4;» Informatica

Informatica® Identity Resolution
10.1

Developer Guide

Informatica Identity Resolution Developer Guide
10.1
June 2018

© Copyright Informatica LLC 1999, 2018

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2018-06-28

Contents

Table of Contents
Introduction

Process Overview
Concepts e
Connections e e e e e e e e
SESSIONS e e e e e e e e
Systems
Searches e e
Basic APL e e
Advanced APIL e e e

Sample API Programs

SampleSystem
Directory Structure
Population
Installing

IDT Layout e
Building the Programs L
Language specificnotes L L
RunningtheSamples

VBNET e
Sample1-Basic API
Logic e
Open a socket to the Search Server
OpenaSystemand startaSearch.

Retrieve ResultSet

Terminate the Search and close the System

Disconnect from the Search Server
Sample2-Advanced APL
Logic e
Open a socket to the Connection Server
OpenaSession
OpenaSystem e

Retrieve the Input-View layout
foreachSearch
CloseSystem

Close Session (optional)

Disconnect from the Connection Server

API Reference
DataTypes e
Strings e
String Arrays
Blocks e e e
Block Arrays
Nullsand NULS e e e e e e e e
ErrorHandling

3 CONTENTS

Calling from C 30

Constants e e e e 30

Parametertypes. L 30
ids_addr_get cass_field 30
ids_addr_get cass_field_cent o oo 31
ids_addr_get_cass_field_info L L 31
ids_addr_get del lines_ext 32
ids_addr_get_field 32
ids_addr_get_field count L L L 33
ids_addr_get field ext 34
ids_addr_get_field idx 34
ids_addr_get_field info_ext L L L L 35
ids_addr_get field len 36
ids_addr_get line_ len 36
ids_addr_get option 37
ids_addr_ info L e, 37
ids_addr dnit. e 38
ids_addr_parse 38
ids_addr_preload_country 39
ids_addr_set_attrib e 39
ids_addr_set_del_lines e 40
ids_addr_set_field_case e 41
ids_addr_set_field_ext e 41
ids_addr_set_field_idx e 42
ids_addr_set_field_ name e 42
ids_addr_set_Lines. e 43
ids_addr_set_option 44
ids_addr std 44
ids_addr_validate e 45
ids_connect. e e 46
ids_disconnect e 46
ids_error_get 47
ids_errors_get_all 47
ids_identify 48
ids_is little_endian e 48
ids_match_explain 49
ids_match_explain_count L L 49
ids_real_time_async_get L 50
ids_real time_async_start L L 51
ids_real _time flul add e 52
ids_real_time_flul_close e e e 53
ids_real time flul delete e 53
ids_real _time flul find_rule e 54
ids_real time_flul get rule Lo 54
ids_real_time_ flul init e 55
ids_real time_sync_get L 55
ids_real_time_sync_start L L 56
ids_scores_get 57
ids_search_comment_get L 58
ids_search_dedupe_start L 58
ids_search_fields_count e 59
ids_search_fields_get 60
ids_search_filter e 60
ids_search_finish L e 61
ids_search_get 61

CONTENTS 4

ids_search_get complete 62

ids_search_get detail 63
ids_search_IDT_get e 64
ids_search_layout 64
ids_search_profile_count L 66
ids_search_profile_get 66
ids_search_start e 67
ids_search_start_via_parameters 68
ids_search_start_via_record 69
ids_search_tolerances_count e 70
ids_search_tolerances_get L 70
ids_search_view_get 71
ids_search_view_set e 72
ids_search_widths _count. e 72
ids_search_widths_get 73
ids_server_version_get 73
ids_session_close e 74
ids_session_open 74
ids_set_encoding 75
ids_set_timeout e 75
ids_set_vpd_user 76
ids_system_close 76
ids_system_idtname_count L L L L o 77
ids_system_idtname_get L o 77
ids_system_notify 78
ids_system_open 78
ids_system_search_finish L L L L 79
ids_system_search_start L L 79
ids_system_searches_count L L o 80
ids_system_searches_get L L 81
ids_systems_count 81
ids_systems_get L 82
Calling from C without Arrays 83
Constants e e e e 83
Parametertypes. 83
ids_addr_get_cass_field 83
ids_addr_get_cass_field_ent oL 84
ids_addr_get_cass_field_info L 84
ids_addr_get_del lines_ext L 85
ids_addr_get field 86
ids_addr_get field count o 86
ids_addr_get_field_ext 87
ids_addr_get_field idx 87
ids_addr_get_field info_ext 88
ids_addr_get_field len L 89
ids_addr_get line len 89
ids_addr_get option 90
ids_addr_info e 90
ids_addr dnit e 91
ids_addr_parse 91
ids_addr_preload_country L L 92
ids_addr_set_attrib e e 92
ids_addr_set_del_lines e e 93
ids_addr_set_field_case e 93
ids_addr_set_field_ext e 94

5 CONTENTS

ids_addr_set_field_idx e 95

ids_addr_set_field_ name e 95
ids_addr_set_Lines e 96
ids_addr_set_option 97
ids_addr_std e 97
ids_addr_validate e 98
ids_connect. e 98
ids_disconnect e 99
ids_error_get 99
ids_errors_get all 100
ids_identify 100
ids_is little_endian e 101
ids_match_explain 101
ids_match_explain_count 102
ids_real time_async_get 103
ids_real_time_async_start L 103
ids_real _time flul add e 104
ids_real_time_flul close e 105
ids_real _time flul delete e 106
ids_real_time_flul_find_rule e 106
ids_real_time_flul_get rule L 107
ids_real_time_flul_init 107
ids_real time_sync_get 108
ids_real_time_sync_start L L 108
ids_scores_get e 110
ids_search_comment_get L 110
ids_search_dedupe_start L 111
ids_search_fields_count e 112
ids_search_fields_get 112
ids_search_filter e e 113
ids_search_finish e 113
ids_search_get 114
ids_search_get complete 114
ids_search_get detail 115
ids_search_IDT_get 116
ids_search_layout 117
ids_search_profile_count 118
ids_search_profile_get 118
ids_search_start e 119
ids_search_start_via_parameters 120
ids_search_start_via_record 121
ids_search_tolerances_count e e 122
ids_search_tolerances_get 122
ids_search_view_get 123
ids_search_view_set e e e 123
ids_search_widths_count. e e e 124
ids_search_widths_get 124
ids_server_version_get 125
ids_session_close 125
ids_session_open 126
ids_set_encoding 126
ids_set_timeout e 127
ids_set_vpd_user 127
ids_system_close 128
ids_system_idtname_count L L L L L 128

CONTENTS 6

ids_system_idtname_get L L L 129

ids_system_notify L 129
ids_system_open 130
ids_system_search_finish. L o o 130
ids_system_search_start L 131
ids_system_searches_count L o o 132
ids_system_searches_get L 132
ids_systems_count 133
ids_systems_get 133
Calling from C# 135
Installation - Win32 client e 135

Constants e 135
Responsecode 135
Parametertypes. 135
Constructor e e e e e e 135
addr_get_cass_field 136
addr_get_cass_field_cnt L 136
addr_get_cass_field_info L L L o 137
addr_get_del lines_ext 137
addr_get field 138
addr_get field count L L 139
addr_get_field_ext 139
addr_get_field_idx 140
addr_get_field_info_ext 140
addr_get_field len 141
addr_get line len L 141
addr_get option 142
addr_info e 142
addr_dnit e 143
addr_parse 143
addr_preload_country 144
addr_set_attrib L e 144
addr_set_del lines 145
addr_set_field_case 146
addr_set_field_ext 146
addr_set_field _idx 147
addr_set_field name 147
addr_set_lines e e 148
addr_set_option 149
addr_std e 149
addr_validate 150
disconnect e e e e e 150
EITOT_Zet 151
errors_get_all L 151
identify 152
is_little_endian e 152
match_explain L 153
match_explain_count L 153
real_time_async_get. 154
real_time_async_start 154
real_time flul_add e 156
real time flul close e 156
real time flul delete e 157
real_time flul find rule 157
real_time_flul_get rule 158

7

CONTENTS

real_time_flul_init e 158

real_time_sync_get 159
real_time_sync_ start 159
scores_get e 161
search_comment_get 161
search_dedupe_start 162
search_fields_count 163
search_fields_get 163
search_filter L e 164
search_finish e 164
search_get 165
search_get_complete 165
search_get_detail 166
search IDT get e 167
search_layout 167
search_profile_count L 168
search_profile_get 169
search_start e 169
search_start_via_parameters L L o 170
search_start via_record 171
search_tolerances count 172
search_tolerances_get L 172
search_view_get L e 173
search_view_set e 174
search_widths_count e 174
search_widths_get. 175
server_version_get e 175
SESSION_ClOSE e e e e 175
SESSION_OPEIL o v vttt it e e e e e 176
set_encoding 176
set_timeout L e e e e 177
set_vpd_user 177
system_close 178
system_idtname_count L 178
system_idtname_get L L L 179
system_notify 179
SYStEM_OPEeN L 180
system_search_finish o 180
system_search_start 181
system_searches_count L 182
system_searches_get 182
systems_count 183
systems_get 183
Calling from Cobol (z/OS) 184
Constants e 184

Installation. e e 184

Installation (TSO/batch) 184

Installation (CICS) -staticcalls 185

Installation (CICS) - dynamiccalls 185

Defining programs to CICS 185
Parametertypes. 185
IDS-ADDR-GET-CASS-FIELD e e e e s e e e 186
IDS-ADDR-GET-CASS-FIELD-CNT e e e s e e e e e 186
IDS-ADDR-GET-CASS-FIELD-INFO e e e e e 187
IDS-ADDR-GET-DEL-LINES-EXT e e e e e e e 187

CONTENTS 8

9

IDS-ADDR-GET-FIELD e e e e 188

IDS-ADDR-GET-FIELD-COUNT e e e e e 189
IDS-ADDR-GET-FIELD-EXT e e 189
IDS-ADDR-GET-FIELD-IDX e 190
IDS-ADDR-GET-FIELD-INFO-EXT e e 191
IDS-ADDR-GET-FIELD-LEN e 191
IDS-ADDR-GET-LINE-LEN 192
IDS-ADDR-GET-OPTION e e e e e 192
IDS-ADDR-INFO o 193
IDS-ADDR-INIT o 193
IDS-ADDR-PARSE 194
IDS-ADDR-PRELOAD-COUNTRY e 194
IDS-ADDR-SET-ATTRIB e e e e e 195
IDS-ADDR-SET-DEL-LINES 196
IDS-ADDR-SET-FIELD-CASE e e e e e e e e 196
IDS-ADDR-SET-FIELD-EXT e e e e 197
IDS-ADDR-SET-FIELD-IDX e e e 197
IDS-ADDR-SET-FIELD-NAME e e 198
IDS-ADDR-SET-LINES o 198
IDS-ADDR-SET-OPTION e e e e e 199
IDS-ADDR-STDo e 200
IDS-ADDR-VALIDATE 201
IDS-CONNECT o e e e 201
IDS-DISCONNECT e e e 202
IDS-ERROR-GET o e 202
IDS-ERRORS-GET-ALL o e e e e e e e 203
IDS-IDENTIFY o 203
IDS-IS-LITTLE-ENDIAN e e e e 204
IDS-MATCH-EXPLAIN e e e e 204
IDS-MATCH-EXPLAIN-COUNT e e 205
IDS-REAL-TIME-ASYNC-GET s 205
IDS-REAL-TIME-ASYNC-START e 206
IDS-REAL-TIME-FLUL-ADD e e 207
IDS-REAL-TIME-FLUL-CLOSE e e e e e e 208
IDS-REAL-TIME-FLUL-DELETE e 208
IDS-REAL-TIME-FLUL-FIND-RULE e 209
IDS-REAL-TIME-FLUL-GET-RULE e 209
IDS-REAL-TIME-FLUL-INIT e 210
IDS-REAL-TIME-SYNC-GET e e 210
IDS-REAL-TIME-SYNC-START e 211
IDS-SCORES-GET e e e e 212
IDS-SEARCH-COMMENT-GET e 213
IDS-SEARCH-DEDUPE-START e 213
IDS-SEARCH-FIELDS-COUNT e e e e e 214
IDS-SEARCH-FIELDS-GET e e e 215
IDS-SEARCH-FILTER e e e e s 215
IDS-SEARCH-FINISH e e e e e 216
IDS-SEARCH-GET 216
IDS-SEARCH-GET-COMPLETE e 217
IDS-SEARCH-GET-DETAIL e e e e e e 218
IDS-SEARCH-IDT-GET e e e e e e s 219
IDS-SEARCH-LAYOUT e e e e e 219
IDS-SEARCH-PROFILE-COUNT e e e e e 221
IDS-SEARCH-PROFILE-GET e 221
IDS-SEARCH-START o e e e e 222
CONTENTS

IDS-SEARCH-START-VIA-PARAMETERS 223

IDS-SEARCH-START-VIA-RECORD ot e e e s d e e 224
IDS-SEARCH-TOLERANCES-COUNT e e s e e 225
IDS-SEARCH-TOLERANCES-GET e e e s s e e 225
IDS-SEARCH-VIEW-GET e e e e s s e e 226
IDS-SEARCH-VIEW-SET s e e e e 226
IDS-SEARCH-WIDTHS-COUNT e e e e e e 227
IDS-SEARCH-WIDTHS-GET e e e e s s s e 227
IDS-SERVER-VERSION-GET e e s s s e e 228
IDS-SESSION-CLOSE e e e e e e e e 228
IDS-SESSION-OPEN e e e e e 229
IDS-SET-ENCODING et e e e e e s s e e s s e e 229
IDS-SET-TIMEOUT e e e e e s e e e s s e e 230
IDS-SET-VPD-USER e e e e e 230
IDS-SYSTEM-CLOSE e e e e e e 231
IDS-SYSTEM-IDTNAME-COUNT e e e e e s s e e 231
IDS-SYSTEM-IDTNAME-GET e e e e s s e e e 232
IDS-SYSTEM-NOTIFY e e e s e e e s s e e 232
IDS-SYSTEM-OPEN e e 233
IDS-SYSTEM-SEARCH-FINISH e e s e e e 234
IDS-SYSTEM-SEARCH-START o\ oot e e 234
IDS-SYSTEM-SEARCHES-COUNT e e e s d e e 235
IDS-SYSTEM-SEARCHES-GET e e s d e e 235
IDS-SYSTEMS-COUNT e e e e e e s e e e s s s e 236
IDS-SYSTEMS-GET e e e e 236
Calling from Java 238
Java Version e e 238
OVEIVIEW . . . o o i e e e e e e e e e e e e 238
Constants e e e 238
Parametertypes 238
Error Handling 238
Deprecated APIs e 240
ClieSock Constructor o o e e e e e e 240
ids_addr_get cass_field 241
ids_addr_get cass_field_cento L oo 242
ids_addr_get_cass_field_info L 242
ids_addr_get_del lines_ext 243
ids_addr_get_field 244
ids_addr_get_field count L 244
ids_addr_get field ext 245
ids_addr_get field idx 245
ids_addr_get_field_info_ext 246
ids_addr_get_field len 247
ids_addr_get_line_len 247
ids_addr_get option 248
ids_addr info L e 248
ids_addr dnit. e 249
ids_addr_parse 249
ids_addr_preload_country L L L 250
ids_addr_set_attrib e 250
ids_addr_set_del lines e 251
ids_addr_set_field_case e e 251
ids_addr_set_field_ext e e e e 252
ids_addr_set_field_idx e 253
ids_addr_set_field_ name e 253

CONTENTS 10

11

ids_addr_set_lines. e e 254

ids_addr_set_option 254
ids_addr_std L e, 255
ids_addr_validate e 256
ids_disconnect e e 256
ids_error_get 257
ids_errors_get all 257
ids_identify 258
ids_is_little_endian e e e 258
ids_match_explain 259
ids_match_explain_count 260
ids_real time_async_get 260
ids_real_time_async_start L L 261
ids_real _time flul add e 262
ids_real _time flul close e 263
ids_real_time flul delete e 263
ids_real_time flul find_rule e 264
ids_real time_flul get rule L L 264
ids_real _time flul init e 265
ids_real time_sync_get 265
ids_real_time_sync_start L L L 266
ids_scores_get 267
ids_search_comment_get L L 268
ids_search_dedupe_start 268
ids_search_fields_count e 269
ids_search_fields_get 270
ids_search_filter e 270
ids_search_finish e 271
ids_search_get 271
ids_search_get_ complete 272
ids_search_get detail L 273
ids_search_IDT_get 273
ids_search_layout 274
ids_search_profile_count L L 275
ids_search_profile_get 276
ids_search_start e 276
ids_search_start_via_parameters o o 278
ids_search_start_via_record 278
ids_search_tolerances_count e e 279
ids_search_tolerances_get 280
ids_search_view_get 280
ids_search_view_set e 281
ids_search_widths count. e e 282
ids_search_widths_get 282
ids_server_version_get 283
ids_session_close 283
ids_session_open 283
ids_set_encoding 284
ids_set_timeout 285
ids_set_vpd_user 285
ids_system_close 286
ids_system_idtname_count L L L L 286
ids_system_idtname_get L L 286
ids_system_notify 287
ids_system_open 287
CONTENTS

ids_system_search_finish L Lo 288

ids_system_search_start o 289
ids_system_searches count L L o o 289
ids_system_searches_get L L L 290
ids_systems_count 290
ids_systems_get 291
Calling from Perl 292
Constants - Object Oriented 292

Installation - Win32 client 292

Installation - Unix client e 292
Parametertypes. 292
addr_get_cass_field L L 292
addr_get cass_field_cnt Lo 293
addr_get_cass_field_info L oo 293
addr_get_del lines_ext 294
addr_get_field 295
addr_get_field_count L L 295
addr_get_field_ext 296
addr_get_field_idx 296
addr_get_field_info_ext 297
addr_get field len 298
addr_get_line_len 298
addr_get_option 298
addr info 299
addr_init e 299
addr_parse 300
addr_preload_country 300
addr_set_attrib L 301
addr_set_del_lines e 301
addr_set_field_case 302
addr_set_field_ext 303
addr_set_field_idx 303
addr_set_field_ name 304
addr_set_lines e 304
addr_set_option L 305
addr std e e e 306
addr_validate 307
disconnect e e 307
ITOT_Get 308
errors_get all L 308
identify 309
is_little_endian e 309
match_explain 310
match_explain_count 310
real_time_async_get. 311
real_time_async_ start 311
real time flul add e 313
real_time flul close e 313
real_time flul delete e 314
real time flul find_rule e 314
real_time_flul_get rule L 315
real time flul Init e 315
real_time_sync_get 316
real_time_sync_start 316
scores_get e 318

CONTENTS 12

search_comment_get .. 318

search_dedupe_start 319
search_fields_count 320
search_fields_get 320
search_filter e 321
search_finish 321
search_get 322
search_get_complete 322
search_get_detail 323
search IDT get e 324
search_layout 324
search_profile_count 325
search_profile_get 326
search_start 326
search_start_via_parameters L Lo 327
search_start via_record 328
search_tolerances_count 329
search_tolerances_get L 329
search_view_get L 330
search_VIEW_Set e e e e 331
search_widths_count e 331
search_widths_get. L 332
server_version_get e 332
SESSION_ClOSE e 332
SESSION_OPEIL v v v ot et e e 333
set_encoding e 333
set_timeout L e e e e 334
set_vpd_user. e 334
system_close 335
system_idtname_count L L L L 335
system_idtname_get L 336
system_notify 336
SyStem_Open e 337
system_search_finish L 337
system_search_start ... 338
system_searches_count L L L L 339
system_searches_get L e 339
systems_count 340
systems_get e 340
Calling from Visual Basic .NET 341
Constants e e e e 341

Installation - Win32 client 341
Constructor e e e e e e e e e 342
addr_get_cass_field 342
addr_get_cass_field_cnt L L 343
addr_get_cass_field_info L Lo o 343
addr_get del lines ext 344
addr_get field 344
addr_get_field_count 345
addr_get_field_ext 345
addr_get_field_idx 346
addr_get_field_info_ext L 347
addr_get field len 347
addr_get line len 348
addr_get option 348

13

CONTENTS

addr info e 349

addr dnit e 349
addr_parse 350
addr_preload_country 350
addr_set_attrib 351
addr_set_del lines 351
addr_set_field_case 352
addr_set_field_ext e 352
addr_set_field_idx e e e 353
addr_set_field_name 354
addr_set_lines L 354
addr_set_option 355
addr_std e 355
addr_validate 356
disconnect e e e e 357
EITOT_Zet 357
errors_get all L 358
identify 358
is_little_endian e 359
match_explain L 359
match_explain_count L 360
real_time_async_get. 360
real_time_async start L 361
real_time flul_add e, 362
real_time flul close e 363
real_time flul delete e 363
real_time flul find_rule e 364
real_time_flul_ get rule 364
real_time flul dinit e 365
real_time_sync_get 365
real_time_sync_start 366
SCOTES_Zet e 367
search_comment_get .. 367
search_dedupe_start 368
search_fields_count 369
search_fields_get 369
search_filter e 370
search_finish 370
search_get e 371
search_get_complete 372
search_get_detail 372
search IDT get 373
search_layout 373
search_profile_count 374
search_profile_get 375
search_start 375
search_start_via_parameters L o 377
search_start via_record 377
search_tolerances_count e e 378
search_tolerances_get 379
search_view_get 379
search_ view_set e 380
search_widths_count 380
search_widths_get. L 381
server_version_get 381

CONTENTS 14

SESSION._ClOSE o 382

SESSION_OPEIL o v vttt it e e e e 382
setencoding 383
set_timeout e e 383
set_vpd_user 384
system_close 384
system_idtname_count L L 385
system_idtname_get L L 385
system_notify 385
SYStEM_OpeNn e 386
system_search_finish L o 387
system_search_start L 387
system_searches_count L L 388
system_searches_get 388
systems_count 389
systems_get 389
Using IIR with XML 391
WSDL e 391
Creatingaproxywith NET 391
Creating a proxy with Apache Axis2 391
XML and HTTP e e e 391
XML and SOAP o e 392
XML and Unicode e e e e e e e 394
Parametertypes. L 394
ids_addr_get_cass_field 394
ids_addr_get cass_field_ent L L L Lo 395
ids_addr_get _cass_field_info L L o o 396
ids_addr_get_del lines_ext 397
ids_addr_get_field 398
ids_addr_get_field_ count L 399
ids_addr_get_field ext L 400
ids_addr_get_field idx L 401
ids_addr_get_field info_ext L o 402
ids_addr_get field len 403
ids_addr_get line_len 404
ids_addr_get_option 405
ids_addr info e 406
ids_addr_init. e e e 407
ids_addr_parse 408
ids_addr_preload_country L 408
ids_addr_set_attrib e 409
ids_addr_set_del _lines 410
ids_addr_set_field_case e 411
ids_addr_set_field_ext e 412
ids_addr_set_field_idx e e 413
ids_addr_set_field_ name e 414
ids_addr_set_Lines. e 415
ids_addr_set_option 417
ids_addr_std e 417
ids_addr_validate e 419
ids_connect. L 420
ids_disconnect e, 420
ids_error_get 421
ids_errors_get all 422
ids_identify 423

15

CONTENTS

ids_is_little_endian e e e 424

ids_match_explain 425
ids_match_explain_count L L o 426
ids_real time_async_get L 427
ids_real_time_async_start L 428
ids_real_time flul_ add e 429
ids_real_time_flul close e 430
ids_real_time_flul_delete 431
ids_real _time flul find_rule e 432
ids_real time_flul get rule L 433
ids_real_time_ flul init e 434
ids_real_time_sync_get 435
ids_real_time_sync_start L L L 436
ids_scores_get 438
ids_search_comment_get L L 439
ids_search_dedupe_start L o 440
ids_search_fields_count e 441
ids_search_fields_get 442
ids_search_filter e 443
ids_search_finish L e 444
ids_search_get 445
ids_search_get complete 446
ids_search_get detail L 447
ids_search IDT_get e 448
ids_search_layout 449
ids_search_profile_count 451
ids_search_profile_get 452
ids_search_start e e e 453
ids_search_start_via_parameters o 455
ids_search_start via_record e 456
ids_search_tolerances_count e 457
ids_search_tolerances_get L L 458
ids_search_view_get 459
ids_search_view_set e 460
ids_search_widths _count. e 461
ids_search_widths_get 462
ids_server_version_get 463
ids_session_close e 464
ids_session_open 464
ids_set_encoding 465
ids_set_timeout e 466
ids_set_vpd_user 467
ids_system_close 468
ids_system_idtname_count L L L L L o 469
ids_system_idtname_get L 470
ids_system_notify 471
ids_system_open 472
ids_system_search_finish L o 473
ids_system_search_start L L 473
ids_system_searches count L o oo 475
ids_system_searches_get L L 476
ids_systems_count 476
ids_systems_get 477
Common Parameters 479
Verbosity 479

CONTENTS 16

Address Standardization
Initialization
Character Setsand Countries o

ProvidinganInput Address L

Parsingan Address

Validating an Address

Retrieving Address Fields

SettingOptions

GettingOptions

SampleCode e

Validation Database Files oL

ASM configuration for AddressDoctorv5 L L Lo oL

Batch Test Utility

AnswerSet
Table Name and Index e
Table Layout

Adding Rows

ClearingtheTable
Relate & DupFinder Set-Ids
Oracle RAC

DupFinder
AnswerSet .

Match Explain API
Match Explain Record Formats
Match Explain Scores

Index

17

CONTENTS

480
480
480
486
487
488
490
492
493
493
493
494
496

499
499
499
499
500
500
500

501
502

503
503
504

505

Introduction

This manual describes how to develop a custom search client application using the API.

Prototype search clients are provided in the following languages:

¢ C

o C#

+ Cobol

+ Java

o Perl

¢ Visual Basic NET

18

Process Overview

Concepts
Connections

The ids_connect and ids_disconnect API calls are used to establish / terminate a connection
(TCP/IP socket) to the "server". The "server" can be either the Search Server or Connection Server,
depending on the host name and host port parameters supplied on the connection call.

Sessions

Use of the Connection Server is optional. Refer to the OPERATIONS manual, Servers chapter for details
about the Connection Server and why you might want to use it.

If it is used, you must establish a "session" with the Connection Server using the ids_session_open
APL

Sessions may be closed explicitly using the ids_session_close API, or can be timed-out by the
Connection Server if they have been inactive for the defined time-out period.

Systems

The ids_system_open and ids_system_close calls are used to inform the server which System
will be used for subsequent search calls. Switching between different Systems incurs a slight overhead,
as the Rulebase must be consulted to read the rules for the new System.

Searches

Searches are started with ids_search_start. This call performs all of the work necessary to find
candidates and match them against the search record. The resulting set of records is created and sorted.
The call returns the number of records in the resulting set.

The results may be written to a database table known as an AnswerSet , or may be retrieved using
ids_search_get. The latter APl is called repeatedly to retrieve records from the result set one at a
time.

Once enough rows have been retrieved, any remaining resources held by the server for this search are
freed using ids_search_finish.

Note: The first search for a given System incurs an additional overhead to allocate database resources
and access the Rulebase. Switching between searches on a particular connection is equivalent to starting
a new search and therefore incurs some overhead. Applications requiring the best possible search
performance should be architected to avoid switching between searches. The easiest way to do this is
to use separate (dedicated) connections for each Search.

Basic API

The Basic API is suitable for processing a simple one-off query. It combines opening the System with
starting a search. It also combines terminating a search and closing a System in one call.

19 PROCESS OVERVIEW

Use the Advanced API if you wish to start multiple searches for the same System.

The flow of the Basic API is

1. Open a connection (1ds_connect)
2. Initiate a search (ids_system_search_start)

3. Retrieve sorted search results (ids_search_get) until required buffer is filled (this may be a
screen’s worth, or a pre-determined search limit size).

4. Process the search results (display to a screen or write to a file)
5. End the search (ids_system_search_finish)

6. Close the connection (ids_disconnect)

Advanced API

The Advanced API is more efficient than the Basic API but requires the use of two extra calls. It is
suited to applications that wish to perform multiple searches for a given System.

The flow of the more advanced level is

1. Open a Socket (ids_connect)

2. Optionally start a Session (ids_session_open)
3. Open a System (ids_system_open)

4. Initiate a Search (ids_search_start)

5.

Retrieve sorted search results (ids_search_get) until required buffer is filled (this may be a
screen’s worth, or a pre-determined search limit size).

6. Process the search results (display to a screen or write to a file)
7. End the search (ids_search_finish)

8. Optionally return to 4. to start more searches

9. Close the system (ids_system_close)

10. Optionally close the session (ids_session_close)

11. Close the socket (ids_disconnect)

Other functions are available through this level of the API allowing the search client to be more rule-
sensitive. For example, the length of a record to be returned in the search results can be determined
with an ids_search_view_get call which is followed by a call to ids_search_layout. This may
assist the client’s dynamic memory allocation.

Advanced API 20

Sample APl Programs

Sample client programs are provided for all supported API languages. All sample programs use the
same System (and data) and demonstrate the same logical sequence of API calls.

Sample System

All sample programs use the same System (ssa001). This is provided as an SDF.

Directory Structure

The sample System, programs and data are located in the samples directory of the Client and Devel-
oper Components installation directory. The following directory structure exists:

samples/

data/
£5000.txt

programs/
applet/
c/
cobol/
csharp/
Java/
perl/
perl-oo/
vbnet/

system/
ssa001.sdf

Population

The sample System uses the same population as the IIR Installation test. The SSA-NAME3 System is
named 1i1irXXXX, where XXxXX is the release number of IIR. The Population is named test.

Installing
+ Launch IIR Console and choose "New’ from the 'System’ menu.
+ Choose 'Create a system from an SDF’ and click "'OK’.

+ Enter 'ssa001" as the system name, and $SSATOP%\samples\system\ssa001.sdf as the System
Definition File (where $SSATOP% is the directory that the Client and Developer Components were
installed into - by default, ¢: \InformaticalIR).

+ Fill out your database details and click "OK".
o Click "Close’ when the system has been created.
+ Under the ‘System’ menu, choose "Select’, then "ssa001” and click "OK’.

+ Under the ‘System’ menu, choose "Load IDT’, then "ssa001” and click "OK’.
Your IIR installation is now ready to run the samples.

21 SAMPLE APl PROGRAMS

IDT Layout

The IDT has the following layout. Records passed to ids_search_start must be preformatted by
the caller in this layout.

Name Offset | Length
1D 0 11
name 11 50
DOB 61 8
Address 69 40

IDT record length is 109 bytes.

Building the Programs

(Instructions and files are only provided for the WINDOWS environment. Unix users will need to
adjust this section accordingly).

To build the sample applications you will need to establish the client environment by running <IIR
Client Install Dir>\env\issc.bat.

Once your environment is established, simply run compile .bat in the subdirectory of the sample you
wish to build. The batch file assumes that the compilers are in your PATH. You will need to adjust your
PATH environment variable if they are not.

Note that Perl is either interpreted or compiled at runtime, so no compile.bat file exists for these.

Language specific notes

C Ensure that cl.exe can be found in your path, and that the INCLUDE and LIB environment vari-
ables are set correctly.

C# Ensure that ‘csc.exe’ can be found in your PATH.

VB.NET Ensure that vbe . exe can be found in your PATH.

Running the Samples

The commands below illustrate how to run the samples.

The <RULEBASE> parameter defines which Rulebase to use and is formatted as type:method:details, eg.
odb:0:user/password@hostname

The <HOST> field is formatted as hostname:port, eg. localhost :1666

Sample 1 expects the host parameter to point to the Search Server, while Sample 2 expects the host
parameter to point to the Connection Server.

The <WORKDIR> parameter defines which working directory to use.

The <SYSTEM> parameter defines the name of the system in the rulebase.

Sample System 22

samplel —-r<RULEBASE> —-h<HOST>
sample?2 —-r<RULEBASE> —-h<HOST>

Note: the C examples use the API stub DLL ssasec.d11 and the IIR socket interface pro-
vided by ssaiok.dll. These dynamic link libraries are packaged in the IIR Client bin and
SSA-NAME3 bin directory respectively. Make sure these directories are in your PATH before
running the samples.

C#

Load the .NET assembly into the system cache:
gacutil /i %$SSATOP%\bin\ssasecs.dll
You can now execute the programs as follows:

samplel —-r<RULEBASE> —-h<HOST>
sample?2 —-r<RULEBASE> —h<HOST>

Java

Add $SSATOP%\bin\idsclie. jar; $SSATOP%\bin\idssecl. jar; . to your CLASSPATH envi-
ronment variable. Then run

java Samplel -r<RULEBASE> —-h<HOST>
java Sample2 -r<RULEBASE> —-h<HOST>

Perl

perl samplel -r<RULEBASE> -h<HOST>
perl sample2 —-r<RULEBASE> -h<HOST>

VB.NET

Load the .NET assembly into the system cache:
gacutil /i %$SSATOP%\bin\ssasecs.dll
You can now execute the programs as follows:

samplel —-r<RULEBASE> —-h<HOST>
sample?2 —-r<RULEBASE> —h<HOST>

23 SAMPLE APl PROGRAMS

Sample 1 - Basic API

Sample 1 demonstrates the use of the Basic API calls. It also demonstrates how to start a search with
an array of field values.

Logic
Open a socket to the Search Server
¢ APIcall: ids_connect

+ This opens a socket (communication channel) to the Search Server using TCP/IP.

+ The Server’s host name (or IP address) and port number (1666 by default) are specified as parameters
to this call.

+ The Search Server is used instead of the Connection Server because this sample does not make use of
the sessions (refer the Sample 2 for an example of how to use sessions).

+ The call returns a socket handle that must be used on subsequent API calls to communicate over the
same channel.

Open a System and start a Search
¢ APl call: ids_system_search_start
+ This call opens a System in preparation for a single search.
+ The name of a valid Search-Definition defined in the System is used to initialize a Search.
+ The search fields used in this example are passed to IIR using a Block Array.

+ IIR will build a set of file records that match the search record and sort them in descending order of
score (by default). The API call will return a count of the number of records in the result set.

Retrieve Result Set
¢ APl call: ids_search_get
+ This APl is called repeatedly to retrieve one file record at a time.
+ Each record returned is in IDT format by default.

+ Records can be returned using an output view by calling ids_IDT_views_output_set prior to
starting the search.

+ Response code 1 is returned when the End-Of-Set has been reached.

+ Itis not mandatory to retrieve all records from the result set (although it would be unusual not to).

Terminate the Search and close the System
¢ APIcall: ids_system_search_finish

+ This releases resources held by the Search Server for the Search and System.

Sample 1 - Basic API 24

Disconnect from the Search Server

¢ APIcall: ids_disconnect

+ Closes the socket connection to the Server.

Sample 2 - Advanced API

Sample 2 demonstrates the use of the Advanced API to make slightly more complex (but more efficient)
API calls. It demonstrates the use of sessions and how to start a search with a pre-constructed search
record.

Logic
Open a socket to the Connection Server

¢ APIcall: ids_connect
+ This opens a socket (communication channel) to the Connection Server using TCP/IP.

+ The host name (or IP address) and port number (1667 by default) of the Connection Server are speci-
fied as parameters to the call.

+ The Connection Server should be running on the same machine as the client application program (for
maximum performance).

+ The Connection Server is used instead of the Search Server because this sample will make use of
sessions; a facility implemented by the Connection Server.

+ The call returns a socket handle that must be used on subsequent API calls to communicate over the
same channel.

Open a Session

o APIcall: ids_session_open

+ This API call is used to establish a new session with the Connection Server or to reopen an existing
session (created by a previous call).

+ Specify a session number of -1 to create a new session, or the existing session number to reopen a
previously created session.

+ Sessions are used to identify resources on the Search Server and to keep them open even when the
client application disconnects from the Connection Server.

+ Stateless Web based transactions can store/retrieve the session number using a cookie.

Open a System
¢ APIcall: ids_system_open
« This call retrieves the System’s rules from the Rulebase and prepares for making multiple searches.
+ This is a relatively expensive operation so it is beneficial to reduce the number of times a system is

opened/closed and/or switched.

25 SAMPLE APl PROGRAMS

Retrieve the Input-View layout
¢ APl call: ids_search_view_get

+ This returns the name, number of fields and record length of the current input-view associated with
this Search.

+ This followed by a call to ids_search_layout

o It returns arrays describing the field names, lengths and offsets. As no input (or output) views have
been explicitly set, both views use the default format, which is the IDT layout.

+ This information is typically used to allocate appropriately sized buffers and/or prompt a client for
search data.

for each Search

+ Get input data for each field required for search

Start a Search
o APIcall: ids_search_start

+ An input record is constructed from the search data. It must match the layout of the input-view.

Retrieve Result Set
o APl call: ids_search_get
+ This APl is called repeatedly to retrieve one record at a time.
+ Each record returned is in IDT format.
+ Response code 1 is returned when the End-Of-Set has been reached.

+ Itis not mandatory to retrieve all records from the result set (although it would be unusual not to).

Terminate Search
¢ APIcall: ids_system_search_finish

o This releases resources held by the Search Server for the Search and System.

End-Loop

Close System
¢ APIcall: ids_system_close

+ Frees resources held on Search Server.

Sample 2 - Advanced API 26

Close Session (optional)

¢ APIcall: ids_session_close

+ This call instructs the Connection Server to free resources held on the Search Server and to invalidate
the session number.

+ A stateless Web based search will not issue this call unless it will definitely not attempt to reconnect
to the Connection Server using the same session number.

+ Sessions that have not been closed explicitly with this call will be timed-out (closed) if they remain
inactive for the designated time-out period of the Connection Server.

Disconnect from the Connection Server

¢ APIcall: ids_disconnect

+ Closes the socket connection to the Server.

27 SAMPLE APl PROGRAMS

APl Reference

The API allows user written application programs to access functions that provide name-searching
facilities over a network.

The API functions are callable from C, C#, Java, Perl and other Application Languages capable of calling
a DLL. It is also available as an ActiveX control for use in languages such as Visual Basic.

The APl is thread safe with the following exception: each thread must establish its own connection to
the Search Server. The behavior of the API with multiple threads accessing the same connection to the
Search Server is undefined.

Data Types

The section discusses the IIR data types used in this document. The Language Specific Bindings section
describes the mapping between the IIR data types and the native data types used for specific program-
ming languages.

Strings

The String data-type is a variable length piece of memory, terminated with a NUL character (0x00).

When using a St ring as an input parameter there is no need to explicitly tell IIR how long it is because
IIR can detect its length.

When the API returns a St ring as an output parameter, the caller must allocate memory for it and in
some programming languages, tell IIR how long it is. For example, in C it is not possible to detect how
long a piece of memory is, so the caller must pass two parameters:

+ the address of the memory, and

o itslength.

IIR uses this information to prevent overwriting unallocated memory (which would result in GPF or
core dump).

String Arrays

A stringArray is an array of Strings. It consists of an array of pointers, with each pointer pointing to
a String. A String Array is usually passed through the API using three parameters:

+ address of the array of pointers,
+ number of pointers in the array, and

+ the length of each String.

Note that since there is provision for only one length value, all Strings must be the same length.

28

Blocks

A Block data-type is a fixed length piece of memory. It is not NUL terminated. If a value is not long
enough to fill the entire Block, the Block should be padded with spaces on the right. Since IIR cannot
detect how long the memory is, Blocks are usually passed through the API using two parameters:

+ a pointer to the memory, and

o the length of the Block.

Block Arrays

A BlockArray is an array of Blocks. It consists of an array of pointers, with each pointer pointing to a
Block. A Block Array is usually passed through the API using three parameters:

+ address of the array of pointers,
+ number of pointers in the array, and

+ the length of each Block.

Note that since there is provision for only one length value, all Blocks must be the same length.

Nulls and NULs

Some programming languages permit the use of Null pointers (such as C). Null pointers must never be
passed as arguments to any API functions. If you do not wish to provide a value for an argument, use
a NUL terminated (0x00) string instead (a zero-length, empty string).

Error Handling

An API program that receives a negative response code from a call should retrieve the associated error
messages from the Server and log them.

The API function ids_errors_get_all is called repeatedly to retrieve one message at a time. It
returns a positive response code when there are no more messages left to retrieve.

29 API REFERENCE

Calling from C

For Win32, the C API functions are prototyped in $SSAINC%\ssasecl.h. An import library
%$SSALIB%\stssasec.1lib is used to link to the application. At run time it will dynamically load
ssasec.dll and ssaiok.dll from the [IR Client bin and SSA-NAME3 bin directories respectively.

For Unix, the C API functions are prototyped in $SSAINC/ssasecl.h and shared libraries are found
in $SSABIN (libssasec.so and libssaiok. so).

The functions return a response code. A negative response code indicates a transport error, after which
the communication channel is closed and no further API calls can be made without reconnecting.

Constants

7

Constants are declared as #defines, in uppercase using underscores. Constants are prefixed with "ssa_’,
eg. SSA_MSG_SIZE.

