

Non-Interactive Mode

To run dumpshr in non-interactive mode, run

%SSABIN%\dumpshr -p
This will print the active program function stacks to the console (stdout). The output can be redirected to a
file using normal shell commands, eg.

%SSABIN%\dumpshr -p >dumpshr.log
Interactive Mode

dumpshr can also be run in interactive mode to observe the interaction between server threads and utility
programs. To execute in the interactive mode run command,

%SSABIN%\dumpshr >dumpshr.log
This will display a list of DCE processes. For each process, dumpshr displays the process id (pid) and the
time it started (yyyymmddhhmmss). Each thread belonging to that process is summarized with a line
showing:

• thread id (the main thread is 256)

• stack depth

• source module

Troubleshooting 119

• line number in source module

• function entry ("E"), exit ("X"), progress ("P")

• function name

The following commands are accepted:

Command Description

Refresh Rate Specifies how often the display is updated. The default is 10 seconds. To change the rate (in
seconds), type one of the numbers ’1’ to ’9’ or ’0’ for 10 seconds.

Stack A full stack for each thread can be displayed with the ’s’ key. This toggles between summary and full
stack modes.

Print The ’p’ key will write a fully expanded stack to stdout. If you started the utility by redirecting the
output the snapshot is written to the log file.

Quit The ’q’ key will exit the dumpshr utility.

Cleaning Up

On the Win32 platform, dumpshr uses Memory Mapped Files as its shared memory mechanism. Memory is
allocated from the Windows swap file and is released when the last program using the memory terminates.
As such, there is no special requirement to clean up.

On Unix platforms, dumpshr allocates shared memory as an IPC resource. DCE requires the kernel parameter
SHMMAX to be set to at least 15MB. On Unix, shared memory is not released when programs using it terminate.
This is a nice feature because any programs that core dump will leave their call stack in the shared memory.
At a later stage, dumpshr can be used to display what the program was doing at the point of failure. However,
the disadvantage of this is that when programs terminate abnormally the memory must be cleaned up
manually. Shared memory can be deleted by running

$SSABIN/dumpshr -d
You can also delete IPC resources using the Unix utilities ipcs and ipcrm. DCE creates its shared memory
and semaphore using the key 0x55A00001. Future releases will increment this number when the layout of the
shared memory changes.

Handling of Common Errors

This is a list of common errors encountered in DCE. This should help the user to resolve them without the
need to call an Informatica Corporation technical specialist.

Rulebase is locked

The Console Client returns an error message such as this when trying to connect to a Rulebase:

An Error Has Occurred:
 Rulebase is locked
 Rulebase opened at Fri Feb 26 13:17:56 2010
 Server started at Fri Feb 26 13:17:46 2010
 Rulebase ’sdb:file:c:\a20i\dce\rule’ is either corrupt or
in use by ssa.informatica.com IP=203.2.203.101 on port=2668
 IS ANOTHER RULEBASE SERVER RUNNING?
 ssacs_RulebaseStatus: rulebase_open ’sdb:file:c:\a20i\dce\rule’ failed -20111109

Rulebase is locked by another running Rulebase Server. If there’s no other Rulebase Server running, then the
Rulebase file is corrupted. This could happen if the DCE Server is shutdown incorrectly, either by the user or
some other external occurrence like computer has been powered down abruptly.

120 Chapter 4: Operation

Correction:

There are no repair utilities for corrupted Rulebases. The user must delete the present Rulebase files rule.db
and rule.ndx and all other related Project files and re-start the Project from the beginning.

Opening InputFile ’ ’ failed

The Sort step fails with the message "Opening InputFile ’ ’ failed" followed by the message "Reason: No such
file or directory".

The sort step cannot find the input file to sort. Usually this condition occurs when an option for the preceding
step is missing.

For example, the Clustering Schedule calls for a job of type Pre before the Sort job but there is no option
Format in the Clustering options list.

Correction:

• Check the Clustering options list for missing options.