Parameter types

Note: values in BOLD represent information that must be provided to the function.

ids_addr_get _cass_field
Description:
Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion

from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Prototype:

long ids_addr_get_cass_field (
long sockh, // Long in
long suggest_idx, // Long in
long field_idx, // Long in
char * field_value, // Block out
long field_value_size

);

Parameters:

sockh is the socket to use for the call
suggest_idx Specifies the nth suggestion from which to get a cass field
field_idx Specifies a cass field within the nth suggestion

field value The cass field value

Return Code:

negative for error, 0 for success

30

ids_addr_get_cass_field_cnt
Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse

API.
Prototype:
long ids_addr_get_cass_field_cnt (
long sockh, // Long in
long * count // Long out
);
Parameters:

sockh is the socket to use for the call

count Returns the max number of cass address fields

Return Code:

negative for error, 0 for success

ids_addr_get_cass_field_info
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:

long ids_addr_get_cass_field_info (
long sockh, // Long in
long suggest_idx, // Long in

long * field_length, // LongArray out
long field_length_num

);
Parameters:

sockh is the socket to use for the call
suggest_idx Specifies the suggestion from which to retrieve information

field_length An array containing the length of each cass address field

Return Code:

negative for error, 0 for success

31 CALLING FROM C

ids_addr_get_del lines_ext
Description:

Use this function to retrieve delivery address line information

Prototype:

long ids_addr_get_del_lines_ext (
long sockh, // Long in
long suggest_idx, // Long in
long del_case, // Long in
char * del_linel, // Block out
long del_linel_size,
char * del_line2, // Block out
long del_line2_size,
char * del_line3, // Block out
long del_line3_size,
char * del_line4, // Block out
long del_line4_size,
char * del_line5, // Block out
long del_lineb5_size,
char * del_line6, // Block out
long del_line6_size

)

Parameters:

sockh is the socket to use for the call
suggest_idx Specifies the suggestion from which to get delivery address lines

del_case Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

del_linel delivery address line 1 output string
del_line2 delivery address line 2 output string
del_line3 delivery address line 3 output string
del_line4 delivery address line 4 output string
del_line5 delivery address line 5 output string

del_lineé6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

ids_addr_get_field
Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned

ids_addr_get del lines_ext 32

by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Prototype:

long ids_addr_get_field (
long sockh, // Long in
long suggest_idx, // Long in
long field_idx , // Long in
char * field_value, // Block out
long field_value_size,

long * field_val_status ,// Long out
long * field_val_mods // Long out

);

Parameters:

sockh is the socket to use for the call

suggest_idx Specifies the nth suggestion from which to get a field
field_idx Specifies a field within the nth suggestion

field value The field value

field_val_status Specifies how this field matched the validation data

field_val_mods Specifies how this field was modified by validation data

Return Code:

negative for error, 0 for success

ids_addr_get_field _count
Description:

This function returns the maximum number of address fields created as a result of a parse or validate
call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APL

Prototype:
long ids_addr_get_field_count (
long sockh, // Long in
long * count // Long out
);
Parameters:

sockh is the socket to use for the call

count Returns the max number of address fields

33 CALLING FROM C

Return Code:

negative for error, 0 for success

ids_addr_get_field_ext
Description:

Use this function to retrieve all getter fields

Prototype:

long ids_addr_get_field_ext (
long sockh, // Long in
long suggest_idx, // Long in
long field_operation ,// Long in
char * field_name, // String in
long field_item_line ,// Long in
char x field_type, // String in
char * field_value, // Block out
long field_value_size

);

Parameters:

sockh is the socket to use for the call
suggest_idx Specifies the suggestion from which to get fields

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

field name Refer AD Result.dtd for field names
field_item_line Represent field line number or field item number
field_ type Refer AD Result.dtd for field attribute Type

field_value Cleansed field output

Return Code:

negative for error, 0 for success

ids_addr_get_field_idx
Description:

Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-
tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

ids_addr_get field ext 34

Prototype:

long ids_addr_get_field_idx (

long sockh, // Long in
long suggest_idx, // Long in
long field_idx , // Long in
char * field_value, // Block out
long field_value_size

)

Parameters:

sockh is the socket to use for the call

suggest_idx Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

field_idx Specifies a field within the nth suggestion

field value The field value

Return Code:

negative for error, 0 for success

ids_addr_get_field info_ext
Description:

Use this function to retrieve a list of individual field lengths after validating an address. Fields with a
length of zero have no value associated with them and can be omitted from the list of fields retrieved
with ids_addr_get_field_idx

Prototype:

long ids_addr_get_field_info_ext (
long sockh, // Long in
long suggest_idx, // Long in
long * field_length, // LongArray out
long field_length_num,
char * addr_label_encoded,// Block out
long addr_label_encoded_size,
char « addr_label_charset,// String out
long addr_label_charset_size,
long * score // Long out

);

Parameters:

sockh is the socket to use for the call
suggest_idx Specifies the suggestion from which to retrieve information
field_length An array containing the length of each address field

addr_ label_encoded The returned label

35 CALLING FROM C

addr_label_charset The character set used in the address label

score The returned label’s score

Return Code:

negative for error, 0 for success

ids_addr_get_field len
Description:

This function returns the maximum length of an individual address field. It may be used to dynamically
allocate the field parameter used for the ids_addr_get_field_idx APL

Prototype:
long ids_addr_get_field_len (
long sockh, // Long in
long * max_len // Long out
);
Parameters:

sockh is the socket to use for the call

max_len Returns the max address field length in bytes

Return Code:

negative for error, 0 for success

ids_addr_get_line_len
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:
long ids_addr_get_line_len (
long sockh , // Long in
long * max_len // Long out
);
Parameters:

sockh is the socket to use for the call

max_len Returns the max line length in bytes

ids_addr_get field len 36

Return Code:

negative for error, 0 for success

ids_addr_get_option
Description:

Use this function to obtain values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Prototype:

long ids_addr_get_option (
long sockh, // Long in
char x param, // String in
char * value, // String out
long value_size

);

Parameters:

sockh is the socket to use for the call
param This field specifies the name of the option to get.

value Returns the value of the option.

Return Code:

negative for error, 0 for success

ids_addr_info
Description:

Use this function to request additional information about an input address. This call must always be
preceded with a call to ids_addr_std.

Prototype:

long ids_addr_info (
long sockh, // Long in
char = controls, // String in
char * value, // String out
long value_size

);

Parameters:

sockh is the socket to use for the call
controls this field contains the request information. It must me specified in the form ITEM=[value].

value this field contains the requested information.

37 CALLING FROM C

Return Code:

negative for error, 0 for success

ids_addr_init
Description:

This function initializes the Address Standardization sub-system. It must be the first call to
ids_addr_»x family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

Prototype:
long ids_addr_init (
long sockh, // Long in
long max_memory // Long in
);
Parameters:

sockh is the socket to use for the call

max_memory This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:

negative for error, 0 for success

ids_addr_parse
Description:

Use this function to parse an address. The individual field lengths after parsing an address are returned
in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

Prototype:

long ids_addr_parse (
long sockh, // Long in
long * field_length, // LongArray out
long field_length_num

)

Parameters:

sockh is the socket to use for the call

field length An array containing the length of each parsed field

ids_addr_init 38

Return Code:

negative for error, 0 for success

ids_addr_preload_country
Description:

Use this function to preload country database

Prototype:

long ids_addr_preload_country (
long sockh, // Long in
char x preload_type, // String in

char = preload_country,// String in
char * val_mode // String in

);

Parameters:

sockh is the socket to use for the call

preload_type Type of preload to perform

preload _country Country database to be preloaded

val_mode Validation mode to be used

Return Code:

negative for error, 0 for success

ids_addr_set_attrib
Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

Prototype:

long ids_addr_set_attrib (
long sockh, // Long in
char * char_set, // String in

char x default_country // String in
);

39 CALLING FROM C

Parameters:

sockh is the socket to use for the call

char_set The name of the character set used to encode the input and output.

default_country The default country used for validation when parsing cannot detect a country

name.

Return Code:

negative for error, 0 for success

ids_addr_set _del lines

Description:

Use this function to set delivery address line information

Prototype:

long ids_addr_set_del_lines (

long
char
long
char
long
char
long
char
long
char
long
char
long
);

Parameters:

sockh is the socket to use for the call

*

sockh,
del_linel,
del_linel_size
del_line2,
del_line2_size
del_line3,
del_line3_size
del_line4,
del_line4_size
del_line5,
del_line5_size
del_line6,
del_line6_size

Long in

Block

Block

Block

Block

Block

Block

del_linel delivery address line 1 input string

del_line2 delivery address line 2 input string

del_line3 delivery address line 3 input string

del_line4 delivery address line 4 input string

del_line5 delivery address line 5 input string

del_lineé6 delivery address line 6 input string

Return Code:

negative for error, 0 for success

in

in

in

in

in

in

ids_addr_set del lines

40

ids_addr_set field case
Description:

Use this function to set individual input fields case option

Prototype:

long ids_addr_set_field_case (
long sockh, // Long in
long field_idx, // Long in
long field_case // Long in

);

Parameters:

sockh is the socket to use for the call
field_idx Specifies the nth field to set

field_case Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =
Upper case, 2 = Lower case and 3 = Mixed case.

Return Code:

negative for error, 0 for success

ids _addr_set field ext
Description:

Use this function to set fields

Prototype:

long ids_addr_set_field_ext (
long sockh, // Long in
long field_operation ,// Long in
char * field_name, // String in
long field_item_line ,// Long in
char x field_type, // String in
char * field_value, // Block in
long field_value_size

);

Parameters:

sockh is the socket to use for the call
field operation Field operation Option 0 for AddressElements Option 1 for AddressLines

field name Refer AD Result.dtd for field names

41 CALLING FROM C

field_item_line Represent field line number or field item number

field type Refer AD Result.dtd for field attribute Type

field_value input field value

Return Code:

negative for error, 0 for success

ids_addr_set_field idx

Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that

has already been pre-parsed into separate fields.

Prototype:

long ids_addr_set_field_idx (
long sockh, // Long in
long field_idx , // Long in
char * field_value, // Block in
long field_value_size

);

Parameters:

sockh is the socket to use for the call
field_idx Specifies the nth field to set

field_value Specifies a value for the nth field

Return Code:

negative for error, 0 for success

ids_addr_set_field _name

Description:

Use this function to set individual input fields by name

Prototype:

long ids_addr_set_field_name (
long sockh, // Long in
char * field_name, // String in
char * field_value, // Block in
long field_value_size

ids_addr_set field _idx

42

Parameters:
sockh is the socket to use for the call
field name Specifies the name of the field to set

field value Specifies a value for the field

Return Code:

negative for error, 0 for success

ids_addr_set_lines
Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:

long ids_addr_set_lines (
long sockh, // Long in
char * line_1, // Block in
long line_1_size,
char x line_2, // Block in
long line_2_size,
char * line_3, // Block in
long line_3_size,
char * line_4, // Block in
long line_4_size ,
char * line_5, // Block in
long line_5_size,
char * line_6, // Block in
long line_6_size,
char * line_ 7, // Block in
long line_7_size,
char * line_8, // Block in
long line_8_size,
char * line_9, // Block in
long line_9_size,
char * line_10, // Block in
long line_10_size

);

Parameters:

sockh is the socket to use for the call
line_ 1 The first line of the address
line_2 The second line of the address
line_3 The third line of the address

line_4 The fourth line of the address

43 CALLING FROM C

line_ 5 The fifth line of the address
line_6 The sixth line of the address
line_7 The seventh line of the address
line_8 The eighth line of the address
line_9 The ninth line of the address

line_10 The tenth line of the address

Return Code:

negative for error, 0 for success

ids_addr_set_option
Description:

Use this function to set values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Prototype:

long ids_addr_set_option (
long sockh, // Long in
char % param, // String in
char x value // String in

);

Parameters:

sockh is the socket to use for the call
param This field specifies the name of the option to set.

value This field specifies a value for the option.

Return Code:

negative for error, 0 for success

ids_addr_std
Description:

Use this function to request IDS to standardize an address by validating it against USPS validation
tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

ids_addr_set _option 44

Prototype:

long ids_addr_std (

long sockh, // Long in
char * firm_name, // String io
long firm_name_size,
char * urbanization, // String io
long urbanization_size,
char * address_one, // String io
long address_one_size,
char * address_two, // String io
long address_two_size,
char * last_line, // String io
long last_line_size

)

Parameters:

sockh is the socket to use for the call
firm_name It contains the name of the firm (may be blank).

urbanization this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

address_one this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-
ponents such as apartment number.

address_two this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

last_line this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

Return Code:

0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

ids_addr_validate
Description:

Use this function to validate an address

Prototype:

long ids_addr_validate (
long sockh, // Long in
long * status, // Long out
long * n_suggest // Long out

)

45 CALLING FROM C

Parameters:
sockh is the socket to use for the call
status The status returned by the validation process

n_suggest The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

ids_connect
Description:

Initiates a socket.

Prototype:

long ids_connect (
char * host, // String in
long port, // Long in
long * sockh // Long out

)

Parameters:

host is the host to connect to.
port is the port to connect to.

sockh is a socket handle.

Return Code:

negative for error, 0 for success

ids_disconnect
Description:

Releases resources allocated to a socket.

Prototype:
long ids_disconnect (
long sockh // Long in
);
Parameters:

sockh is the socket to use for the call

ids_connect 46

Return Code:

negative for error, 0 for success

ids_error_get

Description:
Get the error messages from the last API function that failed. This function should be called repeatedly

until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

Prototype:

long ids_error_get (
long sockh, // Long in
char * msg, // String out

long msg_size

);

Parameters:

sockh is the socket to use for the call

msg is the error message returned

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

ids_errors_get_all

Description:
Get the Server side error messages from the last API function that failed. This function should be called

repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

Prototype:

long ids_errors_get_all (
// Long in

long sockh,
char * msg, // String out

long msg_size

)

47 CALLING FROM C

Parameters:
sockh is the socket to use for the call

msg is an error message.

Return Code:

negative for error, 0 for success

ids_identify
Description:

Identify a session to the console

Prototype:

long ids_identify (
long sockh, // Long in
char « identification // String in

);
Parameters:

sockh is the socket to use for the call

identification is user supplied identitification for display on the console

Return Code:

negative for error, 0 for success

ids _is _little_endian
Description:

Checks if the search server is running on a little endian platform

Prototype:
long ids_is_little_endian (
long sockh, // Long in
long * endian_state // Long out
);
Parameters:

sockh is the socket to use for the call

endian_state Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

ids_identify 48

Return Code:

negative for error, 0 for success

ids_match_explain
Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

Prototype:

long ids_match_explain (
long sockh, // Long in
char * search, // String in
char «+ match_tolerance,// String in
char * searchrec, // Block in
long searchrec_size,
char * filerec, // Block in
long filerec_size ,
char #x info_array, // BlockArray out
long info_array_num,
long info_array_size

);

Parameters:

sockh is the socket to use for the call
search is the name of the Search which was performed.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

searchrec is the original record that we searched on
filerec is the record that was returned by the search

info_array An array describing the match results. See the Match Explain API section for details

Return Code:

negative for error, 0 for success

ids_match_explain_count
Description:

Estimate number of info blocks required for a subsequent match_explain call

49 CALLING FROM C

Prototype:

long ids_match_explain_count (

long sockh, // Long in
char * search, // String in
long * count // Long out
);
Parameters:

sockh is the socket to use for the call
search is the name of the Search which was performed.

count Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

ids_real_time_async_get
Description:

Used to retrieve the result count associated with a call to ids_real_time_async_start.
cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

Prototype:

long ids_real_time_async_get (
long sockh, // Long in
char x reference, // String in
long block, // Long in

long % cluster_action_count // Long out
);
Parameters:

sockh is the socket to use for the call

reference A reference number identifying the request (returned by
ids_real_time_sync_start)

block 1 =wait for a response 0 = return immediately if no results are available yet

cluster_action_count The number of clusters generated These can be returned with call to
real_time_sync_get 1 =wait for a response

Return Code:

negative for error 0 for success positive for no results are available yet

ids_real_time_async_get 50

ids_real time_async_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more
calls to ids_real_time_sync_get to retrieve the results.

Prototype:

long ids_real_time_async_start (
long sockh, // Long in
char * rulebase, // String in
char x* system, // String in
char * IDT, // String in
char * sequence_number,// String in
char x operation, // String in
char * cluster_record, // Block in
long cluster_record_size,
long source , // Long in
char * multi_search, // String in
long input_id, // Long in
char * reference, // String out
long reference_size

);

Parameters:

sockh is the socket to use for the call

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.
source Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

input_id Reserved. A value of 0 must be passed for this parameter.

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retrieving results.

51 CALLING FROM C

Return Code:
negative for error
0 for success positive for warnings:
1-9 Reserved for future use
10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

ids_real time_flul _add
Description:

This API used to add force link and unlink rule. This call must be followed by

ids_real_time_flul_init.

Prototype:

long ids_real_time_flul_add (
long sockh, // Long in
char x rule_type, // String in
char = subject_rec_pk, // Block in
long subject_rec_pk_size,
char x relationship, // String in
char « related_rec_pk, // Block in
long related_rec_pk_size

);

Parameters:

sockh is the socket to use for the call

rule_type This field is for specifying the type of the rule. A value of "A’ represents that the rule needs
to be added to the system and "D’ represents that a rule needs to be removed from the system

subject_rec_pk This field is for specifying the PK of the subject record

relationship This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a
value of "U’ represents an Unlink rule between the subject record and the related record.

related_rec_pk This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

ids_real time_flul_add 52

ids_real time_ flul close
Description:

This API used to close and release force link and unlink module.

Prototype:
long ids_real_time_flul_close (
long sockh // Long in
);
Parameters:

sockh is the socket to use for the call

Return Code:

negative for error, 0 for success

ids_real time_ flul delete
Description:

This API used to delete force link and unlink rule from MR table. This call must be followed by
ids_real_time_flul_init.

Prototype:

long ids_real_time_flul_delete (
long sockh, // Long in
long rule_type_option,// Long in
char x record_pk, // Block in
long record_pk_size

);

Parameters:

sockh is the socket to use for the call

rule_type_option 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.

2 Delete all rules for input pk.

record_pk This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

53 CALLING FROM C

ids_real time_flul find rule
Description:

This API used to find link and unlink information for input IDT record. should be called after
ids_real_time_flul_init APL

Prototype:
long ids_real_time_flul_find_rule (
long sockh, // Long in
char * idt_rec, // Block in
long idt_rec_size,
long option // Long in
);
Parameters:

sockh is the socket to use for the call
idt_rec This field is for specifying the PK of the record to be searched

option 0 Link Rule.
1 Unlink Rule.

Return Code:

negative for error, 0 for success

ids_real_time_flul_get _rule
Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real time_flul_find_rule APL

Prototype:

long ids_real_time_flul_get_rule (
long sockh, // Long in
char * idt_rec, // Block out
long idt_rec_size

);

Parameters:

sockh is the socket to use for the call

idt_rec is the matched File record for input link or unlink rule.

ids_real_time_flul_find_rule 54

Return Code:

negative for error, 0 for success

ids_real_time_flul_init
Description:

This API used to initialize force link and unlink module. = Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_flul_close.

Prototype:

long ids_real_time_flul_init (
long sockh, // Long in
char * idt_name, // String in
char * multi_search // String in

);

Parameters:

sockh is the socket to use for the call
idt_name is the name of the IDT associated with the force link and unlink rule.

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

Return Code:

negative for error, 0 for success

ids_real_time_sync_get
Description:
Use to retrieve the results and free the resources associated with a call to

ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

Prototype:

long ids_real_time_sync_get (
long sockh, // Long in
char * reference, // String in
char x cluster_action_type ,// String out
long cluster_action_type_size,
char « cluster_action_id ,// String out
long cluster_action_id_size,

long % cluster_action_number,// Long out
char = cluster_action_new ,// String out
long cluster_action_new_size

)

55 CALLING FROM C

Parameters:
sockh is the socket to use for the call

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

cluster_action_type Identifies the action, ie add or delete
cluster_action_id The prefix which identifies the cluster
cluster_action_number The number which identifies the cluster

cluster_action_new Identifies whether the cluster is newly formed or existing

Return Code:

negative for error, 0 for success, 1 for end of results

ids_real time_sync_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

Prototype:

long ids_real_time_sync_start (
long sockh, // Long in
char * rulebase, // String in
char x* system, // String in
char * IDT, // String in
char * sequence_number,// String in
char x operation, // String in
char * cluster_record, // Block in
long cluster_record_size,
long % cluster_action_count,// Long out
char * reference, // String out
long reference_size

);

Parameters:

sockh is the socket to use for the call

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for

sequence numbers found in the OPERATIONS MANUAL.

ids_real _time_sync_start 56

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.

cluster_action_count The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

Return Code:

negative for error

0 for success, and postive for warnings:

1-9 Reserved for future use

10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous
transaction. The record was added to the reject table.

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

ids_scores_get
Description:

Retrieve an array of scores, one per match record. This APl is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

Prototype:

long ids_scores_get (
long sockh, // Long in
char * searchname, // String in
long % scores, // LongArray out
long scores_num

);

57 CALLING FROM C

Parameters:
sockh is the socket to use for the call
searchname is the name of the associated search

scores is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

ids_search_comment_get
Description:

Returns the user defined comment stored with the search.

Prototype:

long ids_search_comment_get (
long sockh, // Long in
char * searchname, // String in
char * comment, // String out
long comment_size

);

Parameters:

sockh is the socket to use for the call
searchname the search to count.

comment is the area to copy the string containing the comment. This string will be null-terminated.

Return Code:

negative for error, 0 for success

ids_search_dedupe_start
Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

Prototype:

ids_search_comment_get 58

long ids_search_dedupe_start (
long sockh, // Long in
char * search, // String in
char * search_width, // String in
char *+ match_tolerance,// String in

char xx parameters, // BlockArray in
long parameters_num,,
long parameters_size,
char * searchrec, // Block io
long searchrec_size,
char * AnswersetName, // String in
long flags , // Long in
long * recid, // Long io
long % recs // Long io
);
Parameters:

sockh is the socket to use for the call
search is the name of the search that is to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

parameters not used.

searchrec is the IDT record used to search with. It is returned by the Search Server.
AnswersetName is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with

the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

flags flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

recid the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

recs the number of records in the search set.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

ids_search_fields count
Description:

Gets the number of fields required to assemble the search record.

59 CALLING FROM C

Prototype:

long ids_search_fields_count (

long sockh, // Long in
char * searchname, // String in
long * fc // Long out
)
Parameters:

sockh is the socket to use for the call
searchname the search to count.

fc is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

ids_search_fields_get
Description:

Gets the number of fields required to assemble the search record.

Prototype:
long ids_search_fields_get (
long sockh, // Long in
char * searchname, // String in
char xx fieldnames, // StringArray out
long fieldnames_num,
long fieldnames_size
);
Parameters:

sockh is the socket to use for the call
searchname the search to count.

fieldnames is the array returned which will contain the name of the fields.

Return Code:

negative for error, 0 for success

ids_search_filter
Description:

Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER
MANUAL for details about SQL filters

ids_search_fields_get 60

Prototype:

long ids_search_filter (

long sockh, // Long in
char * search, // String in
char * filter // String in
)
Parameters:

sockh is the socket to use for the call
search is the name of the Search that will use the filter

filter is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

ids_search_finish
Description:

Release resources associated with ids_search_start.

Prototype:
long ids_search_finish (
long sockh, // Long in
char x search // String in
);
Parameters:

sockh is the socket to use for the call

search is the name of the search that was performed

Return Code:

negative for error, 0 for success

ids_search_get
Description:

Retrieve file records that are a good match for the search record specified in the ids_search_start
or ids_system_search_start function.

61 CALLING FROM C

Prototype:

long ids_search_get (

long sockh, // Long in
char * searchname, // String in
char * searchreturn, // Block out
long searchreturn_size,
long * score, // Long out
long % sreps, // LongArray out
long sreps_num,
long * freps, // LongArray out
long freps_num

);

Parameters:

sockh is the socket to use for the call

searchname is the name the search to used by the call.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

sreps is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

freps is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = O, freps[0] = 1, frep[1] =0

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get _complete
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3
v1is used.

ids_search_get complete 62

Prototype:

long ids_search_get_complete (

long sockh, // Long in
char * search, // String in
char * searchreturn, // Block out
long searchreturn_size,
long % score, // Long out
char * info, // Block out
long info_size

);

Parameters:

sockh is the socket to use for the call

search is the name of the search which was performed.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

info an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,
Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit
number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get_detalil
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

Prototype:

long ids_search_get_detail (
long sockh, // Long in
char * search, // String in
char * file_rec, // Block out
long file_rec_size ,
long * score, // Long out
char * decision, // String out
long decision_size ,
long « file_recid // Long out

)

63 CALLING FROM C

Parameters:

sockh is the socket to use for the call

search is the name of the Search which was performed.

file_rec is the matched File record.

score is the degree of similarity between the Search and File records (0-100).
decision is the match decision: A(ccept) or U(ndecided)

file_recid is the File Record-ID (corresponding to the RECID column from the IDT).

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_IDT_get
Description:

Gets the name of the IDT associated with the search.

Prototype:

long ids_search_IDT_get (
long sockh, // Long in
char * searchname, // String in
char « IDT, // String out

long IDT_size
);

Parameters:
sockh is the socket to use for the call
searchname is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

ids_search_layout
Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

ids_search_IDT_get 64

Prototype:

long ids_search_layout (

long sockh, // Long in
char * search, // String in
char x viewType, // String in
char * func, // String in
char =% names, // StringArray out
long names_num,
long names_size,
long % lengths, // LongArray out
long lengths_num,
long « offsets, // LongArray out
long offsets_num,,
long % repeats, // LongArray out
long repeats_num,
char xx formats, // StringArray out
long formats_num,
long formats_size

)

Parameters:

sockh is the socket to use for the call

search is the name of the Search which was performed.

viewType the type of view: input or output.

func describes the order of fields.

names is the area into which an array containing the fieldnames will be copied.

lengths is the area into which an array containing the lengths of the fields will be copied.
offsets is the area into which an array containing the offsets of the fields will be copied.
repeats is the area into which an array containing the number of repeats in a field will be copied.

formats is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

Character 0: Justification (‘L’eft or ‘R’ight)

Character 1: Compression (‘F’ixed, ‘V’ariable or ‘I ong)

Characters?2 - 3: Fill (2 characters containing the fill character in hexadecimal)
Character 4: Fill type (‘T’ext or ‘B’inary)

Characters 5 - 6: Base (2 characters containing the base in decimal)

Character 7: Format (‘T’ext, ‘N'umeric, ‘V’ariable or ‘B’inary)

Character 8 - 9: Reserved

Characters 10 - 11: Binary key number (2 hexadecimal digits)

Character 12: Character width (‘W’ide, ‘N’arrow)

Characters 13 - 50: Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

65 CALLING FROM C

Return Code:

negative for error, 0 for success

ids_search_profile_count

Description:

Count the number of profile entries available

Prototype:

long ids_search_profile_count (

long
long
);

Parameters:

sockh is the socket to use for the call

*

sockh,
count

// Long in
// Long out

count Returns the number of elements

Return Code:

negative for error, 0 for success

ids_search_profile_get

Description:

Get the profiling times, with each field comprising of an id, a name and a time

Prototype:

long ids_search_profile_get (

long
long
long
char
long
long
long
long
);

Parameters:

sockh is the socket to use for the call

*

* %

sockh,

ids,
ids_num,
names,
names_num,
names_size,
times,
times_num

// Long in
// LongArray out
// StringArray out

// LongArray out

ids_search_profile_count

66

ids the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

names the names for each field

times the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

ids_search_start
Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Prototype:

long ids_search_start (
long sockh, // Long in
char * search, // String in

char * search_width, // String in
char * match_tolerance,// String in

char xx parameters, // BlockArray in
long parameters_num,,
long parameters_size,
char * searchrec, // Block io
long searchrec_size ,
char « AnswersetName, // String in
long * recs, // Long out
char *x records, // BlockArray in
long records_num,,
long records_size

);

Parameters:

sockh is the socket to use for the call

search is the name of the search to be performed.

67 CALLING FROM C

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

records contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOQOUT has been exceeded.

ids_search_start_via_parameters

Description:

Prototype:

long ids_search_start_via_parameters (
long sockh, // Long in
char x search, // String in
char x search_width, // String in
char *+ match_tolerance,// String in
char xx parameters, // BlockArray in
long parameters_num,,
long parameters_size,
long « datalen, // Long out
long % recs // Long out

)

Parameters:

sockh is the socket to use for the call

ids_search_start _via_parameters 68

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_start_via_record

Description:

Prototype:

long ids_search_start_via_record (
long sockh, // Long in
char * search, // String in
char * search_width, // String in
char * match_tolerance,// String in
char x searchrec, // Block in
long searchrec_size,
long % datalen, // Long out
long * recs // Long out

)

Parameters:

sockh is the socket to use for the call
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

69 CALLING FROM C

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_tolerances count
Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-
sively the matching scheme should be in rejecting candidates.

Prototype:

long ids_search_tolerances_count (
long sockh, // Long in
char * searchname, // String in
long * count // Long out

);

Parameters:

sockh is the socket to use for the call
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

ids_search_tolerances_get
Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how
aggressively the matching scheme should be in rejecting candidates.

Prototype:

ids_search tolerances count 70

long ids_search_tolerances_get (

long sockh, // Long in
char * searchname, // String in
char *x tolerances, // StringArray out
long tolerances_num,
long tolerances_size
);
Parameters:

sockh is the socket to use for the call
searchname the search to count.

tolerances is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_search_view_get
Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output

records.

Prototype:

long ids_search_view_get (
long sockh, // Long in
char x search, // String in
char x viewType, // String in
char * viewName, // String out
long viewName_size,
long % viewFieldCount, // Long out
long * viewRecLen // Long out

);

Parameters:

sockh is the socket to use for the call

search is the name of the Search

viewType the type of the view (input or output)
viewName is the name of the view to query
viewFieldCount the number of fields in the view

viewRecLen is the length of the view

71 CALLING FROM C

Return Code:

negative for error, 0 for success

ids_search_view_set
Description:

Sets a view as the active input or output view

Prototype:

long ids_search_view_set (
long sockh, // Long in
char x search, // String in
char « viewType, // String in
char x viewName // String in

);

Parameters:

sockh is the socket to use for the call
search is the name of the Search
viewType the type of the view (input or output)

viewName the name of the view to use

Return Code:

negative for error, 0 for success

ids_search_widths_ count
Description:

Returns the count of search widths that have been defined for the search. The search width defines how
many items are selected by the search

Prototype:

long ids_search_widths_count (
long sockh, // Long in
char * searchname, // String in
long * count // Long out

);

Parameters:

sockh is the socket to use for the call
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

ids_search view_set 72

Return Code:

negative for error, 0 for success

ids_search_widths_get
Description:

Returns the search widths that have been defined for the search. The search width defines how many
items are selected by the search

Prototype:
long ids_search_widths_get (
long sockh, // Long in
char x searchname, // String in
char xx widths, // StringArray out
long widths_num,
long widths_size
);
Parameters:

sockh is the socket to use for the call
searchname is the name the search to used by the call.

widths is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_server_version_get
Description:

Get the version information associated with the server.

Prototype:

long ids_server_version_get (
long sockh, // Long in
char « server_version, // String out
long server_version_size

);

Parameters:

sockh is the socket to use for the call

server_version is the area into which the string containing the version information will be copied.

73 CALLING FROM C

Return Code:

negative for error, 0 for success

ids_session_close
Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

Prototype:
long ids_session_close (
long sockh // Long in
);
Parameters:

sockh is the socket to use for the call

Return Code:

negative for error, 0 for success

ids_session_open
Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server
from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Prototype:
long ids_session_open (
long sockh, // Long in
long * session // Long io
);
Parameters:

sockh is the socket to use for the call

session is the number of the session to open (-1 for a new session).

ids_session_close 74

Return Code:

negative for error, 0 for success

ids_set_encoding
Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of
the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

Prototype:
long ids_set_encoding (
long sockh, // Long in
long encoding // Long in
);
Parameters:

sockh is the socket to use for the call

encoding 6=UTF-16/UCS-2 (LE), 7=UTF-16/UCS-2 (BE), 8=UTF-8, 4=UCS-4

Return Code:

negative for error, 0 for success

ids_set timeout
Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

Prototype:

long ids_set_timeout (
long sockh, // Long in
long timeout // Long in

)

75 CALLING FROM C

Parameters:

sockh is the socket to use for the call

timeout timeout 0 is disable timeout, a positive value in seconds for the timeout

Return Code:

negative for error, 0 for success

ids_set_vpd_user
Description:

Provides the Search Server with information required to set a Virtual Private Database context. Refer
to the DESIGNER MANUAL, VPD section for details about VPD.

Prototype:

long ids_set_vpd_user (
long sockh, // Long in
char * vpd_user, // String in
char x vpd_ctx // String in

);

Parameters:

sockh is the socket to use for the call
vpd_user Connection string of the actual user

vpd_ctx the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

ids_system_close
Description:

closes the system and frees any remaining resources.

Prototype:
long ids_system_close (
long sockh // Long in
);
Parameters:

sockh is the socket to use for the call

ids_set vpd_user 76

Return Code:

negative for error, 0 for success

ids_system_idtname_count
Description:

Returns the number of active idt names. (i.e. those whose IDT has been loaded).

Prototype:
long ids_system_idtname_count (
long sockh, // Long in
long % idtcount // Long out
);
Parameters:

sockh is the socket to use for the call

idtcount is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

ids_system_idtname_get
Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

Prototype:
long ids_system_idtname_get (
long sockh, // Long in
char xx idtnames, // StringArray out
long idtnames_num,
long idtnames_size
);
Parameters:

sockh is the socket to use for the call

idtnames is the area into which an array of the idtnames defined on the rulebase will be copied (the
idtnames are all null terminated strings).

77 CALLING FROM C

Return Code:

negative for error, 0 for success

ids_system_ notify
Description:

Notifies search server on a system.

Prototype:

long ids_system_notify (
long sockh, // Long in
char * rulebase, // String in
char * sysname, // String in
char * message // String in

);

Parameters:

sockh is the socket to use for the call
rulebase is the name of the rulebase.
sysname is the name of the system

message is a messagevto be delivered

Return Code:

negative for error, 0 for success

ids_system_open
Description:

opens a system.

Prototype:

long ids_system_open (
long sockh, // Long in
char * rulebase, // String in
char x system, // String in
char x verbosity, // String in
char « Options // String in

);

Parameters:

sockh is the socket to use for the call

ids_system_notify 78

rulebase is the name of the rulebase.
system The name of the system in the rulebase
verbosity specifies the verbosity level. See the Verbosity section for details.

options LOGOUT filename for server output for this session.
LOGERR filename for server errors for this session.
LOGTEST filename for server search trace for this session.
SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-
tory for this session.

Return Code:

negative for error, 0 for success

ids_system_search_finish
Description:

Finishes the search and closes the system.

Prototype:
long ids_system_search_finish (
long sockh // Long in
);
Parameters:

sockh is the socket to use for the call

Return Code:

negative for error, 0 for success

ids_system_search_start

Description:

Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer
to ids_search_start for a more detailed description of the parameters.

79 CALLING FROM C

Prototype:

long ids_system_search_start (

long sockh, // Long in
char * rulebase, // String in
char * system, // String in
char x verbosity, // String in
char = options, // String in
char * search, // String in
char xx parameters, // BlockArray in
long parameters_num,
long parameters_size,
char * AnswersetName, // String in
long % datalen, // Long out
long % recs // Long out
);
Parameters:

sockh is the socket to use for the call

rulebase is the name of the rulebase.

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

options consists of one or more keywords and their respective values in the form
KEYWORD1=VALUE1l, KEYWORD2=VALUEZ,

search is the name of the search in the system in the Rulebase that will be used.

parameters is the array which contains the field values to be used to construct the search.
AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

datalen will return the length of a record.

recs count of records that matched the search criteria

Return Code:

negative for error, 0 for success

ids_system_searches_count
Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of 1ds_system_open.

ids_system_searches_count 80

Prototype:

long ids_system_searches_count (

long sockh, // Long in
long * searchcount // Long out
);
Parameters:

sockh is the socket to use for the call

searchcount is the number of searches defined on the system

Return Code:

negative for error, 0 for success

ids_system_searches_get

Description:

Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-
turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of

ids_system_open.

Prototype:
long ids_system_searches_get (
long sockh, // Long in
char % searches, // StringArray out
long searches_num,
long searches_size
);
Parameters:

sockh is the socket to use for the call

searches is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

Return Code:

negative for error, 0 for success

ids_systems_count

Description:

the number of systems in the rulebase.

81 CALLING FROM C

Prototype:

long ids_systems_count (

long sockh , // Long in
char = rulebase, // String in
long * systemscount // Long out
);
Parameters:

sockh is the socket to use for the call
rulebase is the name of the rulebase.

systemscount the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

ids_systems_get
Description:

Get the names of all the systems defined in the rulebase.

Prototype:
long ids_systems_get (
long sockh , // Long in
char * rulebase, // String in
char xx systems, // StringArray out
long systems_num,
long systems_size
);
Parameters:

sockh is the socket to use for the call
rulebase is the name of the rulebase.

systems is the area into which an array of the systems defined in the rulebase will be copied (the
systems are all null terminated strings).

Return Code:

negative for error, 0 for success

ids_systems_get 82

Calling from C without Arrays

If the language does not support C-style arrays an alternative API is available. This API requires only
the long, long % and char * data-types.

For Win32, the C API functions are provided by the import library $SSALIB%\stssasea.lib for
dynamic linking.

For Unix, the C API functions are provided in $SSABIN (1ibssasea.so and libssaiok. so).
The functions are prototyped in $SSAINC%\ssaseca.h.

The functions return a response code. A negative response code indicates a transport error, after which
the communication channel is closed and no further API calls can be made without reconnecting.

Constants

7

Constants are declared as #defines, in uppercase using underscores. Constants are prefixed with "ssa_’,
eg. SSA_MSG_STIZE.

Parameter types

Note: values in BOLD represent information that must be provided to the function.

ids_addr_get_cass_field

Description:

Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion
from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Prototype:

long ids_addr_get_cass_field (
long sockh,
long suggest_idx, // Long in
long field_idx, // Long in
char x field_value, // Block out
long field_value_size

);

Parameters:

suggest_idx Specifies the nth suggestion from which to get a cass field
field_idx Specifies a cass field within the nth suggestion

field value The cass field value

83 CALLING FROM C WITHOUT ARRAYS

Return Code:

negative for error, 0 for success

ids_addr_get_cass_field_cnt
Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse

APL
Prototype:
long ids_addr_get_cass_field_cnt (
long sockh,
long % count // Long out
);
Parameters:

count Returns the max number of cass address fields

Return Code:

negative for error, 0 for success

ids_addr_get _cass_field_info
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:
long ids_addr_get_cass_field_info (
long sockh,
long suggest_idx, // Long in

long * field_length, // LongArray out
long field_length_num

)

Parameters:
suggest_idx Specifies the suggestion from which to retrieve information

field length An array containing the length of each cass address field

ids_addr_get cass_field cnt 84

Return Code:

negative for error, 0 for success

ids_addr_get _del lines_ext
Description:

Use this function to retrieve delivery address line information

Prototype:

long ids_addr_get_del_lines_ext (
long sockh,
long suggest_idx, // Long in

long del_case, // Long in
char * del_linel, // Block out
long del_linel_size,
char x del_line2, // Block out
long del_line2_size,
char * del_line3, // Block out
long del_line3_size,
char * del_line4, // Block out
long del_line4_size,
char x del_line5, // Block out
long del_line5_size,
char x del_line6, // Block out
long del_line6_size

)

Parameters:

suggest_idx Specifies the suggestion from which to get delivery address lines

del_case Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

del_linel delivery address line 1 output string
del_line2 delivery address line 2 output string
del_line3 delivery address line 3 output string
del_line4 delivery address line 4 output string
del_line5 delivery address line 5 output string

del_lineé6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

85 CALLING FROM C WITHOUT ARRAYS

ids_addr_get_field
Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned
by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Prototype:

long ids_addr_get_field (
long sockh,
long suggest_idx, // Long in
long field_idx, // Long in
char * field_value, // Block out
long field_value_size,

long « field_val_status ,// Long out
long * field_val_mods // Long out

);

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field
field_idx Specifies a field within the nth suggestion

field value The field value

field val_status Specifies how this field matched the validation data

field _val_mods Specifies how this field was modified by validation data

Return Code:

negative for error, 0 for success

ids_addr_get_field_count
Description:

This function returns the maximum number of address fields created as a result of a parse or validate
call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APL

Prototype:
long ids_addr_get_field_count (

long sockh,
long * count // Long out

);
Parameters:

count Returns the max number of address fields

ids_addr_get field 86

Return Code:

negative for error, 0 for success

ids_addr_get_field ext
Description:

Use this function to retrieve all getter fields

Prototype:

long ids_addr_get_field_ext (
long sockh,
long suggest_idx, // Long in
long field_operation ,// Long in
char * field_name, // String in
long field_item_line ,// Long in
char « field_type, // String in
char x field_value, // Block out
long field_value_size

);

Parameters:

suggest_idx Specifies the suggestion from which to get fields

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

field name Refer AD Result.dtd for field names
field_item_line Represent field line number or field item number
field_type Refer AD Result.dtd for field attribute Type

field_value Cleansed field output

Return Code:

negative for error, 0 for success

ids_addr_get_field_idx
Description:

Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-
tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

87 CALLING FROM C WITHOUT ARRAYS

Prototype:

long ids_addr_get_field_idx (

long sockh,

long suggest_idx, // Long in
long field_idx , // Long in
char * field_value, // Block out
long field_value_size

);

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

field_idx Specifies a field within the nth suggestion

field value The field value

Return Code:

negative for error, 0 for success

ids_addr_get field info_ext

Description:

Use this function to retrieve a list of individual field lengths after validating an address. Fields with a
length of zero have no value associated with them and can be omitted from the list of fields retrieved
with ids_addr_get_field_idx

Prototype:

long ids_addr_get_field_info_ext (
long sockh,
long suggest_idx, // Long in
long * field_length, // LongArray out
long field_length_num,
char * addr_label_encoded,// Block out
long addr_label_encoded_size,
char « addr_label_charset,// String out
long addr_label_charset_size,
long * score // Long out

);

Parameters:

suggest_idx Specifies the suggestion from which to retrieve information

field_length An array containing the length of each address field

addr_ label_encoded The returned label

addr_ label_ charset The character set used in the address label

score The returned label’s score

ids_addr_get field_info_ext

88

Return Code:

negative for error, 0 for success

ids_addr_get_field len
Description:

This function returns the maximum length of an individual address field. It may be used to dynamically
allocate the field parameter used for the ids_addr_get_field_idx APL

Prototype:

long ids_addr_get_field_len (
long sockh,
long * max_len // Long out

)

Parameters:

max_len Returns the max address field length in bytes

Return Code:

negative for error, 0 for success

ids_addr_get_line_len
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:

long ids_addr_get_line_len (
long sockh,
long * max_len // Long out

);
Parameters:

max_len Returns the max line length in bytes

Return Code:

negative for error, 0 for success

89 CALLING FROM C WITHOUT ARRAYS

ids_addr_get_option
Description:
Use this function to obtain values of options that control Address Standardization behavior. A list of

options appears in the Address Standardization section of this manual.

Prototype:

long ids_addr_get_option (
long sockh,

char * param, // String in
char * value, // String out
long value_size

);

Parameters:

param This field specifies the name of the option to get.

value Returns the value of the option.

Return Code:

negative for error, 0 for success

ids_addr_info
Description:
Use this function to request additional information about an input address. This call must always be

preceded with a call to ids_addr_std.

Prototype:

long ids_addr_info (
long sockh,

char * controls, // String in
char * value, // String out
long value_size

);

Parameters:

controls this field contains the request information. It must me specified in the form ITEM=[value].

value this field contains the requested information.

Return Code:

negative for error, 0 for success

ids_addr_get option 90

ids_addr_init
Description:

This function initializes the Address Standardization sub-system. It must be the first call to
ids_addr_» family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

Prototype:

long ids_addr_init (
long sockh,
long max_memory // Long in

)

Parameters:

max_memory This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:

negative for error, 0 for success

ids_addr_parse

Description:

Use this function to parse an address. The individual field lengths after parsing an address are returned
in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

Prototype:

long ids_addr_parse (
long sockh,
long * field_length, // LongArray out
long field_length_num

);

Parameters:

field_length An array containing the length of each parsed field

Return Code:

negative for error, 0 for success

91 CALLING FROM C WITHOUT ARRAYS

ids_addr_preload_country
Description:

Use this function to preload country database

Prototype:
long ids_addr_preload_country (
long sockh,
char x preload_type, // String in

char * preload_country,// String in
char * val_mode // String in

);

Parameters:
preload_type Type of preload to perform
preload_country Country database to be preloaded

val_mode Validation mode to be used

Return Code:

negative for error, 0 for success

ids_addr_set_attrib
Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

Prototype:
long ids_addr_set_attrib (
long sockh,

char * char_set, // String in
char « default_country // String in

);

Parameters:
char_set The name of the character set used to encode the input and output.

default_country The default country used for validation when parsing cannot detect a country
name.

ids_addr_preload_country 92

Return Code:

negative for error, 0 for success

ids_addr_set_del lines
Description:

Use this function to set delivery address line information

Prototype:

long ids_addr_set_del_lines (
long sockh,

char x del_linel, // Block in
long del_linel_size,
char * del_line2, // Block in
long del_line2_size,
char * del_line3, // Block in
long del_line3_size,
char x del_line4, // Block in
long del_line4_size,
char * del_line5, // Block in
long del_lineb5_size,
char * del_lineé6, // Block in
long del_line6_size

);

Parameters:

del_linel delivery address line 1 input string
del_line2 delivery address line 2 input string
del_line3 delivery address line 3 input string
del_line4 delivery address line 4 input string
del_line5 delivery address line 5 input string

del_lineé6 delivery address line 6 input string

Return Code:

negative for error, 0 for success

ids_addr_set_field case
Description:

Use this function to set individual input fields case option

93 CALLING FROM C WITHOUT ARRAYS

Prototype:

long ids_addr_set_field_case (

long sockh,
long field_idx, // Long in
long field_case // Long in
);
Parameters:

field_idx Specifies the nth field to set

field_case Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =
Upper case, 2 = Lower case and 3 = Mixed case.

Return Code:

negative for error, 0 for success

ids_addr_set_field ext
Description:

Use this function to set fields

Prototype:

long ids_addr_set_field_ext (
long sockh,
long field_operation,// Long in
char * field_name, // String in
long field_item_line , // Long in
char « field_type, // String in
char x field_value, // Block in
long field_value_size

);

Parameters:

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines
field name Refer AD Result.dtd for field names

field item_line Represent field line number or field item number

field_type Refer AD Result.dtd for field attribute Type

field_value input field value

Return Code:

negative for error, 0 for success

ids_addr_set field_ext 94

ids_addr_set field idx
Description:

Use this function to specify the value of an input field. This API is used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:

long ids_addr_set_field_idx (
long sockh,

long field_idx, // Long in
char * field_value, // Block in
long field_value_size

);

Parameters:

field_idx Specifies the nth field to set

field_value Specifies a value for the nth field

Return Code:

negative for error, 0 for success

ids_addr_set_field _name
Description:

Use this function to set individual input fields by name

Prototype:

long ids_addr_set_field_name (
long sockh,

char * field_name, // String in
char * field_value, // Block in
long field_value_size

);

Parameters:

field name Specifies the name of the field to set

field_value Specifies a value for the field

Return Code:

negative for error, 0 for success

95 CALLING FROM C WITHOUT ARRAYS

ids_addr_set_lines
Description:

Use this function to specify the value of an input field. This APIis used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:

long ids_addr_set_lines (
long sockh,

char x line_1, // Block in
long line_1_size,
char * line_2, // Block in
long line_2_size,
char * line_3, // Block in
long line_3_size,
char x line_4, // Block in
long line_4_size,
char * line_5, // Block in
long line_5_size,
char * line_6, // Block in
long line_6_size ,
char x line_7, // Block in
long line_7_size,
char * line_8, // Block in
long line_8_size,
char * line_9, // Block in
long line_9_size,
char * line_10, // Block in
long line_10_size
);
Parameters:

line_1 The first line of the address
line_2 The second line of the address
line_ 3 The third line of the address
line_ 4 The fourth line of the address
line_5 The fifth line of the address
line_6 The sixth line of the address
line_7 The seventh line of the address
line_8 The eighth line of the address
line_9 The ninth line of the address

line_10 The tenth line of the address

Return Code:

negative for error, 0 for success

ids_addr_set lines 96

ids_addr_set_option
Description:

Use this function to set values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Prototype:

long ids_addr_set_option (
long sockh,

char % param, // String in
char x wvalue // String in
);
Parameters:

param This field specifies the name of the option to set.

value This field specifies a value for the option.

Return Code:

negative for error, 0 for success

ids_addr_std
Description:
Use this function to request IDS to standardize an address by validating it against USPS validation

tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

Prototype:

long ids_addr_std (
long sockh,

char * firm_name, // String io
long firm_name_size,
char * urbanization, // String io
long urbanization_size,
char * address_one, // String io
long address_one_size,
char * address_two, // String io
long address_two_size,
char * last_line, // String io
long last_line_size

);

Parameters:

firm name It contains the name of the firm (may be blank).

97 CALLING FROM C WITHOUT ARRAYS

urbanization this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

address_one this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-
ponents such as apartment number.

address_two this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

last_line this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

Return Code:

0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

ids_addr_validate
Description:

Use this function to validate an address

Prototype:
long ids_addr_validate (
long sockh,
long * status, // Long out
long * n_suggest // Long out
)
Parameters:

status The status returned by the validation process

n_suggest The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

ids_connect
Description:
Initiates a socket.

ids_addr_validate 98

Prototype:

long ids_connect (

char * host, // String in
long port, // Long in
long * sockh // Long out
);
Parameters:

host is the host to connect to.
port is the port to connect to.

sockh is a socket handle.

Return Code:

negative for error, 0 for success

ids_disconnect
Description:

Releases resources allocated to a socket.

Prototype:

long ids_disconnect (
long sockh,
);

Parameters:

none

Return Code:

negative for error, 0 for success

ids_error_get
Description:

Get the error messages from the last API function that failed. This function should be called repeatedly
until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

99 CALLING FROM C WITHOUT ARRAYS

Prototype:

long ids_error_get (
long sockh,

char * msg, // String out
long msg_size

);

Parameters:

msg is the error message returned

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

ids_errors_get_all
Description:

Get the Server side error messages from the last API function that failed. This function should be called
repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

Prototype:

long ids_errors_get_all (
long sockh,

char x msg, // String out
long msg_size

);

Parameters:

msg is an error message.

Return Code:

negative for error, 0 for success

ids_identify
Description:

Identify a session to the console

ids_errors_get_all 100

Prototype:

long ids_identify (
long sockh,
char « identification // String in

);

Parameters:

identification is user supplied identitification for display on the console

Return Code:

negative for error, 0 for success

ids_is _little_endian
Description:

Checks if the search server is running on a little endian platform

Prototype:

long ids_is_little_endian (
long sockh,
long *+ endian_state // Long out

);

Parameters:

endian_state Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

Return Code:

negative for error, 0 for success

ids_match_explain
Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

101 CALLING FROM C WITHOUT ARRAYS

Prototype:

long ids_match_explain (

long sockh,
char * search, // String in
char * match_tolerance,// String in
char x searchrec, // Block in
long searchrec_size,
char x filerec, // Block in
long filerec_size ,
char * info_array, // BlockArray out
long info_array_num,
long info_array_size

)

Parameters:

search is the name of the Search which was performed.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

searchrec is the original record that we searched on
filerec is the record that was returned by the search

info_array An array describing the match results. See the Match Explain API section for details

Return Code:

negative for error, 0 for success

ids_match_explain_count
Description:

Estimate number of info blocks required for a subsequent match_explain call

Prototype:
long ids_match_explain_count (
long sockh,
char * search, // String in
long * count // Long out
)
Parameters:

search is the name of the Search which was performed.

count Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

ids_match_explain_count 102

ids_real time_async_get
Description:

Used to retrieve the result count associated with a call to ids_real_time_async_start.
cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

Prototype:

long ids_real_time_async_get (
long sockh,
char * reference, // String in
long block, // Long in

long % cluster_action_count // Long out
);
Parameters:

reference A reference number identifying the request (returned by
ids_real_time_sync_start)

block 1 =wait for a response 0 = return immediately if no results are available yet

cluster_action_count The number of clusters generated These can be returned with call to
real_time_sync_get 1= wait for a response

Return Code:

negative for error 0 for success positive for no results are available yet

ids_real _time_async_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more
calls to ids_real_time_sync_get to retrieve the results.

Prototype:

long ids_real_time_async_start (
long sockh,
char * rulebase, // String in
char x system, // String in
char x IDT, // String in
char %« sequence_number,// String in
char « operation, // String in
char x cluster_record, // Block in
long cluster_record_size,

103 CALLING FROM C WITHOUT ARRAYS

long source , // Long in

char * multi_search, // String in
long input_id, // Long in
char * reference, // String out
long reference_size

);

Parameters:

rulebase is the name of the rulebase.
system The name of the system in the rulebase
IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.
source Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

input_id Reserved. A value of 0 must be passed for this parameter.

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retrieving results.

Return Code:
negative for error
0 for success positive for warnings:
1-9 Reserved for future use
10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

ids_real _time_flul_add
Description:

This API used to add force link and wunlink rule. This call must be followed by

ids_real_ time_flul_init.

ids_real time_flul_add 104

Prototype:

long ids_real_time_flul_add (

long sockh,
char « rule_type, // String in
char « subject_rec_pk, // Block in
long subject_rec_pk_size,
char x relationship, // String in
char x« related_rec_pk, // Block in
long related_rec_pk_size

);

Parameters:

rule_type This field is for specifying the type of the rule. A value of A’ represents that the rule needs
to be added to the system and ‘D’ represents that a rule needs to be removed from the system

subject_rec_pk This field is for specifying the PK of the subject record
relationship This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a

value of ‘U’ represents an Unlink rule between the subject record and the related record.

related_rec_pk This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

ids_real time flul close
Description:

This API used to close and release force link and unlink module.

Prototype:

long ids_real_time_flul_close (
long sockh,

);

Parameters:

none

Return Code:

negative for error, 0 for success

105 CALLING FROM C WITHOUT ARRAYS

ids_real time flul delete
Description:

This API used to delete force link and unlink rule from MR table. This call must be followed by
ids_real_time_flul_ init.

Prototype:

long ids_real_time_flul_delete (
long sockh,
long rule_type_option, // Long in
char x* record_pk, // Block in
long record_pk_size

);

Parameters:

rule_type_option 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.

2 Delete all rules for input pk.

record_pk This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

ids_real _time_flul _find_rule
Description:

This API used to find link and unlink information for input IDT record. should be called after
ids_real_time_flul_init APL

Prototype:
long ids_real_time_flul_find_rule (
long sockh,
char * idt_rec, // Block in
long idt_rec_size,
long option // Long in
);
Parameters:

idt_rec This field is for specifying the PK of the record to be searched

option 0 Link Rule.
1 Unlink Rule.

ids_real time_flul_delete 106

Return Code:

negative for error, 0 for success

ids_real _time_flul_get_rule
Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real time_ flul_ find rule APIL

Prototype:

long ids_real_time_flul_get_rule (
long sockh,
char * idt_rec, // Block out
long idt_rec_size

);

Parameters:

idt_rec is the matched File record for input link or unlink rule.

Return Code:

negative for error, 0 for success

ids_real_time_flul_init
Description:

This API used to initialize force link and unlink module. = Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_flul_close.

Prototype:
long ids_real_time_flul_init (
long sockh,
char * idt_name, // String in
char * multi_search // String in
);
Parameters:

idt_name is the name of the IDT associated with the force link and unlink rule.

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

107 CALLING FROM C WITHOUT ARRAYS

Return Code:

negative for error, 0 for success

ids_real_time_sync_get
Description:

Use to retrieve the vresults and free the resources associated with a «call to
ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

Prototype:
long ids_real_time_sync_get (
long sockh,
char * reference, // String in
char * cluster_action_type ,// String out
long cluster_action_type_size,
char « cluster_action_id ,// String out
long cluster_action_id_size,
long * cluster_action_number ,// Long out

char « cluster_action_new ,// String out
long cluster_action_new_size
);
Parameters:
reference A reference string identifying the request. This must be passed to the

ids_real_time_sync_get call when retriving results.
cluster_action_type Identifies the action, ie add or delete
cluster_action_id The prefix which identifies the cluster
cluster_action_ number The number which identifies the cluster

cluster_action_new Identifies whether the cluster is newly formed or existing

Return Code:

negative for error, 0 for success, 1 for end of results

ids_real_time_sync_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

ids_real_time_sync_get 108

Prototype:

long ids_real_time_sync_start (

long sockh,
char * rulebase, // String in
char * system, // String in
char x IDT, // String in
char * sequence_number,// String in
char « operation, // String in
char x cluster_record, // Block in
long cluster_record_size,
long % cluster_action_count,// Long out
char * reference, // String out
long reference_size

);

Parameters:

rulebase is the name of the rulebase.
system The name of the system in the rulebase
IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.

cluster_action_count The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

Return Code:
negative for error
0 for success, and postive for warnings:
1-9 Reserved for future use
10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous
transaction. The record was added to the reject table.

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

109 CALLING FROM C WITHOUT ARRAYS

ids_scores_get
Description:

Retrieve an array of scores, one per match record. This APl is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

Prototype:

long ids_scores_get (
long sockh,
char * searchname, // String in
long * scores, // LongArray out
long scores_num

);

Parameters:

searchname is the name of the associated search

scores is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

ids_search_comment_get
Description:

Returns the user defined comment stored with the search.

Prototype:

long ids_search_comment_get (
long sockh,
char x searchname, // String in
char * comment, // String out
long comment_size

);

Parameters:

searchname the search to count.

comment is the area to copy the string containing the comment. This string will be null-terminated.

ids_scores_get 110

Return Code:

negative for error, 0 for success

ids_search_dedupe_start
Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

Prototype:

long ids_search_dedupe_start (
long sockh,
char * search, // String in
char * search_width, // String in
char * match_tolerance,// String in
char x parameters, // BlockArray in
long parameters_num,
long parameters_size,
char x searchrec, // Block io
long searchrec_size,
char * AnswersetName, // String in
long flags , // Long in
long * recid, // Long io
long * recs // Long io

);

Parameters:
search is the name of the search that is to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

parameters not used.
searchrec is the IDT record used to search with. It is returned by the Search Server.

AnswersetName is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with
the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

flags flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

recid the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

recs the number of records in the search set.

111 CALLING FROM C WITHOUT ARRAYS

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

ids_search_fields count
Description:

Gets the number of fields required to assemble the search record.

Prototype:

long ids_search_fields_count (
long sockh,

char * searchname, // String in
long * fc // Long out
)
Parameters:

searchname the search to count.

fc is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

ids_search_fields_get
Description:

Gets the number of fields required to assemble the search record.

Prototype:

long ids_search_fields_get (
long sockh,

char * searchname, // String in
char x fieldnames, // StringArray out
long fieldnames_num,
long fieldnames_size
);
Parameters:

searchname the search to count.

fieldnames is the array returned which will contain the name of the fields.

ids_search_fields _count

Return Code:

negative for error, 0 for success

ids_search_filter
Description:

Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER
MANUAL for details about SQL filters

Prototype:
long ids_search_filter (
long sockh,
char * search, // String in
char « filter // String in
);
Parameters:

search is the name of the Search that will use the filter

filter is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

ids_search_finish
Description:

Release resources associated with ids_search_start.

Prototype:

long ids_search_finish (
long sockh,
char x search // String in

);

Parameters:

search is the name of the search that was performed

Return Code:

negative for error, 0 for success

113 CALLING FROM C WITHOUT ARRAYS

ids_search_get

Description:
Retrieve file records that are a good match for the search record specified in the ids_search_start

or ids_system_search_start function.

Prototype:

long ids_search_get (
long sockh,

char * searchname, // String in
char x searchreturn, // Block out
long searchreturn_size,
long % score, // Long out
long * sreps, // LongArray out
long sreps_num,,
long * freps, // LongArray out
long freps_num

);

Parameters:

searchname is the name the search to used by the call.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

sreps is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

freps is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = O, freps[0] = 1, frep[1] =0

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get _complete

ids_search_get 114

Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3

v1 is used.

Prototype:

long ids_search_get_complete (
long sockh,
char * search, // String in
char * searchreturn, // Block out
long searchreturn_size,
long * score, // Long out
char * info, // Block out
long info_size

);

Parameters:

search is the name of the search which was performed.

searchreturn is an area into which a string from the set is copied.

score is the score calculated for the string.

info an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,
Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit

number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get_detail
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

Prototype:

115 CALLING FROM C WITHOUT ARRAYS

long ids_search_get_detail (
long sockh,

char * search, // String in
char * file_rec, // Block out
long file_rec_size,
long * score, // Long out
char * decision, // String out
long decision_size,
long * file_recid // Long out
);
Parameters:

search is the name of the Search which was performed.

file_rec is the matched File record.

score is the degree of similarity between the Search and File records (0-100).
decision is the match decision: A(ccept) or U(ndecided)

file_recid is the File Record-ID (corresponding to the RECID column from the IDT).

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_IDT_get
Description:

Gets the name of the IDT associated with the search.

Prototype:
long ids_search_IDT_get (
long sockh,
char x searchname, // String in

char x IDT, // String out
long IDT_size

);

Parameters:
searchname is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

ids_search_IDT_get

ids_search_layout
Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

Prototype:

long ids_search_layout (
long sockh,

char * search, // String in
char « viewType, // String in
char x func, // String in
char * names, // StringArray out
long names_num,
long names_size,
long * lengths, // LongArray out
long lengths_num,
long % offsets, // LongArray out
long offsets_num,,
long % repeats, // LongArray out
long repeats_num,
char * formats, // StringArray out
long formats_num,
long formats_size

);

Parameters:

search is the name of the Search which was performed.

viewType the type of view: input or output.

func describes the order of fields.

names is the area into which an array containing the fieldnames will be copied.

lengths is the area into which an array containing the lengths of the fields will be copied.
offsets is the area into which an array containing the offsets of the fields will be copied.
repeats is the area into which an array containing the number of repeats in a field will be copied.

formats is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

Character 0: Justification (‘L’eft or ‘R’ight)

Character 1: Compression (‘'F’ixed, “V’ariable or ‘L’ong)

Characters?2 - 3: Fill (2 characters containing the fill character in hexadecimal)
Character 4: Fill type (‘T’ext or ‘B’inary)

Characters 5 - 6: Base (2 characters containing the base in decimal)

Character 7: Format (‘T’ext, ‘N'umeric, ‘V’ariable or ‘B’inary)

Character 8 - 9: Reserved

Characters 10 - 11: Binary key number (2 hexadecimal digits)

Character 12: Character width (‘W’ide, ‘N’arrow)

117 CALLING FROM C WITHOUT ARRAYS

Characters 13 - 50: Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

Return Code:

negative for error, 0 for success

ids_search_profile_count
Description:

Count the number of profile entries available

Prototype:

long ids_search_profile_count (
long sockh,
long * count // Long out

)

Parameters:

count Returns the number of elements

Return Code:

negative for error, 0 for success

ids_search_profile_get
Description:

Get the profiling times, with each field comprising of an id, a name and a time

Prototype:

long ids_search_profile_get (
long sockh,

long * ids, // LongArray out
long ids_num,

char x names, // StringArray out
long names_num,

long names_size,

long x times, // LongArray out
long times_num

ids_search_profile_count

118

Parameters:

ids the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

names the names for each field

times the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

ids_search_start
Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Prototype:

long ids_search_start (
long sockh,
char * search, // String in

char * search_width, // String in
char * match_tolerance,// String in
char x parameters, // BlockArray in
long parameters_num,,
long parameters_size,
char x searchrec, // Block io
long searchrec_size ,
char * AnswersetName, // String in
long * recs, // Long out
char * records, // BlockArray in
long records_num,,
long records_size

)

Parameters:

search is the name of the search to be performed.

119 CALLING FROM C WITHOUT ARRAYS

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

records contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOQOUT has been exceeded.

ids_search_start_via_parameters

Description:

Prototype:

long ids_search_start_via_parameters (
long sockh,
char x search, // String in
char x search_width, // String in
char *+ match_tolerance,// String in
char x parameters, // BlockArray in
long parameters_num,,
long parameters_size,
long « datalen, // Long out
long % recs // Long out

);

Parameters:

search is the name of the search to be performed.

ids_search_start via_parameters 120

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_start_via_record

Description:

Prototype:

long ids_search_start_via_record (
long sockh,
char * search, // String in
char * search_width, // String in
char * match_tolerance,// String in
char * searchrec, // Block in
long searchrec_size,
long x datalen, // Long out
long * recs // Long out

);

Parameters:

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

datalen will return the length of a record.

121 CALLING FROM C WITHOUT ARRAYS

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from

ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_tolerances count

Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-

sively the matching scheme should be in rejecting candidates.

Prototype:
long ids_search_tolerances_count (
long sockh,
char * searchname, // String in
long * count // Long out
);
Parameters:

searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

ids_search_tolerances_get

Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how

aggressively the matching scheme should be in rejecting candidates.

Prototype:

long ids_search_tolerances_get (

long
char
char
long
long

sockh,
* searchname, // String in
x tolerances, // StringArray out

tolerances_num,
tolerances_size

ids_search_tolerances_count

122

Parameters:
searchname the search to count.

tolerances is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_search_view get
Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output

records.

Prototype:

long ids_search_view_get (
long sockh,
char * search, // String in
char = viewType, // String in
char * viewName, // String out
long viewName_size,
long * viewFieldCount, // Long out
long % viewRecLen // Long out

);

Parameters:

search is the name of the Search

viewType the type of the view (input or output)
viewName is the name of the view to query
viewFieldCount the number of fields in the view

viewRecLen is the length of the view

Return Code:

negative for error, 0 for success

ids_search_view_set
Description:

Sets a view as the active input or output view

123 CALLING FROM C WITHOUT ARRAYS

Prototype:

long ids_search_view_set (

long sockh,
char * search, // String in
char x viewType, // String in
char x viewName // String in
);
Parameters:

search is the name of the Search
viewType the type of the view (input or output)

viewName the name of the view to use

Return Code:

negative for error, 0 for success

ids_search_widths_count

Description:

Returns the count of search widths that have been defined for the search. The search width defines how
many items are selected by the search

Prototype:
long ids_search_widths_count (
long sockh,
char * searchname, // String in
long % count // Long out
);
Parameters:

searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

ids_search_widths_get
Description:

Returns the search widths that have been defined for the search. The search width defines how many
items are selected by the search

ids_search_widths_count 124

Prototype:

long ids_search_widths_get (

long sockh,
char * searchname, // String in
char « widths, // StringArray out
long widths_num,
long widths_size
)
Parameters:

searchname is the name the search to used by the call.

widths is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_server_version_get
Description:

Get the version information associated with the server.

Prototype:

long ids_server_version_get (
long sockh,
char « server_version, // String out
long server_version_size

);

Parameters:

server_version is the area into which the string containing the version information will be copied.

Return Code:

negative for error, 0 for success

ids_session_close
Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

125 CALLING FROM C WITHOUT ARRAYS

Prototype:

long ids_session_close (
long sockh,

)

Parameters:

none

Return Code:

negative for error, 0 for success

ids_session_open
Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server
from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Prototype:
long ids_session_open (
long sockh,

long * session // Long io

);

Parameters:

session is the number of the session to open (-1 for a new session).

Return Code:

negative for error, 0 for success

ids_set_encoding
Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of
the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

ids_session_open 126

Prototype:

long ids_set_encoding (

long sockh,

long encoding // Long in
)
Parameters:

encoding 6=UTF-16/UCS-2 (LE), 7=UTF-16,/UCS-2 (BE), 8=UTF-8, 4=UCS-4

Return Code:

negative for error, 0 for success

ids_set timeout
Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

Prototype:

long ids_set_timeout (
long sockh,
long timeout // Long in

);

Parameters:

timeout timeout 0 is disable timeout, a positive value in seconds for the timeout

Return Code:

negative for error, 0 for success

ids_set_vpd_user
Description:

Provides the Search Server with information required to set a Virtual Private Database context. Refer
to the DESIGNER MANUAL, VPD section for details about VPD.

127 CALLING FROM C WITHOUT ARRAYS

Prototype:

long ids_set_vpd_user (

long sockh,
char « vpd_user, // String in
char x vpd_ctx // String in
);
Parameters:

vpd_user Connection string of the actual user

vpd_ctx the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

ids_system_close
Description:

closes the system and frees any remaining resources.

Prototype:

long ids_system_close (
long sockh,
);

Parameters:

none

Return Code:

negative for error, 0 for success

ids_system_idtname_count
Description:

Returns the number of active idt names. (i.e. those whose IDT has been loaded).

Prototype:

long ids_system_idtname_count (
long sockh,
long * idtcount // Long out

);

ids_system_close 128

Parameters:

idtcount is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

ids_system_idtname_get
Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

Prototype:
long ids_system_idtname_get (
long sockh,
char * idtnames, // StringArray out
long idtnames_num,
long idtnames_size
);
Parameters:

idtnames is the area into which an array of the idtnames defined on the rulebase will be copied (the
idtnames are all null terminated strings).

Return Code:

negative for error, 0 for success

ids_system_ notify
Description:

Notifies search server on a system.

Prototype:
long ids_system_notify (
long sockh,
char * rulebase, // String in
char * sysname, // String in
char * message // String in
);
Parameters:

rulebase is the name of the rulebase.

129 CALLING FROM C WITHOUT ARRAYS

sysname is the name of the system

message is a messagevto be delivered

Return Code:

negative for error, 0 for success

ids_system_open

Description:

opens a system.

Prototype:

long ids_system_open (

long
char
char
char
char

);

Parameters:

rulebase is the name of the rulebase.

sockh,

* rulebase,
* system,

* verbosity,
* Options

// String
// String
// String
// String

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

Options LOGOUT filename for server output for this session.

in
in
in
in

LOGERR filename for server errors for this session.

LOGTEST filename for server search trace for this session.

SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-
tory for this session.

Return Code:

negative for error, 0 for success

ids_system_search_finish

Description:

Finishes the search and closes the system.

ids_system_open

130

Prototype:

long ids_system_search_finish (
long sockh,

);

Parameters:

none

Return Code:

negative for error, 0 for success

ids_system_search_start

Description:

Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer
to ids_search_start for a more detailed description of the parameters.

Prototype:

long ids_system_search_start (
long sockh,
char * rulebase,
char * system,
char x verbosity,
char * options,
char x search,
char * parameters,
long parameters_num,,
long parameters_size,
char * AnswersetName,
long * datalen,
long * recs

);

Parameters:

rulebase is the name of the rulebase.

/!
/!
/!

String in
String in
String in
String in
String in
BlockArray in

String in
Long out
Long out

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

options consists of one or more keywords and their respective values in the form
KEYWORD1=VALUE1l, KEYWORD2=VALUEZ,

search is the name of the search in the system in the Rulebase that will be used.

parameters is the array which contains the field values to be used to construct the search.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

131 CALLING FROM C WITHOUT ARRAYS

datalen will return the length of a record.

recs count of records that matched the search criteria

Return Code:

negative for error, 0 for success

ids_system_searches_count
Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of ids_system_open.

Prototype:

long ids_system_searches_count (
long sockh,
long * searchcount // Long out

);
Parameters:

searchcount is the number of searches defined on the system

Return Code:

negative for error, 0 for success

ids_system_searches_get
Description:
Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-

turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of
ids_system_open.

Prototype:
long ids_system_searches_get (
long sockh,
char = searches, // StringArray out
long searches_num,
long searches_size
);
Parameters:

searches is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

ids_system_searches_count 132

Return Code:

negative for error, 0 for success

ids_systems_count
Description:

the number of systems in the rulebase.

Prototype:
long ids_systems_count (
long sockh,
char * rulebase, // String in
long * systemscount // Long out
);
Parameters:

rulebase is the name of the rulebase.

systemscount the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

ids_systems_get
Description:

Get the names of all the systems defined in the rulebase.

Prototype:
long ids_systems_get (
long sockh,
char * rulebase, // String in
char * systems, // StringArray out
long systems_num,
long systems_size
);
Parameters:

rulebase is the name of the rulebase.

systems is the area into which an array of the systems defined in the rulebase will be copied (the
systems are all null terminated strings).

133 CALLING FROM C WITHOUT ARRAYS

Return Code:

negative for error, 0 for success

ids_systems_get 134

Calling from C#

In C# the API methods are made available in the shareable assembly ssasecs.d11l. This contains
the classes ids, which contains the API, as well as SSAAPIException and SSASocketException,
which are based on ApplicationException. All of these are in the ssa namespace.

The ids methods throw exceptions of the classes SSAAPIException and SSASocketException
that must be caught. If SSASocketException is caught, the communication channel is closed and no
further calls to the API can be made without reconnecting.

Installation - Win32 client
The shareable assembly can be installed in the global assembly cache with Microsoft’s gacutil utility:
gacutil /i %$SSABIN%\ssasecs.dll
You can then create applications that use it with:

csc /reference:%$SSABIN%\ssasecs.dll myprog.cs

Constants

Constants are public properties of the ids class, in uppercase using underscores, eg. ids.MSG_SIZE.

Response code

The response code returned from certain calls is also a public property called rci.e. ids.rc.

Parameter types

Note: values in BOLD represent information that must be provided to the function.

Constructor
Description:

Used to create a ssa. ids object. This object is then used to make the required API calls to the Search
or Connection Server.

Prototype:
using ssa;
public ids (
String hostname, // String in

int port // long in
) throws SSAException;

135 CALLING FROM C#

Parameters:
hostname is the name or IP address of the computer where the IIR Server is running

port the port number of the IIR Server for which a socket connection is to be established

Returns:

object allocated on success; SSAException on error

addr_get_cass_field
Description:

Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion
from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Prototype:
using ssa;

public byte [] addr_get_cass_field (

int suggest_idx, // Long in
int field_idx // Long in
)
Parameters:

suggest_idx Specifies the nth suggestion from which to get a cass field
field_idx Specifies a cass field within the nth suggestion

field value The cass field value

Return Code:

negative for error, 0 for success

addr_get_cass_field cnt

Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse
API.

addr_get cass_field 136

Prototype:
using ssa;

public int addr_get_cass_field_cnt ();

Parameters:

count Returns the max number of cass address fields

Return Code:

negative for error, 0 for success

addr_get_cass_field_info
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:
using ssa;

public int [] addr_get_cass_field_info (
int suggest_idx // Long in
);

Parameters:
suggest_idx Specifies the suggestion from which to retrieve information

field_length An array containing the length of each cass address field

Return Code:

negative for error, 0 for success

addr_get_del _lines_ext
Description:

Use this function to retrieve delivery address line information

Prototype:

137 CALLING FROM C#

using ssa;

public struct addr_get_del_lines_ext_struct addr_get_del_lines_ext (

int suggest_idx, // Long in
int del_case // Long in
)
Parameters:

suggest_idx Specifies the suggestion from which to get delivery address lines

del_case Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

del_linel delivery address line 1 output string
del_line2 delivery address line 2 output string
del_line3 delivery address line 3 output string
del_lined4 delivery address line 4 output string
del_line5 delivery address line 5 output string

del_lineé6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

addr_get_field
Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned
by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Prototype:
using ssa;

public struct addr_get_field_struct addr_get_field (

int suggest_idx, // Long in
int field_idx // Long in
);
Parameters:

suggest_idx Specifies the nth suggestion from which to get a field
field_idx Specifies a field within the nth suggestion

field value The field value

field val_status Specifies how this field matched the validation data

field _val_mods Specifies how this field was modified by validation data

addr_get field 138

Return Code:

negative for error, 0 for success

addr_get _field count
Description:

This function returns the maximum number of address fields created as a result of a parse or validate
call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APIL

Prototype:
using ssa;

public int addr_get_field_count ();

Parameters:

count Returns the max number of address fields

Return Code:

negative for error, 0 for success

addr_get_field ext
Description:

Use this function to retrieve all getter fields

Prototype:
using ssa;

public byte [] addr_get_field_ext (

int suggest_idx, // Long in
int field_operation ,// Long in
string field_name, // String in
int field_item_line ,// Long in
string field_type // String in
);
Parameters:

suggest_idx Specifies the suggestion from which to get fields

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

139 CALLING FROM C#

field name Refer AD Result.dtd for field names
field_item_line Represent field line number or field item number
field type Refer AD Result.dtd for field attribute Type

field_value Cleansed field output

Return Code:

negative for error, 0 for success

addr_get_field idx
Description:

Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-
tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

Prototype:
using ssa;

public byte [] addr_get_field_idx (

int suggest_idx, // Long in
int field_idx // Long in
);
Parameters:

suggest_idx Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

field_idx Specifies a field within the nth suggestion

field wvalue The field value

Return Code:

negative for error, 0 for success

addr_get_field info_ext
Description:

Use this function to retrieve a list of individual field lengths after validating an address. Fields with a
length of zero have no value associated with them and can be omitted from the list of fields retrieved
with ids_addr_get_field_idx

addr_get field_idx 140

Prototype:
using ssa;

public struct addr_get_field_info_ext_struct addr_get_field_info_ext (
int suggest_idx // Long in
);

Parameters:

suggest_idx Specifies the suggestion from which to retrieve information
field_length An array containing the length of each address field
addr_label_encoded The returned label

addr label charset The character set used in the address label

score The returned label’s score

Return Code:

negative for error, 0 for success

addr_get_field len

Description:

This function returns the maximum length of an individual address field. It may be used to dynamically
allocate the field parameter used for the ids_addr_get_field_idx APL

Prototype:
using ssa;

public int addr_get_field_len ();

Parameters:

max_len Returns the max address field length in bytes

Return Code:

negative for error, 0 for success

addr_get_line_len
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

141 CALLING FROM C#

Prototype:
using ssa;

public int addr_get_line_len ();

Parameters:

max_len Returns the max line length in bytes

Return Code:

negative for error, 0 for success

addr_get_option
Description:

Use this function to obtain values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Prototype:
using ssa;

public string addr_get_option (
string param // String in

);

Parameters:
param This field specifies the name of the option to get.

value Returns the value of the option.

Return Code:

negative for error, 0 for success

addr_info
Description:

Use this function to request additional information about an input address. This call must always be
preceded with a call to ids_addr_std.

addr_get option 142

Prototype:
using ssa;

public string addr_info (
string controls // String in

);

Parameters:
controls this field contains the request information. It must me specified in the form ITEM=[value].

value this field contains the requested information.

Return Code:

negative for error, 0 for success

addr_init
Description:
This function initializes the Address Standardization sub-system. It must be the first call to

ids_addr_» family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

Prototype:
using ssa;

public void addr_init (
int max_memory // Long in

);

Parameters:

max_memory This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:

negative for error, 0 for success

addr_parse

Description:
Use this function to parse an address. The individual field lengths after parsing an address are returned

in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

143 CALLING FROM C#

Prototype:
using ssa;

public int [] addr_parse ();

Parameters:

field length An array containing the length of each parsed field

Return Code:

negative for error, 0 for success

addr_preload_country
Description:

Use this function to preload country database

Prototype:
using ssa;
public void addr_preload_country (
string preload_type, // String in

string preload_country,// String in
string val_mode // String in

)

Parameters:
preload_type Type of preload to perform
preload _country Country database to be preloaded

val_mode Validation mode to be used

Return Code:

negative for error, 0 for success

addr_set_attrib

Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

addr_preload_country 144

Prototype:
using ssa;
public void addr_set_attrib (
string char_set, // String in
string default_country // String in
);
Parameters:

char_set The name of the character set used to encode the input and output.

default_country The default country used for validation when parsing cannot detect a country
name.

Return Code:

negative for error, 0 for success

addr_set del lines
Description:

Use this function to set delivery address line information

Prototype:
using ssa;

public void addr_set_del_lines (

byte [] del_linel, // Block in
byte [] del_line2, // Block in
byte [] del_line3, // Block in
byte [] del_line4, // Block in
byte [] del_line5, // Block in
byte [] del_line6 // Block in

);

Parameters:

del_linel delivery address line 1 input string
del_line2 delivery address line 2 input string
del_line3 delivery address line 3 input string
del_line4 delivery address line 4 input string
del_line5 delivery address line 5 input string

del_lineé6 delivery address line 6 input string

Return Code:

negative for error, 0 for success

145 CALLING FROM C#

addr_set field case
Description:

Use this function to set individual input fields case option

Prototype:
using ssa;

public void addr_set_field_case (

int field_idx, // Long in
int field_case // Long in
)
Parameters:

field_idx Specifies the nth field to set

field_case Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =
Upper case, 2 = Lower case and 3 = Mixed case.

Return Code:

negative for error, 0 for success

addr_set field ext
Description:

Use this function to set fields

Prototype:
using ssa;

public void addr_set_field_ext (

int field_operation ,// Long in
string field_name, // String in
int field_item_line ,// Long in
string field_type, // String in
byte [] field_value // Block in
);
Parameters:

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines
field name Refer AD Result.dtd for field names

field_item_line Represent field line number or field item number

field type Refer AD Result.dtd for field attribute Type

field value input field value

addr_set field _case 146

Return Code:

negative for error, 0 for success

addr_set field_idx
Description:

Use this function to specify the value of an input field. This API is used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:
using ssa;

public void addr_set_field_idx (

int field_idx, // Long in
byte [] field_value // Block in
);
Parameters:

field_idx Specifies the nth field to set

field value Specifies a value for the nth field

Return Code:

negative for error, 0 for success

addr_set field name
Description:

Use this function to set individual input fields by name

Prototype:
using ssa;

public void addr_set_field_name (

string field_name, // String in
byte [] field_value // Block in
);
Parameters:

field name Specifies the name of the field to set

field value Specifies a value for the field

147 CALLING FROM C#

Return Code:

negative for error, 0 for success

addr_set lines

Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:

using ssa;

public void addr_set_lines (

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
);

Parameters:

line_1 The first line of the address

[

—_———— ————
o bt b bt b b e bd bd ed

line_1,
line_2,
line_3,
line_4,
line_5,
line_6,
line_7,
line_8,
line_9,
line_10

line_2 The second line of the address

line_3 The third line of the address
line_ 4 The fourth line of the address
line_5 The fifth line of the address

line_ 6 The sixth line of the address

line_7 The seventh line of the address

line_8 The eighth line of the address
line_9 The ninth line of the address

line_10 The tenth line of the address

Return Code:

negative for error, 0 for success

Block
Block
Block
Block
Block
Block
Block
Block
Block
Block

addr_set lines

148

addr_set_option
Description:

Use this function to set values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Prototype:
using ssa;

public void addr_set_option (

string param, // String in
string value // String in
);
Parameters:

param This field specifies the name of the option to set.

value This field specifies a value for the option.

Return Code:

negative for error, 0 for success

addr_std

Description:

Use this function to request IDS to standardize an address by validating it against USPS validation
tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

Prototype:
using ssa;

public void addr_std (

ref string firm_name, // String io
ref string urbanization, // String io
ref string address_one, // String io
ref string address_two, // String io
ref string last_line // String io
)
Parameters:

firm_name It contains the name of the firm (may be blank).

urbanization this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

149 CALLING FROM C#

address_one this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-
ponents such as apartment number.

address_two this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

last_line this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

Return Code:
0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

addr_validate
Description:

Use this function to validate an address

Prototype:
using ssa;

public struct addr_validate_struct addr_validate ();

Parameters:
status The status returned by the validation process

n_suggest The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

disconnect
Description:
Releases resources allocated to a socket.

addr_validate 150

Prototype:
using ssa;

public void disconnect ();

Parameters:

none

Return Code:

negative for error, 0 for success

error_get
Description:

Get the error messages from the last API function that failed. This function should be called repeatedly
until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

Prototype:
using ssa;

public string error_get ();

Parameters:

msg is the error message returned

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

errors_get_all
Description:

Get the Server side error messages from the last API function that failed. This function should be called
repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

151 CALLING FROM C#

Prototype:
using ssa;
public string errors_get_all ();

Parameters:

msg is an error message.

Return Code:

negative for error, 0 for success

identify
Description:

Identify a session to the console

Prototype:
using ssa;
public void identify (
string identification // String in
);
Parameters:

identification is user supplied identitification for display on the console

Return Code:

negative for error, 0 for success

is_little_endian
Description:

Checks if the search server is running on a little endian platform

Prototype:
using ssa;
public int is_little_endian ();

Parameters:

endian_state Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

identify 152

Return Code:

negative for error, 0 for success

match_explain
Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

Prototype:
using ssa;

public byte [][] match_explain (

string search, // String in
string match_tolerance,// String in
byte [] searchrec, // Block in
byte [] filerec // Block in
);
Parameters:

search is the name of the Search which was performed.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

searchrec is the original record that we searched on
filerec is the record that was returned by the search

info_array An array describing the match results. See the Match Explain API section for details

Return Code:

negative for error, 0 for success

match_explain_count
Description:

Estimate number of info blocks required for a subsequent match_explain call

Prototype:

153 CALLING FROM C#

using ssa;

public int match_explain_count (
string search // String in

);

Parameters:
search is the name of the Search which was performed.

count Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

real_time_async_get
Description:

Used to retrieve the result count associated with a call to ids_real_time_async_start.
cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

Prototype:
using ssa;

public int real_time_async_get (

string reference, // String in
int block // Long in
);
Parameters:
reference A reference number identifying the request (returned by

ids_real_time_sync_start)
block 1 = wait for a response 0 = return immediately if no results are available yet

cluster_action_count The number of clusters generated These can be returned with call to
real_time_sync_get 1 =wait for a response

Return Code:

negative for error 0 for success positive for no results are available yet

real_time_async_start

real_time_async_get 154

Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more
callsto ids_real_time_sync_get to retrieve the results.

Prototype:
using ssa;

public string real_time_async_start (

string rulebase, // String in
string system, // String in
string IDT, // String in
string sequence_number,// String in
string operation, // String in
byte [] cluster_record, // Block in
int source , // Long in
string multi_search, // String in
int input_id // Long in

);

Parameters:

rulebase is the name of the rulebase.
system The name of the system in the rulebase
IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.
source Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

input_id Reserved. A value of 0 must be passed for this parameter.

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retrieving results.

Return Code:

negative for error

0 for success positive for warnings:

1-9 Reserved for future use

10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

155 CALLING FROM C#

real time flul add

Description:

This API used to add force link and wunlink rule. This call must be followed by
ids_real_time_flul_init.

Prototype:

using ssa;

public void real_time_flul_add (
string rule_type, // String in
byte [] subject_rec_pk, // Block in

string relationship, // String in
byte [] related_rec_pk // Block in

);

Parameters:

rule_type This field is for specifying the type of the rule. A value of A’ represents that the rule needs
to be added to the system and ‘D’ represents that a rule needs to be removed from the system

subject_rec_pk This field is for specifying the PK of the subject record

relationship This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a
value of "U’ represents an Unlink rule between the subject record and the related record.

related_rec_pk This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

real _time flul close
Description:

This API used to close and release force link and unlink module.

Prototype:
using ssa;
public void real_time_flul_close ();

Parameters:

none

real _time_flul_add 156

Return Code:

negative for error, 0 for success

real_time_flul _delete
Description:
This API used to delete force link and unlink rule from MR table. This call must be followed by

ids_real_time_flul_init.

Prototype:
using ssa;

public void real_time_flul_delete (

int rule_type_option, // Long in
byte [] record_pk // Block in
);
Parameters:

rule_type_option 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.
2 Delete all rules for input pk.

record_pk This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

real_time_flul _find_rule
Description:
This API used to find link and unlink information for input IDT record. should be called after

ids_real time_flul_init APL

Prototype:
using ssa;

public void real_time_flul_find_rule (

byte [] idt_rec, // Block in
int option // Long in
);
Parameters:

idt_rec This field is for specifying the PK of the record to be searched

157 CALLING FROM C#

option 0 Link Rule.
1 Unlink Rule.
Return Code:

negative for error, 0 for success

real_time_flul_get rule
Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real time_flul_find_rule APL

Prototype:
using ssa;

public byte [] real_time_flul_get_rule ();

Parameters:

idt_rec is the matched File record for input link or unlink rule.

Return Code:

negative for error, 0 for success

real_time_flul_init
Description:

This API used to initialize force link and unlink module. =~ Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_flul_close.

Prototype:
using ssa;

public void real_time_flul_init (

string idt_name, // String in
string multi_search // String in
);
Parameters:

idt_name is the name of the IDT associated with the force link and unlink rule.

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

real _time_flul_get rule 158

Return Code:

negative for error, 0 for success

real_time_sync_get
Description:

Use to retrieve the results and free the resources associated with a «call to
ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

Prototype:
using ssa;

public struct real_time_sync_get_struct real_time_sync_get (

string reference // String in
);
Parameters:
reference A reference string identifying the request. This must be passed to the

ids_real_time_sync_get call when retriving results.
cluster_action_type Identifies the action, ie add or delete
cluster_action_id The prefix which identifies the cluster
cluster_action number The number which identifies the cluster

cluster_action_new Identifies whether the cluster is newly formed or existing

Return Code:

negative for error, 0 for success, 1 for end of results

real_time_sync_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

Prototype:

159 CALLING FROM C#

using ssa;

public struct real_time_sync_start_struct real_time_sync_start (

string rulebase, // String in
string system, // String in
string IDT, // String in
string sequence_number,// String in
string operation, // String in

byte [] cluster_record // Block in
);

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.

cluster_action_count The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

Return Code:
negative for error
0 for success, and postive for warnings:
1-9 Reserved for future use
10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous
transaction. The record was added to the reject table.