Opening InputFile ’drive:<path><filename>’ failed

The first step in a Clustering process fails to open the input file named in the message, followed by the
message

"Reason: No such file or directory":

Troubleshooting 121

The input file as named in the message could not be found. The file name or path could be misspelled or the
file could be missing.

Correction:

Check the path and name of the file and if the file exists.

How To
This section is intended to provide a "quick start" in terms of the parameters required to solve some types of
business problems using the Data Clustering Engine.

It also contains hints and "tricks of the trade".

How to Re-Cluster Data

The Data Clustering Engine may be used to recluster records that have already been clustered. This can be
achieved with either of the following techniques:

Technique #1
• Records are loaded into the database as preclustered.

• The records are reclustered using the same input file by specifying the Merge Clustering-method and the
NO-ADD Job Option.

The NO-ADD option prevents the input records from being re-added and re-indexed on the database. It also
prevents new cluster records from being added.

The real work is performed by the Merge option. The (re)clustering process will use records from the input
file to match and score against records on the database. Records, which reach the scoring threshold, will
have their clusters merged. The result is a reclustered file.

A set of sample definitions, which demonstrates this technique, can be found in test02.sdf.

122 Chapter 4: Operation

Technique #2
• Records are loaded into the database and clustered using a key field such as Name.

• A key index is generated for a new key field, say Address.

• A second clustering step is run to recluster the records using the Address data. This will merge clusters of
Names which have matching Addresses.

A set of sample definitions, which demonstrates this technique, can be found in test03.sdf.

Notice the following features:

• The ClusteringID must be the same for both Clusterings.

• Each Clustering’s Key Index is named to avoid confusion. If Key Index was omitted, the same (default)
file name would be used for each clustering.

• The second LOADIT job specifies ReIndex to rebuild the key index using the new Key-Field (Address).

• The Reclustering step specifies that the data is PRE-LOADed and that a Merge operation with NO-ADD is to
be performed.

Input from a Named Pipe

On Unix platforms the input processor can read input from a named pipe. This means that it is possible to
read data from another database without the need to create large intermediate files.

The concept is identical on all Unix platforms, although the command used to create a named pipe may vary
between implementations. The following example is applicable to Linux.

mkfifo $SSAPROJ/inpipe
To use the pipe, specify its name as the Physical-File parameter in the Logical-File-Definition of the input
file;

Logical-File-Definition
*======================
NAME= lf-input
PHYSICAL-FILE= "+/inpipe"
COMMENT= "named pipe for the load step."
VIEW= DATAIN
FORMAT= TEXT
AUTO-ID-NAME= Job1

For W32 platforms:

The pipe must be of the "blocking" type created by calling the Windows API function CreateNamedPipe
before the Data Clustering Engine is instructed to read from the pipe.

To use a named pipe: You need to specify the name of the pipe in Microsoft’s format, which is \\server
\pipe\<pipename>. That is, two backslashes, the server name (or dot for the current machine), backslash, the
word "pipe", another backslash, and then the name of the named pipe file.

Where the <pipename> part of the name can include any characters including numbers, spaces and special
characters but not backslashes or colons. The entire pipe name string can be up to 256 characters long. Pipe
names are not case sensitive.

If you don’t specify something starting with "\\.\pipe\", then an ordinary file will be assumed.

You can specify the file in the SDF. For example:

logical-file-definition
*======================
NAME= LF-input
COMMENT= "named pipe"

How To 123

PHYSICAL-FILE= "\\.\pipe\namedpipe"
VIEW= DATAIN
FORMAT= TEXT
AUTO-ID-NAME= Job1

Reformat Input Data

The PRE utility can be used as a standalone tool to reformat files. It can be used to

• reorder fields,

• delete fields,

• combine fields,

• insert text between fields.

The strength of this utility comes from its use of SSA-DB’s view processor. An input view is used to describe
the layout of the input file (DATAIN11 in the example below).

The Logical-File-Definition describes the name and format of the input file; %SSAPROJ%/data/nm1k.dat
and Text respectively.

PRE reads the input file using the input view and transforms the fields to match the output view specified by
the Project-Definition’s FILE= parameter. The output view is normally described in the file definition section of
the SDF Under normal conditions, the output of PRE is a compressed binary file called fmt.tmp.

You can disable compression by specifying the Clustering-Definition’s Options=--Compress-Temp parameter.

You can generate Text format output by specifying the Job-Definition’s Output-Options=Trim,CR parameters.

Project-Definition
*=================
NAME= pre-job
ID= 01
FILE= DATA11
DEFAULT-PATH= "+"
*
Clustering-Definition
*====================
NAME= clustering-pre
CLUSTERING-ID= aa
OPTIONS= Format, --Compress-Temp
SCHEDULE= job-pre
*
Job-Definition
*=============
NAME= job-pre
TYPE= pre
FILE= lf-input
OUTPUT-OPTIONS= Trim, CR
*
*
Logical-File-Definition
*======================
NAME= lf-input
PHYSICAL-FILE= "+/data/nm1k.dat"
COMMENT= "the input file"
VIEW= DATAIN11
FORMAT= TEXT
*

The input and output views are used to specify how the file is to be modified;

• Fields are reordered by changing their relative positions in the input and output views.

• A field may be deleted by omitting it from the output view.

124 Chapter 4: Operation

• Fields can be "combined" by reordering them to be consecutive. The input view for the next phase could
then treat the adjacent fields as one "large" field.

• Fixed data can be inserted between fields by adding filler(s) to the output view.

Creating an Index and Search-Logic for any DATA field

The DCE utilities can be used to create an index and search any field in the IDT. Under normal circumstances
the KEY-FIELD is used to generate name-keys using a Key-Logic module. This procedure can be modified to
create an index for any field.

By defining an IDX-Definition and a Search-Definition which names the field to be indexed as the Key-
Field and by specifying a Key-Logic and Search-Logic of User, we effectively define a key index and search
definition that contains the exact key-value extracted from the DATA record.

For key building (IDX-definition):

KEY-LOGIC=User, Field(Phone)
For search (Search-Definition or Clustering-Definition):

SEARCH-LOGIC=User, Field(Phone)
Multi-clustering Data

You can use the multi-clustering functionality to combine results from several searches into one search. A
multi-clustered data set may contain one or more clusters.

You can use the following techniques with multi-clustering to define a "household" clustering strategy that
requires searches on name and addresses:

• Perform LOAD-IDT and build an index for Name.

The following sample describes how to cluster by Name:

* ---
* Clustering by NAME.
* ---
clustering-definition
*====================
NAME= clustering-name
CLUSTERING-ID= AA
IDX= t3name
SEARCH-LOGIC= SSA,
 System(default),
 Population(usa),
Controls("FIELD=Person_Name SEARCH_LEVEL=Typical"),
 Field(Name)
SCORE-LOGIC= SSA,
 System(default),
 Population(usa),
 Controls ("Purpose=Person_Name MATCH_LEVEL=Typical"),
 Matching-Fields("Name:Person_Name")
OPTIONS= Pre-Load
SCHEDULE= job-loadit
*
job-definition
*=============
NAME= job-loadit
TYPE= loadit
FILE= lf-input
*

• Perform second LOAD-IDT with ReIndex to rebuild the key index using the Address key field.

How To 125

The following sample describes how to cluster by Address:

* ---
* Clustering by Address.
* ---
clustering-definition
*====================
NAME= clustering-address
CLUSTERING-ID= AA
IDX= t3addr
SEARCH-LOGIC= SSA,
 System(testpops),
 Population(usa),
 Controls("FIELD=Address_Part1"),
 Field(Addr)
SCORE-LOGIC= SSA,
 System(testpops),
 Population(usa),
 Controls ("Purpose=Address"),
 Matching-Fields("Addr:Address_Part1")
OPTIONS= Append, Pre-Load
SCHEDULE= job-ca-loadit
*
job-definition
*=============
NAME= job-ca-loadit
TYPE= loadit
OPTIONS= Re-Index
*

• Add a multi-clustering definition to create a household cluster with Name and Address.