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

real _time_sync_start 160

scores_get
Description:

Retrieve an array of scores, one per match record. This APl is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

Prototype:
using ssa;

public int [] scores_get (
string searchname // String in

);

Parameters:
searchname is the name of the associated search

scores is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

search_comment_get
Description:

Returns the user defined comment stored with the search.

Prototype:
using ssa;
public string search_comment_get (

string searchname // String in

);

Parameters:
searchname the search to count.

comment is the area to copy the string containing the comment. This string will be null-terminated.

161 CALLING FROM C#

Return Code:

negative for error, 0 for success

search_dedupe_start
Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

Prototype:
using ssa;

public void search_dedupe_start (

string search, // String in
string search_width, // String in
string match_tolerance,// String in
byte [][[] parameters, // BlockArray in
ref byte [] searchrec, // Block io
string AnswersetName, // String in
int flags , // Long in
ref int recid, // Long io
ref int recs // Long io

);

Parameters:

search is the name of the search that is to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

parameters not used.
searchrec is the IDT record used to search with. It is returned by the Search Server.

AnswersetName is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with
the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

flags flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

recid the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

recs the number of records in the search set.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

search_dedupe_start 162

search_fields_count
Description:

Gets the number of fields required to assemble the search record.

Prototype:
using ssa;

public int search_fields_count (
string searchname // String in

);

Parameters:
searchname the search to count.

fc is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

search_fields_get
Description:

Gets the number of fields required to assemble the search record.

Prototype:
using ssa;

public string [] search_fields_get (
string searchname // String in

);

Parameters:
searchname the search to count.

fieldnames is the array returned which will contain the name of the fields.

Return Code:

negative for error, 0 for success

163 CALLING FROM C#

search_filter
Description:

Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER
MANUAL for details about SQL filters

Prototype:
using ssa;

public void search_filter (

string search, // String in
string filter // String in
);
Parameters:

search is the name of the Search that will use the filter

filter is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

search_finish
Description:

Release resources associated with ids_search_start.

Prototype:
using ssa;

public void search_finish (
string search // String in

);

Parameters:

search is the name of the search that was performed

Return Code:
negative for error, 0 for success

search_filter 164

search_get
Description:

Retrieve file records that are a good match for the search record specified in the ids_search_start
or ids_system_search_start function.

Prototype:
using ssa;

public struct search_get_struct search_get (
string searchname // String in

);

Parameters:

searchname is the name the search to used by the call.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

sreps is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

freps is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = O, freps[0] = 1, frep[1] =0

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_get_complete
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3
v1is used.

165 CALLING FROM C#

Prototype:
using ssa;

public struct search_get_complete_struct search_get_complete (
string search // String in

);

Parameters:

search is the name of the search which was performed.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

info an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,
Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit
number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_get_detalil
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

Prototype:
using ssa;

public struct search_get_detail_struct search_get_detail (
string search // String in

);

Parameters:

search is the name of the Search which was performed.

file_rec is the matched File record.

score is the degree of similarity between the Search and File records (0-100).
decision is the match decision: A(ccept) or U(ndecided)

file_recid is the File Record-ID (corresponding to the RECID column from the IDT).

search_get detail 166

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_IDT_get
Description:

Gets the name of the IDT associated with the search.

Prototype:
using ssa;

public string search_IDT_get (
string searchname // String in

)

Parameters:

searchname is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

search_layout
Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

Prototype:
using ssa;

public struct search_layout_struct search_layout (

string search, // String in
string viewType, // String in
string func // String in
);
Parameters:

search is the name of the Search which was performed.

viewType the type of view: input or output.

167 CALLING FROM C#

func describes the order of fields.

names is the area into which an array containing the fieldnames will be copied.

lengths is the area into which an array containing the lengths of the fields will be copied.
offsets is the area into which an array containing the offsets of the fields will be copied.
repeats is the area into which an array containing the number of repeats in a field will be copied.

formats is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

Character 0: Justification (‘L’eft or ‘R’ight)

Character 1: Compression (‘F’ixed, ‘V’ariable or ‘I ong)

Characters2 - 3: Fill (2 characters containing the fill character in hexadecimal)
Character 4: Fill type (‘T’ext or ‘B’inary)

Characters 5 - 6: Base (2 characters containing the base in decimal)

Character 7: Format (‘T’ext, ‘N'umeric, ‘V’ariable or ‘B’inary)

Character 8 - 9: Reserved

Characters 10 - 11: Binary key number (2 hexadecimal digits)

Character 12: Character width (‘W’ide, ‘N’arrow)

Characters 13 - 50: Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

Return Code:

negative for error, 0 for success

search_profile_count
Description:

Count the number of profile entries available

Prototype:
using ssa;

public int search_profile_count ();

Parameters:

count Returns the number of elements

Return Code:

negative for error, 0 for success

search_profile_count 168

search_profile_get

Description:

Get the profiling times, with each field comprising of an id, a name and a time

Prototype:
using ssa;

public struct search_profile_get_struct search_profile_get ();

Parameters:

ids the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

names the names for each field

times the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

search_start
Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Prototype:
using ssa;
public int search_start (

string search, // String in
string search_width, // String in

169 CALLING FROM C#

string match_tolerance,// String in

byte [][[] parameters, // BlockArray in
ref byte [] searchrec, // Block io
string AnswersetName, // String in
byte [][[] records // BlockArray in
);
Parameters:

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

records contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOUT has been exceeded.

search_start_via_parameters
Description:

Prototype:
using ssa;
public struct search_start_via_parameters_struct search_start_via_parameters (

string search, // String in
string search_width, // String in

search_start_via_parameters 170

string match_tolerance,// String in
byte [][[] parameters // BlockArray in

);
Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls

will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

search_start_via_record
Description:

Prototype:
using ssa;

public struct search_start_via_record_struct search_start_via_record (

string search, // String in
string search_width, // String in
string match_tolerance,// String in
byte [] searchrec // Block in
);
Parameters:

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

171 CALLING FROM C#

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

search_tolerances count

Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-
sively the matching scheme should be in rejecting candidates.

Prototype:
using ssa;

public int search_tolerances_count (
string searchname // String in

);

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

search_tolerances_get
Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how
aggressively the matching scheme should be in rejecting candidates.

search _tolerances count 172

Prototype:
using ssa;

public string [] search_tolerances_get (
string searchname // String in

);

Parameters:
searchname the search to count.

tolerances is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

search_view_get
Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output
records.

Prototype:
using ssa;

public struct search_view_get_struct search_view_get (

string search, // String in
string viewType // String in
);
Parameters:

search is the name of the Search

viewType the type of the view (input or output)
viewName is the name of the view to query
viewFieldCount the number of fields in the view

viewRecLen is the length of the view

Return Code:

negative for error, 0 for success

173 CALLING FROM C#

search_view_set
Description:

Sets a view as the active input or output view

Prototype:
using ssa;

public void search_view_set (

string search, // String in
string viewType, // String in
string viewName // String in
);
Parameters:

search is the name of the Search
viewType the type of the view (input or output)

viewName the name of the view to use

Return Code:

negative for error, 0 for success

search_widths_count

Description:
Returns the count of search widths that have been defined for the search. The search width defines how

many items are selected by the search

Prototype:
using ssa;
public int search_widths_count (
string searchname // String in

);

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

search _view_set 174

search_widths_get
Description:
Returns the search widths that have been defined for the search. The search width defines how many

items are selected by the search

Prototype:
using ssa;

public string [] search_widths_get (
string searchname // String in

);
Parameters:

searchname is the name the search to used by the call.

widths is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

server_version_get
Description:

Get the version information associated with the server.

Prototype:
using ssa;

public string server_version_get ();

Parameters:

server_version is the area into which the string containing the version information will be copied.

Return Code:

negative for error, 0 for success

session_close
Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

175 CALLING FROM C#

Prototype:
using ssa;
public void session_close ();

Parameters:

none

Return Code:

negative for error, 0 for success

session_open
Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server
from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Prototype:
using ssa;
public void session_open (
ref int session // Long io

);

Parameters:

session is the number of the session to open (-1 for a new session).

Return Code:

negative for error, 0 for success

set_encoding
Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of
the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

session_open 176

Prototype:
using ssa;

public void set_encoding (
int encoding // Long in

);

Parameters:

encoding 6=UTF-16/UCS-2 (LE), 7=UTF-16/UCS-2 (BE), 8=UTF-8, 4=UCS-4

Return Code:

negative for error, 0 for success

set_timeout
Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

Prototype:
using ssa;

public void set_timeout (
int timeout // Long in

);

Parameters:

timeout timeout 0 is disable timeout, a positive value in seconds for the timeout

Return Code:

negative for error, 0 for success

set_vpd_user
Description:

Provides the Search Server with information required to set a Virtual Private Database context. Refer
to the DESIGNER MANUAL, VPD section for details about VPD.

177 CALLING FROM C#

Prototype:
using ssa;

public void set_vpd_user (

string vpd_user, // String in
string vpd_ctx // String in
);
Parameters:

vpd_user Connection string of the actual user

vpd_ctx the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

system_close
Description:

closes the system and frees any remaining resources.

Prototype:
using ssa;

public void system_close ();

Parameters:

none

Return Code:

negative for error, 0 for success

system_idtname_count

Description:

Returns the number of active idt names. (i.e. those whose IDT has been loaded).

Prototype:
using ssa;

public int system_idtname_count ();

system_close 178

Parameters:

idtcount is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

system_idtname_get
Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

Prototype:
using ssa;

public string [] system_idtname_get ();

Parameters:

idtnames is the area into which an array of the idtnames defined on the rulebase will be copied (the
idtnames are all null terminated strings).

Return Code:

negative for error, 0 for success

system_notify
Description:

Notifies search server on a system.

Prototype:
using ssa;

public void system_notify (

string rulebase, // String in
string sysname, // String in
string message // String in
);
Parameters:

rulebase is the name of the rulebase.
sysname is the name of the system

message is a messagevto be delivered

179 CALLING FROM C#

Return Code:

negative for error, 0 for success

system_open
Description:

opens a system.

Prototype:

using ssa;

public void system_open (

string
string
string
string

);

Parameters:

rulebase is the name of the rulebase.

rulebase,
system ,
verbosity,
Options

// String
// String
// String
// String

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

Options LOGOUT filename for server output for this session.

in
in
in
in

LOGERR filename for server errors for this session.

LOGTEST filename for server search trace for this session.

SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-
tory for this session.

Return Code:

negative for error, 0 for success

system_search_finish

Description:

Finishes the search and closes the system.

system_open

180

Prototype:
using ssa;

public void system_search_finish ();

Parameters:

none

Return Code:

negative for error, 0 for success

system_search_start
Description:

Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer
to ids_search_start for a more detailed description of the parameters.

Prototype:
using ssa;

public struct system_search_start_struct system_search_start (

string rulebase, // String in
string system, // String in
string verbosity, // String in
string options, // String in
string search, // String in
byte [][[] parameters, // BlockArray in

string AnswersetName // String in
);
Parameters:
rulebase is the name of the rulebase.
system The name of the system in the rulebase
verbosity specifies the verbosity level. See the Verbosity section for details.

options consists of one or more keywords and their respective values in the form
KEYWORD1=VALUE1l, KEYWORD2=VALUE2Z,

search is the name of the search in the system in the Rulebase that will be used.
parameters is the array which contains the field values to be used to construct the search.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

datalen will return the length of a record.

recs count of records that matched the search criteria

181 CALLING FROM C#

Return Code:

negative for error, 0 for success

system_searches_count

Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of ids_system_open.

Prototype:
using ssa;

public int system_searches_count ();

Parameters:

searchcount is the number of searches defined on the system

Return Code:

negative for error, 0 for success

system_searches_get

Description:

Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-
turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of
ids_system_open.

Prototype:
using ssa;

public string [] system_searches_get ();

Parameters:

searches is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

Return Code:

negative for error, 0 for success

system_searches_count 182

systems_count
Description:

the number of systems in the rulebase.

Prototype:
using ssa;

public int systems_count (
string rulebase // String in

);

Parameters:
rulebase is the name of the rulebase.

systemscount the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

systems_get
Description:

Get the names of all the systems defined in the rulebase.

Prototype:
using ssa;
public string [] systems_get (
string rulebase // String in

);

Parameters:
rulebase is the name of the rulebase.

systems is the area into which an array of the systems defined in the rulebase will be copied (the
systems are all null terminated strings).

Return Code:

negative for error, 0 for success

183 CALLING FROM C#

Calling from Cobol (z/OS)

IIR can be called from MVS Cobol under TSO, batch and/or CICS .

Static calls from Cobol are supported by including the copy book $SSAINC%\ssasecbs.cpy in the
Working-Storage section of a program.

Dynamic calls from Cobol are supported by including the copy books

+ ssasecbw.cpy in the Working-Storage section, and

+ ssasecbp. cpy in the Procedure Division.

Two sample programs are provided. idscobl.cob demonstrates calls from TSO/batch and
idscob2. cob is suitable for calls from CICS. These are built using the sample JCL, clcobl. jcl and

clcob2. jcl respectively.

To use IIR from TSO/batch user applications you need to have Language Environment support. This
is required to run Cobol programs compiled with the more recent LE /370 Cobol compilers.

Language Environment and TCP/IP (CICS Sockets) must be installed and enabled in CICS in order to
use the IIR CICS APL

Constants

Constants are declared as variables in Working-Storage, in uppercase using hyphens. Constants are
prefixed with 'SSA-’, eg. SSA-MSG-SIZE.

Installation

Two load dataset files are provided in TSO Transmit format. The following two dataset files are not
part of the standard release package and must be requested from Global Customer Support if required.

ssa.xmit.iss\ssaversion{}.load
ssa.xmit.iss\ssaversion{}.cics.load

These datasets should be transferred to MVS datasets using the TSO Receive facility and named
SSA.IIR10.1.0.LOAD and SSA.IIR10.1.0.CICS.LOAD respectively.

Installation (TSO/batch)

API programs must be linked with a stub called CIC001 in order to resolve the IIR entry points. When
using static calls from Cobol, the stub will dynamically load two other modules (SSASEA and SSATOK)
which must be present in the STEPLIB. These modules are found in SSA.IIR10.1.0.LOAD.

184

Installation (CICS) -static calls

If using static calls, API programs must be linked with a stub called CIC001 in order to resolve the IIR
entry points. When using static calls from Cobol, the stub will dynamically load two other modules
(SSASEA and CSSATIOK) which must be defined to CICS. Note: these modules are different than those
provided for the TSO/batch interface.

To install, add the dataset SSA.IIR10.1.0.CICS.LOAD to your CICS STEPLIB (DFHRPL).

Define SSASEA and CSSAIOK to your CICS environment.

Installation (CICS) - dynamic calls

To install, add the dataset SSA.IIR10.1.0.CICS.LOAD to your CICS STEPLIB (DFHRPL).

Define CIC001, SSAN3FN, SSASEA and CSSAIOK to your CICS environment.

Defining programs to CICS

Use the CEDA commands: (use a group defined on your CICS system).

CEDA DEF PROGRAM (CSSAIOK) GROUP (SSAGROUP)
CEDA INS PROGRAM (CSSAIOK) GROUP (SSAGROUP)

Repeat for other three programs

Example Program Definition

VIEW PROGRAM (CSSAIOK) GROUP (SSAGROUP)
OBJECT CHARACTERISTICS CICS RELEASE = 0610
CEDA View PROGram(CSSAIOK)

PROGram : CSSAIOK

Group : SSAGROUP

DEscription

Language : C Cobol | Assembler | Le370 | C | Pli
RELoad : No No | Yes

RESident : No No | Yes

USAge : Normal | Transient
USElpacopy : No No | Yes

Status : Enabled Enabled | Disabled

RS1 : 00 0-24 | Public

CEdf : Yes Yes | No

DAtalocation : Any Below | Any

EXECKey : User User | Cics
COncurrency : Quasirent Quasirent | Threadsafe
REMOTE ATTRIBUTES

DYnamic : No No | Yes

+ REMOTESystem :

Parameter types

The API functions return a response code. A negative response code indicates a transport error, after
which the communication channel is closed and no further API calls can be made without reconnecting.

185 CALLING FROM COBOL (Z/OS)

IDS-ADDR-GET-CASS-FIELD

Description:

Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion
from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Prototype:

CALL IDS—ADDR—-GET-CASS—FIELD USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY VALUE SUGGEST-IDX,

BY VALUE FIELD—-IDX,

BY REFERENCE FIELD-VALUE,

BY VALUE FIELD—-VALUE-SIZE
END CALL

Parameters:
SUGGEST-IDX Specifies the nth suggestion from which to get a cass field
FIELD-IDX Specifies a cass field within the nth suggestion

FIELD-VALUE The cass field value

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-CASS-FIELD-CNT
Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse

APL
Prototype:
CALL IDS—ADDR—GET—CASS—FIELD—CNT USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE COUNT
END CALL
Parameters:

COUNT Returns the max number of cass address fields

IDS-ADDR-GET-CASS-FIELD 186

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-CASS-FIELD-INFO

Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:

CALL IDS—ADDR—-GET—CASS—HELD—-INFO USING

BY REFERENCE

BY VALUE

BY VALUE

BY REFERENCE

BY VALUE
END CALL

Parameters:

SUGGEST-IDX Specifies the suggestion from which to retrieve information

FIELD-LENGTH An array containing the length of each cass address field

Return Code:

negative for error, 0 for success

RC,

SOCKH,
SUGGEST-IDX,
FIELD-LENGTH,

FIELD-LENGIH-NUM

IDS-ADDR-GET-DEL-LINES-EXT

Description:

Use this function to retrieve delivery address line information

Prototype:

CALL IDS—ADDR—-GET—DEL—-LINES—EXT USING

BY REFERENCE
BY VALUE
BY VALUE
BY VALUE
BY REFERENCE
BY VALUE
BY REFERENCE
BY VALUE
BY REFERENCE
BY VALUE
BY REFERENCE

187 CALLING FROM COBOL (Z/OS)

RC,

SOCKH,
SUGGEST-IDX,
DEL—CASE,
DEL-LINET1,
DEL—-LINE1-SIZE,
DEL—-LINE2,
DEL—-LINE2—-SIZE,
DEL—-LINES3,
DEL—-LINE3—-SIZE,
DEL—-LINE4,

BY VALUE
BY REFERENCE
BY VALUE
BY REFERENCE
BY VALUE

END CALL

Parameters:

DEL—-LINE4—-SIZE,
DEL—-LINES,
DEL—LINE5-SIZE,
DEL—-LINES6,
DEL—-LINE6—SIZE

SUGGEST-IDX Specifies the suggestion from which to get delivery address lines

DEL-CASE Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

DEL-LINE1 delivery address line 1 output string

DEL-LINE2 delivery address line 2 output string

DEL-LINE3 delivery address line 3 output string

DEL-LINE4 delivery address line 4 output string

DEL-LINES5 delivery address line 5 output string

DEL-LINE6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-FIELD

Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned
by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Prototype:

CALL IDS—ADDR-GET—HELD USING

BY REFERENCE
BY VALUE
BY VALUE
BY VALUE
BY REFERENCE
BY VALUE
BY REFERENCE
BY REFERENCE

END CALL

Parameters:

RC,

SOCKH,
SUGGEST-IDX,
FIELD—-IDX,
FIELD—VALUE,
FIELD—-VALUE-SIZE,
FIELD—VAL—-STATUS,
HELD—-VAL-MODS

SUGGEST-IDX Specifies the nth suggestion from which to get a field

IDS-ADDR-GET-FIELD

188

FIELD-IDX Specifies a field within the nth suggestion
FIELD-VALUE The field value
FIELD-VAL-STATUS Specifies how this field matched the validation data

FIELD-VAL-MODS Specifies how this field was modified by validation data

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-FIELD-COUNT

Description:

This function returns the maximum number of address fields created as a result of a parse or validate
call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APIL

Prototype:

CALL IDS—ADDR-GET—FIELD—-COUNT USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE COUNT
END CALL

Parameters:

COUNT Returns the max number of address fields

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-FIELD-EXT
Description:

Use this function to retrieve all getter fields

Prototype:

CALL IDS—ADDR—-GET—FIELD—EXT USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY VALUE SUGGEST-IDX,

BY VALUE FIELD—OPERATION,
BY REFERENCE FIELD-NAME,

BY VALUE FIELD-ITEM-LINE,

189 CALLING FROM COBOL (Z/OS)

BY REFERENCE FIELD-TYPE,

BY REFERENCE FIELD—-VALUE,

BY VALUE FIELD—VALUE—-SIZE
END CALL

Parameters:
SUGGEST-IDX Specifies the suggestion from which to get fields

FIELD-OPERATION Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

FIELD-NAME Refer AD Result.dtd for field names
FIELD-ITEM-LINE Represent field line number or field item number
FIELD-TYPE Refer AD Result.dtd for field attribute Type

FIELD-VALUE Cleansed field output

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-FIELD-IDX

Description:

Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-
tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

Prototype:

CALL IDS—ADDR—-GET-HELD-IDX USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY VALUE SUGGEST-IDX,

BY VALUE FIELD—-IDX,

BY REFERENCE FIELD—VALUE,

BY VALUE FIELD—-VALUE—-SIZE
END CALL

Parameters:

SUGGEST-IDX Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

FIELD-IDX Specifies a field within the nth suggestion

FIELD-VALUE The field value

IDS-ADDR-GET-FIELD-IDX 190

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-FIELD-INFO-EXT

Description:

Use this function to retrieve a list of individual field lengths after validating an address. Fields with a
length of zero have no value associated with them and can be omitted from the list of fields retrieved
with ids_addr_get_field_ idx

Prototype:

CALL IDS—ADDR-GET—-FIELD—-INFO—EXT USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY VALUE SUGGEST-IDX,
BY REFERENCE FIELD-LENGTH,
BY VALUE HELD-LENGTH-NUM,
BY REFERENCE ADDR-LABEL—-ENCODED,
BY VALUE ADDR-LABEL—-ENCODED-SIZE,
BY REFERENCE ADDR-LABEL—-CHARSET,
BY VALUE ADDR-LABEL—CHARSET—SIZE,
BY REFERENCE SCORE
END CALL

Parameters:

SUGGEST-IDX Specifies the suggestion from which to retrieve information
FIELD-LENGTH An array containing the length of each address field
ADDR-LABEL-ENCODED The returned label

ADDR-LABEL-CHARSET The character set used in the address label

SCORE The returned label’s score

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-FIELD-LEN

Description:

This function returns the maximum length of an individual address field. It may be used to dynamically
allocate the field parameter used for the ids_addr_get_field_idx APL

191 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—ADDR-GET—-FIELD—-LEN USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE MAX-LEN
END CALL

Parameters:

MAX-LEN Returns the max address field length in bytes

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-LINE-LEN

Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:

CALL IDS—ADDR—GET—LINE-LEN USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE MAX—LEN
END CALL

Parameters:

MAX-LEN Returns the max line length in bytes

Return Code:

negative for error, 0 for success

IDS-ADDR-GET-OPTION

Description:

Use this function to obtain values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

IDS-ADDR-GET-LINE-LEN 192

Prototype:

CALL IDS—ADDR-GET—-OPTION USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE PARAM,
BY REFERENCE VALUE,
BY VALUE VALUE—-SIZE

END CALL

Parameters:
PARAM This field specifies the name of the option to get.

VALUE Returns the value of the option.

Return Code:

negative for error, 0 for success

IDS-ADDR-INFO

Description:

Use this function to request additional information about an input address. This call must always be
preceded with a call to ids_addr_std.

Prototype:

CALL IDS—ADDR-INFO USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE CONTROLS,
BY REFERENCE VALUE,
BY VALUE VALUE—-SIZE
END CALL

Parameters:
CONTROLS this field contains the request information. It must me specified in the form ITEM=[value].

VALUE this field contains the requested information.

Return Code:

negative for error, 0 for success

IDS-ADDR-INIT

Description:
This function initializes the Address Standardization sub-system. It must be the first call to

ids_addr_» family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

193 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—ADDR-INIT USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY VALUE MAX-MEMORY
END CALL

Parameters:

MAX-MEMORY This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:

negative for error, 0 for success

IDS-ADDR-PARSE

Description:

Use this function to parse an address. The individual field lengths after parsing an address are returned
in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

Prototype:

CALL IDS—ADDR-PARSE USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE FIELD-LENGTH,

BY VALUE HELD-LENGIH-NUM
END CALL

Parameters:

FIELD-LENGTH An array containing the length of each parsed field

Return Code:

negative for error, 0 for success

IDS-ADDR-PRELOAD-COUNTRY

Description:
Use this function to preload country database

IDS-ADDR-PARSE 194

Prototype:

CALL IDS—ADDR-PRELOAD—-COUNTRY USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE ~ PRELOAD-TYPE,
BY REFERENCE PRELOAD-COUNIRY,
BY REFERENCE VAL-MODE

END CALL

Parameters:
PRELOAD-TYPE Type of preload to perform
PRELOAD-COUNTRY Country database to be preloaded

VAL-MODE Validation mode to be used

Return Code:

negative for error, 0 for success

IDS-ADDR-SET-ATTRIB

Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

Prototype:
CALL IDS—ADDR—SET—ATTRIB USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE CHAR-SET,
BY REFERENCE DEFAULT-COUNIRY
END CALL

Parameters:
CHAR-SET The name of the character set used to encode the input and output.

DEFAULT-COUNTRY The default country used for validation when parsing cannot detect a country
name.

Return Code:

negative for error, 0 for success

195 CALLING FROM COBOL (Z/OS)

IDS-ADDR-SET-DEL-LINES

Description:

Use this function to set delivery address line information

Prototype:

CALL IDS—ADDR—-SET—DEL-LINES USING

BY REFERENCE
BY VALUE

BY REFERENCE
BY REFERENCE
BY REFERENCE
BY REFERENCE

BY REFERENCE
BY REFERENCE
END CALL
Parameters:

RC,

SOCKH,
DEL-LINET1,
DEL—-LINE2,
DEL—-LINE3,
DEL—-LINE4,
DEL—-LINES,
DEL—-LINE6

DEL-LINE1 delivery address line 1 input string

DEL-LINE2 delivery address line 2 input string

DEL-LINE3 delivery address line 3 input string

DEL-LINE4 delivery address line 4 input string

DEL-LINES5 delivery address line 5 input string

DEL-LINE6 delivery address line 6 input string

Return Code:

negative for error, 0 for success

IDS-ADDR-SET-FIELD-CASE

Description:

Use this function to set individual input fields case option

Prototype:

CALL IDS—ADDR—-SET—-HFIELD—CASE USING

BY REFERENCE

BY VALUE

BY VALUE

BY VALUE
END CALL

RC,

SOCKH,
FIELD-IDX,
FIELD—CASE

IDS-ADDR-SET-DEL-LINES

196

Parameters:

FIELD-IDX Specifies the nth field to set

FIELD-CASE Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =
Upper case, 2 = Lower case and 3 = Mixed case.

Return Code:

negative for error, 0 for success

IDS-ADDR-SET-FIELD-EXT

Description:

Use this function to set fields

Prototype:

CALL IDS—ADDR—-SET—-FIELD—EXT USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY VALUE FIELD—OPERATION,
BY REFERENCE HFELD-NAME,

BY VALUE FIELD-ITEM-LINE,

BY REFERENCE FIELD-TYPE,
BY REFERENCE FIELD—VALUE
END CALL

Parameters:

FIELD-OPERATION Field operation Option 0 for AddressElements Option 1 for AddressLines
FIELD-NAME Refer AD Result.dtd for field names

FIELD-ITEM-LINE Represent field line number or field item number

FIELD-TYPE Refer AD Result.dtd for field attribute Type

FIELD-VALUE input field value

Return Code:

negative for error, 0 for success

IDS-ADDR-SET-FIELD-IDX

Description:

Use this function to specify the value of an input field. This API is used to specify an input address that
has already been pre-parsed into separate fields.

197 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—ADDR-SET—-FIELD—-IDX USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY VALUE FIELD—-IDX,

BY REFERENCE FIELD—VALUE
END CALL

Parameters:
FIELD-IDX Specifies the nth field to set

FIELD-VALUE Specifies a value for the nth field

Return Code:

negative for error, 0 for success

IDS-ADDR-SET-FIELD-NAME

Description:

Use this function to set individual input fields by name

Prototype:
CALL IDS—ADDR—SET-FIELD-NAME USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE FIELD-NAME,

BY REFERENCE FIELD—VALUE
END CALL

Parameters:
FIELD-NAME Specifies the name of the field to set

FIELD-VALUE Specifies a value for the field

Return Code:

negative for error, 0 for success

IDS-ADDR-SET-LINES

Description:

Use this function to specify the value of an input field. This API is used to specify an input address that
has already been pre-parsed into separate fields.

IDS-ADDR-SET-FIELD-NAME 198

Prototype:

CALL IDS—ADDR—-SET—LINES USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE LINE-1,
BY REFERENCE LINE-2,
BY REFERENCE LINE-3,
BY REFERENCE LINE—4,
BY REFERENCE LINE-5,
BY REFERENCE LINE-6,
BY REFERENCE LINE-7,
BY REFERENCE LINE-8,
BY REFERENCE LINE-9,
BY REFERENCE LINE-10

END CALL

Parameters:

LINE-1 The first line of the address
LINE-2 The second line of the address
LINE-3 The third line of the address
LINE-4 The fourth line of the address
LINE-5 The fifth line of the address
LINE-6 The sixth line of the address
LINE-7 The seventh line of the address
LINE-8 The eighth line of the address
LINE-9 The ninth line of the address

LINE-10 The tenth line of the address

Return Code:

negative for error, 0 for success

IDS-ADDR-SET-OPTION
Description:

Use this function to set values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Prototype:

CALL IDS—ADDR-SET—OPTION USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE PARAM,
BY REFERENCE VALUE
END CALL

199 CALLING FROM COBOL (Z/OS)

Parameters:
PARAM This field specifies the name of the option to set.

VALUE This field specifies a value for the option.

Return Code:

negative for error, 0 for success

IDS-ADDR-STD

Description:

Use this function to request IDS to standardize an address by validating it against USPS validation
tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

Prototype:

CALL IDS—-ADDR-STD USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE HRM-NAME,

BY VALUE FIRM—NAME-SIZE,

BY REFERENCE URBANIZATION,

BY VALUE URBANIZATION—-SIZE,

BY REFERENCE ADDRESS—ONE,

BY VALUE ADDRESS—ONE—SIZE,

BY REFERENCE ADDRESS—-TWO,

BY VALUE ADDRESS-TWO-SIZE,

BY REFERENCE LAST—-LINE,

BY VALUE LAST—-LINE—-SIZE
END CALL

Parameters:
FIRM-NAME It contains the name of the firm (may be blank).

URBANIZATION this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

ADDRESS-ONE this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-

ponents such as apartment number.

ADDRESS-TWO this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

LAST-LINE this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

IDS-ADDR-STD 200

Return Code:

0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

IDS-ADDR-VALIDATE

Description:

Use this function to validate an address

Prototype:
CALL IDS—ADDR-VALIDATE USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE STATUS,

BY REFERENCE N-SUGGEST
END CALL

Parameters:
STATUS The status returned by the validation process

N-SUGGEST The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

IDS-CONNECT
Description:

Initiates a socket.

Prototype:

CALL IDS—CONNECT USING
BY REFERENCE RC,
BY REFERENCE HOST,

BY VALUE PORT,
BY REFERENCE SOCKH
END CALL

Parameters:

HOST is the host to connect to.

201 CALLING FROM COBOL (Z/OS)

PORT is the port to connect to.

SOCKH is a socket handle.

Return Code:

negative for error, 0 for success

IDS-DISCONNECT
Description:

Releases resources allocated to a socket.

Prototype:

CALL IDS—DISCONNECT USING
BY REFERENCE RC,
BY VALUE SOCKH
END CALL

Parameters:

none

Return Code:

negative for error, 0 for success

IDS-ERROR-GET

Description:

Get the error messages from the last API function that failed. This function should be called repeatedly
until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

Prototype:

CALL IDS—ERROR—-GET USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE MSG,

BY VALUE MSG-SIZE
END CALL

Parameters:

MSG is the error message returned

IDS-DISCONNECT 202

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

IDS-ERRORS-GET-ALL

Description:

Get the Server side error messages from the last API function that failed. This function should be called
repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

Prototype:

CALL IDS—ERRORS—GET—ALL USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE MSG,

BY VALUE MSG-SIZE
END CALL

Parameters:

MSG is an error message.

Return Code:

negative for error, 0 for success

IDS-IDENTIFY
Description:

Identify a session to the console

Prototype:

CALL IDS—IDENTIFY USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE IDENTIFICATION
END CALL

Parameters:

IDENTIFICATION is user supplied identitification for display on the console

203 CALLING FROM COBOL (Z/OS)

Return Code:

negative for error, 0 for success

IDS-IS-LITTLE-ENDIAN

Description:

Checks if the search server is running on a little endian platform

Prototype:

CALL IDS—IS—LITTLE—ENDIAN USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE ENDIAN—-STATE
END CALL

Parameters:

ENDIAN-STATE Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

Return Code:

negative for error, 0 for success

IDS-MATCH-EXPLAIN

Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

Prototype:

CALL IDS-MATCH-EXPLAIN USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE MATCH-TOLERANCE,
BY REFERENCE SEARCHREC,
BY REFERENCE FILEREC,
BY REFERENCE INFO—-ARRAY,

BY VALUE INFO-ARRAY—-NUM,
BY VALUE INFO—-ARRAY—-SIZE
END CALL

IDS-IS-LITTLE-ENDIAN 204

Parameters:
SEARCH is the name of the Search which was performed.

MATCH-TOLERANCE specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

SEARCHREC is the original record that we searched on
FILEREC is the record that was returned by the search

INFO-ARRAY An array describing the match results. See the Match Explain API section for details

Return Code:

negative for error, 0 for success

IDS-MATCH-EXPLAIN-COUNT

Description:

Estimate number of info blocks required for a subsequent match_explain call

Prototype:
CALL IDS-MATCH—EXPLAIN-COUNT USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,

BY REFERENCE COUNT
END CALL

Parameters:
SEARCH is the name of the Search which was performed.

COUNT Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

IDS-REAL-TIME-ASYNC-GET

Description:

Used to retrieve the result count associated with a call to ids_real_time_async_start.
cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

205 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—REAL-TIME—ASYNC—GET USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE REFERENCE,
BY VALUE BLOCK,
BY REFERENCE CLUSTER—ACTION—COUNT
END CALL
Parameters:
REFERENCE A reference number identifying the request (returned by

ids_real_time_sync_start)
BLOCK 1 = wait for a response 0 = return immediately if no results are available yet

CLUSTER-ACTION-COUNT The number of clusters generated These can be returned with call to
real_time_sync_get 1 =wait for a response

Return Code:

negative for error 0 for success positive for no results are available yet

IDS-REAL-TIME-ASYNC-START

Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more

calls to ids_real_time_sync_get to retrieve the results.

Prototype:

CALL IDS—REAL—-TIME—ASYNC—START USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE ~ RULEBASE,
BY REFERENCE SYSTEM,
BY REFERENCE IDT,
BY REFERENCE SEQUENCE-NUMBER,
BY REFERENCE OPERATION,
BY REFERENCE ~ CLUSTER—RECORD,
BY VALUE SOURCE,
BY REFERENCE ~ MULTI-SEARCH,
BY VALUE INPUT-ID,
BY REFERENCE REFERENCE,
BY VALUE REFERENCE—SIZE

END CALL

Parameters:

RULEBASE is the name of the rulebase.

IDS-REAL-TIME-ASYNC-START

206

SYSTEM The name of the system in the rulebase
IDT is the name of the IDT associated with the update.

SEQUENCE-NUMBER is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

OPERATION The synchronizer operation being performed: A for add, D for delete or U for update
CLUSTER-RECORD The record to be updated. The record must use the same layout as the IDT.
SOURCE Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

MULTI-SEARCH The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

INPUT-ID Reserved. A value of 0 must be passed for this parameter.

REFERENCE A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retrieving results.

Return Code:

negative for error

0 for success positive for warnings:

1-9 Reserved for future use

10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

IDS-REAL-TIME-FLUL-ADD

Description:

This API used to add force link and wunlink rule. This call must be followed by
ids_real_time_flul_init.

Prototype:

CALL IDS—REAL-TIME-FLUL—-ADD USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE RULE-TYPE,
BY REFERENCE SUBJECT-REC—-PK,
BY REFERENCE RELATIONSHIP,
BY REFERENCE RELATED—REC—PK
END CALL

Parameters:

RULE-TYPE This field is for specifying the type of the rule. A value of A’ represents that the rule needs
to be added to the system and "D’ represents that a rule needs to be removed from the system

207 CALLING FROM COBOL (Z/OS)

SUBJECT-REC-PK This field is for specifying the PK of the subject record

RELATIONSHIP This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a
value of "U’ represents an Unlink rule between the subject record and the related record.

RELATED-REC-PK This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

IDS-REAL-TIME-FLUL-CLOSE

Description:

This API used to close and release force link and unlink module.

Prototype:

CALL IDS—REAL-TIME—-FLUL—CLOSE USING
BY REFERENCE RC,
BY VALUE SOCKH

END CALL

Parameters:

none

Return Code:

negative for error, 0 for success

IDS-REAL-TIME-FLUL-DELETE

Description:

This API used to delete force link and unlink rule from MR table. This call must be followed by
ids_real_time_flul_ init.

Prototype:

CALL IDS—REAL-TIME-FLUL—-DELETE USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY VALUE RULE-TYPE—OPTION,
BY REFERENCE RECORD—-PK

END CALL

IDS-REAL-TIME-FLUL-CLOSE 208

Parameters:

RULE-TYPE-OPTION 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.

2 Delete all rules for input pk.

RECORD-PK This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

IDS-REAL-TIME-FLUL-FIND-RULE

Description:

This API used to find link and unlink information for input IDT record. should be called after
ids_real time_flul_init APL

Prototype:

CALL IDS—REAL-TIME—-FLUL-FIND-RULE USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE IDT-REC,

BY VALUE OPTION
END CALL

Parameters:

IDT-REC This field is for specifying the PK of the record to be searched

OPTION 0 Link Rule.
1 Unlink Rule.

Return Code:

negative for error, 0 for success

IDS-REAL-TIME-FLUL-GET-RULE

Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real time_ flul_ find rule APIL

209 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—REAL-TIME—FLUL—-GET-RULE USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE IDT-REC,

BY VALUE IDT—REC—SIZE
END CALL

Parameters:

IDT-REC is the matched File record for input link or unlink rule.

Return Code:

negative for error, 0 for success

IDS-REAL-TIME-FLUL-INIT

Description:

This API used to initialize force link and unlink module. = Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_ flul_close.

Prototype:

CALL IDS—REAL—-TIME—FLUL—INIT USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE IDT-NAME,
BY REFERENCE MULTI-SEARCH
END CALL

Parameters:
IDT-NAME is the name of the IDT associated with the force link and unlink rule.

MULTI-SEARCH The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

Return Code:

negative for error, 0 for success

IDS-REAL-TIME-SYNC-GET

Description:
Use to retrieve the results and free the resources associated with a call to

ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

IDS-REAL-TIME-FLUL-INIT 210

Prototype:

CALL IDS—REAL-TIME—SYNC—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE REFERENCE,
BY REFERENCE CLUSTER—-ACTION-TYPE,

BY VALUE CLUSTER—-ACTION-TYPE-SIZE,
BY REFERENCE CLUSTER—-ACTION-ID,
BY VALUE CLUSTER—ACTION—-ID-SIZE,

BY REFERENCE CLUSTER—ACTION—-NUMBER,
BY REFERENCE CLUSTER—-ACTION—-NEW,

BY VALUE CLUSTER—-ACTION-NEW-SIZE
END CALL
Parameters:
REFERENCE A reference string identifying the request. This must be passed to the

ids_real_time_sync_get call when retriving results.
CLUSTER-ACTION-TYPE Identifies the action, ie add or delete
CLUSTER-ACTION-ID The prefix which identifies the cluster
CLUSTER-ACTION-NUMBER The number which identifies the cluster

CLUSTER-ACTION-NEW Identifies whether the cluster is newly formed or existing

Return Code:

negative for error, 0 for success, 1 for end of results

IDS-REAL-TIME-SYNC-START

Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

Prototype:

CALL IDS—REAL-TIME—SYNC—START USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE RULEBASE,
BY REFERENCE SYSTEM,
BY REFERENCE IDT,
BY REFERENCE SEQUENCE-NUMBER,
BY REFERENCE OPERATION,
BY REFERENCE CLUSTER—RECORD,
BY REFERENCE CLUSTER—ACTION—COUNT,
BY REFERENCE REFERENCE,
BY VALUE REFERENCE—SIZE
END CALL

211 CALLING FROM COBOL (Z/OS)

Parameters:

RULEBASE is the name of the rulebase.

SYSTEM The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

SEQUENCE-NUMBER is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

OPERATION The synchronizer operation being performed: A for add, D for delete or U for update
CLUSTER-RECORD The record to be updated. The record must use the same layout as the IDT.

CLUSTER-ACTION-COUNT The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

REFERENCE A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

Return Code:

negative for error

0 for success, and postive for warnings:

1-9 Reserved for future use

10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous
transaction. The record was added to the reject table.

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

IDS-SCORES-GET

Description:

Retrieve an array of scores, one per match record. This APl is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

IDS-SCORES-GET 212

Prototype:
CALL IDS—SCORES—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,

BY REFERENCE SCORES,
BY VALUE SCORES—-NUM

END CALL

Parameters:
SEARCHNAME is the name of the associated search

SCORES is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

IDS-SEARCH-COMMENT-GET

Description:

Returns the user defined comment stored with the search.

Prototype:
CALL IDS—SEARCH—COMMENT—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,

BY REFERENCE COMMENT,
BY VALUE COMMENT-SIZE

END CALL

Parameters:

SEARCHNAME the search to count.

COMMENT is the area to copy the string containing the comment. This string will be null-terminated.

Return Code:

negative for error, 0 for success

IDS-SEARCH-DEDUPE-START

Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

213 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SEARCH—-DEDUPE—-START USING

BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,

BY REFERENCE
BY REFERENCE

SEARCH-WIDTH,
MATCH-TOLERANCE,

BY REFERENCE PARAMETERS,
BY REFERENCE SEARCHREC,
BY VALUE SEARCHREC-SIZE,
BY REFERENCE ANSWERSEINAME,
BY VALUE FLAGS,
BY REFERENCE RECID,
BY REFERENCE RECS
END CALL
Parameters:

SEARCH is the name of the search that is to be performed.

SEARCH-WIDTH specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

MATCH-TOLERANCE specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

PARAMETERS not used.

SEARCHREC is the IDT record used to search with. It is returned by the Search Server.
ANSWERSETNAME is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with
the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not

wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

FLAGS flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

RECID the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

RECS the number of records in the search set.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

IDS-SEARCH-FIELDS-COUNT
Description:
Gets the number of fields required to assemble the search record.

IDS-SEARCH-FIELDS-COUNT 214

Prototype:

CALL IDS—SEARCH—-FIELDS—COUNT USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE FC

END CALL

Parameters:

SEARCHNAME the search to count.

FC is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

IDS-SEARCH-FIELDS-GET

Description:

Gets the number of fields required to assemble the search record.

Prototype:

CALL IDS—SEARCH-FIELDS—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE FIELDNAMES,

BY VALUE FIELDNAMES—-NUM,
BY VALUE FIELDNAMES—SIZE
END CALL

Parameters:
SEARCHNAME the search to count.

FIELDNAMES is the array returned which will contain the name of the fields.

Return Code:

negative for error, 0 for success

IDS-SEARCH-FILTER

Description:

Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER
MANUAL for details about SQL filters

215 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SEARCH-FILTER USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE FILTER
END CALL

Parameters:
SEARCH is the name of the Search that will use the filter

FILTER is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

IDS-SEARCH-FINISH

Description:

Release resources associated with ids_search_start.

Prototype:

CALL IDS—SEARCH-FINISH USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE SEARCH
END CALL

Parameters:

SEARCH is the name of the search that was performed

Return Code:

negative for error, 0 for success

IDS-SEARCH-GET

Description:

Retrieve file records that are a good match for the search record specified in the ids_search_start
or ids_system_search_start function.

IDS-SEARCH-FINISH 216

Prototype:

CALL IDS—SEARCH—-GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE SEARCHRETURN,
BY VALUE SEARCHRETURN-SIZE,
BY REFERENCE SCORE,
BY REFERENCE SREPS,

BY VALUE SREPS—NUM,

BY REFERENCE FREPS,

BY VALUE FREPS-NUM
END CALL

Parameters:

SEARCHNAME is the name the search to used by the call.
SEARCHRETURN is an area into which a string from the set is copied.
SCORE is the score calculated for the string.

SREPS is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

FREPS is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = 0, freps[0] = 1, frep[1] =0

Return Code:

negative for error, 0 for success, and 1 for "end of set".

IDS-SEARCH-GET-COMPLETE

Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3
v1is used.

217 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SEARCH-GET-COMPLEIE USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE SEARCHRETURN,
BY VALUE SEARCHRETURN-SIZE,
BY REFERENCE SCORE,
BY REFERENCE INFO,
BY VALUE INFO-SIZE
END CALL

Parameters:

SEARCH is the name of the search which was performed.
SEARCHRETURN is an area into which a string from the set is copied.
SCORE is the score calculated for the string.

INFO an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,
Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit
number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

IDS-SEARCH-GET-DETAIL
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

Prototype:

CALL IDS—SEARCH—-GET—-DETAIL USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE FILE-REC,
BY VALUE FILE-REC-SIZE,
BY REFERENCE SCORE,
BY REFERENCE DECISION,

BY VALUE DECISION-SIZE,
BY REFERENCE FILE-RECID
END CALL

IDS-SEARCH-GET-DETAIL 218

Parameters:

SEARCH is the name of the Search which was performed.

FILE-REC is the matched File record.

SCORE is the degree of similarity between the Search and File records (0-100).
DECISION is the match decision: A(ccept) or U(ndecided)

FILE-RECID is the File Record-ID (corresponding to the RECID column from the IDT).

Return Code:

negative for error, 0 for success, and 1 for "end of set".

IDS-SEARCH-IDT-GET

Description:

Gets the name of the IDT associated with the search.

Prototype:
CALL IDS—SEARCH—-IDT—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE IDT,

BY VALUE IDT-SIZE
END CALL

Parameters:
SEARCHNAME is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

IDS-SEARCH-LAYOUT

Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

219 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SEARCH—-LAYOUT USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE VIEWTYPE,
BY REFERENCE FUNC,
BY REFERENCE NAMES,

BY VALUE NAMES-NUM,

BY VALUE NAMES-SIZE,

BY REFERENCE LENGTHS,

BY VALUE LENGIHS-NUM,

BY REFERENCE OFFSETS,

BY VALUE OFFSETS-NUM,

BY REFERENCE REPEATS,

BY VALUE REPEATS-NUM,

BY REFERENCE FORMATS,

BY VALUE FORMATS-NUM,

BY VALUE FORMATS—-SIZE
END CALL

Parameters:

SEARCH is the name of the Search which was performed.

VIEWTYPE the type of view: input or output.

FUNC describes the order of fields.

NAMES is the area into which an array containing the fieldnames will be copied.

LENGTHS is the area into which an array containing the lengths of the fields will be copied.
OFFSETS is the area into which an array containing the offsets of the fields will be copied.
REPEATS is the area into which an array containing the number of repeats in a field will be copied.

FORMATS is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

Character 0: Justification (‘L’eft or ‘R’ight)

Character 1: Compression (‘F’ixed, ‘V’ariable or ‘L’ong)

Characters?2 - 3: Fill (2 characters containing the fill character in hexadecimal)
Character 4: Fill type (‘T’ext or ‘B’inary)

Characters 5 - 6: Base (2 characters containing the base in decimal)

Character 7: Format (‘T’ext, ‘N'umeric, ‘V’ariable or ‘B’inary)

Character 8 - 9: Reserved

Characters 10 - 11: Binary key number (2 hexadecimal digits)

Character 12: Character width (‘W’ide, ‘N’arrow)

Characters 13 - 50: Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

IDS-SEARCH-LAYOUT 220

Return Code:

negative for error, 0 for success

IDS-SEARCH-PROFILE-COUNT
Description:

Count the number of profile entries available

Prototype:

CALL IDS—SEARCH—-PROFILE-COUNT USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE COUNT
END CALL

Parameters:

COUNT Returns the number of elements

Return Code:

negative for error, 0 for success

IDS-SEARCH-PROFILE-GET
Description:

Get the profiling times, with each field comprising of an id, a name and a time

Prototype:

CALL IDS—SEARCH—-PROFILE-GET USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE 1IDS,

BY VALUE IDS-NUM,

BY REFERENCE NAMES,

BY VALUE NAMES-NUM,

BY VALUE NAMES—-SIZE,

BY REFERENCE TIMES,

BY VALUE TIMES—NUM
END CALL

Parameters:

IDS the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

221 CALLING FROM COBOL (Z/OS)

NAMES the names for each field

TIMES the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

IDS-SEARCH-START

Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Prototype:

CALL IDS—SEARCH—-START USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE SEARCH-WIDTH,
BY REFERENCE MATCH-TOLERANCE,
BY REFERENCE PARAMETERS,
BY REFERENCE SEARCHREC,
BY VALUE SEARCHREC-SIZE,
BY REFERENCE ANSWERSEINAME,
BY REFERENCE RECS,
BY REFERENCE RECORDS

END CALL

Parameters:
SEARCH is the name of the search to be performed.

SEARCH-WIDTH specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

MATCH-TOLERANCE specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

IDS-SEARCH-START 222

PARAMETERS contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

SEARCHREC is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

ANSWERSETNAME is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

RECS number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

RECORDS contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOQOUT has been exceeded.

IDS-SEARCH-START-VIA-PARAMETERS

Description:

Prototype:

CALL IDS—SEARCH-START—-VIA—-PARAMETERS USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE SEARCH—-WIDTH,
BY REFERENCE MATCH—-TOLERANCE,
BY REFERENCE PARAMETERS,
BY REFERENCE DATALEN,
BY REFERENCE RECS
END CALL

Parameters:
SEARCH is the name of the search to be performed.

SEARCH-WIDTH specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

MATCH-TOLERANCE specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

223 CALLING FROM COBOL (Z/OS)

PARAMETERS contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

DATALEN will return the length of a record.

RECS number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

IDS-SEARCH-START-VIA-RECORD

Description:

Prototype:

CALL IDS—SEARCH—START—VIA—RECORD USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE SEARCH-WIDTH,
BY REFERENCE MATCH-TOLERANCE,
BY REFERENCE SEARCHREC,
BY REFERENCE DATALEN,
BY REFERENCE RECS

END CALL

Parameters:
SEARCH is the name of the search to be performed.

SEARCH-WIDTH specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

MATCH-TOLERANCE specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

SEARCHREC is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

DATALEN will return the length of a record.

RECS number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

IDS-SEARCH-START-VIA-RECORD 224

Return Code:

negative for error, 0 for success

IDS-SEARCH-TOLERANCES-COUNT

Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-
sively the matching scheme should be in rejecting candidates.

Prototype:

CALL IDS—SEARCH-TOLERANCES—COUNT USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE QOUNT
END CALL

Parameters:
SEARCHNAME is the name the search to used by the call.

COUNT is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

IDS-SEARCH-TOLERANCES-GET

Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how
aggressively the matching scheme should be in rejecting candidates.

Prototype:

CALL IDS—SEARCH-TOLERANCES—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE TOLERANCES,

BY VALUE TOLERANCES-NUM,
BY VALUE TOLERANCES—SIZE
END CALL

Parameters:
SEARCHNAME the search to count.

TOLERANCES is the list of null terminated strings returned by the call.

225 CALLING FROM COBOL (Z/OS)

Return Code:

negative for error, 0 for success

IDS-SEARCH-VIEW-GET

Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output

records.
Prototype:
CALL IDS-SEARCH-VIEW-GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE VIEWTYPE,
BY REFERENCE VIEWNAME,
BY VALUE VIEWNAME-SIZE,
BY REFERENCE VIEWFIELDCOUNT,
BY REFERENCE VIEWRECLEN
END CALL
Parameters:

SEARCH is the name of the Search

VIEWTYPE the type of the view (input or output)

VIEWNAME is the name of the view to query

VIEWFIELDCOUNT the number of fields in the view

VIEWRECLEN is the length of the view

Return Code:

negative for error, 0 for success

IDS-SEARCH-VIEW-SET

Description:

Sets a view as the active input or output view

IDS-SEARCH-VIEW-GET

226

Prototype:

CALL IDS—SEARCH—-VIEW—-SET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCH,
BY REFERENCE VIEWTYPE,
BY REFERENCE VIEWNAME
END CALL

Parameters:
SEARCH is the name of the Search
VIEWTYPE the type of the view (input or output)

VIEWNAME the name of the view to use

Return Code:

negative for error, 0 for success

IDS-SEARCH-WIDTHS-COUNT

Description:

Returns the count of search widths that have been defined for the search. The search width defines how
many items are selected by the search

Prototype:

CALL IDS—SEARCH-WIDTHS—COUNT USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE COUNT

END CALL

Parameters:
SEARCHNAME is the name the search to used by the call.

COUNT is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

IDS-SEARCH-WIDTHS-GET

Description:

Returns the search widths that have been defined for the search. The search width defines how many
items are selected by the search

227 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SEARCH—-WIDTHS—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE SEARCHNAME,
BY REFERENCE WIDTHS,

BY VALUE WIDTHS-NUM,
BY VALUE WIDTHS—-SIZE
END CALL

Parameters:
SEARCHNAME is the name the search to used by the call.

WIDTHS is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

IDS-SERVER-VERSION-GET

Description:

Get the version information associated with the server.

Prototype:

CALL IDS—SERVER—-VERSION—-GET USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE SERVER—-VERSION,

BY VALUE SERVER—-VERSION—-SIZE
END CALL

Parameters:

SERVER-VERSION is the area into which the string containing the version information will be copied.

Return Code:

negative for error, 0 for success

IDS-SESSION-CLOSE

Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

IDS-SERVER-VERSION-GET 228

Prototype:

CALL IDS—SESSION—CLOSE USING
BY REFERENCE RC,
BY VALUE SOCKH
END CALL

Parameters:

none

Return Code:

negative for error, 0 for success

IDS-SESSION-OPEN

Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server
from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Prototype:

CALL IDS—SESSION—-OPEN USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE SESSION
END CALL

Parameters:

SESSION is the number of the session to open (-1 for a new session).

Return Code:

negative for error, 0 for success

IDS-SET-ENCODING

Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of
the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

229 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SET-ENCODING USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY VALUE ENCODING
END CALL

Parameters:

ENCODING 6=UTF-16/UCS-2 (LE), 7=UTF-16/UCS-2 (BE), 8=UTF-8, 4=UCS-4

Return Code:

negative for error, 0 for success

IDS-SET-TIMEOUT

Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

Prototype:

CALL IDS—SET-TIMEOUT USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY VALUE TIMEOUT
END CALL

Parameters:

TIMEOUT timeout 0 is disable timeout, a positive value in seconds for the timeout

Return Code:

negative for error, 0 for success

IDS-SET-VPD-USER

Description:

Provides the Search Server with information required to set a Virtual Private Database context. Refer
to the DESIGNER MANUAL, VPD section for details about VPD.

IDS-SET-TIMEOUT 230

Prototype:

CALL IDS—SET—-VPD—-USER USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE VPD—-USER,
BY REFERENCE VPD-CIX
END CALL

Parameters:
VPD-USER Connection string of the actual user

VPD-CTX the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

IDS-SYSTEM-CLOSE
Description:

closes the system and frees any remaining resources.

Prototype:

CALL IDS—SYSTEM—CLOSE USING
BY REFERENCE RC,
BY VALUE SOCKH
END CALL

Parameters:

none

Return Code:

negative for error, 0 for success

IDS-SYSTEM-IDTNAME-COUNT

Description:
Returns the number of active idt names. (i.e. those whose IDT has been loaded).

231 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SYSTEM—IDTNAME—COUNT USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE IDTCOUNT
END CALL

Parameters:

IDTCOUNT is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

IDS-SYSTEM-IDTNAME-GET

Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

Prototype:

CALL IDS—SYSTEM—-IDINAME—-GET USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE IDITNAMES,

BY VALUE IDINAMES-NUM,

BY VALUE IDTNAMES—SIZE
END CALL

Parameters:

IDTNAMES is the area into which an array of the idtnames defined on the rulebase will be copied (the

idtnames are all null terminated strings).

Return Code:

negative for error, 0 for success

IDS-SYSTEM-NOTIFY

Description:

Notifies search server on a system.

IDS-SYSTEM-IDTNAME-GET

232

Prototype:

CALL IDS—SYSTEM—NOTIFY USING

BY REFERENCE ~ RC,
BY VALUE SOCKH,
BY REFERENCE ~ RULEBASE,
BY REFERENCE SYSNAME,
BY REFERENCE ~ MESSAGE
END CALL
Parameters:

RULEBASE is the name of the rulebase.
SYSNAME is the name of the system

MESSAGE is a messagevto be delivered

Return Code:

negative for error, 0 for success

IDS-SYSTEM-OPEN
Description:

opens a system.

Prototype:

CALL IDS—SYSTEM—-OPEN USING

BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE RULEBASE,
BY REFERENCE SYSTEM,
BY REFERENCE VERBOSITY,
BY REFERENCE OPTIONS
END CALL
Parameters:

RULEBASE is the name of the rulebase.
SYSTEM The name of the system in the rulebase
VERBOSITY specifies the verbosity level. See the Verbosity section for details.

OPTIONS LOGOUT filename for server output for this session.
LOGERR filename for server errors for this session.
LOGTEST filename for server search trace for this session.
SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-
tory for this session.

233 CALLING FROM COBOL (Z/OS)

Return Code:

negative for error, 0 for success

IDS-SYSTEM-SEARCH-FINISH

Description:

Finishes the search and closes the system.

CALL IDS—SYSTEM—-SEARCH—-FINISH USING

Prototype:
BY REFERENCE
BY VALUE
END CALL
Parameters:
none

Return Code:

negative for error, 0 for success

RC,
SOCKH

IDS-SYSTEM-SEARCH-START

Description:

Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer
to ids_search_start for a more detailed description of the parameters.

Prototype:

CALL IDS—SYSTEM—SEARCH—-START USING

BY

REFERENCE

BY VALUE

BY
BY
BY
BY
BY
BY
BY
BY
BY
END CALL

Parameters:

REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE

RC,

SOCKH,
RULEBASE,
SYSTEM,
VERBOSITY,
OPTIONS,
SEARCH,
PARAMETERS,
ANSWERSETINAME,
DATALEN,
RECS

RULEBASE is the name of the rulebase.

IDS-SYSTEM-SEARCH-FINISH

234

SYSTEM The name of the system in the rulebase
VERBOSITY specifies the verbosity level. See the Verbosity section for details.

OPTIONS consists of one or more keywords and their respective values in the form
KEYWORD1=VALUE1l, KEYWORD2=VALUEZ,

SEARCH is the name of the search in the system in the Rulebase that will be used.
PARAMETERS is the array which contains the field values to be used to construct the search.

ANSWERSETNAME is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

DATALEN will return the length of a record.

RECS count of records that matched the search criteria

Return Code:

negative for error, 0 for success

IDS-SYSTEM-SEARCHES-COUNT

Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of ids_system_open.

Prototype:

CALL IDS—SYSTEM—SEARCHES—COUNT USING
BY REFERENCE RC,

BY VALUE SOCKH,
BY REFERENCE SEARCHCOUNT
END CALL

Parameters:

SEARCHCOUNT is the number of searches defined on the system

Return Code:

negative for error, 0 for success

IDS-SYSTEM-SEARCHES-GET

Description:
Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-

turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of
ids_system_open.

235 CALLING FROM COBOL (Z/OS)

Prototype:

CALL IDS—SYSTEM—-SEARCHES—GET USING
BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE SEARCHES,

BY VALUE SEARCHES-NUM,

BY VALUE SEARCHES—SIZE
END CALL

Parameters:

SEARCHES is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

Return Code:

negative for error, 0 for success

IDS-SYSTEMS-COUNT
Description:

the number of systems in the rulebase.

Prototype:

CALL IDS—SYSTEMS—COUNT USING

BY REFERENCE RC,

BY VALUE SOCKH,

BY REFERENCE RULEBASE,

BY REFERENCE SYSTEMSCOUNT
END CALL

Parameters:
RULEBASE is the name of the rulebase.

SYSTEMSCOUNT the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

IDS-SYSTEMS-GET
Description:

Get the names of all the systems defined in the rulebase.

IDS-SYSTEMS-COUNT 236

Prototype:

CALL IDS—SYSTEMS—GET USING
BY REFERENCE RC,
BY VALUE SOCKH,
BY REFERENCE RULEBASE,
BY REFERENCE SYSTEMS,

BY VALUE SYSTEMS—-NUM,
BY VALUE SYSTEMS—SIZE
END CALL

Parameters:

RULEBASE is the name of the rulebase.

SYSTEMS is the area into which an array of the systems defined in the rulebase will be copied (the
systems are all null terminated strings).

Return Code:

negative for error, 0 for success

237 CALLING FROM COBOL (Z/OS)

Calling from Java

Java Version

The Java components of IIR products were built with JDK V1.5. If you intend to build Java clients which
make use of the published Java classes, then you should use JDK 1.5 or higher.

Overview

In Java the API methods are included in the jar file idssecl. jar (located in the $SSABIN% directory
of the Client installation) as the class ssa.ssase.ClieSock. This is packaged as a Java Bean for use
in IDEs. The methods throw exceptions of type SSAAPIException and SSASocketException that
must be caught. If SSASocketException is caught, a fatal problem with the socket connection has
been encountered. As a result, the communication channel has been closed and no further calls may be
made without establishing a new connection.

Java does not require the sockh parameter for any of these functions.

Constants

Constants are declared as class constants, in uppercase using underscores, eg. ClieSock .MSG_SIZE.

Parameter types

Note: values in BOLD represent information that must be provided to the function.

Error Handling

If an error is detected during an API call, it is reported to the client program by throwing an exception.
The class of the thrown exception varies depending upon the cause of the failure. Thus, the specific
class of the thrown exception can be used to determine how the client program should proceed. There
are three types of exception which may be thrown:-

SSAlnterruptedException

This exception is thrown in the event that the process attempting to open a socket connection to the
Search Server is interrupted before the connection can be established. The signature of the ClieSock
constructor used determines when this attempt to open a socket occurs.

If a C1ieSock constructor which accepts host & port parameters is used, then the connection is estab-
lished during the constructor call. In this case, the SSAInterruptedException may be thrown by
the ClieSock constructor call.

If a ClieSock constructor which does not accepts host & port parameters is used, then the connection
is established subsequent to the constructor call, by an explicit call to ids_connect. In this case,
ids_connect may throw the SSAInterruptedException exception.

In either case, if this exception is thrown then the ClieSock object has not been initialized correctly
and may not be used to make API calls to the Search Server.

238

SSAAPIException

This exception is thrown in the event that an error occurred on the Search Server while attempting to
service an API call. As a result, the API call concerned did not complete successfully and the output
parameters, if any, have not been set.

In response to an SSAAPIException, it is recommended that the client program should call the
getMessage () & getRc () methods of the SSAAPIException object to build a description of the
failure, for debugging purposes.

In addition, it is recommended that appropriate calls to the ids_errors_get_all () method of the
ClieSock object be made to retrieve the error stack from the Search Server, again for debugging pur-
poses.

Java code demonstrating how all these calls should be made can be found in the sample programs
which accompany the distribution.

After an SSAAPIException has been caught, the connection to the Search Server remains intact and
the C1ieSock object may be used to make further API calls.

Note that the SSAAPIException class contains a getFatal method. This method is present for
backward compatibility purposes only and need never be called.

public methods

getRc

This method returns the response code of the failed API call which caused the exception to be thrown

Prototype:

public int getRc()
Output:

The response code of the failed API call which caused the exception to be thrown

getMessage

This method returns the detail message string of this SSAAPIException instance

Prototype:

public String getMessage ()
Output:
The detail message string of this SSAAPIException instance (wWhich may be null)

239 CALLING FROM JAVA

SSASocketException

As the name implies, this exception is thrown in the event that a problem with the socket connection
was encountered while attempting to communicate with the Search Server.

When an SSASocketException is thrown, the API call that was being made has failed and, in ad-
dition, the socket connection has been closed. No further API calls can be made using the current
ClieSock object. Therefore, a new ClieSock object must be established before any further calls may
be made.

Note that the SSASocketException class contains a getFatal method. This method is present for
backward compatibility purposes only and need never be called.

public methods
getMessage

This method returns the detail message string of this SSASocketExcept ion instance

Prototype:

public String getMessage ()
Output:

The detail message string of this SSASocketExcept ion instance (which may be null)

Deprecated APls

In previous versions of IIR, error handling code of client programs caught an SSAException object
and then called the methods getRc () and getFatal () of that object to determine the nature of a
failure. As of version 9.0.00, the SSAException class is reserved for internal use only. In addition, that
class’s member methods, getRc () and getFatal (), have been deprecated. Client programs should
not catch SSAException. Nor should they call either of the deprecated methods mentioned. Instead,
user programs should follow the Error Handling guidelines above.

ClieSock Constructor
Description:

This class is used to create a ClieSock object. This object is then used to make the required API calls to
the Search or Connection Server. There are several versions of the constructor.

The versions which accept host & port parameters establish a connection to the server during construc-
tor execution. Therefore, the created ClieSock object is ready to perform API calls.

The versions which do not accept host & port parameters create the object but do not establish a con-
nection to the server. If these constructors are used, it is necessary to call 1ds_connect to establish a
connection to the server.

Deprecated APIs 240

Prototype:
import ssa.ssase.ClieSock;
public ClieSock () throws SSASocketException;

public ClieSock (
int max_time_out // long in
) throws SSASocketException, SSAlInterruptedException;

public ClieSock (
String hostname, // String in
int port // long in

) throws SSASocketException, SSAlnterruptedException;

public ClieSock (

String hostname, // String in
int port, // long in
int max_time_out // long in

) throws SSASocketException, SSAlnterruptedException;

Parameters:
hostname is the hostname of the server to connect to
port is the port number of the server to connect to

max_time_out is the maximum time to attempt to establish a connection, expressed in milliseconds.
The default value is 120000 ms.

ids_addr_get_cass_field
Description:
Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion

from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Prototype:
using ClieSock;

public synchronized int ids_addr_get_cass_field (

int suggest_idx, // Long in
int field_idx , // Long in
byte [] field_value, // Block out
int field_value_size

) throws SSAAPIException, SSASocketException;

Parameters:
suggest_idx Specifies the nth suggestion from which to get a cass field
field idx Specifies a cass field within the nth suggestion

field value The cass field value

241 CALLING FROM JAVA

Return Code:

negative for error, 0 for success

ids_addr_get_cass_field_cnt
Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse
APL

Prototype:
using ClieSock;

public synchronized int ids_addr_get_cass_field_cnt (
int [] count // Long out
) throws SSAAPIException, SSASocketException;

Parameters:

count Returns the max number of cass address fields

Return Code:

negative for error, 0 for success

ids_addr_get_cass_field_info
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:
using ClieSock;

public synchronized int ids_addr_get_cass_field_info (

int suggest_idx, // Long in
int [] field_length , // LongArray out
int field_length_num

) throws SSAAPIException, SSASocketException;

Parameters:
suggest_idx Specifies the suggestion from which to retrieve information

field length An array containing the length of each cass address field

ids_addr_get cass_field cnt 242

Return Code:

negative for error, 0 for success

ids_addr_get_del lines_ext
Description:

Use this function to retrieve delivery address line information

Prototype:
using ClieSock;

public synchronized int ids_addr_get_del_lines_ext (

int suggest_idx, // Long in
int del_case, // Long in
byte [] del_linel, // Block out
int del_linel_size,

byte [] del_line2, // Block out
int del_line2_size,

byte [] del_line3, // Block out
int del_line3_size,

byte [] del_line4, // Block out
int del_line4_size,

byte [] del_line5, // Block out
int del_line5_size,

byte [] del_line6 , // Block out
int del_line6_size

) throws SSAAPIException, SSASocketException;

Parameters:
suggest_idx Specifies the suggestion from which to get delivery address lines

del_case Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

del_linel delivery address line 1 output string
del_line2 delivery address line 2 output string
del_line3 delivery address line 3 output string
del_line4 delivery address line 4 output string
del_line5 delivery address line 5 output string

del_lineé6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

243 CALLING FROM JAVA

ids_addr_get_field
Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned
by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Prototype:
using ClieSock;

public synchronized int ids_addr_get_field (

int suggest_idx, // Long in
int field _idx, // Long in
byte [] field_value, // Block out
int field_value_size,

int [] field_val_status ,// Long out
int [] field_val_mods // Long out

) throws SSAAPIException, SSASocketException;

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field
field_idx Specifies a field within the nth suggestion

field_value The field value

field val_status Specifies how this field matched the validation data

field_val_mods Specifies how this field was modified by validation data

Return Code:

negative for error, 0 for success

ids_addr_get field_count
Description:
This function returns the maximum number of address fields created as a result of a parse or validate

call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APL

Prototype:
using ClieSock;
public synchronized int ids_addr_get_field_count (

int [] count // Long out
) throws SSAAPIException, SSASocketException;

ids_addr_get field 244

Parameters:

count Returns the max number of address fields

Return Code:

negative for error, 0 for success

ids_addr_get_field_ext
Description:

Use this function to retrieve all getter fields

Prototype:

using ClieSock;

public synchronized int ids_addr_get_field_ext (

int suggest_idx, // Long in
int field_operation,// Long in
String field_name, // String in
int field_item_line , // Long in
String field_type, // String in
byte [] field_value, // Block out
int field_value_size

) throws SSAAPIException, SSASocketException;

Parameters:
suggest_idx Specifies the suggestion from which to get fields

field_operation Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

field name Refer AD Result.dtd for field names
field_item_line Represent field line number or field item number
field type Refer AD Result.dtd for field attribute Type
field_value Cleansed field output

Return Code:

negative for error, 0 for success

ids_addr_get_field_idx
Description:
Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-

tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

245 CALLING FROM JAVA

Prototype:
using ClieSock;

public synchronized int ids_addr_get_field_idx (

int suggest_idx, // Long in
int field_idx, // Long in
byte [] field_value, // Block out
int field_value_size

) throws SSAAPIException, SSASocketException;

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

field_idx Specifies a field within the nth suggestion
field value The field value

Return Code:

negative for error, 0 for success

ids_addr_get_field info_ext
Description:
Use this function to retrieve a list of individual field lengths after validating an address. Fields with a

length of zero have no value associated with them and can be omitted from the list of fields retrieved
with ids_addr_get_field_idx

Prototype:
using ClieSock;

public synchronized int ids_addr_get_field_info_ext (

int suggest_idx, // Long in

int [] field_length , // LongArray out
int field_length_num,

byte [] addr_label_encoded, // Block out
int addr_label_encoded_size,

String [] addr_label_charset,// String out
int addr_label_charset_size,

int [] score // Long out

) throws SSAAPIException, SSASocketException;

Parameters:

suggest_idx Specifies the suggestion from which to retrieve information
field_length An array containing the length of each address field
addr_label_encoded The returned label

addr_label_ charset The character set used in the address label

score The returned label’s score

ids_addr_get field_info_ext 246

Return Code:

negative for error, 0 for success

ids_addr_get_field len
Description:

This function returns the maximum length of an individual address field. It may be used to dynamically
allocate the field parameter used for the ids_addr_get_field_idx APL

Prototype:
using ClieSock;

public synchronized int ids_addr_get_field_len (
int [] max_len // Long out
) throws SSAAPIException, SSASocketException;

Parameters:

max_len Returns the max address field length in bytes

Return Code:

negative for error, 0 for success

ids_addr_get_line_len
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:
using ClieSock;

public synchronized int ids_addr_get_line_len (
int [] max_len // Long out
) throws SSAAPIException, SSASocketException;

Parameters:

max_len Returns the max line length in bytes

Return Code:

negative for error, 0 for success

247 CALLING FROM JAVA

ids_addr_get_option
Description:

Use this function to obtain values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Prototype:
using ClieSock;

public synchronized int ids_addr_get_option (

String param, // String in
String [] value, // String out
int value_size

) throws SSAAPIException, SSASocketException;

Parameters:
param This field specifies the name of the option to get.

value Returns the value of the option.

Return Code:

negative for error, 0 for success

ids_addr_info
Description:

Use this function to request additional information about an input address. This call must always be
preceded with a call to ids_addr_std.

Prototype:
using ClieSock;

public synchronized int ids_addr_info (

String controls, // String in
String [] value, // String out
int value_size

) throws SSAAPIException, SSASocketException;

Parameters:
controls this field contains the request information. It must me specified in the form ITEM=[value].

value this field contains the requested information.

Return Code:

negative for error, 0 for success

ids_addr_get option 248

ids_addr_init
Description:

This function initializes the Address Standardization sub-system. It must be the first call to
ids_addr_»x family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

Prototype:
using ClieSock;

public synchronized int ids_addr_init (
int max_memory // Long in
) throws SSAAPIException, SSASocketException;

Parameters:

max_memory This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:

negative for error, 0 for success

ids_addr_parse
Description:

Use this function to parse an address. The individual field lengths after parsing an address are returned
in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

Prototype:
using ClieSock;

public synchronized int ids_addr_parse (
int [] field_length , // LongArray out
int field_length_num

) throws SSAAPIException, SSASocketException;

Parameters:

field length An array containing the length of each parsed field

Return Code:

negative for error, 0 for success

249 CALLING FROM JAVA

ids_addr_preload_country
Description:

Use this function to preload country database

Prototype:
using ClieSock;

public synchronized int ids_addr_preload_country (

String preload_type, // String in
String preload_country ,// String in
String val_mode // String in

) throws SSAAPIException, SSASocketException;

Parameters:
preload_type Type of preload to perform
preload_country Country database to be preloaded

val_mode Validation mode to be used

Return Code:

negative for error, 0 for success

ids_addr_set_attrib
Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

Prototype:

using ClieSock;

public synchronized int ids_addr_set_attrib (
String char_set, // String in

String default_country // String in
) throws SSAAPIException, SSASocketException;

Parameters:
char_set The name of the character set used to encode the input and output.

default_country The default country used for validation when parsing cannot detect a country
name.

ids_addr_preload_country 250

Return Code:

negative for error, 0 for success

ids_addr_set _del _lines

Description:

Use this function to set delivery address line information

Prototype:

using ClieSock;

public synchronized int ids_addr_set_del_lines (

byte
byte
byte
byte
byte
byte

[]
[]
[]
[]
[]
[]

del_linel,
del_line2,
del_line3,
del_line4,
del_line5,
del_line6

Block
Block
Block
Block
Block
Block

) throws SSAAPIException, SSASocketException;

Parameters:

del_linel delivery address line 1 input string
del_line2 delivery address line 2 input string
del_line3 delivery address line 3 input string
del_line4 delivery address line 4 input string
del_line5 delivery address line 5 input string

del_lineé6 delivery address line 6 input string

Return Code:

negative for error, 0 for success

ids_addr_set_field case

Description:

Use this function to set individual input fields case option

Prototype:

251 CALLING FROM JAVA

using ClieSock;

public synchronized int ids_addr_set_field_
int field_idx , //
int field_case //

case (
Long in
Long in

) throws SSAAPIException, SSASocketException;

Parameters:

field_idx Specifies the nth field to set

field_case Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =

Upper case, 2 = Lower case and 3 = Mixed case.

Return Code:

negative for error, 0 for success

ids_addr_set_ field ext
Description:

Use this function to set fields

Prototype:

using ClieSock;

public synchronized int ids_addr_set_field_
int field_operation , //
String field_name, //
int field_item_line , //
String field_type, //
byte [] field_value //

ext (
Long in
String in
Long in
String in
Block in

) throws SSAAPIException, SSASocketException;

Parameters:

field _operation Field operation Option 0 for AddressElements Option 1 for AddressLines

field name Refer AD Result.dtd for field names

field item_line Represent field line number or field item number

field type Refer AD Result.dtd for field attribute Type

field_value input field value

Return Code:

negative for error, 0 for success

ids_addr_set field ext

252

ids_addr_set field idx
Description:
Use this function to specify the value of an input field. This API is used to specify an input address that

has already been pre-parsed into separate fields.

Prototype:
using ClieSock;

public synchronized int ids_addr_set_field_idx (
int field_idx, // Long in
byte [] field_value // Block in
) throws SSAAPIException, SSASocketException;

Parameters:
field_idx Specifies the nth field to set

field_value Specifies a value for the nth field

Return Code:

negative for error, 0 for success

ids_addr_set_field _name
Description:

Use this function to set individual input fields by name

Prototype:

using ClieSock;

public synchronized int ids_addr_set_field_name (
String field_name, // String in

byte [] field_value // Block in
) throws SSAAPIException, SSASocketException;

Parameters:
field name Specifies the name of the field to set

field_value Specifies a value for the field

Return Code:

negative for error, 0 for success

253 CALLING FROM JAVA

ids_addr_set_lines
Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:
using ClieSock;

public synchronized int ids_addr_set_lines (

byte [] line_1, // Block in
byte [] line_2, // Block in
byte [] line_3, // Block in
byte [] line_4, // Block in
byte [] line_5, // Block in
byte [] line_6, // Block in
byte [] line_7, // Block in
byte [] line_8, // Block in
byte [] line_9, // Block in
byte [] line_10 // Block in

) throws SSAAPIException, SSASocketException;

Parameters:

line 1 The first line of the address
line_2 The second line of the address
line_3 The third line of the address
line_4 The fourth line of the address
line_5 The fifth line of the address
line_6 The sixth line of the address
line_ 7 The seventh line of the address
line_8 The eighth line of the address
line_9 The ninth line of the address

line_10 The tenth line of the address

Return Code:

negative for error, 0 for success

ids_addr_set_option
Description:

Use this function to set values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

ids_addr_set lines 254

Prototype:

using ClieSock;

public synchronized int ids_addr_set_option (
String param, // String in

String value // String in
) throws SSAAPIException, SSASocketException;

Parameters:
param This field specifies the name of the option to set.

value This field specifies a value for the option.

Return Code:

negative for error, 0 for success

ids_addr_std
Description:

Use this function to request IDS to standardize an address by validating it against USPS validation
tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

Prototype:
using ClieSock;

public synchronized int ids_addr_std (

String [] firm_name, // String io
int firm_name_size,

String [] urbanization, // String io
int urbanization_size,

String [] address_one, // String io
int address_one_size,

String [] address_two, // String io
int address_two_size,

String [] last_line , // String io
int last_line_size

) throws SSAAPIException, SSASocketException;

Parameters:
firm_name It contains the name of the firm (may be blank).

urbanization this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

address_one this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-
ponents such as apartment number.

255 CALLING FROM JAVA

address_two this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

last_line this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

Return Code:

0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

ids_addr_validate

Description:

Use this function to validate an address

Prototype:

using ClieSock;

public synchronized int ids_addr_validate (
int [] status , // Long out
int [] n_suggest // Long out
) throws SSAAPIException, SSASocketException;

Parameters:
status The status returned by the validation process

n_suggest The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

ids_disconnect

Description:
Releases resources allocated to a socket.

ids_addr_validate 256

Prototype:
using ClieSock;

public synchronized int ids_disconnect () throws SSAAPIException, SSASocketException;

Parameters:

none

Return Code:

negative for error, 0 for success

ids_error_get
Description:

Get the error messages from the last API function that failed. This function should be called repeatedly
until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

Prototype:

using ClieSock;

public synchronized int ids_error_get (
String [] msg, // String out
int msg_size

) throws SSAAPIException, SSASocketException;

Parameters:

msg is the error message returned

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

ids_errors_get_all
Description:

Get the Server side error messages from the last API function that failed. This function should be called
repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

257 CALLING FROM JAVA

Prototype:
using ClieSock;

public synchronized int ids_errors_get_all (
String [] msg, // String out
int msg_size

) throws SSAAPIException, SSASocketException;

Parameters:

msg is an error message.

Return Code:

negative for error, 0 for success

ids_identify
Description:

Identify a session to the console

Prototype:
using ClieSock;

public synchronized int ids_identify (
String identification // String in
) throws SSAAPIException, SSASocketException;

Parameters:

identification is user supplied identitification for display on the console

Return Code:

negative for error, 0 for success

ids_is_little_endian
Description:

Checks if the search server is running on a little endian platform

Prototype:

ids_identify 258

using ClieSock;
public synchronized int ids_is_little_endian (

int [] endian_state // Long out
) throws SSAAPIException, SSASocketException;

Parameters:

endian_state Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

Return Code:

negative for error, 0 for success

ids_match_explain
Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

Prototype:
using ClieSock;

public synchronized int ids_match_explain (

String search , // String in
String match_tolerance, // String in

byte [] searchrec, // Block in

byte [] filerec, // Block in

byte [][] info_array, // BlockArray out
int[] info_array_num,

int[] info_array_size

) throws SSAAPIException, SSASocketException;

Parameters:
search is the name of the Search which was performed.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

searchrec is the original record that we searched on
filerec is the record that was returned by the search

info_array An array describing the match results. See the Match Explain API section for details

Return Code:

negative for error, 0 for success

259 CALLING FROM JAVA

ids_match_explain_count
Description:

Estimate number of info blocks required for a subsequent match_explain call

Prototype:

using ClieSock;

public synchronized int ids_match_explain_count (
String search , // String in

int [] count // Long out
) throws SSAAPIException, SSASocketException;

Parameters:
search is the name of the Search which was performed.

count Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

ids_real time_async_get
Description:
Used to retrieve the result count associated with a call to ids_real_time_async_start.

cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

Prototype:
using ClieSock;

public synchronized int ids_real_time_async_get (

String reference, // String in
int block, // Long in
int [] cluster_action_count // Long out

) throws SSAAPIException, SSASocketException;

Parameters:

reference A reference number identifying the request (returned by
ids_real_time_sync_start)

block 1 = wait for a response 0 = return immediately if no results are available yet
cluster_action_count The number of clusters generated These can be returned with call to

real_time_sync_get 1 = wait for a response

ids_match_explain_count 260

Return Code:

negative for error 0 for success positive for no results are available yet

ids_real time_async_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more
callsto ids_real_time_sync_get to retrieve the results.

Prototype:
using ClieSock;

public synchronized int ids_real_time_async_start (

String rulebase, // String in
String system, // String in
String IDT, // String in
String sequence_number, // String in
String operation, // String in
byte [] cluster_record , // Block in
int source, // Long in
String multi_search, // String in
int input_id, // Long in
String [] reference , // String out
int reference_size

) throws SSAAPIException, SSASocketException;

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.
source Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

input_id Reserved. A value of 0 must be passed for this parameter.
reference A reference string identifying the request. This must be passed to the

ids_real_time_sync_get call when retrieving results.

261 CALLING FROM JAVA

Return Code:
negative for error
0 for success positive for warnings:
1-9 Reserved for future use
10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

ids_real time_ flul add
Description:

This API used to add force link and unlink rule. This call must be followed by

ids_real_time_flul_init.

Prototype:

using ClieSock;

public synchronized int ids_real_time_flul_add (

String rule_type, // String in
byte [] subject_rec_pk, // Block in
String relationship , // String in
byte [] related_rec_pk // Block in

) throws SSAAPIException, SSASocketException;

Parameters:

rule_type This field is for specifying the type of the rule. A value of A’ represents that the rule needs
to be added to the system and "D’ represents that a rule needs to be removed from the system

subject_rec_pk This field is for specifying the PK of the subject record
relationship This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a

value of U’ represents an Unlink rule between the subject record and the related record.

related_rec_pk This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

ids_real time_flul_add 262

ids_real time_ flul close
Description:

This API used to close and release force link and unlink module.

Prototype:
using ClieSock;

public synchronized int ids_real_time_flul_close () throws SSAAPIException, SSASocketException

Parameters:

none

Return Code:

negative for error, 0 for success

ids_real _time_flul_delete
Description:

This API used to delete force link and unlink rule from MR table. This call must be followed by
ids_real_time_flul_ init.

Prototype:

using ClieSock;

public synchronized int ids_real_time_flul_delete (
int rule_type_option,// Long in

byte [] record_pk // Block in
) throws SSAAPIException, SSASocketException;

Parameters:

rule_type_option 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.

2 Delete all rules for input pk.

record_pk This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

263 CALLING FROM JAVA

ids_real time_flul find rule
Description:

This API used to find link and unlink information for input IDT record. should be called after
ids_real_time_flul_init APL

Prototype:

using ClieSock;

public synchronized int ids_real_time_flul_find_rule (
byte [] idt_rec, // Block in

int option // Long in
) throws SSAAPIException, SSASocketException;

Parameters:
idt_rec This field is for specifying the PK of the record to be searched

option 0 Link Rule.
1 Unlink Rule.
Return Code:

negative for error, 0 for success

ids_real_time_flul_get _rule
Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real time_flul_ find rule APIL

Prototype:
using ClieSock;

public synchronized int ids_real_time_flul_get_rule (
byte [] idt_rec, // Block out
int idt_rec_size

) throws SSAAPIException, SSASocketException;

Parameters:

idt_rec is the matched File record for input link or unlink rule.

Return Code:

negative for error, 0 for success

ids_real time_flul find_rule 264

ids_real _time_flul_init
Description:

This API used to initialize force link and unlink module. = Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_flul_close.

Prototype:

using ClieSock;
public synchronized int ids_real_time_flul_init (
String idt_name, // String in

String multi_search // String in
) throws SSAAPIException, SSASocketException;

Parameters:
idt_name is the name of the IDT associated with the force link and unlink rule.

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

Return Code:

negative for error, 0 for success

ids_real time_sync_get
Description:
Use to retrieve the results and free the resources associated with a call to

ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

Prototype:

using ClieSock;

public synchronized int ids_real_time_sync_get (

String reference, // String in
String [] cluster_action_type ,// String out
int cluster_action_type_size,

String [] cluster_action_id ,// String out
int cluster_action_id_size ,

int [] cluster_action_number ,// Long out
String [] cluster_action_new ,// String out
int cluster_action_new_size

) throws SSAAPIException, SSASocketException;

Parameters:

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

265 CALLING FROM JAVA

cluster_action_type Identifies the action, ie add or delete
cluster_action_id The prefix which identifies the cluster
cluster_action_number The number which identifies the cluster

cluster_action_new Identifies whether the cluster is newly formed or existing

Return Code:

negative for error, 0 for success, 1 for end of results

ids_real_time_sync_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

Prototype:
using ClieSock;

public synchronized int ids_real_time_sync_start (

String rulebase, // String in
String system, // String in
String IDT, // String in
String sequence_number, // String in
String operation, // String in
byte [] cluster_record , // Block in

int [] cluster_action_count, // Long out
String [] reference, // String out
int reference_size

) throws SSAAPIException, SSASocketException;

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.

cluster_action_count The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

ids_real_time_sync_start 266

Return Code:

negative for error

0 for success, and postive for warnings:

1-9 Reserved for future use

10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous
transaction. The record was added to the reject table.