The following sample describes how to create a multi-clustering definition:

* --
* MULTI-CLUSTERING by Name and Address
* --
MULTI-CLUSTERING-DEFINITION
*======================
NAME= MULTI-CLUSTERING-nfs
CLUSTERING-ID= AA
IDT-NAME= DATA-100
CLUSTERING-LIST= clustering-name,
 clustering-address
SCHEDULE= job-cluster,
 job-ca-post-plural-1,
 job-ca-post-single-1,
 job-post-all-1
*

Use the following rules when you work with multi-clustering definition:

• The Clustering ID must be the same for both clustering-definition and multi-clustering definition.

• Name the key index of each Clustering to avoid confusion. If you omit a key index, the default file name is
used for each clustering.

• Ensure that the second LOAD-IDT job specifies ReIndex to rebuild the key index using the new key field,
for example, Address.

• Invoke Clustering job step from multi-clustering definition and not from the individual clustering-definition.
The following definition describes how to invoke clustering job step from multi-clustering definition:

MULTI-CLUSTERING-DEFINITION
*======================
NAME= MULTI-CLUSTERING-nfs
CLUSTERING-ID= AA
IDT-NAME= DATA-100

126 Chapter 4: Operation

CLUSTERING-LIST= clustering-name,
 clustering-address
SCHEDULE= job-cluster,
 job-ca-post-plural-1,
 job-ca-post-single-1,
 job-post-all-1
*

job-definition
*=============
NAME= job-cluster
TYPE= cluster
CLUSTERING-METHOD= Merge
*

How To 127

I n d e x

.NET Framework 14

A
Accept limit 76

B
Batch DupFinder 29
Batch Processing 116
bin\dcebatch 116

C
checkpoint 110
CLUSTER 106
Cluster File 53
Clustering 9, 10, 73
Clustering job 110
Clustering Process 74
Clustering-Definition 27
Compressed Key Data 78
Connection String 57
Console Client

Mode 90
Setup Mode 90

Console Server 90
CONTROLS 76

D
Data Source Name 15
database

testing 18
Database Directory 93
DCE 9, 15
DCE Console 90
DCE data type 55
DCE environment variables 90
DCE Identity Index 24
DCE IDT 46
DCE Loader 65
DEFINE_SOURCE 64
Denormalized Data 65
Denormalized-View 69
DNS 13

E
Edit Session 70
environment variable 77

environment variables 14
Environment variables 86

F
File Definition 46
Filler Character 47
Flattened Data 65
Flattening 65

G
graphical mode

installation requirements 15

I
IDT 10
IDT layout 68
IDT parameters 23
IDT row 69
IDT-Definition 68
IDT-DEFINITION 23
IDX Definition 24
IDX Size 78
IDX-definition 122
Input File Processor 9
installation requirements

X Window Server 15
installer 14

J
Java Development Kit 13
Java Runtime Environment 13
JAVA_HOME 14
JAVA_OPTS 14
Job Editor 98
Job Options 98
Job Steps 34
Join Expression 61
JRE 13

K
KEY-DATA 75
KEY-LOGIC 41
Key-Pre-Score-Logic 53
Key-Score-Logic 75
Key-Scoring 77

128

L
Large File Support 84
libssaoci9.so 14
Loader 69
LOADIT 11
Log Viewer 93
Logical-File-Definition 25

M
merge_clause 63
Monitor the Clustering Job 106
MULTI-SEARCH-DEFINITION 31

N
Native_DB_Service 15
Network Protocols 13

O
Object Names 89
ODBC driver 15
ODBC drivers 14
ODBC_DSN 15
Options 69
oracle ODBC drivers

libssaoci9.so 14
ssaoci9 14

Output Views 53

P
PARTITION 75
PATH 14
pre-clustering 11
pre-defined format 47
Project 10
Project Definition File 21
Project Editor 71
Project Options 93
Project-Definition 22