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

ids_scores_get
Description:

Retrieve an array of scores, one per match record. This APl is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

Prototype:
using ClieSock;

public synchronized int ids_scores_get (

String searchname, // String in
int [] scores , // LongArray out
int scores_num

) throws SSAAPIException, SSASocketException;

Parameters:
searchname is the name of the associated search

scores is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

267 CALLING FROM JAVA

ids_search_comment_get
Description:

Returns the user defined comment stored with the search.

Prototype:
using ClieSock;

public synchronized int ids_search_comment_get (

String searchname, // String in
String [] comment, // String out
int comment_size

) throws SSAAPIException, SSASocketException;

Parameters:

searchname the search to count.

comment is the area to copy the string containing the comment. This string will be null-terminated.

Return Code:

negative for error, 0 for success

ids_search_dedupe_start
Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

Prototype:
using ClieSock;

public synchronized int ids_search_dedupe_start (

String search , // String in
String search_width, // String in
String match_tolerance ,// String in
byte [][] parameters, // BlockArray in
byte [] searchrec, // Block io

int searchrec_size,

String AnswersetName, // String in
int flags , // Long in

int [] recid, // Long io

int [] recs // Long io

) throws SSAAPIException, SSASocketException;

Parameters:

search is the name of the search that is to be performed.

ids_search_comment_get 268

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

parameters not used.
searchrec is the IDT record used to search with. It is returned by the Search Server.

AnswersetName is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with
the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

flags flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

recid the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

recs the number of records in the search set.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

ids_search_fields_count
Description:

Gets the number of fields required to assemble the search record.

Prototype:
using ClieSock;

public synchronized int ids_search_fields_count (
String searchname, // String in
int [] fc // Long out
) throws SSAAPIException, SSASocketException;

Parameters:
searchname the search to count.

fc is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

269 CALLING FROM JAVA

ids_search_fields_get
Description:

Gets the number of fields required to assemble the search record.

Prototype:
using ClieSock;

public synchronized int ids_search_fields_get (

String searchname, // String in
String [] fieldnames, // StringArray out
int fieldnames_num,

int fieldnames_size

) throws SSAAPIException, SSASocketException;

Parameters:
searchname the search to count.

fieldnames is the array returned which will contain the name of the fields.

Return Code:

negative for error, 0 for success

ids_search_filter
Description:
Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER

MANUAL for details about SQL filters

Prototype:
using ClieSock;
public synchronized int ids_search_filter (
String search , // String in

String filter // String in
) throws SSAAPIException, SSASocketException;

Parameters:
search is the name of the Search that will use the filter

filter is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

ids_search_fields_get 270

ids_search_finish
Description:

Release resources associated with ids_search_start.

Prototype:
using ClieSock;

public synchronized int ids_search_finish (
String search // String in
) throws SSAAPIException, SSASocketException;

Parameters:

search is the name of the search that was performed

Return Code:

negative for error, 0 for success

ids_search_get
Description:

Retrieve file records that are a good match for the search record specified in the ids_search_start
or ids_system_search_start function.

Prototype:
using ClieSock;

public synchronized int ids_search_get (

String searchname, // String in
byte [] searchreturn, // Block out
int searchreturn_size ,

int [] score, // Long out

int [] sreps, // LongArray out
int sreps_num,

int [] freps, // LongArray out
int freps_num

) throws SSAAPIException, SSASocketException;

Parameters:
searchname is the name the search to used by the call.
searchreturn is an area into which a string from the set is copied.

score is the score calculated for the string.

271 CALLING FROM JAVA

sreps is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

freps is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = O, freps[0] = 1, frep[1] =0

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get _complete
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3
v1 is used.

Prototype:
using ClieSock;

public synchronized int ids_search_get_complete (

String search, // String in
byte [] searchreturn, // Block out
int searchreturn_size,

int [] score, // Long out
byte [] info, // Block out
int info_size

) throws SSAAPIException, SSASocketException;

Parameters:

search is the name of the search which was performed.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

info an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,

ids_search_get complete 272

Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit
number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get_detail
Description:
Retrieve file records which are a good match for the search record specified in the ids_search_start

or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

Prototype:
using ClieSock;

public synchronized int ids_search_get_detail (

String search , // String in
byte [] file_rec, // Block out
int file_rec_size,

int [] score, // Long out
String [] decision, // String out
int decision_size ,

int [] file_recid // Long out

) throws SSAAPIException, SSASocketException;

Parameters:

search is the name of the Search which was performed.

file_rec is the matched File record.

score is the degree of similarity between the Search and File records (0-100).
decision is the match decision: A(ccept) or U(ndecided)

file_recid is the File Record-ID (corresponding to the RECID column from the IDT).

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_IDT_get
Description:

Gets the name of the IDT associated with the search.

273 CALLING FROM JAVA

Prototype:

using ClieSock;

public synchronized int ids_search_IDT_get (

String
String []
int

searchname,
1IDT,

IDT_size

// String in
// String out

) throws SSAAPIException, SSASocketException;

Parameters:

searchname is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

ids_search_layout

Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

Prototype:

using ClieSock;

public synchronized int ids_search_layout (

String
String
String
String []
int

int

int []
int

int []
int

int []
int
String []
int

int

search ,
viewType,
func,

names,
names_num,
names_size,
lengths,
lengths_num,
offsets,
offsets_num,
repeats,
repeats_num,,
formats,
formats_num,
formats_size

//
//
//
//

String in
String in
String in
StringArray out
LongArray out
LongArray out
LongArray out

StringArray out

) throws SSAAPIException, SSASocketException;

Parameters:

search is the name of the Search which was performed.

viewType the type of view: input or output.

ids_search_layout

274

func describes the order of fields.

names is the area into which an array containing the fieldnames will be copied.

lengths is the area into which an array containing the lengths of the fields will be copied.

offsets is the area into which an array containing the offsets of the fields will be copied.

repeats is the area into which an array containing the number of repeats in a field will be copied.

formats is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

Character 0:
Character 1:
Characters?2 - 3:
Character 4:
Characters 5 - 6:
Character 7:
Character 8 - 9:

Characters 10 - 11:

Character 12:

Characters 13 - 50:

Justification (‘L’eft or ‘R’ight)

Compression (‘F’ixed, ‘V’ariable or ‘I ong)

Fill (2 characters containing the fill character in hexadecimal)
Fill type (‘T’ext or ‘B’inary)

Base (2 characters containing the base in decimal)

Format (‘“T’ext, ‘N'umeric, “V’ariable or ‘B’inary)

Reserved

Binary key number (2 hexadecimal digits)

Character width (‘w’ide, ‘N’arrow)

Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

Return Code:

negative for error, 0 for success

ids_search_profile_count

Description:

Count the number of profile entries available

Prototype:

using ClieSock;

public synchronized int ids_search_profile_count (

int []

count // Long out

) throws SSAAPIException, SSASocketException;

Parameters:

count Returns the number of elements

275 CALLING FROM JAVA

Return Code:

negative for error, 0 for success

ids_search_profile_get
Description:

Get the profiling times, with each field comprising of an id, a name and a time

Prototype:
using ClieSock;

public synchronized int ids_search_profile_get (

int [] ids, // LongArray out
int ids_num,

String [] names, // StringArray out
int names_num,

int names_size,

int [] times, // LongArray out
int times_num

) throws SSAAPIException, SSASocketException;

Parameters:

ids the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

names the names for each field

times the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

ids_search_start
Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

ids_search_profile_get 276

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Prototype:

using ClieSock;

public synchronized int ids_search_start (

String search, // String in
String search_width, // String in
String match_tolerance, // String in
byte [][] parameters, // BlockArray in
byte [] searchrec, // Block io

int searchrec_size ,

String AnswersetName, // String in

int [] recs, // Long out

byte [][] records // BlockArray in

) throws SSAAPIException, SSASocketException;

Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

records contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

277 CALLING FROM JAVA

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOQOUT has been exceeded.

ids_search_start_via_parameters
Description:

Prototype:
using ClieSock;

public synchronized int ids_search_start_via_parameters (

String search , // String in
String search_width, // String in
String match_tolerance ,// String in
byte [][] parameters, // BlockArray in
int [] datalen, // Long out
int [] recs // Long out

) throws SSAAPIException, SSASocketException;

Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_start via_record
Description:

Prototype:

ids_search_start via_parameters 278

using ClieSock;

public synchronized int ids_search_start_via_record (

String search , // String in
String search_width, // String in
String match_tolerance, // String in
byte [] searchrec, // Block in
int [] datalen, // Long out
int [] recs // Long out

) throws SSAAPIException, SSASocketException;

Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_tolerances count
Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-
sively the matching scheme should be in rejecting candidates.

Prototype:

using ClieSock;

public synchronized int ids_search_tolerances_count (
String searchname, // String in

int [] count // Long out
) throws SSAAPIException, SSASocketException;

279 CALLING FROM JAVA

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

ids_search_tolerances_get

Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how
aggressively the matching scheme should be in rejecting candidates.

Prototype:

using ClieSock;

public synchronized int ids_search_tolerances_get (

String searchname, // String in
String [] tolerances, // StringArray out
int tolerances_num ,

int tolerances_size

) throws SSAAPIException, SSASocketException;

Parameters:
searchname the search to count.

tolerances is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_search_view_get
Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output
records.

ids_search_tolerances_get 280

Prototype:
using ClieSock;

public synchronized int ids_search_view_get (

String search, // String in
String viewType, // String in
String [] viewName, // String out
int viewName_size,

int [] viewFieldCount, // Long out

int [] viewRecLen // Long out

) throws SSAAPIException, SSASocketException;

Parameters:

search is the name of the Search

viewType the type of the view (input or output)
viewName is the name of the view to query
viewFieldCount the number of fields in the view

viewRecLen is the length of the view

Return Code:

negative for error, 0 for success

ids_search_view_set
Description:

Sets a view as the active input or output view

Prototype:
using ClieSock;

public synchronized int ids_search_view_set (

String search , // String in
String viewType, // String in
String viewName // String in

) throws SSAAPIException, SSASocketException;

Parameters:
search is the name of the Search
viewType the type of the view (input or output)

viewName the name of the view to use

Return Code:

negative for error, 0 for success

281 CALLING FROM JAVA

ids_search_widths_ count

Description:

Returns the count of search widths that have been defined for the search. The search width defines how
many items are selected by the search

Prototype:

using ClieSock;

public synchronized int ids_search_widths_count (
String searchname, // String in

int [] count // Long out
) throws SSAAPIException, SSASocketException;

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

ids_search_widths_get
Description:

Returns the search widths that have been defined for the search. The search width defines how many
items are selected by the search

Prototype:
using ClieSock;

public synchronized int ids_search_widths_get (

String searchname, // String in
String [] widths, // StringArray out
int widths_num,

int widths_size

) throws SSAAPIException, SSASocketException;

Parameters:
searchname is the name the search to used by the call.

widths is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_search_widths_count 282

ids_server_version_get
Description:

Get the version information associated with the server.

Prototype:
using ClieSock;

public synchronized int ids_server_version_get (
String [] server_version, // String out
int server_version_size

) throws SSAAPIException, SSASocketException;

Parameters:

server_version is the area into which the string containing the version information will be copied.

Return Code:

negative for error, 0 for success

ids_session_close
Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

Prototype:
using ClieSock;

public synchronized int ids_session_close () throws SSAAPIException, SSASocketException;

Parameters:

none

Return Code:

negative for error, 0 for success

ids_session_open
Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server

283 CALLING FROM JAVA

from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Prototype:

using ClieSock;
public synchronized int ids_session_open (

int [] session // Long io
) throws SSAAPIException, SSASocketException;

Parameters:

session is the number of the session to open (-1 for a new session).

Return Code:

negative for error, 0 for success

ids_set_encoding
Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of
the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

Prototype:

using ClieSock;

public synchronized int ids_set_encoding (
int encoding // Long in
) throws SSAAPIException, SSASocketException;

Parameters:

encoding 6=UTF-16/UCS-2 (LE), 7=UTF-16/UCS-2 (BE), 8=UTF-8, 4=UCS-4

Return Code:
negative for error, 0 for success

ids_set_encoding 284

ids_set timeout
Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

Prototype:
using ClieSock;

public synchronized int ids_set_timeout (
int timeout // Long in
) throws SSAAPIException, SSASocketException;

Parameters:

timeout timeout 0 is disable timeout, a positive value in seconds for the timeout

Return Code:

negative for error, 0 for success

ids_set_vpd_user
Description:
Provides the Search Server with information required to set a Virtual Private Database context. Refer

to the DESIGNER MANUAL, VPD section for details about VPD.

Prototype:
using ClieSock;
public synchronized int ids_set_vpd_user (
String vpd_user, // String in

String vpd_ctx // String in
) throws SSAAPIException, SSASocketException;

Parameters:
vpd_user Connection string of the actual user

vpd_ctx the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

285 CALLING FROM JAVA

ids_system_close
Description:

closes the system and frees any remaining resources.

Prototype:
using ClieSock;

public synchronized int ids_system_close () throws SSAAPIException, SSASocketException;

Parameters:

none

Return Code:

negative for error, 0 for success

ids_system_idtname_count
Description:

Returns the number of active idt names. (i.e. those whose IDT has been loaded).

Prototype:
using ClieSock;

public synchronized int ids_system_idtname_count (
int [] idtcount // Long out
) throws SSAAPIException, SSASocketException;

Parameters:

idtcount is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

ids_system_idtname_get
Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

ids_system_close 286

Prototype:
using ClieSock;

public synchronized int ids_system_idtname_get (

String [] idtnames, // StringArray out
int idtnames_num ,
int idtnames_size

) throws SSAAPIException, SSASocketException;

Parameters:

idtnames is the area into which an array of the idtnames defined on the rulebase will be copied (the
idtnames are all null terminated strings).

Return Code:

negative for error, 0 for success

ids_system_notify
Description:

Notifies search server on a system.

Prototype:
using ClieSock;

public synchronized int ids_system_notify (

String rulebase, // String in
String sysname, // String in
String message // String in

) throws SSAAPIException, SSASocketException;

Parameters:
rulebase is the name of the rulebase.
sysname is the name of the system

message is a messagevto be delivered

Return Code:

negative for error, 0 for success

ids_system_open
Description:

opens a system.

287 CALLING FROM JAVA

Prototype:
using ClieSock;

public synchronized int ids_system_open (

String rulebase, // String in
String system, // String in
String verbosity , // String in
String Options // String in

) throws SSAAPIException, SSASocketException;

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

Options LOGOUT filename for server output for this session.
LOGERR filename for server errors for this session.
LOGTEST filename for server search trace for this session.
SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-
tory for this session.

Return Code:

negative for error, 0 for success

ids_system_search_finish
Description:

Finishes the search and closes the system.

Prototype:
using ClieSock;

public synchronized int ids_system_search_finish () throws SSAAPIException, SSASocketException
Parameters:

none

Return Code:

negative for error, 0 for success

ids_system_search_finish 288

ids_system_search_start

Description:
Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer

to ids_search_start for a more detailed description of the parameters.

Prototype:
using ClieSock;

public synchronized int ids_system_search_start (

String rulebase, // String in
String system, // String in
String verbosity , // String in
String options, // String in
String search , // String in
byte [][] parameters, // BlockArray in
String AnswersetName, // String in
int [] datalen, // Long out
int [] recs // Long out

) throws SSAAPIException, SSASocketException;

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

options consists of one or more keywords and their respective values in the form
KEYWORD1=VALUE1l, KEYWORD2=VALUEZ,

search is the name of the search in the system in the Rulebase that will be used.
parameters is the array which contains the field values to be used to construct the search.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

datalen will return the length of a record.

recs count of records that matched the search criteria

Return Code:

negative for error, 0 for success

ids_system_searches_count

Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of 1ds_system_open.

289 CALLING FROM JAVA

Prototype:
using ClieSock;

public synchronized int ids_system_searches_count (
int [] searchcount // Long out
) throws SSAAPIException, SSASocketException;

Parameters:

searchcount is the number of searches defined on the system

Return Code:

negative for error, 0 for success

ids_system_searches_get
Description:

Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-
turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of
ids_system_open.

Prototype:
using ClieSock;

public synchronized int ids_system_searches_get (

String [] searches, // StringArray out
int searches_num,
int searches_size

) throws SSAAPIException, SSASocketException;

Parameters:

searches is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

Return Code:

negative for error, 0 for success

ids_systems_count
Description:

the number of systems in the rulebase.

ids_system_searches_get 290

Prototype:
using ClieSock;

public synchronized int ids_systems_count (
String rulebase, // String in
int [] systemscount // Long out
) throws SSAAPIException, SSASocketException;

Parameters:
rulebase is the name of the rulebase.

systemscount the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

ids_systems_get
Description:

Get the names of all the systems defined in the rulebase.

Prototype:
using ClieSock;

public synchronized int ids_systems_get (

String rulebase, // String in
String [] systems, // StringArray out
int systems_num ,

int systems_size

) throws SSAAPIException, SSASocketException;

Parameters:

rulebase is the name of the rulebase.

systems is the area into which an array of the systems defined in the rulebase will be copied (the
systems are all null terminated strings).

Return Code:

negative for error, 0 for success

291 CALLING FROM JAVA

Calling from Perl

In Perl the API functions are in the module ssaids. pm (located in the per1l directory of the Client and
Developer Components installation).

The functions return a response code. A negative response code indicates a transport error, after which
the communication channel is closed and no further API calls can be made without reconnecting.

Perl does not require the sockh value for any of these functions.

Constants - Object Oriented

Constants are declared as class variables, in uppercase using underscores, eg. $ids->MSG_SIZE.

Installation - Win32 client
To install this module type the following:

perl Makefile.PL
nmake

nmake test

nmake install

Installation - Unix client

To install this module type the following;:

perl Makefile.PL
make

make test

make install

Parameter types

Note: values in BOLD represent information that must be provided to the function.

addr_get_cass_field
Description:

Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion
from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Prototype:

292

using ssa;

my $field_value = $ssa—>addr_get_cass_field (

$suggest_idx, # Long in
$field_idx # Long in
)
Parameters:

suggest_idx Specifies the nth suggestion from which to get a cass field
field idx Specifies a cass field within the nth suggestion

field value The cass field value

Return Code:

negative for error, 0 for success

addr_get_cass_field cnt

Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse
APL

Prototype:
using ssa;

my $count = $ssa—>addr_get_cass_field_cnt ();

Parameters:

count Returns the max number of cass address fields

Return Code:

negative for error, 0 for success

addr_get_cass_field_info

Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

293 CALLING FROM PERL

Prototype:

using ssa;

my @field_length = $ssa—>addr_get_cass_field_info (
$suggest_idx # Long in

);

Parameters:
suggest_idx Specifies the suggestion from which to retrieve information

field_length An array containing the length of each cass address field

Return Code:

negative for error, 0 for success

addr_get_del_lines_ext
Description:

Use this function to retrieve delivery address line information

Prototype:
using ssa;

my ($del_linel, $del_line2, $del_line3, $del_line4, $del_line5, $del_line6) = $ssa—>addr_get_

$suggest_idx, # Long in
$del_case # Long in
);
Parameters:

suggest_idx Specifies the suggestion from which to get delivery address lines

del_case Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

del_linel delivery address line 1 output string
del_line2 delivery address line 2 output string
del_line3 delivery address line 3 output string
del_line4 delivery address line 4 output string
del_line5 delivery address line 5 output string

del_lineé6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

addr_get del lines_ext 294

addr_get_field
Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned
by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Prototype:
using ssa;

my ($field_value, $field_val_status, $field_val mods) = $ssa—>addr_get_field (

$suggest_idx, # Long in
$field_idx # Long in
)
Parameters:

suggest_idx Specifies the nth suggestion from which to get a field
field_idx Specifies a field within the nth suggestion

field value The field value

field _val_status Specifies how this field matched the validation data

field_val_mods Specifies how this field was modified by validation data

Return Code:

negative for error, 0 for success

addr_get_field_count
Description:

This function returns the maximum number of address fields created as a result of a parse or validate
call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APIL

Prototype:
using ssa;

my $count = $ssa—>addr_get_field_count ();

Parameters:

count Returns the max number of address fields

295 CALLING FROM PERL

Return Code:

negative for error, 0 for success

addr_get_field ext
Description:

Use this function to retrieve all getter fields

Prototype:
using ssa;

my $field_value = $ssa—>addr_get_field_ext (

$suggest_idx, # Long in
$field_operation ,# Long in
$field_name, # String in
$field_item_line ,# Long in
$field_type # String in
)
Parameters:

suggest_idx Specifies the suggestion from which to get fields

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

field name Refer AD Result.dtd for field names

field_item_line Represent field line number or field item number

field type Refer AD Result.dtd for field attribute Type

field_value Cleansed field output

Return Code:

negative for error, 0 for success

addr_get_field_idx
Description:

Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-
tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

addr_get field_ext 296

Prototype:
using ssa;

my $field_value = $ssa—>addr_get_field_idx (

$suggest_idx, # Long in
$field_idx # Long in
);
Parameters:

suggest_idx Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

field idx Specifies a field within the nth suggestion

field wvalue The field value

Return Code:

negative for error, 0 for success

addr_get field info_ext
Description:

Use this function to retrieve a list of individual field lengths after validating an address. Fields with a
length of zero have no value associated with them and can be omitted from the list of fields retrieved

with ids_addr_get_field_idx

Prototype:

using ssa;

my ($field_length, $addr_label_encoded, $addr_label _charset, $score) = $ssa—>addr_get_field_ir
$suggest_idx # Long in

);

Parameters:

suggest_idx Specifies the suggestion from which to retrieve information

field length An array containing the length of each address field

addr label encoded The returned label

addr_label_ charset The character set used in the address label

score The returned label’s score

Return Code:

negative for error, 0 for success

297 CALLING FROM PERL

addr_get_field len

Description:
This function returns the maximum length of an individual address field. It may be used to dynamically

allocate the field parameter used for the ids_addr_get_field_idx APL

Prototype:
using ssa;

my $max_len = $ssa—>addr_get_field_len ();

Parameters:

max_len Returns the max address field length in bytes

Return Code:

negative for error, 0 for success

addr_get_line_len

Description:
This function returns the maximum length of an input address line. It may be used to dynamically

allocate the input lines used for the ids_addr_set_lines APL

Prototype:
using ssa;

my $max_len = $ssa—>addr_get_line_len ();

Parameters:

max_len Returns the max line length in bytes

Return Code:

negative for error, 0 for success

addr_get_option
Description:

Use this function to obtain values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

addr_get field_len 298

Prototype:

using ssa;

my $value = $ssa—>addr_get_option (
$param # String in

);

Parameters:
param This field specifies the name of the option to get.

value Returns the value of the option.

Return Code:

negative for error, 0 for success

addr_info

Description:
Use this function to request additional information about an input address. This call must always be

preceded with a call to ids_addr_std.

Prototype:
using ssa;

my $value = $ssa—>addr_info (
$controls # String in

);

Parameters:
controls this field contains the request information. It must me specified in the form ITEM=[value].

value this field contains the requested information.

Return Code:

negative for error, 0 for success

addr_init
Description:

This function initializes the Address Standardization sub-system. It must be the first call to
ids_addr_» family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

299 CALLING FROM PERL

Prototype:
using ssa;

$ssa—>addr_init (
$max_memory # Long in

);

Parameters:

max_memory This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:

negative for error, 0 for success

addr_parse
Description:

Use this function to parse an address. The individual field lengths after parsing an address are returned
in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

Prototype:
using ssa;

my @field_length = $ssa—>addr_parse ();

Parameters:

field_length An array containing the length of each parsed field

Return Code:

negative for error, 0 for success

addr_preload_country
Description:

Use this function to preload country database

Prototype:

addr_parse 300

using ssa;
$ssa—addr_preload_country (
$preload_type, # String in

$preload_country ,# String in
$val_mode # String in

);

Parameters:

preload_type Type of preload to perform
preload_country Country database to be preloaded

val_mode Validation mode to be used

Return Code:

negative for error, 0 for success

addr_set_attrib
Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

Prototype:
using ssa;
$ssa—>addr_set_attrib (
$char_set, # String in
$default_country # String in
);
Parameters:
char_set The name of the character set used to encode the input and output.

default_country The default country used for validation when parsing cannot detect a country
name.

Return Code:

negative for error, 0 for success

addr_set_del_lines
Description:

Use this function to set delivery address line information

301 CALLING FROM PERL

Prototype:
using ssa;

$ssa—>addr_set_del_lines
$del_linel ,
$del_linel_size,
$del_line2,
$del_line2_size,
$del_line3,
$del_line3_size,
$del_line4 ,
$del_line4d_size,
$del_line5,
$del_line5_size,
$del_lineé6 ,
$del_line6_size

)

Parameters:

del_linel delivery address line 1 input string
del_line2 delivery address line 2 input string
del_line3 delivery address line 3 input string
del_line4 delivery address line 4 input string
del_line5 delivery address line 5 input string

del_lineé6 delivery address line 6 input string

Return Code:

Block

Block

Block

Block

Block

Block

negative for error, 0 for success

addr_set field case

Description:

Use this function to set individual input fields case option

Prototype:

using ssa;

$ssa—>addr_set_field_case (
Long in
Long in

$field_idx ,
$field_case

)

Parameters:

field_idx Specifies the nth field to set

in

in

in

in

in

in

field _case Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =

Upper case, 2 = Lower case and 3 = Mixed case.

addr_set field _case

302

Return Code:

negative for error, 0 for success

addr_set field ext
Description:

Use this function to set fields

Prototype:
using ssa;

$ssa—>addr_set_field_ext (
$field_operation ,# Long in

$field_name, # String in
$field_item_line ,# Long in

$field_type, # String in
$field_value, # Block in

$field_value_size

)

Parameters:

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines
field name Refer AD Result.dtd for field names

field_item_line Represent field line number or field item number

field_type Refer AD Result.dtd for field attribute Type

field_value input field value

Return Code:

negative for error, 0 for success

addr_set_field idx
Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:

303 CALLING FROM PERL

using ssa;

$ssa—>addr_set_field_idx (
$field_idx, # Long in
$field_value, # Block in
$field_value_size

);

Parameters:
field_idx Specifies the nth field to set

field value Specifies a value for the nth field

Return Code:

negative for error, 0 for success

addr_set_field name

Description:

Use this function to set individual input fields by name

Prototype:

using ssa;

$ssa—>addr_set_field_name (
$field_name, # String in
$field_value, # Block in
$field_value_size

);

Parameters:
field name Specifies the name of the field to set

field_value Specifies a value for the field

Return Code:

negative for error, 0 for success

addr_set lines
Description:

Use this function to specify the value of an input field. This API is used to specify an input address that
has already been pre-parsed into separate fields.

addr_set field_name 304

Prototype:
using ssa;

$ssa—>addr_set_lines (

$line_1, # Block in
$line_1_size,
$line_2, # Block in
$line_2_size,
$line_3, # Block in
$line_3_size,
$line_4, # Block in
$line_4_size,
$line_5, # Block in
$line_5_size ,
$line_6, # Block in
$line_6_size ,
$line_7, # Block in
$line_7_size,
$line_8, # Block in
$line_8_size,
$line_9 , # Block in
$line_9_size ,
$line_10, # Block in

$line_10_size

);
Parameters:

line_ 1 The first line of the address
line_2 The second line of the address
line_3 The third line of the address
line_4 The fourth line of the address
line 5 The fifth line of the address
line 6 The sixth line of the address
line_7 The seventh line of the address
line_8 The eighth line of the address
line_ 9 The ninth line of the address

line_ 10 The tenth line of the address

Return Code:

negative for error, 0 for success

addr_set_option
Description:

Use this function to set values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

305 CALLING FROM PERL

Prototype:
using ssa;

$ssa—>addr_set_option (

$param, # String in
$value # String in
);
Parameters:

param This field specifies the name of the option to set.

value This field specifies a value for the option.

Return Code:

negative for error, 0 for success

addr_std

Description:

Use this function to request IDS to standardize an address by validating it against USPS validation
tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

Prototype:
using ssa;

$ssa—>addr_std (

\$firm_name, # String io
$firm_name_size,
\$urbanization, # String io
$urbanization_size,
\$address_one, # String io
$address_one_size,
\$address_two, # String io
$address_two_size,

\$last_line , # String io
$last_line_size

);
Parameters:

firm_name It contains the name of the firm (may be blank).

urbanization this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

address_one this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-
ponents such as apartment number.

addr_std 306

address_two this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

last_line this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

Return Code:

0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

addr_validate
Description:

Use this function to validate an address

Prototype:
using ssa;

my ($status $n_suggest) = $ssa—>addr_validate ();

Parameters:
status The status returned by the validation process

n_suggest The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

disconnect
Description:

Releases resources allocated to a socket.

Prototype:
using ssa;
$ssa—>disconnect ();

Parameters:

none

307 CALLING FROM PERL

Return Code:

negative for error, 0 for success

error_get

Description:

Get the error messages from the last API function that failed. This function should be called repeatedly
until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

Prototype:
using ssa;

my $msg = $ssa—>error_get ();

Parameters:

msg is the error message returned

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

errors_get_all

Description:

Get the Server side error messages from the last API function that failed. This function should be called
repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

Prototype:
using ssa;
my $msg = $ssa—>errors_get_all ();

Parameters:

msg is an error message.

error_get 308

Return Code:

negative for error, 0 for success

identify
Description:

Identify a session to the console

Prototype:
using ssa;

$ssa—identify (
$identification # String in

);

Parameters:

identification is user supplied identitification for display on the console

Return Code:

negative for error, 0 for success

is_little_endian
Description:

Checks if the search server is running on a little endian platform

Prototype:
using ssa;

my $endian_state = $ssa—>is_little_endian ();

Parameters:

endian_state Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

Return Code:

negative for error, 0 for success

309 CALLING FROM PERL

match_explain
Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

Prototype:

using ssa;

my @info_array = $ssa—>match_explain (
$search, # String in
$match_tolerance ,# String in
$searchrec, # Block in
$searchrec_size,
$filerec, # Block in

$filerec_size

);

Parameters:
search is the name of the Search which was performed.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

searchrec is the original record that we searched on
filerec is the record that was returned by the search

info_array An array describing the match results. See the Match Explain API section for details

Return Code:

negative for error, 0 for success

match_explain_count
Description:

Estimate number of info blocks required for a subsequent match_explain call

Prototype:
using ssa;

my $count = $ssa—>match_explain_count (
$search # String in
);

match_explain 310

Parameters:
search is the name of the Search which was performed.

count Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

real_time_async_get
Description:

Used to retrieve the result count associated with a call to ids_real_time_async_start.
cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

Prototype:
using ssa;

my $cluster_action_count $ssa—>real_time_async_get (

$reference, # String in
$block # Long in
);
Parameters:
reference A reference number identifying the request (returned by

ids_real_time_sync_start)
block 1 =wait for a response 0 = return immediately if no results are available yet

cluster_action_count The number of clusters generated These can be returned with call to
real_time_sync_get 1= wait for a response

Return Code:

negative for error 0 for success positive for no results are available yet

real_time_async_start

Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more
calls to ids_real_time_sync_get to retrieve the results.

311 CALLING FROM PERL

Prototype:

using ssa;

my $reference = $ssa—>real_time_async_start (
$rulebase, # String in
$system, # String in
$1DT, # String in
$sequence_number ,# String in
$operation, # String in

$cluster_record , # Block in
$cluster_record_size,

$source, # Long in
$multi_search, # String in
$input_id # Long in
)
Parameters:

rulebase is the name of the rulebase.
system The name of the system in the rulebase
IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.
source Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

input_id Reserved. A value of 0 must be passed for this parameter.

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retrieving results.

Return Code:
negative for error
0 for success positive for warnings:
1-9 Reserved for future use
10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

real _time_async_start 312

real time flul add
Description:

This API used to add force link and wunlink rule. This call must be followed by
ids_real_time_flul_init.

Prototype:

using ssa;

$ssa—>real_time_flul_add (
$rule_type, # String in
$subject_rec_pk , # Block in
$subject_rec_pk_size,
$relationship , # String in
$related_rec_pk, # Block in

$related_rec_pk_size

);
Parameters:

rule_type This field is for specifying the type of the rule. A value of A’ represents that the rule needs
to be added to the system and "D’ represents that a rule needs to be removed from the system

subject_rec_pk This field is for specifying the PK of the subject record

relationship This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a
value of ‘U’ represents an Unlink rule between the subject record and the related record.

related_rec_pk This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

real_time_flul close
Description:

This API used to close and release force link and unlink module.

Prototype:
using ssa;
$ssa—>real_time_flul_close ();

Parameters:

none

313 CALLING FROM PERL

Return Code:

negative for error, 0 for success

real_time_flul delete
Description:

This API used to delete force link and unlink rule from MR table. This call must be followed by
ids_real_time_flul_ init.

Prototype:

using ssa;

$ssa—>real_time_flul_delete (
$rule_type_option ,# Long in
$record_pk, # Block in

$record_pk_size

)

Parameters:

rule_type_option 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.

2 Delete all rules for input pk.

record_pk This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

real_time_flul find_rule
Description:

This API used to find link and unlink information for input IDT record. should be called after
ids_real time_flul_init APL

Prototype:
using ssa;

$ssa—>real_time_flul_find_rule (

$idt_rec, # Block in
$idt_rec_size,
$option # Long in

real _time_flul_delete 314

Parameters:
idt_rec This field is for specifying the PK of the record to be searched

option 0 Link Rule.
1 Unlink Rule.
Return Code:

negative for error, 0 for success

real_time_flul_get rule

Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real_time_flul_find_rule APL

Prototype:
using ssa;

my $idt_rec = $ssa—>real_time_flul_get_rule ();

Parameters:

idt_rec is the matched File record for input link or unlink rule.

Return Code:

negative for error, 0 for success

real_time_flul_init
Description:

This API used to initialize force link and unlink module. = Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_flul_close.

Prototype:
using ssa;
$ssa—>real_time_flul_init (

$idt_name, # String in
$multi_search # String in

);

315 CALLING FROM PERL

Parameters:
idt_name is the name of the IDT associated with the force link and unlink rule.

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

Return Code:

negative for error, 0 for success

real_time_sync_get
Description:
Use to retrieve the results and free the resources associated with a call to

ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

Prototype:
using ssa;

my ($cluster_action_type, $cluster_action_id, $cluster_action_number, $cluster_action_new) = §

$reference # String in
);
Parameters:
reference A reference string identifying the request. This must be passed to the

ids_real_time_sync_get call when retriving results.
cluster_action_type Identifies the action, ie add or delete
cluster_action_id The prefix which identifies the cluster
cluster_action_number The number which identifies the cluster

cluster_action_new Identifies whether the cluster is newly formed or existing

Return Code:

negative for error, 0 for success, 1 for end of results

real_time_sync_start

Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

real_time_sync_get 316

Prototype:

using ssa;

my ($cluster_action_count, $reference) = $ssa—>real_time_sync_start (
$rulebase, # String in
$system, # String in
$IDT, # String in
$sequence_number ,# String in
$operation, # String in

$cluster_record , # Block in
$cluster_record_size

);

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.

cluster_action_count The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

Return Code:
negative for error
0 for success, and postive for warnings:
1-9 Reserved for future use
10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous
transaction. The record was added to the reject table.

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

317 CALLING FROM PERL

scores_get
Description:

Retrieve an array of scores, one per match record. This APl is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

Prototype:

using ssa;

my @scores = $ssa—>scores_get (
$searchname # String in

);

Parameters:

searchname is the name of the associated search

scores is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

search_comment_get
Description:

Returns the user defined comment stored with the search.

Prototype:
using ssa;

my $comment = $ssa—>search_comment_get (
$searchname # String in

);

Parameters:

searchname the search to count.

comment is the area to copy the string containing the comment. This string will be null-terminated.

scores_get 318

Return Code:

negative for error, 0 for success

search_dedupe_start

Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

Prototype:
using ssa;

$ssa—>search_dedupe_start (

$search , # String in
$search_width, # String in
$match_tolerance ,# String in
\@parameters, # BlockArray in
\$searchrec, # Block io
$searchrec_size,

$AnswersetName, # String in

$flags , # Long in
\$recid , # Long io
\$recs # Long io
);
Parameters:

search is the name of the search that is to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

parameters not used.
searchrec is the IDT record used to search with. It is returned by the Search Server.

AnswersetName is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with
the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

flags flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

recid the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

recs the number of records in the search set.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

319 CALLING FROM PERL

search_fields_count

Description:

Gets the number of fields required to assemble the search record.

Prototype:

using ssa;

my $fc = $ssa—>search_fields_count (
$searchname # String in

)

Parameters:

searchname the search to count.

fc is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

search_fields_get

Description:

Gets the number of fields required to assemble the search record.

Prototype:
using ssa;

my @fieldnames = $ssa—>search_fields_get (
$searchname # String in

);

Parameters:
searchname the search to count.

fieldnames is the array returned which will contain the name of the fields.

Return Code:

negative for error, 0 for success

search_fields_count 320

search_filter
Description:

Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER
MANUAL for details about SQL filters

Prototype:
using ssa;

$ssa—>search_filter (

$search , # String in
$filter # String in
)
Parameters:

search is the name of the Search that will use the filter

filter is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

search_finish
Description:

Release resources associated with ids_search_start.

Prototype:
using ssa;

$ssa—>search_finish (
$search # String in

);

Parameters:

search is the name of the search that was performed

Return Code:

negative for error, 0 for success

321 CALLING FROM PERL

search_get

Description:

Retrieve file records that are a good match for the search record specified in the ids_search_start
or ids_system_search_start function.

Prototype:

using ssa;

my ($searchreturn, $score, $sreps, $freps) = $ssa—>search_get (
$searchname # String in

)

Parameters:

searchname is the name the search to used by the call.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

sreps is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

freps is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = O, freps[0] = 1, frep[1] =0

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_get_complete

Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3
v1is used.

search_get 322

Prototype:

using ssa;

my ($searchreturn, $score, $info) = $ssa—>search_get_complete (
$search # String in

);

Parameters:

search is the name of the search which was performed.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

info an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,
Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit
number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_get_detalil

Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

Prototype:
using ssa;

my ($file_rec, $score, $decision, $file_recid) = $ssa—>search_get_detail (
$search # String in

);

Parameters:

search is the name of the Search which was performed.

file_rec is the matched File record.

score is the degree of similarity between the Search and File records (0-100).
decision is the match decision: A(ccept) or U(ndecided)

file_recid is the File Record-ID (corresponding to the RECID column from the IDT).

323 CALLING FROM PERL

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_IDT_get

Description:

Gets the name of the IDT associated with the search.

Prototype:
using ssa;

my $IDT = $ssa—>search_IDT_get (
$searchname # String in

)

Parameters:
searchname is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

search_layout

Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

Prototype:
using ssa;

my ($names, $lengths, $offsets, $repeats, $formats) = $ssa—>search_layout (

$search, # String in
$viewType, # String in
$func # String in
);
Parameters:

search is the name of the Search which was performed.

viewType the type of view: input or output.

search_IDT_get 324

func describes the order of fields.

names is the area into which an array containing the fieldnames will be copied.

lengths is the area into which an array containing the lengths of the fields will be copied.

offsets is the area into which an array containing the offsets of the fields will be copied.

repeats is the area into which an array containing the number of repeats in a field will be copied.

formats is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

Character O:
Character 1:
Characters2 - 3:
Character 4:
Characters 5 - 6:
Character 7:
Character 8 - 9:
Characters 10 - 11:
Character 12:
Characters 13 - 50:

Justification (‘L’eft or ‘R’ight)

Compression (‘F’ixed, ‘V’ariable or ‘I ong)

Fill (2 characters containing the fill character in hexadecimal)
Fill type (‘T’ext or ‘B’inary)

Base (2 characters containing the base in decimal)

Format (‘T’ext, ‘N'umeric, ‘V’ariable or ‘B’inary)

Reserved

Binary key number (2 hexadecimal digits)

Character width (‘W’ide, ‘N’arrow)

Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

Return Code:

negative for error, 0 for success

search_profile_count

Description:

Count the number of profile entries available

Prototype:

using ssa;

my $count = $ssa—>search_profile_count ();

Parameters:

count Returns the number of elements

Return Code:

negative for error, 0 for success

325 CALLING FROM PERL

search_profile_get

Description:

Get the profiling times, with each field comprising of an id, a name and a time

Prototype:
using ssa;

my ($ids $names, $times) = $ssa—>search_profile_get ();

Parameters:

ids the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

names the names for each field

times the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

search_start

Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Prototype:
using ssa;
my $recs = $ssa—>search_start (

$search , # String in
$search_width, # String in

search_profile_get 326

$match_tolerance ,# String in
\@parameters, # BlockArray in
\$searchrec, # Block io
$searchrec_size,

$AnswersetName, # String in
\@records # BlockArray in

);

Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

records contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOQOUT has been exceeded.

search_start_via_parameters
Description:

Prototype:
using ssa;

my ($datalen, $recs) = $ssa—>search_start_via_parameters (
$search, # String in

327 CALLING FROM PERL

$search_width, # String in
$match_tolerance ,# String in
\@parameters # BlockArray in

);
Parameters:

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls

will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

search_start via_record
Description:

Prototype:
using ssa;

my ($datalen, $recs) = $ssa—>search_start_via_record (
$search, # String in
$search_width, # String in
$match_tolerance ,# String in
$searchrec, # Block in
$searchrec_size

);
Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls

will be used.

search_start via_record 328

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

search_tolerances count

Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-
sively the matching scheme should be in rejecting candidates.

Prototype:
using ssa;

my $count = $ssa—>search_tolerances_count (
$searchname # String in

);

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

search_tolerances_get

Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how
aggressively the matching scheme should be in rejecting candidates.

329 CALLING FROM PERL

Prototype:

using ssa;

my @tolerances = $ssa—>search_tolerances_get (
$searchname # String in

);

Parameters:

searchname the search to count.

tolerances is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

search_view_get

Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output

records.

Prototype:

using ssa;

my ($viewName, $viewFieldCount, $viewRecLen) = $ssa—>search_view_get (
$search, # String in
$viewType # String in

);

Parameters:

search is the name of the Search

viewType the type of the view (input or output)
viewName is the name of the view to query
viewFieldCount the number of fields in the view

viewRecLen is the length of the view

Return Code:
negative for error, 0 for success

search_view_get 330

search_view_set

Description:

Sets a view as the active input or output view

Prototype:
using ssa;

$ssa—>search_view_set (

$search , # String in
$viewType, # String in
$viewName # String in
)
Parameters:

search is the name of the Search
viewType the type of the view (input or output)

viewName the name of the view to use

Return Code:

negative for error, 0 for success

search_widths_count

Description:

Returns the count of search widths that have been defined for the search. The search width defines how
many items are selected by the search

Prototype:

using ssa;

my $count = $ssa—>search_widths_count (
$searchname # String in

);

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

331 CALLING FROM PERL

search_widths_get

Description:
Returns the search widths that have been defined for the search. The search width defines how many

items are selected by the search

Prototype:
using ssa;

my @widths = $ssa—>search_widths_get (
$searchname # String in

);
Parameters:

searchname is the name the search to used by the call.

widths is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

server_version_get

Description:

Get the version information associated with the server.

Prototype:
using ssa;

my $server_version = $ssa—>server_version_get ();

Parameters:

server_version is the area into which the string containing the version information will be copied.

Return Code:

negative for error, 0 for success

session_close

Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

search_widths_get 332

Prototype:
using ssa;
$ssa—>session_close ();

Parameters:

none

Return Code:

negative for error, 0 for success

session_open
Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server
from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Prototype:
using ssa;
$ssa—>session_open (
\$session # Long io

);

Parameters:

session is the number of the session to open (-1 for a new session).

Return Code:

negative for error, 0 for success

set_encoding
Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of
the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

333 CALLING FROM PERL

Prototype:
using ssa;

$ssa—>set_encoding (
$encoding # Long in
);

Parameters:

encoding 6=UTF-16/UCS-2 (LE), 7=UTF-16/UCS-2 (BE), 8=UTF-8, 4=UCS-4

Return Code:

negative for error, 0 for success

set_timeout
Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

Prototype:
using ssa;

$ssa—>set_timeout (
$timeout # Long in

);

Parameters:

timeout timeout 0 is disable timeout, a positive value in seconds for the timeout

Return Code:

negative for error, 0 for success

set_vpd_user
Description:

Provides the Search Server with information required to set a Virtual Private Database context. Refer
to the DESIGNER MANUAL, VPD section for details about VPD.

set_timeout 334

Prototype:
using ssa;

$ssa—>set_vpd_user (

$vpd_user, # String in
$vpd_ctx # String in
)
Parameters:

vpd_user Connection string of the actual user

vpd_ctx the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

system_close
Description:

closes the system and frees any remaining resources.

Prototype:
using ssa;

$ssa—>system_close ();

Parameters:

none

Return Code:

negative for error, 0 for success

system_idtname_count

Description:

Returns the number of active idt names. (i.e. those whose IDT has been loaded).

Prototype:
using ssa;

my $idtcount = $ssa—>system_idtname_count ();

335 CALLING FROM PERL

Parameters:

idtcount is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

system_idtname_get

Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

Prototype:
using ssa;

my @idtnames = $ssa—>system_idtname_get ();

Parameters:

idtnames is the area into which an array of the idtnames defined on the rulebase will be copied (the
idtnames are all null terminated strings).

Return Code:

negative for error, 0 for success

system_notify
Description:

Notifies search server on a system.

Prototype:
using ssa;

$ssa—>system_notify (

$rulebase, # String in
$sysname, # String in
$message # String in
);
Parameters:

rulebase is the name of the rulebase.
sysname is the name of the system

message is a messagevto be delivered

system_idtname_get 336

Return Code:

negative for error, 0 for success

system_open
Description:

opens a system.

Prototype:
using ssa;

$ssa—>system_open (

$rulebase, # String in
$system, # String in
$verbosity, # String in
$Options # String in
);
Parameters:

rulebase is the name of the rulebase.
system The name of the system in the rulebase
verbosity specifies the verbosity level. See the Verbosity section for details.

Options LOGOUT filename for server output for this session.
LOGERR filename for server errors for this session.
LOGTEST filename for server search trace for this session.
SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-
tory for this session.

Return Code:

negative for error, 0 for success

system_search_finish
Description:
Finishes the search and closes the system.

337 CALLING FROM PERL

Prototype:
using ssa;

$ssa—>system_search_finish ();

Parameters:

none

Return Code:

negative for error, 0 for success

system_search_start
Description:

Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer
to ids_search_start for a more detailed description of the parameters.

Prototype:
using ssa;

my ($datalen, $recs) = $ssa—>system_search_start (

$rulebase, # String in
$system, # String in
$verbosity, # String in
$options, # String in
$search, # String in
\@parameters, # BlockArray in

$AnswersetName # String in
);
Parameters:
rulebase is the name of the rulebase.
system The name of the system in the rulebase
verbosity specifies the verbosity level. See the Verbosity section for details.

options consists of one or more keywords and their respective values in the form
KEYWORD1=VALUE1l, KEYWORD2=VALUE2Z,

search is the name of the search in the system in the Rulebase that will be used.
parameters is the array which contains the field values to be used to construct the search.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

datalen will return the length of a record.

recs count of records that matched the search criteria

system_search_start 338

Return Code:

negative for error, 0 for success

system_searches_count

Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of ids_system_open.

Prototype:
using ssa;

my $searchcount = $ssa—>system_searches_count ();

Parameters:

searchcount is the number of searches defined on the system

Return Code:

negative for error, 0 for success

system_searches_get

Description:

Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-
turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of
ids_system_open.

Prototype:
using ssa;

my @searches = $ssa—>system_searches_get ();

Parameters:

searches is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

Return Code:

negative for error, 0 for success

339 CALLING FROM PERL

systems_count

Description:

the number of systems in the rulebase.

Prototype:
using ssa;

my $systemscount = $ssa—>systems_count (
$rulebase # String in

);

Parameters:
rulebase is the name of the rulebase.

systemscount the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

systems_get

Description:

Get the names of all the systems defined in the rulebase.

Prototype:

using ssa;

my @systems = $ssa—>systems_get (
$rulebase # String in

);

Parameters:

rulebase is the name of the rulebase.

systems is the area into which an array of the systems defined in the rulebase will be copied (the
systems are all null terminated strings).

Return Code:

negative for error, 0 for success

systems_count 340

Calling from Visual Basic .NET

For Visual Basic .NET the API functions are made available in the shareable assembly ssasecs.d11l.
This contains the classes ids, which contains the API, and SSAException, which is based on
ApplicationException. The ids methods return an exception of class SSAException that must
be caught. If the bool method SSAException.isFatal () returns true the error resulted in the
communication channel being closed and no further calls can be made without reconnecting.

Visual Basic .NET does not require the sockh parameter for any of these functions.

Constants

Constants are public member constants of the ids class, in uppercase using underscores, eg.
ids .MSG_SIZE.

Installation - Win32 client
The shareable assembly can be installed in the global assembly cache with Microsoft’s gacutil utility:
gacutil /i %SSABIN%\ssasecs.dll
You can then create applications that use it with:
vbc /reference:%$SSABIN%\ssasecs.dll myprog.vb

Alternatively, you can use ssasecs.d11 in a Visual Studios.NET IDE project/solution.

To add a reference to the ssasecs.dl11l:

+ Right-click on the project/solution name in the "Solution Explorer" pane of the IDE. Select "Add
Reference...".

+ Make sure that the ".NET" tab is the active tab. Use the "Browse" button to find ssasecs.dl11.

+ Highlight the dll in the Explorer window (contrary to expectations, nothing you do will add the name of
the dll to the "File Name:" textbox, so don’t worry if it’s not there) and click "Open".

+ This adds the ssasecs.dl1 to the Selected Components pane of the Add Reference dialog. Click
"OK".

To add the "ssa" namespace to the project/solution:

+ Right-Click on the project/solution name in the "Solution Explorer" pane of the IDE. Select "Proper-
ties".

+ Click on "Imports" under the "Common Properties" folder.

¢ In the "Namespace:" textbox type ssa and click "Add Import".
+ Click OK to exit.

The second step eliminates the need to have the following in any module:
Imports ssa

Otherwise, you can skip this step and add the Imports statement as above.

341 CALLING FROM VISUAL BASIC .NET

Constructor

Description:

Used to create a ssa. ids object. This object is then used to make the required API calls to the Search
or Connection Server.

Prototype:
Imports ssa;

Public Class ids
Dim hostname As String
Dim port As Integer
End Class

Parameters:
hostname is the name or IP address of the computer where the IIR Server is running

port the port number of the IIR Server for which a socket connection is to be established

addr_get_cass_field
Description:

Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion
from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Prototype:
Imports ssa

Public Function addr_get_cass_field (_

ByRef suggest_idx As Integer, _’ Long in
ByRef field_idx As Integer _’ Long in

) As Byte ()

Parameters:

suggest_idx Specifies the nth suggestion from which to get a cass field
field_idx Specifies a cass field within the nth suggestion

field wvalue The cass field value

Return Code:

negative for error, 0 for success

Constructor 342

addr_get_cass_field cnt
Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse
APL

Prototype:

Imports ssa

Public Function addr_get_cass_field_cnt () As Integer

Parameters:

count Returns the max number of cass address fields

Return Code:

negative for error, 0 for success

addr_get_cass_field_info
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:

Imports ssa

Public Function addr_get_cass_field_info (_
ByRef suggest_idx As Integer _’ Long in
) As Integer ()

Parameters:
suggest_idx Specifies the suggestion from which to retrieve information

field_length An array containing the length of each cass address field

Return Code:
negative for error, 0 for success

343 CALLING FROM VISUAL BASIC .NET

addr_get_del_lines_ext
Description:

Use this function to retrieve delivery address line information

Prototype:

Imports ssa

Public Function addr_get_del_lines_ext (_
ByRef suggest_idx As Integer, _~ Long in

ByRef del_case As Integer _’ Long in
) As addr_get_del_lines_ext_struct

Parameters:
suggest_idx Specifies the suggestion from which to get delivery address lines

del_case Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

del_linel delivery address line 1 output string
del_line2 delivery address line 2 output string
del_line3 delivery address line 3 output string
del_line4 delivery address line 4 output string
del_line5 delivery address line 5 output string

del_lineé6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

addr_get_field
Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned
by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Prototype:

addr_get del _lines_ext 344

Imports ssa

Public Function addr_get_field (_
ByRef suggest_idx As Integer, _' Long in
ByRef field_idx As Integer _’ Long in

) As addr_get_field_struct

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field
field_idx Specifies a field within the nth suggestion

field _value The field value

field val_status Specifies how this field matched the validation data

field _val_mods Specifies how this field was modified by validation data

Return Code:

negative for error, 0 for success

addr_get_field_count
Description:

This function returns the maximum number of address fields created as a result of a parse or validate
call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APIL

Prototype:
Imports ssa

Public Function addr_get_field_count () As Integer
Parameters:

count Returns the max number of address fields

Return Code:

negative for error, 0 for success

addr_get_field ext
Description:

Use this function to retrieve all getter fields

345 CALLING FROM VISUAL BASIC .NET

Prototype:
Imports ssa

Public Function addr_get_field_ext (_

ByRef suggest_idx As Integer, _’ Long in
ByRef field_operation As Integer, _’' Long in
ByRef field_name As String, _' String in
ByRef field_item_line As Integer, _ " Long in
ByRef field_type As String _’ String in

) As Byte ()

Parameters:

suggest_idx Specifies the suggestion from which to get fields

field_operation Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

field name Refer AD Result.dtd for field names
field_item_line Represent field line number or field item number
field_type Refer AD Result.dtd for field attribute Type

field_value Cleansed field output

Return Code:

negative for error, 0 for success

addr_get_field idx
Description:
Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-

tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

Prototype:
Imports ssa

Public Function addr_get_field_idx (_

ByRef suggest_idx As Integer, _’ Long in
ByRef field_idx As Integer _’ Long in

) As Byte ()

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

field idx Specifies a field within the nth suggestion

field value The field value

addr_get field_idx 346

Return Code:

negative for error, 0 for success

addr_get field info_ext
Description:

Use this function to retrieve a list of individual field lengths after validating an address. Fields with a
length of zero have no value associated with them and can be omitted from the list of fields retrieved
with ids_addr_get_field_ idx

Prototype:
Imports ssa
Public Function addr_get_field_info_ext (_

ByRef suggest_idx As Integer _’ Long in
) As addr_get_field_info_ext_struct

Parameters:

suggest_idx Specifies the suggestion from which to retrieve information
field length An array containing the length of each address field
addr_ label_encoded The returned label

addr_label_ charset The character set used in the address label

score The returned label’s score

Return Code:

negative for error, 0 for success

addr_get_field len
Description:

This function returns the maximum length of an individual address field. It may be used to dynamically
allocate the field parameter used for the ids_addr_get_field idx APL

Prototype:
Imports ssa

Public Function addr_get_field_len () As Integer

Parameters:

max_len Returns the max address field length in bytes

347 CALLING FROM VISUAL BASIC .NET

Return Code:

negative for error, 0 for success

addr_get_line_len
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Prototype:
Imports ssa

Public Function addr_get_line_len () As Integer

Parameters:

max_len Returns the max line length in bytes

Return Code:

negative for error, 0 for success

addr_get_option
Description:
Use this function to obtain values of options that control Address Standardization behavior. A list of

options appears in the Address Standardization section of this manual.

Prototype:
Imports ssa
Public Function addr_get_option (_

ByRef param As String _’ String in
) As String

Parameters:
param This field specifies the name of the option to get.

value Returns the value of the option.

Return Code:

negative for error, 0 for success

addr_get line_len 348

addr_info
Description:

Use this function to request additional information about an input address. This call must always be
preceded with a call to ids_addr_std.

Prototype:
Imports ssa
Public Function addr_info (_

ByRef controls As String
) As String

’

String in

Parameters:
controls this field contains the request information. It must me specified in the form ITEM=[value].

value this field contains the requested information.

Return Code:

negative for error, 0 for success

addr_init
Description:

This function initializes the Address Standardization sub-system. It must be the first call to
ids_addr_»x family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

Prototype:
Imports ssa

Public Sub addr_init (_

ByRef max_memory As Integer " Long in

)

Parameters:

max_memory This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:

negative for error, 0 for success

349 CALLING FROM VISUAL BASIC .NET

addr_parse
Description:

Use this function to parse an address. The individual field lengths after parsing an address are returned
in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

Prototype:
Imports ssa

Public Function addr_parse () As Integer ()

Parameters:

field_length An array containing the length of each parsed field

Return Code:

negative for error, 0 for success

addr_preload_country
Description:

Use this function to preload country database

Prototype:
Imports ssa

Public Sub addr_preload_country (_

ByRef preload_type As String, _’ String in
ByRef preload_country As String, _' String in
ByRef val_mode As String _’ String in

Parameters:
preload_type Type of preload to perform
preload _country Country database to be preloaded

val_mode Validation mode to be used

Return Code:

negative for error, 0 for success

addr_parse 350

addr_set_attrib
Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

Prototype:
Imports ssa

Public Sub addr_set_attrib (_

ByRef char_set As String, _' String in

ByRef default_country As String _' String in
)
Parameters:

char_set The name of the character set used to encode the input and output.

default_country The default country used for validation when parsing cannot detect a country
name.

Return Code:

negative for error, 0 for success

addr_set _del lines
Description:

Use this function to set delivery address line information

Prototype:
Imports ssa

Public Sub addr_set_del_lines (_
ByRef del_linel () As Byte, _’ Block in
ByRef del_line2 () As Byte, _’" Block in
ByRef del_line3 () As Byte, _’" Block in
ByRef del_line4 () As Byte, _’ Block in
ByRef del_line5() As Byte, _’ Block in
ByRef del_line6() As Byte _ " Block in

Parameters:

del_linel delivery address line 1 input string

351 CALLING FROM VISUAL BASIC .NET

del_line2 delivery address line 2 input string
del_line3 delivery address line 3 input string
del_line4 delivery address line 4 input string
del_line5 delivery address line 5 input string

del_lineé6 delivery address line 6 input string

Return Code:

negative for error, 0 for success

addr_set field case
Description:

Use this function to set individual input fields case option

Prototype:

Imports ssa

Public Sub addr_set_field_case (_
ByRef field_idx As Integer, _’ Long in
ByRef field_case As Integer _’ Long in

Parameters:
field_idx Specifies the nth field to set

field_case Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =
Upper case, 2 = Lower case and 3 = Mixed case.

Return Code:

negative for error, 0 for success

addr_set field ext
Description:
Use this function to set fields

addr_set field _case 352

Prototype:
Imports ssa

Public Sub addr_set_field_ext (_

ByRef field_operation As Integer, _’' Long in
ByRef field_name As String, _’ String in
ByRef field_item_line As Integer, _’ Long in
ByRef field_type As String, _’ String in
ByRef field_value() As Byte _’ Block in

)

Parameters:

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines
field name Refer AD Result.dtd for field names

field item_line Represent field line number or field item number

field type Refer AD Result.dtd for field attribute Type

field value input field value

Return Code:

negative for error, 0 for success

addr_set field idx
Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that
has already been pre-parsed into separate fields.

Prototype:
Imports ssa

Public Sub addr_set_field_idx (_

ByRef field_idx As Integer, _’ Long in
ByRef field_value() As Byte _’ Block in
)
Parameters:

field_idx Specifies the nth field to set

field value Specifies a value for the nth field

Return Code:

negative for error, 0 for success

353 CALLING FROM VISUAL BASIC .NET

addr_set field_name

Description:

Use this function to set individual input fields by name

Prototype:
Imports ssa

Public Sub addr_set_field_name (_

ByRef field_name As String, _’ String in
ByRef field_value() As Byte _’ Block in

)

Parameters:
field name Specifies the name of the field to set

field value Specifies a value for the field

Return Code:

negative for error, 0 for success

addr_set lines

Description:

Use this function to specify the value of an input field. This API is used to specify an input address that

has already been pre-parsed into separate fields.

Prototype:
Imports ssa

Public Sub addr_set_lines (_
ByRef line_1() As Byte, _’ Block in
ByRef line_2() As Byte, _’ Block in
ByRef line_3 () As Byte, _’ Block in
ByRef line_4 () As Byte, _’ Block in
ByRef line_5() As Byte, _’ Block in
ByRef line_6() As Byte, _’ Block in
ByRef line_7 () As Byte, _’ Block in
ByRef line_8 () As Byte, _’ Block in
ByRef line_9() As Byte, _’ Block in
ByRef line_10() As Byte _’ Block in

)

Parameters:

line_1 The first line of the address

addr_set field_name

354

line_ 2 The second line of the address
line_3 The third line of the address
line_4 The fourth line of the address
line_5 The fifth line of the address
line_ 6 The sixth line of the address
line_7 The seventh line of the address
line_8 The eighth line of the address
line_9 The ninth line of the address
line_ 10 The tenth line of the address

Return Code:

negative for error, 0 for success

addr_set_option
Description:
Use this function to set values of options that control Address Standardization behavior. A list of

options appears in the Address Standardization section of this manual.

Prototype:

Imports ssa
Public Sub addr_set_option (_
ByRef param As String, _’ String in
ByRef value As String " String in
)

Parameters:
param This field specifies the name of the option to set.

value This field specifies a value for the option.

Return Code:

negative for error, 0 for success

addr_std
Description:

Use this function to request IDS to standardize an address by validating it against USPS validation
tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

355 CALLING FROM VISUAL BASIC .NET

Prototype:
Imports ssa

Public Sub addr_std (_
ByVal firm_name As String, _’' String io
ByRef firm_name_size As Integer, _
ByVal urbanization As String, _’ String io
ByRef urbanization_size As Integer, _
ByVal address_one As String, _’ String io
ByRef address_one_size As Integer, _

ByVal address_two As String, _’ String io
ByRef address_two_size As Integer, _
ByVal last_line As String, _’' String io

ByRef last_line_size As Integer

Parameters:
firm name It contains the name of the firm (may be blank).

urbanization this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

address_one this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-
ponents such as apartment number.

address_two this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

last_line this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

Return Code:

0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

addr_validate
Description:

Use this function to validate an address

Prototype:
Imports ssa

Public Function addr_validate () As addr_validate_struct

addr_validate 356

Parameters:
status The status returned by the validation process

n_suggest The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

disconnect
Description:

Releases resources allocated to a socket.

Prototype:
Imports ssa

Public Sub disconnect ()

Parameters:

none

Return Code:

negative for error, 0 for success

error_get
Description:

Get the error messages from the last API function that failed. This function should be called repeatedly
until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

Prototype:
Imports ssa

Public Function error_get () As String

Parameters:

msg is the error message returned

357 CALLING FROM VISUAL BASIC .NET

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

errors_get_all
Description:

Get the Server side error messages from the last API function that failed. This function should be called
repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

Prototype:

Imports ssa

Public Function errors_get_all () As String

Parameters:

msg is an error message.

Return Code:

negative for error, 0 for success

identify
Description:

Identify a session to the console

Prototype:

Imports ssa

Public Sub identify (_
ByRef identification As String

7

String in

)

Parameters:

identification is user supplied identitification for display on the console

Return Code:

negative for error, 0 for success

errors_get all 358

is_little_endian
Description:

Checks if the search server is running on a little endian platform

Prototype:
Imports ssa

Public Function is_little_endian () As Integer

Parameters:

endian_state Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

Return Code:

negative for error, 0 for success

match_explain
Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

Prototype:
Imports ssa

Public Function match_explain (_

ByRef search As String, _’ String in

ByRef match_tolerance As String, _' String in
ByRef searchrec() As Byte, _’" Block in

ByRef filerec() As Byte _’ Block in

) As Byte ()()

Parameters:
search is the name of the Search which was performed.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

searchrec is the original record that we searched on
filerec is the record that was returned by the search

info_array An array describing the match results. See the Match Explain API section for details

359 CALLING FROM VISUAL BASIC .NET

Return Code:

negative for error, 0 for success

match_explain_count
Description:

Estimate number of info blocks required for a subsequent match_explain call

Prototype:

Imports ssa
Public Function match_explain_count (_

ByRef search As String " String in
) As Integer

Parameters:
search is the name of the Search which was performed.

count Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

real_time_async_get
Description:

Used to retrieve the result count associated with a call to ids_real_time_async_start.
cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

Prototype:

Imports ssa

Public Function real_time_async_get (_
ByRef reference As String, _’' String in
ByRef block As Integer _’ Long in

) As Integer

Parameters:

reference A reference number identifying the request (returned by
ids_real_time_sync_start)

block 1 =wait for a response 0 = return immediately if no results are available yet

cluster_action_count The number of clusters generated These can be returned with call to
real_time_sync_get 1 = wait for a response

match_explain_count 360

Return Code:

negative for error 0 for success positive for no results are available yet

real_time_async_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more
calls to ids_real_time_sync_get to retrieve the results.

Prototype:
Imports ssa

Public Function real_time_async_start (_

ByRef rulebase As String, _’ String in
ByRef system As String, _’ String in
ByRef IDT As String, _' String in
ByRef sequence_number As String, _' String in
ByRef operation As String, _' String in
ByRef cluster_record () As Byte, _’ Block in
ByRef source As Integer, _’ Long in
ByRef multi_search As String, _’ String in
ByRef input_id As Integer " Long in

) As String

Parameters:

rulebase is the name of the rulebase.
system The name of the system in the rulebase
IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.
source Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

input_id Reserved. A value of 0 must be passed for this parameter.

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retrieving results.

361 CALLING FROM VISUAL BASIC .NET

Return Code:
negative for error
0 for success positive for warnings:
1-9 Reserved for future use
10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

real_time_flul_add
Description:

This API used to add force link and unlink rule. This call must be followed by
ids_real_time_flul_init.
Prototype:

Imports ssa

Public Sub real_time_flul_add (_

ByRef rule_type As String, _’' String in
ByRef subject_rec_pk() As Byte, _’ Block in
ByRef relationship As String, _’ String in
ByRef related_rec_pk () As Byte _’ Block in
)
Parameters:

rule_type This field is for specifying the type of the rule. A value of A’ represents that the rule needs
to be added to the system and "D’ represents that a rule needs to be removed from the system

subject_rec_pk This field is for specifying the PK of the subject record
relationship This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a

value of U’ represents an Unlink rule between the subject record and the related record.

related_rec_pk This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

real _time_flul_add 362

real _time flul close
Description:

This API used to close and release force link and unlink module.

Prototype:
Imports ssa

Public Sub real_time_flul_close ()

Parameters:

none

Return Code:

negative for error, 0 for success

real_time_flul delete
Description:

This API used to delete force link and unlink rule from MR table. This call must be followed by
ids_real_time_flul_ init.

Prototype:
Imports ssa

Public Sub real_time_flul_delete (_
ByRef rule_type_option As Integer, _
ByRef record_pk() As Byte " Block in

7

Long in

Parameters:

rule_type_option 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.

2 Delete all rules for input pk.

record_pk This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

363 CALLING FROM VISUAL BASIC .NET

real_time_flul find rule
Description:

This API used to find link and unlink information for input IDT record. should be called after
ids_real_time_flul_init APL

Prototype:
Imports ssa

Public Sub real_time_flul_find_rule (_

ByRef idt_rec() As Byte, _’ Block in
ByRef option As Integer _’ Long in
)
Parameters:

idt_rec This field is for specifying the PK of the record to be searched

option 0 Link Rule.
1 Unlink Rule.

Return Code:

negative for error, 0 for success

real_time_flul_get rule
Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real_time_flul_find_rule APIL

Prototype:
Imports ssa

Public Function real_time_flul_get_rule () As Byte ()
Parameters:

idt_rec is the matched File record for input link or unlink rule.

Return Code:

negative for error, 0 for success

real _time_flul find_rule 364

real_time_flul_init
Description:

This API used to initialize force link and unlink module. =~ Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_flul_close.

Prototype:
Imports ssa

Public Sub real_time_flul_init (_

ByRef idt_name As String, _' String in
ByRef multi_search As String _’ String in
)
Parameters:

idt_name is the name of the IDT associated with the force link and unlink rule.

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

Return Code:

negative for error, 0 for success

real_time_sync_get
Description:

Use to retrieve the results and free the resources associated with a «call to
ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

Prototype:
Imports ssa

Public Function real_time_sync_get (_
ByRef reference As String _' String in
) As real_time_sync_get_struct

Parameters:

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

cluster_action_type Identifies the action, ie add or delete
cluster_action_id The prefix which identifies the cluster
cluster_action_number The number which identifies the cluster

cluster_action_new Identifies whether the cluster is newly formed or existing

365 CALLING FROM VISUAL BASIC .NET

Return Code:

negative for error, 0 for success, 1 for end of results

real_time_sync_start

Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

Prototype:
Imports ssa

Public Function real_time_sync_start (_

ByRef rulebase As String, _’ String in

ByRef system As String, _' String in

ByRef IDT As String, _’ String in

ByRef sequence_number As String, _' String in
ByRef operation As String, _’' String in
ByRef cluster_record () As Byte _’ Block in

) As real_time_sync_start_struct

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.

cluster_action_count The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

Return Code:
negative for error
0 for success, and postive for warnings:

1-9 Reserved for future use

10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.

real _time_sync_start 366

11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous
transaction. The record was added to the reject table.

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

scores_get
Description:

Retrieve an array of scores, one per match record. This APl is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

Prototype:
Imports ssa
Public Function scores_get (_

ByRef searchname As String
) As Integer ()

" String in

Parameters:
searchname is the name of the associated search

scores is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

search_comment_get
Description:

Returns the user defined comment stored with the search.

367 CALLING FROM VISUAL BASIC .NET

Prototype:
Imports ssa
Public Function search_comment_get (_

ByRef searchname As String _’ String in
) As String

Parameters:

searchname the search to count.

comment is the area to copy the string containing the comment. This string will be null-terminated.

Return Code:

negative for error, 0 for success

search_dedupe_start
Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

Prototype:
Imports ssa

Public Sub search_dedupe_start (_
ByRef search As String, _’ String in
ByRef search_width As String, _’ String in
ByRef match_tolerance As String, _’' String in
ByRef parameters()() As Byte, _’ BlockArray in
ByVal searchrec() As Byte, _’ Block io
ByRef searchrec_size As Integer, _
ByRef AnswersetName As String, _' String in
ByRef flags As Integer, _’ Long in
ByVal recid As Integer, _’ Long io
ByVal recs As Integer _’ Long io

Parameters:
search is the name of the search that is to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

parameters not used.

searchrec is the IDT record used to search with. It is returned by the Search Server.

search_dedupe_start 368

AnswersetName is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with
the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

flags flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

recid the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

recs the number of records in the search set.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

search_fields count
Description:

Gets the number of fields required to assemble the search record.

Prototype:

Imports ssa

Public Function search_fields_count (_
ByRef searchname As String _’ String in
) As Integer

Parameters:
searchname the search to count.

fc is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

search_fields_get
Description:
Gets the number of fields required to assemble the search record.

369 CALLING FROM VISUAL BASIC .NET

Prototype:
Imports ssa
Public Function search_fields_get (_

ByRef searchname As String
) As String ()

’

String in

Parameters:
searchname the search to count.

fieldnames is the array returned which will contain the name of the fields.

Return Code:

negative for error, 0 for success

search_filter
Description:

Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER
MANUAL for details about SQL filters

Prototype:
Imports ssa

Public Sub search_filter (_

ByRef search As String, _’ String in
ByRef filter As String _’ String in
)
Parameters:

search is the name of the Search that will use the filter

filter is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

search_finish
Description:

Release resources associated with ids_search_start.

search_filter 370

Prototype:
Imports ssa

Public Sub search_finish (_
ByRef search As String _’ String in

)

Parameters:

search is the name of the search that was performed

Return Code:

negative for error, 0 for success

search_get
Description:

Retrieve file records that are a good match for the search record specified in the ids_search_start
or ids_system_search_start function.

Prototype:
Imports ssa

Public Function search_get (_
ByRef searchname As String _’ String in
) As search_get_struct

Parameters:

searchname is the name the search to used by the call.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

sreps is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

freps is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = O, freps[0] = 1, frep[1] =0

371 CALLING FROM VISUAL BASIC .NET

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_get complete
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3
v1 is used.

Prototype:
Imports ssa
Public Function search_get_complete (_

ByRef search As String " String in
) As search_get_complete_struct

Parameters:

search is the name of the search which was performed.
searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

info an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,
Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit
number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search_get_detalil
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

search_get complete 372

Prototype:

Imports ssa
Public Function search_get_detail (_

ByRef search As String _’ String in
) As search_get_detail_struct

Parameters:

search is the name of the Search which was performed.

file_ rec is the matched File record.

score is the degree of similarity between the Search and File records (0-100).
decision is the match decision: A(ccept) or U(ndecided)

file_recid is the File Record-ID (corresponding to the RECID column from the IDT).

Return Code:

negative for error, 0 for success, and 1 for "end of set".

search IDT_get
Description:

Gets the name of the IDT associated with the search.

Prototype:
Imports ssa

Public Function search_IDT_get (_
ByRef searchname As String _’ String in
) As String

Parameters:
searchname is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

search_layout
Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

373 CALLING FROM VISUAL BASIC .NET

Prototype:
Imports ssa

Public Function search_layout (_
ByRef search As String, _’ String in
ByRef viewType As String, _’' String in
ByRef func As String String in

) As search_layout_struct

Parameters:

search is the name of the Search which was performed.

viewType the type of view: input or output.

func describes the order of fields.

names is the area into which an array containing the fieldnames will be copied.

lengths is the area into which an array containing the lengths of the fields will be copied.
offsets is the area into which an array containing the offsets of the fields will be copied.
repeats is the area into which an array containing the number of repeats in a field will be copied.

formats is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

Character 0: Justification (‘L’eft or ‘R’ight)

Character 1: Compression (‘F’ixed, ‘V’ariable or ‘I.’ong)

Characters?2 - 3: Fill (2 characters containing the fill character in hexadecimal)
Character 4: Fill type (‘T’ext or ‘B’inary)

Characters 5 - 6: Base (2 characters containing the base in decimal)

Character 7: Format (‘T’ext, ‘N'umeric, ‘V’ariable or ‘B’inary)

Character 8 - 9: Reserved

Characters 10 - 11: Binary key number (2 hexadecimal digits)

Character 12: Character width (‘W’ide, ‘N’arrow)

Characters 13 - 50: Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

Return Code:

negative for error, 0 for success

search_profile_count
Description:

Count the number of profile entries available

search_profile_count 374

Prototype:
Imports ssa

Public Function search_profile_count () As Integer

Parameters:

count Returns the number of elements

Return Code:

negative for error, 0 for success

search_profile_get

Description:

Get the profiling times, with each field comprising of an id, a name and a time

Prototype:
Imports ssa

Public Function search_profile_get () As search_profile_get_struct

Parameters:

ids the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

names the names for each field

times the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

search_start
Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

375 CALLING FROM VISUAL BASIC .NET

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Prototype:

Imports ssa

Public Function search_start (_
ByRef search As String, _’ String in
ByRef search_width As String, _’ String in

’

ByRef match_tolerance As String, _' String in
ByRef parameters()() As Byte, _’ BlockArray in
ByVal searchrec() As Byte, _’ Block io

ByRef searchrec_size As Integer, _

ByRef AnswersetName As String, _’ String in
ByRef records ()() As Byte _ ' BlockArray in

) As Integer

Parameters:

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

records contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOUT has been exceeded.

search_start 376

search_start_via_parameters
Description:

Prototype:
Imports ssa

Public Function search_start_via_parameters (_

ByRef search As String, _’ String in
ByRef search_width As String, _’ String in
ByRef match_tolerance As String, _' String in

ByRef parameters()() As Byte _
) As search_start_via_parameters_struct

" BlockArray in

Parameters:

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

search_start via_record
Description:

Prototype:
Imports ssa

Public Function search_start_via_record (_

ByRef search As String, _’ String in

ByRef search_width As String, _’ String in
ByRef match_tolerance As String, _’' String in
ByRef searchrec() As Byte _’ Block in

) As search_start_via_record_struct

377 CALLING FROM VISUAL BASIC .NET

Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

search_tolerances_count
Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-
sively the matching scheme should be in rejecting candidates.

Prototype:
Imports ssa

Public Function search_tolerances_count (_
ByRef searchname As String _’ String in
) As Integer

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

search _tolerances count 378

search_tolerances_get
Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how
aggressively the matching scheme should be in rejecting candidates.

Prototype:
Imports ssa
Public Function search_tolerances_get (_

ByRef searchname As String ’ String in
) As String ()

Parameters:
searchname the search to count.

tolerances is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

search_view_get
Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output
records.

Prototype:
Imports ssa

Public Function search_view_get (_
ByRef search As String, _’ String in
ByRef viewType As String _ ' String in
) As search_view_get_struct
Parameters:
search is the name of the Search
viewType the type of the view (input or output)
viewName is the name of the view to query

viewFieldCount the number of fields in the view

viewRecLen is the length of the view

379 CALLING FROM VISUAL BASIC .NET

Return Code:

negative for error, 0 for success

search_view_set
Description:

Sets a view as the active input or output view

Prototype:
Imports ssa

Public Sub search_view_set (_

ByRef search As String, _’ String in
ByRef viewType As String, _’' String in
ByRef viewName As String _ ' String in
)
Parameters:

search is the name of the Search
viewType the type of the view (input or output)

viewName the name of the view to use

Return Code:

negative for error, 0 for success

search_widths count

Description:

Returns the count of search widths that have been defined for the search. The search width defines how
many items are selected by the search

Prototype:
Imports ssa
Public Function search_widths_count (_

ByRef searchname As String _’ String in
) As Integer

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

search _view_set 380

Return Code:

negative for error, 0 for success

search_widths_get
Description:

Returns the search widths that have been defined for the search. The search width defines how many
items are selected by the search

Prototype:
Imports ssa

Public Function search_widths_get (_
ByRef searchname As String _’ String in
) As String ()

Parameters:
searchname is the name the search to used by the call.

widths is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

server_version_get
Description:

Get the version information associated with the server.

Prototype:
Imports ssa

Public Function server_version_get () As String

Parameters:

server_version is the area into which the string containing the version information will be copied.

Return Code:

negative for error, 0 for success

381 CALLING FROM VISUAL BASIC .NET

session_close
Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

Prototype:

Imports ssa

Public Sub session_close ()

Parameters:

none

Return Code:

negative for error, 0 for success

session_open
Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server
from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Prototype:

Imports ssa

Public Sub session_open (_
ByVal session As Integer _ ' Long io

)

Parameters:

session is the number of the session to open (-1 for a new session).

Return Code:

negative for error, 0 for success

session_close 382

set_encoding
Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of
the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

Prototype:
Imports ssa
Public Sub set_encoding (_

ByRef encoding As Integer _’ Long in
)

Parameters:

encoding 6=UTF-16/UCS-2 (LE), 7=UTF-16/UCS-2 (BE), 8=UTF-8, 4=UCS-4

Return Code:

negative for error, 0 for success

set_timeout
Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

Prototype:
Imports ssa

Public Sub set_timeout (_
ByRef timeout As Integer _’' Long in

)

Parameters:

timeout timeout 0 is disable timeout, a positive value in seconds for the timeout

383 CALLING FROM VISUAL BASIC .NET

Return Code:

negative for error, 0 for success

set vpd user
Description:

Provides the Search Server with information required to set a Virtual Private Database context. Refer
to the DESIGNER MANUAL, VPD section for details about VPD.

Prototype:
Imports ssa

Public Sub set_vpd_user (_
ByRef vpd_user As String, _’ String in
ByRef vpd_ctx As String " String in
)

Parameters:
vpd_user Connection string of the actual user

vpd_ctx the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

system_close
Description:

closes the system and frees any remaining resources.

Prototype:
Imports ssa

Public Sub system_close ()

Parameters:

none

Return Code:

negative for error, 0 for success

set_vpd_user 384

system_idtname_count
Description:

Returns the number of active idt names. (i.e. those whose IDT has been loaded).

Prototype:
Imports ssa

Public Function system_idtname_count () As Integer

Parameters:

idtcount is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

system_idtname_get
Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

Prototype:
Imports ssa

Public Function system_idtname_get () As String ()

Parameters:

idtnames is the area into which an array of the idtnames defined on the rulebase will be copied (the
idtnames are all null terminated strings).

Return Code:

negative for error, 0 for success

system_notify
Description:

Notifies search server on a system.

385 CALLING FROM VISUAL BASIC .NET

Prototype:
Imports ssa

Public Sub system_notify (_
ByRef rulebase As String, _' String in
ByRef sysname As String, _’ String in
ByRef message As String " String in

’

Parameters:
rulebase is the name of the rulebase.
sysname is the name of the system

message is a messagevto be delivered

Return Code:

negative for error, 0 for success

system_open
Description:

opens a system.

Prototype:
Imports ssa

Public Sub system_open (_
ByRef rulebase As String, _’' String in
ByRef system As String, _’ String in
ByRef verbosity As String, _' String in
ByRef Options As String " String in

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

Options LOGOUT filename for server output for this session.
LOGERR filename for server errors for this session.
LOGTEST filename for server search trace for this session.
SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-

tory for this session.

system_open

386

Return Code:

negative for error, 0 for success

system_search_finish
Description:

Finishes the search and closes the system.

Prototype:
Imports ssa

Public Sub system_search_finish ()

Parameters:

none

Return Code:

negative for error, 0 for success

system_search_start
Description:

Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer
to ids_search_start for a more detailed description of the parameters.

Prototype:
Imports ssa

Public Function system_search_start (_
ByRef rulebase As String, _' String in
ByRef system As String, _’ String in
ByRef verbosity As String, _’' String in
ByRef options As String, _’ String in
ByRef search As String, _’ String in
ByRef parameters()() As Byte, _’ BlockArray in
ByRef AnswersetName As String _' String in
) As system_search_start_struct

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

387 CALLING FROM VISUAL BASIC .NET

verbosity specifies the verbosity level. See the Verbosity section for details.

options consists of one or more keywords and their respective values in the form
KEYWORD1=VALUEl, KEYWORD2=VALUE2Z,

search is the name of the search in the system in the Rulebase that will be used.
parameters is the array which contains the field values to be used to construct the search.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

datalen will return the length of a record.

recs count of records that matched the search criteria

Return Code:

negative for error, 0 for success

system_searches_count
Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of ids_system_open.

Prototype:
Imports ssa

Public Function system_searches_count () As Integer

Parameters:

searchcount is the number of searches defined on the system

Return Code:

negative for error, 0 for success

system_searches_get
Description:

Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-
turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of
ids_system_open.

system_searches_count 388

Prototype:
Imports ssa

Public Function system_searches_get () As String ()

Parameters:

searches is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

Return Code:

negative for error, 0 for success

systems_count
Description:

the number of systems in the rulebase.

Prototype:
Imports ssa
Public Function systems_count (_

ByRef rulebase As String
) As Integer

’

String in

Parameters:
rulebase is the name of the rulebase.

systemscount the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

systems_get
Description:

Get the names of all the systems defined in the rulebase.

Prototype:

389 CALLING FROM VISUAL BASIC .NET

Imports ssa
Public Function systems_get (_

ByRef rulebase As String _ ' String in
) As String ()

Parameters:

rulebase is the name of the rulebase.

systems is the area into which an array of the systems defined in the rulebase will be copied (the
systems are all null terminated strings).

Return Code:

negative for error, 0 for success

systems_get 390

Using IIR with XML

XML is not another language binding but a different way of talking to Identity Resolution.

WSDL

A Web Services Description Language (WSDL) file for the search API is created in the server work
directory when the server starts or is refreshed.

The WSDL can also be accessed through the server at:

http://<xmhost>:<xmport>/?search.wsdl

Creating a proxy with .NET

A proxy can be created from the WSDL generated by the XML Search Server using wsdl.exe, which is
part of the Microsoft NET SDK. Given the WSDL, one can create a proxy with:

wsdl /out:search.cs search.wsdl

This creates a C# public class called search which can be used to access the XML search API.

Creating a proxy with Apache Axis2

A proxy can be created from the WSDL generated by the XML Search Server using Apache Axis2.
Given the WSDL, one can create a proxy on Windows with:

$AXIS2_HOMES%\bin\wsdl2java -uri search.wsdl -d adb -s -p search
or on Unix with:
sh $AXIS2_HOME/bin/wsdl2java.sh -uri search.wsdl -d adb -s -p search

This creates a Java public class called search which can be used to access the XML search API.

XML and HTTP

XML messages are sent to the Search Server using Hypertext Transfer Protocol (HTTP), the protocol
used by Web servers. See the Servers / Starting section in the OPERATIONS manual for more informa-
tion on enabling the HTTP /XML protocol.

The general format of an HTTP request looks like this:
request-line

headers (0 or more)

<blank line>

body

A simple HTTP request header looks like this:

391 USING IIR WITH XML

POST / HTTP/1.1

TE: deflate,gzip;g=0.3
Connection: TE, close

Host: ssa:1665

User-Agent: libwww-perl/5.814
Content-Length: 1044

A simple HTTP response header looks like this:

HTTP/1.1 200 OK

Date: Thu, 04 Mar 2010 03:11:49 GMT
User—-Agent: Informatica-IR/9.0.01
Content-Type: text/xml; charset=UTF-8
Cache-Control: no-cache

SOAPAction: ""

Content-Length: 1149

While the last figure represents the length of the body in bytes.