R
Re-Cluster Data 122
Report Viewer 117
Rulebase 9, 33, 93
Rulebase Options 93

S
Score Logic 44
Scoring 76
Search Definition 29
Search Server 53
Search-Definition 122
Search-Logic 41
Server Working Directory 73
Settings 91
SORTIT 11
Source Schema 54
source tables 64
ssaoci9 14
SSAOPTS 86
syntax 54
system requirements 13
System section 22

T
Testing Connectivity 15
Transform User-Exit 49
transform_clause 63
Transformations 49

U
Undecided Attribute 73
User Source Table 46, 54, 55, 57
User-Job-Definition 33
User-Step-Definition 34
USTs 61

V
Verbosity Options 91
View Definition 46, 49, 53
VirtualTable 57
Voting Attribute 73

W
Work Directory 93

X
X Window Server

installation requirements 15

Index 129

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction
	Clustering Process
	Data Clustering Engine
	Terminology
	Clustering Suite

	Chapter 2: Installation
	Software Prerequisites
	Verify the Minimum System Requirements
	Install Java
	Set the Environment Variables
	Install the .NET Framework
	Install the ODBC Drivers
	Extract the Installer Files on Windows
	Extract the Installer Files on UNIX
	Set Up the X Window Server on UNIX

	Software Installation
	Post-Installation Tasks
	Configuring an ODBC Data Source
	Testing the Database Configuration
	Testing the Installation
	Cloning a Sample Project from a definition file (.SDF)
	Cloning a Sample Project from a template file (.pr)

	Chapter 3: Design
	Syntax
	Project Definition File
	SYSTEM Section
	IDT Definition
	IDX Definition
	Logical File Definition
	Clustering Definition
	Search Definition
	Multi-Search Definition
	Multi-Clustering-Definition
	User-Job-Definition
	User-Step-Definition

	The Job Definition
	Search Logic
	Score Logic
	FILES and VIEWS Sections
	Data Source
	File Definition
	View Definition
	Syntax
	Field Formats
	Transformations
	Cluster File
	Output Views

	USER SOURCE TABLE Section
	General Syntax
	UST Data Types
	Single UST
	Joining USTs
	Merging USTs
	Defining Source Tables

	Flattening IDTs
	Syntax
	Flattening Process
	Flattening Options
	Tuning / Load Statistics

	Maintaining the Project
	Restarting or Continuing an Edit Session

	Editing a Project
	Project Editor
	Starting
	Editing
	Cloning and Adding
	Help
	Advanced Options
	Project Template

	Backing Up the Database and Index
	Membership Attributes
	Performance Optimization
	Partitions
	Key Data / Key-Score-Logic
	Pre-Scoring
	Scoring Phases
	Utilizing multiple CPUs
	Reducing Database I/O

	Large File Support

	Chapter 4: Operation
	Environment Variables
	Limitations
	DCE Console
	Running the Console Server
	Running the Console Client
	Settings
	The Main Console Window
	The Options Explained

	How to Create and Run Jobs
	Job Options

	How to Run Clustering
	Requirements Analysis
	Launch the Console Server and DCE Console
	Create Project Definition
	Confirm Settings
	Create the Project
	Select (and Load) the Project
	Run the Clustering Process
	Review Results
	Adjust parameters and rerun if required

	Stopping and Restarting Clustering
	Stopping and Restarting Clustering Manually
	To restart a suspended job
	Stopping and Restarting Clustering Automatically

	Utilities
	Batch Search Client - Relate
	Report Formats
	Delimited Input
	SQL Input
	Batch Search Client - DupFinder
	Extra options for Relate and DupFinder
	Threads

	Batch Process - Command Line
	Report Viewer
	Troubleshooting
	How To

	Index