XML and SOAP

The body must be formatted as a Simple Object Access Protocol (SOAP) request. The function call
block identifies the function and its parameters. These are provided in the form of XML tags. Here is
an example:

<?xml version="1.0" encoding="UTF-8"7?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<soap:Body>
<ps_set_population xmlns="http://www.identitysystems.com/xmlschema/iss-version—-9/se
<session>452984832</session>
<system>default</system>
<population>std</population>
</ps_set_population>
</soap:Body>
</soap:Envelope>

A response will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.0rg/2005/03/addressing"
xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wsswssecurity-s
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wsswssecurity-ut
<soap:Header>
<wsa:MessageID>urn:uuid:3f1d7¢c19-b7f2-4432-a4ef-469a11926c91</wsa:MessagelD>
<wsa:Action>ps_set_population</wsa:Action>
<wsa:To>http://www.w3.0rg/2005/03/addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://ssa:1665</wsa:Address>
</wsa:From>

392

<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-d3ca2448-9c81-4427-8701-847e632fdc7£f">
<wsu:Created>2010-03-04T04:11:49z2</wsu:Created>
<wsu:Expires>2010-03-04T04:16:49Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<ps_set_population_response xmlns="http://www.identitysystems.com/xmlschema/iss-ver
<response>0</response>
<session>452984832</session>
</ps_set_population_response>
</soap:Body>
</soap:Envelope>

An error will produce a SOAP fault. For example:

<?xml version="1.0" encoding="UTF-8"7?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.0rg/2005/03/addressing"
xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wsswssecurity—s
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wsswssecurity-ut
<soap:Header>
<wsa:MessageID>urn:uuid:e231f126-b369-4113-8bfa-4c2932126630</wsa:MessagelID>
<wsa:Action>http://www.w3.0rg/2005/03/addressing/fault</wsa:Action>
<wsa:RelatesTo wsa:RelationshipType="http://www.w3.0rg/2005/08/addressing/reply"
>urn:uuid:45edacd6-c7ce-4c0a-b2e0-8410665090c4</wsa:RelatesTo>
<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://ssa:1665</wsa:Address>
</wsa:From>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-4d52859b-5f59-4bab-b88b-c5925860a394">
<wsu:Created>2010-03-04T06:39:50Z</wsu:Created>
<wsu:Expires>2010-03-04T06:44:50Z2</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<soap:Fault>
<soap:faultcode>Client</soap:faultcode>
<soap:faultstring>user_open: RuleBase name is blank</soap:faultstring>
<soap:detail>
<ssa:error xmlns:ssa="http://www.identitysystems.com/xmlschema/iss-version-9">
<ssa:response>-11010109</ssa:response>
<ssa:function>system search_start</ssa:function>
<ssa:session>721420288</ssa:session>
<ssa:details>[304163950 17] ssasrsv > It is now 20100304163950

[304163950 17] ssaxmsl.c 871 rc 9 40110101%100
[304163950 17] ssasesi.c 4244 rc 1 10401101100
[304163950 17] ssasesi.c 1363 rc 1 104011%100
[304163950 17] open system ’'testx228’ in rulebase failed. Check the Rulebase status
[304163950 17] ssarbcx.c 735 rc 1 1040110
[304163950 17] ssaru.c 617 rc 1 104x100
[304163950 17] ssaru.c 594 rc 4 1+x100
[304163950 17] ssaru.c 514 rc 1
]

[304163950 17
</ssa:details>
</ssa:error>

user_open: RuleBase name is blank

393 USING IIR WITH XML

</soap:detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

XML and Unicode

XML messages must be sent in Unicode, either in UTF-8 or UTF-16. No other character sets are sup-
ported.

Any message sent in UTF-8 will be replied to in UTF-8, while one sent in UTF-16 is replied to in UTF-
16. All strings must be valid Unicode strings. This includes search names and the like. However
blocks may contain any character set. Refer to the OPERATIONS manual, Globalization chapter for
more details about issues relating to multiple languages, character sets and UNICODE.

Parameter types

Note: values in BOLD represent information that must be provided to the function.

ids_addr_get _cass_field
Description:

Use this function to retrieve a validated CASS field. The suggestion_idx specifies the suggestion
from which to select the field value. (1..n for validated data, where n is the n_suggest parameter
returned by ids_addr_validate).

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_cass_field
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<suggest_idx>301</suggest_idx>
<field_idx>301</field_idx>
<field_value_size>50</field_value_size>
</ids_addr_get_cass_field>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<ids_addr_get_cass_field_response

XML and Unicode 394

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<field_value>value</field_value>
</ids_addr_get_cass_field_response>
</soap:Body>
</soap:Envelope>

Parameters:
suggest_idx Specifies the nth suggestion from which to get a cass field
field_ idx Specifies a cass field within the nth suggestion

field _wvalue The cass field value

Return Code:

negative for error, 0 for success

ids_addr_get _cass_field_cnt
Description:

This function returns the maximum number of CASS address fields created as a result of a parse or val-
idate call. Use this value to dynamically allocate the field_length array for the ids_addr_parse
APL

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_cass_field_cnt
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_addr_get_cass_field_cnt>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_cass_field_cnt_response

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">

<response>0</response>

<session>3436273</session>

<count>302</count>

395 USING IIR WITH XML

</ids_addr_get_cass_field_cnt_response>
</soap:Body>
</soap:Envelope>

Parameters:

count Returns the max number of cass address fields

Return Code:

negative for error, 0 for success

ids_addr_get_cass_field_info
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_cass_field_info
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<suggest_idx>301</suggest_idx>
<field_length_num>1</field_length_num>
</ids_addr_get_cass_field_info>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_cass_field_info_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<field_lengthArray>
<field_length>301</field_length>
</field_lengthArray>
</ids_addr_get_cass_field_info_response>
</soap:Body>
</soap:Envelope>

Parameters:

suggest_idx Specifies the suggestion from which to retrieve information

ids_addr_get cass_field info 396

field_length An array containing the length of each cass address field

Return Code:

negative for error, 0 for success

ids_addr_get _del_lines_ext
Description:

Use this function to retrieve delivery address line information

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_del_lines_ext
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<suggest_idx>301</suggest_idx>
<del_case>301</del_case>
<del_linel_size>50</del_linel_size>
<del_line2_size>50</del_line2_size>
<del_line3_size>50</del_line3_size>
<del_line4_size>50</del_line4_size>
<del_line5_size>50</del_line5_size>
<del_line6_size>50</del_line6_size>
</ids_addr_get_del_lines_ext>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_del_lines_ext_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<del_linel>value</del_linel>
<del_line2>value</del_line2>
<del_line3>value</del_line3>
<del_line4>value</del_line4>
<del_line5>value</del _line5>
<del_line6>value</del_line6>
</ids_addr_get_del_lines_ext_response>
</soap:Body>
</soap:Envelope>

397 USING IIR WITH XML

Parameters:
suggest_idx Specifies the suggestion from which to get delivery address lines

del_case Specifies delivery address line case option value. The allowed values are 0 = Unchanged, 1
= Upper case, 2 = Lower case and 3 = Mixed case.

del_linel delivery address line 1 output string
del_line2 delivery address line 2 output string
del_line3 delivery address line 3 output string
del_line4 delivery address line 4 output string
del_line5 delivery address line 5 output string

del_line6 delivery address line 6 output string

Return Code:

negative for error, 0 for success

ids_addr_get_field
Description:

Use this function to retrieve a validated field. The suggestion_idx specifies the suggestion from
which to select the field value. (1..n for validated data, where n is the n_suggest parameter returned
by ids_addr_validate). val_status and val_mods return a code that describes how the field
matched to validation data and whether or not it was modified by validation. Refer to the Address
Validation section of this manual for a list of codes.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<suggest_idx>301</suggest_idx>
<field_idx>301</field_idx>
<field_value_size>50</field_value_size>
</ids_addr_get_field>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope

ids_addr_get field 398

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<field_value>value</field_value>
<field_val_status>302</field_val_status>
<field_val_mods>302</field_val_mods>
</ids_addr_get_field_response>
</soap:Body>
</soap:Envelope>

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field
field_idx Specifies a field within the nth suggestion

field_value The field value

field _val_status Specifies how this field matched the validation data

field _val_mods Specifies how this field was modified by validation data

Return Code:

negative for error, 0 for success

ids_addr_get_field _count
Description:

This function returns the maximum number of address fields created as a result of a parse or validate
call. Use this value to dynamically allocate the field_length array for the ids_addr_parse APL

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_count
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_addr_get_field_count>
</soap:Body>
</soap:Envelope>

Output message:

399 USING IIR WITH XML

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_count_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<count>302</count>
</ids_addr_get_field_count_response>
</soap:Body>
</soap:Envelope>

Parameters:

count Returns the max number of address fields

Return Code:

negative for error, 0 for success

ids_addr_get_field_ext
Description:

Use this function to retrieve all getter fields

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_ext
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<suggest_idx>301</suggest_idx>
<field_operation>301</field_operation>
<field _name>value</field _name>
<field_item_line>301</field_item_line>
<field_type>value</field_type>
<field_value_size>50</field_value_size>
</ids_addr_get_field_ext>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ids_addr_get field_ext 400

<soap:Body>
<ids_addr_get_field_ext_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<field_value>value</field_value>
</ids_addr_get_field_ext_response>
</soap:Body>
</soap:Envelope>

Parameters:
suggest_idx Specifies the suggestion from which to get fields

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines Option
2 for AddressComplete Option 3 for EnrichmentData Option 4 for ResultDataParameter Option 5 for
EnrichmentDataStatus

field name Refer AD Result.dtd for field names
field_item_line Represent field line number or field item number
field_type Refer AD Result.dtd for field attribute Type

field _value Cleansed field output

Return Code:

negative for error, 0 for success

ids_addr_get_field_idx
Description:

Use this function to retrieve a parsed or validated field. The suggestion_idx specifies the sugges-
tion from which to select the field value. (0 for parsed data, 1..n for validated data, where n is the
n_suggest parameter returned by ids_addr_validate).

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_idx
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<suggest_idx>301</suggest_idx>
<field_idx>301</field_idx>
<field_value_size>50</field_value_size>
</ids_addr_get_field_idx>
</soap:Body>
</soap:Envelope>

401 USING IIR WITH XML

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_idx_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<field_value>value</field_value>
</ids_addr_get_field_idx_response>
</soap:Body>
</soap:Envelope>

Parameters:

suggest_idx Specifies the nth suggestion from which to get a field. On successful parse, use 0 for
ASM/AD version 4, 1 for ASM/AD version 5

field_idx Specifies a field within the nth suggestion

field value The field value

Return Code:

negative for error, 0 for success

ids_addr_get_field_info_ext
Description:

Use this function to retrieve a list of individual field lengths after validating an address. Fields with a
length of zero have no value associated with them and can be omitted from the list of fields retrieved
with ids_addr_get_field_ idx

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_info_ext
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<suggest_idx>301</suggest_idx>
<field_length_num>1</field_length_num>
<addr_label_encoded_size>50</addr_label_encoded_size>
<addr_label_charset_size>256</addr_label_charset_size>
</ids_addr_get_field_info_ext>
</soap:Body>
</soap:Envelope>

ids_addr_get field_info_ext 402

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_info_ext_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<field_lengthArray>
<field_length>301</field_length>
</field_lengthArray>
<addr_label_encoded>value</addr_label_encoded>
<addr_label_charset>value</addr_label_charset>
<score>302</score>
</ids_addr_get_field_info_ext_response>
</soap:Body>
</soap:Envelope>

Parameters:

suggest_idx Specifies the suggestion from which to retrieve information
field_length An array containing the length of each address field
addr_ label_ encoded The returned label

addr_label charset The character set used in the address label

score The returned label’s score

Return Code:

negative for error, 0 for success

ids_addr_get_field len
Description:

This function returns the maximum length of an individual address field. It may be used to dynamically
allocate the field parameter used for the ids_addr_get_field idx APL

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_len
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_addr_get_field_len>
</soap:Body>
</soap:Envelope>

403 USING IIR WITH XML

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_field_len_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<max_len>302</max_len>
</ids_addr_get_field_len_response>
</soap:Body>
</soap:Envelope>

Parameters:

max_len Returns the max address field length in bytes

Return Code:

negative for error, 0 for success

ids_addr_get_line_len
Description:

This function returns the maximum length of an input address line. It may be used to dynamically
allocate the input lines used for the ids_addr_set_lines APL

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_line_len
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_addr_get_line_len>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_line_len_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">

ids_addr_get line_len 404

<response>0</response>
<session>3436273</session>
<max_len>302</max_len>
</ids_addr_get_line_len_response>
</soap:Body>
</soap:Envelope>

Parameters:

max_len Returns the max line length in bytes

Return Code:

negative for error, 0 for success

ids_addr_get_option
Description:

Use this function to obtain values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_option
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<param>value</param>
<value_size>256</value_size>
</ids_addr_get_option>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_get_option_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<value>value</value>
</ids_addr_get_option_response>
</soap:Body>
</soap:Envelope>

405 USING IIR WITH XML

Parameters:
param This field specifies the name of the option to get.

value Returns the value of the option.

Return Code:

negative for error, 0 for success

ids_addr_info
Description:

Use this function to request additional information about an input address. This call must always be
preceded with a call to ids_addr_std.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_info
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<controls>value</controls>
<value_size>256</value_size>
</ids_addr_info>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_info_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<value>value</value>
</ids_addr_info_response>
</soap:Body>
</soap:Envelope>

Parameters:
controls this field contains the request information. It must me specified in the form ITEM=[value].

value this field contains the requested information.

ids_addr_info 406

Return Code:

negative for error, 0 for success

ids_addr_init
Description:

This function initializes the Address Standardization sub-system. It must be the first call to
ids_addr_» family of functions. The max_memory parameter specifies the maximum amount of
memory (MB) to be used by the Address Standardization engine (within the Search Server process).

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_init
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<max_memory>301</max_memory>
</ids_addr_init>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_init_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_init_response>
</soap:Body>
</soap:Envelope>

Parameters:

max_memory This field specifies the maximum amount of memory (MB) to be used by the Address
Standardization engine.

Return Code:
negative for error, 0 for success

407 USING IIR WITH XML

ids_addr_parse
Description:

Use this function to parse an address. The individual field lengths after parsing an address are returned
in the field_length array. Fields with a length of zero have no value associated with them and can be
omitted from the list of fields retrieved with ids_addr_get_field_idx

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_parse
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<field_length_num>1</field_length_num>
</ids_addr_parse>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_parse_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<field_lengthArray>
<field_length>301</field_length>
</field_lengthArray>
</ids_addr_parse_response>
</soap:Body>
</soap:Envelope>

Parameters:

field length An array containing the length of each parsed field

Return Code:

negative for error, 0 for success

ids_addr_preload_country
Description:

Use this function to preload country database

ids_addr_parse 408

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_preload_country
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<preload_type>value</preload_type>
<preload_country>value</preload_country>
<val_mode>value</val_mode>
</ids_addr_preload_country>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_preload_country_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_preload_country_response>
</soap:Body>
</soap:Envelope>

Parameters:
preload_type Type of preload to perform
preload country Country database to be preloaded

val_mode Validation mode to be used

Return Code:

negative for error, 0 for success

ids_addr_set_attrib
Description:

Use this function to specify the character set of the data (for both input and output). The de-
fault_country parameter specifies that default country to use when parsing cannot identify a country
from the address. This API must be called prior to parsing or validating an address. The values stay in
effect for the life of the session, or until they are changed.

409 USING IIR WITH XML

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_attrib
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<char_set>value</char_set>
<default_country>value</default_country>
</ids_addr_set_attrib>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_attrib_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_set_attrib_response>
</soap:Body>
</soap:Envelope>

Parameters:
char_set The name of the character set used to encode the input and output.

default_country The default country used for validation when parsing cannot detect a country
name.

Return Code:

negative for error, 0 for success

ids_addr_set_del lines
Description:

Use this function to set delivery address line information

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ids_addr_set del lines 410

<soap:Body>
<ids_addr_set_del_lines
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<del_linel>value</del_linel>
<del_linel_size>50</del_linel_size>
<del_line2>value</del_line2>
<del_line2_size>50</del_line2_size>
<del_line3>value</del_line3>
<del_line3_size>50</del_line3_size>
<del_lined4>value</del_line4>
<del_line4_size>50</del_line4_size>
<del_line5>value</del line5>
<del_line5_size>50</del_line5_size>
<del_line6>value</del_line6>
<del line6_size>50</del _line6_size>
</ids_addr_set_del_lines>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_del_lines_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_set_del_lines_response>
</soap:Body>
</soap:Envelope>

Parameters:

del_linel delivery address line 1 input string
del_line2 delivery address line 2 input string
del_line3 delivery address line 3 input string
del_line4 delivery address line 4 input string
del_line5 delivery address line 5 input string

del_lineé6 delivery address line 6 input string

Return Code:

negative for error, 0 for success

ids_addr_set_field case
Description:

Use this function to set individual input fields case option

411 USING IIR WITH XML

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_field_case
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<field_idx>301</field_idx>
<field_case>301</field_case>
</ids_addr_set_field_case>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_field_case_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_set_field_case_response>
</soap:Body>
</soap:Envelope>

Parameters:
field_idx Specifies the nth field to set

field_case Specifies output field case option value. The allowed values are 0 = Unchanged, 1 =
Upper case, 2 = Lower case and 3 = Mixed case.

Return Code:

negative for error, 0 for success

ids_addr_set_ field ext
Description:

Use this function to set fields

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ids_addr_set field ext 412

<soap:Body>
<ids_addr_set_field_ext
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<field_operation>301</field_operation>
<field_name>value</field_name>
<field_item_line>301</field _item line>
<field_type>value</field_type>
<field_value>value</field_value>
<field_value_size>50</field_value_size>
</ids_addr_set_field_ext>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_field_ext_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_set_field_ext_response>
</soap:Body>
</soap:Envelope>

Parameters:

field operation Field operation Option 0 for AddressElements Option 1 for AddressLines
field name Refer AD Result.dtd for field names

field_item_line Represent field line number or field item number

field type Refer AD Result.dtd for field attribute Type

field_value input field value

Return Code:

negative for error, 0 for success

ids_addr_set_field_idx
Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that
has already been pre-parsed into separate fields.

Input message:

413 USING IIR WITH XML

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_field_idx
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<field_idx>301</field_idx>
<field_value>value</field_value>
<field_value_size>50</field_value_size>
</ids_addr_set_field_idx>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_field_idx_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_set_field_idx_response>
</soap:Body>
</soap:Envelope>

Parameters:
field_idx Specifies the nth field to set

field_value Specifies a value for the nth field

Return Code:

negative for error, 0 for success

ids_addr_set_field _name
Description:

Use this function to set individual input fields by name

Input message:

<?xml version="1.0"7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<ids_addr_set_field_name

ids_addr_set field_name 414

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<field_name>value</field_name>
<field_value>value</field_value>
<field_value_size>50</field_value_size>

</ids_addr_set_field_name>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_field_name_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_set_field_name_response>
</soap:Body>
</soap:Envelope>

Parameters:
field name Specifies the name of the field to set

field_value Specifies a value for the field

Return Code:

negative for error, 0 for success

ids _addr_set_lines
Description:

Use this function to specify the value of an input field. This APl is used to specify an input address that
has already been pre-parsed into separate fields.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_lines

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">

<session>3436273</session>

<line_1>value</line_1>

<line_1_size>50</line_1_size>

<line_2>value</line_2>

415 USING IIR WITH XML

<line_2 size>50</line_2 size>
<line_3>value</line_3>
<line_3_size>50</line_3_size>
<line_4>value</line_4>
<line_4_size>50</line_4_size>
<line_b5>value</line_5>
<line_5_size>50</line_5_size>
<line_6>value</line_6>
<line_6_size>50</line_6_size>
<line_7>value</line_7>
<line_7_size>50</line_7_size>
<line_8>value</line_8>
<line_8_ size>50</line_8_size>
<line_9>value</line_9>
<line_9_size>50</line_9_size>
<line_10>value</line_10>
<line_10_size>50</line_10_size>
</ids_addr_set_lines>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_lines_response

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">

<response>0</response>
<session>3436273</session>
</ids_addr_set_lines_response>
</soap:Body>
</soap:Envelope>
Parameters:
line_1 The first line of the address
line_2 The second line of the address
line_3 The third line of the address
line_4 The fourth line of the address
line_5 The fifth line of the address
line_6 The sixth line of the address
line 7 The seventh line of the address
line_8 The eighth line of the address
line_9 The ninth line of the address

line_10 The tenth line of the address

Return Code:

negative for error, 0 for success

ids_addr_set lines

416

ids_addr_set_option
Description:

Use this function to set values of options that control Address Standardization behavior. A list of
options appears in the Address Standardization section of this manual.

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_option
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<param>value</param>
<value>value</value>
</ids_addr_set_option>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_set_option_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_addr_set_option_response>
</soap:Body>
</soap:Envelope>

Parameters:
param This field specifies the name of the option to set.

value This field specifies a value for the option.

Return Code:

negative for error, 0 for success

ids_addr_std
Description:

Use this function to request IDS to standardize an address by validating it against USPS validation
tables and formatting it to comply with U.S. Postal Addressing Standards. This API requires the sepa-
rately licensable IDS Address Standardization Module to be installed.

417 USING IIR WITH XML

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_std
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<firm_name>value</firm_name>
<firm_name_size>256</firm_name_size>
<urbanization>value</urbanization>
<urbanization_size>256</urbanization_size>
<address_one>value</address_one>
<address_one_size>256</address_one_size>
<address_two>value</address_two>
<address_two_size>256</address_two_size>
<last_line>value</last_line>
<last_line_size>256</last_line_size>
</ids_addr_std>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_std_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<firm_name>value</firm_name>
<urbanization>value</urbanization>
<address_one>value</address_one>
<address_two>value</address_two>
<last_line>value</last_line>
</ids_addr_std_response>
</soap:Body>
</soap:Envelope>

Parameters:
firm name It contains the name of the firm (may be blank).

urbanization this field can contain name of an urban development within a geographic area. It is
only used with Puerto Rican addresses.

address_one this field contains the Delivery Address Line. It normally consists of a street number,
pre-directional, street name, street suffix, post-directional and possibly some secondary address com-
ponents such as apartment number.

address_two this field contains additional Delivery Address Line components. It is normally only
used when address_one is very long.

last_line this field contains the Last Line information: the city name, state abbreviation and zip
code (and possibly the Zip + 4 code).

ids_addr_std 418

Return Code:
0 indicates an exact match to a valid address
1 indicates a no match (invalid address)
2 indicates a multi match (non-unique address), and

< 0 indicates an error

ids_addr_validate
Description:

Use this function to validate an address

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_validate
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_addr_validate>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_addr_validate_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<status>302</status>
<n_suggest>302</n_suggest>
</ids_addr_validate_response>
</soap:Body>
</soap:Envelope>

Parameters:
status The status returned by the validation process

n_suggest The number of suggestions generated by validation

Return Code:

negative for error, 0 for success

419 USING IIR WITH XML

ids_connect
Description:

Initiates a socket.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_connect
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<host>value</host>
<port>301</port>
</ids_connect>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_connect_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<sockh>302</sockh>
</ids_connect_response>
</soap:Body>
</soap:Envelope>

Parameters:

host is the host to connect to.
port is the port to connect to.

sockh is a socket handle.

Return Code:

negative for error, 0 for success

ids_disconnect
Description:

Releases resources allocated to a socket.

ids_connect 420

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_disconnect
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_disconnect>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_disconnect_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_disconnect_response>
</soap:Body>
</soap:Envelope>

Parameters:

none

Return Code:

negative for error, 0 for success

ids_error_get
Description:

Get the error messages from the last API function that failed. This function should be called repeatedly
until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for help in interpreting the Error Log.

Input message:
<?xml version="1.0"?>

<soap:Envelope

421 USING IIR WITH XML

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_error_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<msg_size>256</msg_size>
</ids_error_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_error_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<msg>value</msg>
</ids_error_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

msg is the error message returned

Return Code:

0 for success, -ve for error and 1 for no more errors to retrieve.

ids_errors_get_all
Description:

Get the Server side error messages from the last API function that failed. This function should be called
repeatedly until it returns 1, meaning all messages have been retrieved.

Note: if a communication (socket) error occurred, this function will also fail. Refer to the
OPERATIONS MANUAL, Error Log section for information on interpreting the Error Log.

Input message:

<?xml version="1.0"7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<ids_errors_get_all

ids_errors_get_all 422

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<msg_size>256</msg_size>
</ids_errors_get_all>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_errors_get_all_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<msg>value</msg>
</ids_errors_get_all_response>
</soap:Body>
</soap:Envelope>

Parameters:

msg is an error message.

Return Code:

negative for error, 0 for success

ids_identify
Description:

Identify a session to the console

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_identify
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<identification>value</identification>
</ids_identify>
</soap:Body>
</soap:Envelope>

Output message:

423 USING IIR WITH XML

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_identify_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_identify_response>
</soap:Body>
</soap:Envelope>

Parameters:

identification is user supplied identitification for display on the console

Return Code:

negative for error, 0 for success

ids_is_little_endian
Description:

Checks if the search server is running on a little endian platform

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_is_little_endian
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_is_little_endian>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_is_little_endian_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<endian_state>302</endian_state>
</ids_is_little_endian_response>
</soap:Body>
</soap:Envelope>

ids_is_little _endian 424

Parameters:

endian_state Returns 1 if the search server is running on a little endian platform. Returns 0 for
others

Return Code:

negative for error, 0 for success

ids_match_explain
Description:

Explains the match result given search and file records As match_explain_count does not give the exact
number of output rows for this call, but instead provides a maximal estimate, some of the info blocks
returned will be filled with NULL bytes. Test a block for validity by checking the first byte is not NULL.
Info blocks returned are not all the same length either. They are NULL filled on the right.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_match_explain
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<match_tolerance>value</match_tolerance>
<searchrec>value</searchrec>
<searchrec_size>50</searchrec_size>
<filerec>value</filerec>
<filerec_size>50</filerec_size>
<info_array_num>1</info_array_num>
<info_array_size>50</info_array_size>
</ids_match_explain>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_match_explain_response

xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">

<response>0</response>

<session>3436273</session>

<info_arrayArray>

<info_array>value</info_array>
</info_arrayArray>

425 USING IIR WITH XML

</ids_match_explain_response>
</soap:Body>
</soap:Envelope>

Parameters:
search is the name of the Search which was performed.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

searchrec is the original record that we searched on
filerec is the record that was returned by the search

info_array An array describing the match results. See the Match Explain API section for details

Return Code:

negative for error, 0 for success

ids_match_explain_count
Description:

Estimate number of info blocks required for a subsequent match_explain call

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_match_explain_count
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
</ids_match_explain_count>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_match_explain_count_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<count>302</count>
</ids_match_explain_count_response>
</soap:Body>
</soap:Envelope>

ids_match_explain_count 426

Parameters:

search is the name of the Search which was performed.

count Returns the maximum number of info blocks required to explain the search results

Return Code:

negative for error, 0 for success

ids_real_time_async_get
Description:

Used to retrieve the result count associated with a call to ids_real_time_async_start.
cluster_action_count specifies the number of results that are available for collection using
ids_real_time_sync_get.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_async_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<reference>value</reference>
<block>301</block>
</ids_real_time_async_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_async_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<cluster_action_count>302</cluster_action_count>
</ids_real_time_async_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

reference A reference number identifying the request (returned by
ids_real_time_sync_start)

427 USING IIR WITH XML

block 1 =wait for a response 0 = return immediately if no results are available yet

cluster_action_count The number of clusters generated These can be returned with call to
real_time_sync_get 1= wait for a response

Return Code:

negative for error 0 for success positive for no results are available yet

ids_real time_async_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works in an
asynchronous fashion and will return when the transaction has been placed on the server’s work queue
rather than when the transaction has been processed. The record passed in must match the layout of
the IDT. This call must be followed by a call to ids_real_time_async_get, then by one or more
callsto ids_real_time_sync_get to retrieve the results.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_async_start

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<rulebase>value</rulebase>
<system>value</system>
<IDT>value</IDT>
<sequence_number>value</sequence_number>
<operation>value</operation>
<cluster_record>value</cluster_record>
<cluster_record_size>50</cluster_record_size>
<source>301</source>
<multi_search>value</multi_search>
<input_id>301</input_id>
<reference_size>256</reference_size>

</ids_real_time_async_start>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_async_start_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>

ids_real_time_async_start 428

<session>3436273</session>
<reference>value</reference>
</ids_real_time_async_start_response>
</soap:Body>
</soap:Envelope>

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.
source Identifies the source of clustering: 0 = Real Time Synchronizer 1 = Flat file 2 = NSA table

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT/IDX only transaction.

input_id Reserved. A value of 0 must be passed for this parameter.

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retrieving results.

Return Code:
negative for error
0 for success positive for warnings:
1-9 Reserved for future use
10 warnings: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.
11 warnings: Duplicate transaction was skipped.

12 warnings: Transaction was rejected because the sequence number was less than or equal to a pre-
vious transaction. The record was added to the reject table.

ids_real_time_flul_add
Description:

This API used to add force link and wunlink rule. This call must be followed by

ids_real_ _time_flul_init.

429 USING IIR WITH XML

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_add
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<rule_type>value</rule_type>
<subject_rec_pk>value</subject_rec_pk>
<subject_rec_pk_size>50</subject_rec_pk_size>
<relationship>value</relationship>
<related_rec_pk>value</related_rec_pk>
<related_rec_pk_size>50</related_rec_pk_size>
</ids_real_time_flul_add>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_add_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_real_time_flul_add_response>
</soap:Body>
</soap:Envelope>

Parameters:

rule_type This field is for specifying the type of the rule. A value of "A’ represents that the rule needs
to be added to the system and ‘D’ represents that a rule needs to be removed from the system

subject_rec_pk This field is for specifying the PK of the subject record

relationship This field is for specifying the relationship between the subject record and related
record. A value of 'L’ represents a Link rule between the subject record and the related record and a
value of "U’ represents an Unlink rule between the subject record and the related record.

related_rec_pk This field is for specifying the PK of the record that is either linked or unlinked to
the subject record.

Return Code:

negative for error, 0 for success 3 when the Link rule is not allowed. Record unlinked with members of
subject cluster.

ids_real time flul close

ids_real time_flul_close 430

Description:

This API used to close and release force link and unlink module.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_close
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_real_time_flul_close>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_close_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_real_time_flul_close_response>
</soap:Body>
</soap:Envelope>

Parameters:

none

Return Code:

negative for error, 0 for success

ids_real time_flul delete
Description:

This API used to delete force link and unlink rule from MR table. This call must be followed by
ids_real_time_flul_init.

Input message:

<?xml version="1.0"?>

431 USING IIR WITH XML

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_delete
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<rule_type_option>301</rule_type_option>
<record_pk>value</record_pk>
<record_pk_size>50</record_pk_size>
</ids_real_time_flul_delete>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_delete_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_real_time_flul_delete_response>
</soap:Body>
</soap:Envelope>

Parameters:

rule_type_option 0 Delete only disabled rules for input pk.
1 Delete only active rules for input pk.

2 Delete all rules for input pk.

record_pk This field is for specifying the PK of the record to be deleted

Return Code:

negative for error, 0 for success

ids_real _time_flul find_rule
Description:

This API used to find link and unlink information for input IDT record. should be called after
ids_real_time_flul_init APL

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ids_real time_flul_find_rule 432

<soap:Body>
<ids_real_time_flul_find_rule
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<idt_rec>value</idt_rec>
<idt_rec_size>50</idt_rec_size>
<option>301</option>
</ids_real_time_flul_find_rule>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_find_rule_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_real_time_flul_find_rule_response>
</soap:Body>
</soap:Envelope>

Parameters:

idt_rec This field is for specifying the PK of the record to be searched

option 0 Link Rule.
1 Unlink Rule.

Return Code:

negative for error, 0 for success

ids_real _time_flul_get rule
Description:

This API used fetch link and unlink information for input IDT record. Should be called after
ids_real time_flul_find_rule APL

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_get_rule
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>

433 USING IIR WITH XML

<idt_rec_size>50</idt_rec_size>
</ids_real_time_flul_get_rule>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_get_rule_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<idt_rec>value</idt_rec>
</ids_real_time_flul_get_rule_response>
</soap:Body>
</soap:Envelope>

Parameters:

idt_rec is the matched File record for input link or unlink rule.

Return Code:

negative for error, 0 for success

ids_real_time_flul_init
Description:

This API used to initialize force link and unlink module. =~ Memory allocated a part of
ids_real_time_flul_init isreleased using ids_real_time_flul_close.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_init
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<idt_name>value</idt_name>
<multi_search>value</multi_search>
</ids_real_time_flul_init>
</soap:Body>
</soap:Envelope>

Output message:

ids_real_time_flul_init 434

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_flul_init_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_real_time_flul_init_response>
</soap:Body>
</soap:Envelope>

Parameters:
idt_name is the name of the IDT associated with the force link and unlink rule.

multi_search The name of the multi-search which uses Persistent-ID. This parameter should be set
to an empty string for an IDT only MR rule creation.

Return Code:

negative for error, 0 for success

ids_real_time_sync_get
Description:

Use to retrieve the results and free the resources associated with a call to
ids_real_time_sync_start or ids_real_time_async_start. Should be called until it
returns a non zero response.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_sync_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<reference>value</reference>
<cluster_action_type_size>256</cluster_action_type_size>
<cluster_action_id_size>256</cluster_action_id_size>
<cluster_action_new_size>256</cluster_action_new_size>
</ids_real_time_sync_get>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

435 USING IIR WITH XML

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_sync_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<cluster_action_type>value</cluster_action_type>
<cluster_action_id>value</cluster_action_id>
<cluster_action_number>302</cluster_action_number>
<cluster_action_new>value</cluster_action_new>
</ids_real_time_sync_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

cluster_action_type Identifies the action, ie add or delete
cluster_action_id The prefix which identifies the cluster
cluster_action_number The number which identifies the cluster

cluster_action_new Identifies whether the cluster is newly formed or existing

Return Code:

negative for error, 0 for success, 1 for end of results

ids_real _time_sync_start
Description:

Used to start a synchronizer transaction of the Real Time Synchronization server. This call works
in a synchronous fashion returning only when the transaction has been processed. The record
passed in must match the layout of the IDT. This call must be followed by one or more calls to
ids_real_time_sync_get to retrieve results.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_sync_start

xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">

<session>3436273</session>

<rulebase>value</rulebase>

<system>value</system>

<IDT>value</IDT>

<sequence_number>value</sequence_number>

ids_real_time_sync_start 436

<operation>value</operation>
<cluster_record>value</cluster_record>
<cluster_record_size>50</cluster_record_size>
<reference_size>256</reference_size>
</ids_real_time_sync_start>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_real_time_sync_start_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<cluster_action_count>302</cluster_action_count>
<reference>value</reference>
</ids_real_time_sync_start_response>
</soap:Body>
</soap:Envelope>
Parameters:
rulebase is the name of the rulebase.
system The name of the system in the rulebase
IDT is the name of the IDT associated with the update.

sequence_number is a string that specifies the order of synchronization. Must obey the rules for
sequence numbers found in the OPERATIONS MANUAL.

operation The synchronizer operation being performed: A for add, D for delete or U for update
cluster_record The record to be updated. The record must use the same layout as the IDT.

cluster_action_count The number of clusters generated. For IDT/IDX only processing this pa-
rameter will always be 0. These can be returned with ids_real_time_sync_get

reference A reference string identifying the request. This must be passed to the
ids_real_time_sync_get call when retriving results.

Return Code:

negative for error

0 for success, and postive for warnings:

1-9 Reserved for future use

10 warning: Duplicate PK detected on add to IDT with WARN_DUPLICATE_PK sync option.

11 warning: Transaction was skipped.

12 warning: Transaction was reject because the sequence number was lessa than or equal to a previous

transaction. The record was added to the reject table.

437 USING IIR WITH XML

13 warning: Transaction became a No Op. e.g. Add followed by delete in the same commit cycle
equates to do nothing.

14 warning: Force server shutdown in progress.

15 warning: Could not perform delete as the IDT record was not found. This will normally trigger
error unless the appropriate option is set in the syncronization server configuration.

ids_scores_get
Description:

Retrieve an array of scores, one per match record. This API is used in conjunction with ids_search_start
when candidate records to be matched are provided by the caller. The records and their scores may be
retrieved either by repeatedly calling ids_search_get or by calling this function to retrieve all scores at
once. A limit of 1024 scores may be returned in a single call. When using this function, please ensure
that an Accept limit of 0 has been specified (so that all candidates are returned regardless of their score),
and specify a SORT= parameter in the Search-Definition to ensure that the records remain in the same
order as passed — otherwise they will be sorted by descending score. This is perhaps best achieved by
inserting a record number in each row and sorting by that field. The size of the scores array must be
equal to the number of input records to be matched, and may not exceed 1024.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_scores_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
<scores_num>1</scores_num>
</ids_scores_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_scores_get_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<scoresArray>
<scores>301</scores>
</scoresArray>
</ids_scores_get_response>
</soap:Body>
</soap:Envelope>

ids_scores_get 438

Parameters:
searchname is the name of the associated search

scores is an array of scores, one per candidate record

Return Code:

negative for error, 0 for success

ids_search_comment_get
Description:

Returns the user defined comment stored with the search.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_comment_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
<comment_size>256</comment_size>
</ids_search_comment_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_comment_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<comment>value</comment>
</ids_search_comment_get_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname the search to count.

comment is the area to copy the string containing the comment. This string will be null-terminated.

439 USING IIR WITH XML

Return Code:

negative for error, 0 for success

ids_search_dedupe_start
Description:

Search for duplicate records in the IDT. Refer to the Dup Finder section in this manual for details.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_dedupe_start

xmlns="http://www.identitysystems .com/xmlschema/iss —version—11">
<session>3436273</session>
<search>value</search>
<search_width>value</search_width>
<match_tolerance>value</match_tolerance>
<parametersArray>

<parameters>value</parameters>
</parametersArray>
<parameters_num>1</parameters_num>
<parameters_size>50</parameters_size>
<searchrec>value</searchrec>
<searchrec_size>50</searchrec_size>
<AnswersetName>value</AnswersetName>
<flags>301</flags>
<recid>303</recid>
<recs>303</recs>
</ids_search_dedupe_start>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_dedupe_start_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<searchrec>value</searchrec>
<recid>303</recid>
<recs>303</recs>
</ids_search_dedupe_start_response>
</soap:Body>
</soap:Envelope>

ids_search dedupe_start 440

Parameters:
search is the name of the search that is to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates.

parameters not used.
searchrec is the IDT record used to search with. It is returned by the Search Server.

AnswersetName is used store the search results in an AnswerSet. The Answerset is used to identify
the Search results in the table and is constructed by concatenating the AnswersetName parameter with
the Search-Record-Id (10 bytes) . The maximum AnswersetName length is 22 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

flags flags for specifying options. This field is a bit-field. Valid values are: 2 = return search record
only. 4=remove search record from returned set.

recid the recid of the record to start a searching on. A value of 0 starts searching from the beginning
of the IDT. The returned value is the recid of the next record to be searched.

recs the number of records in the search set.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set.

ids_search_fields count
Description:

Gets the number of fields required to assemble the search record.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_fields_count
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
</ids_search_fields_count>
</soap:Body>
</soap:Envelope>

Output message:

441 USING IIR WITH XML

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_fields_count_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<fc>302</fc>
</ids_search_fields_count_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname the search to count.

fc is the number of fields required to be filled in to assemble the search.

Return Code:

negative for error, 0 for success

ids_search_fields_get
Description:

Gets the number of fields required to assemble the search record.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_fields_get
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
<fieldnames_num>1</fieldnames_num>
<fieldnames_size>256</fieldnames_size>
</ids_search_fields_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

ids_search_fields_get 442

<ids_search_fields_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<fieldnamesArray>
<fieldnames>value</fieldnames>
</fieldnamesArray>
</ids_search_fields_get_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname the search to count.

fieldnames is the array returned which will contain the name of the fields.

Return Code:

negative for error, 0 for success

ids_search_filter
Description:

Sets a dynamic SQL filter to be used by a search. Refere to the SQL Filters section of the DESIGNER
MANUAL for details about SQL filters

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_filter
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<filter>value</filter>
</ids_search_filter>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_filter_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>

443 USING IIR WITH XML

<session>3436273</session>
</ids_search_filter_response>
</soap:Body>
</soap:Envelope>

Parameters:
search is the name of the Search that will use the filter

filter is a string containing an SQL expression or values for substituion variables

Return Code:

negative for error, 0 for success

ids_search_finish
Description:

Release resources associated with ids_search_start.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_finish
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
</ids_search_finish>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_finish_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_search_finish_response>
</soap:Body>
</soap:Envelope>

Parameters:

search is the name of the search that was performed

ids_search_finish 444

Return Code:

negative for error, 0 for success

ids_search_get
Description:

Retrieve file records that are a good match for the search record specified in the ids_search_start
or ids_system_search_start function.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
<searchreturn_size>50</searchreturn_size>
<sreps_num>1</sreps_num>
<freps_num>1</freps_num>
</ids_search_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<searchreturn>value</searchreturn>
<score>302</score>
<srepsArray>
<sreps>301</sreps>
</srepsArray>
<frepsArray>
<freps>301</freps>
</frepsArray>
</ids_search_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

searchname is the name the search to used by the call.

445 USING IIR WITH XML

searchreturn is an area into which a string from the set is copied.
score is the score calculated for the string.

sreps is an array of the ordinal values of the repeating fields in the search record that were used in
the match.

Note: sreps and freps are only meaningful when using SSA-NAMES3 v1, the SEQUENCES
option has been set in the Search-Definition, and the search and file records contain repeating
groups

freps is an array of the ordinal values of the repeating fields in the file record that were used in the
match.

For example, a record structure with a repeating name (2 fields) and a repeating address (2
fields) , if the first name field in the search record matched the second name field in the file
record while the first address field of the source matched the first address field of the file; the
contents of these two arrays would be; sreps[0] = 0, srep[1] = O, freps[0] = 1, frep[1] =0

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get_complete
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information
in the info field as long as the Search-Definition specifies the SEQUENCES option, and SSA-NAME3
v1 is used.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_get_complete
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<searchreturn_size>50</searchreturn_size>
<info_size>50</info_size>
</ids_search_get_complete>
</soap:Body>
</soap:Envelope>

Output message:

ids_search_get complete 446

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_get_complete_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<searchreturn>value</searchreturn>
<score>302</score>
<info>value</info>
</ids_search_get_complete_response>
</soap:Body>
</soap:Envelope>

Parameters:
search is the name of the search which was performed.
searchreturn is an area into which a string from the set is copied.

score is the score calculated for the string.

info an encoded list of values used to determine which occurrence of a repeating field matched the
value in the search record. The info field has a length of 4*(1+3*100) bytes. It contains 4 groups, each
one representing the result from one of the four possible scoring phases: Key-Pre-Score, Key-Score,
Pre-Score and Score respectively. If a phase was used, its data starts with a 1, otherwise 0 if the phase
was not used. The indicator is followed by 100 three-digit numbers, one each for each method in the
scoring-scheme for this phase, up to a limit of 100 methods per scheme (scoring phase). The three-digit
number is an index (base 1) representing the occurrence in the file record that was the best match for
the data in the search record.

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_get_detalil
Description:

Retrieve file records which are a good match for the search record specified in the ids_search_start
or ids_system_search_start function. This function will return extended matching information,
including the match decision and the file (IDT) record-ID of the matching records.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_get_detail
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">

447 USING IIR WITH XML

<session>3436273</session>
<search>value</search>
<file_rec_size>50</file_rec_size>
<decision_size>256</decision_size>
</ids_search_get_detail>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_get_detail_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<file_rec>value</file_rec>
<score>302</score>
<decision>value</decision>
<file_recid>302</file_recid>
</ids_search_get_detail_response>
</soap:Body>
</soap:Envelope>

Parameters:

search is the name of the Search which was performed.

file_rec is the matched File record.

score is the degree of similarity between the Search and File records (0-100).
decision is the match decision: A(ccept) or U(ndecided)

file_recid is the File Record-ID (corresponding to the RECID column from the IDT).

Return Code:

negative for error, 0 for success, and 1 for "end of set".

ids_search_IDT_get
Description:

Gets the name of the IDT associated with the search.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ids_search_IDT_get

448

<soap:Body>
<ids_search_IDT_get
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
<IDT_size>256</IDT_size>
</ids_search_IDT_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_IDT_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<IDT>value</IDT>
</ids_search_IDT_get_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname is the name the search to used by the call.

IDT is the area into which the IDT name will be copied

Return Code:

negative for error, 0 for success

ids_search_layout
Description:

Get the names and descriptions of the fields in the current input or output view. If no view has been
defined, the IDT layout will be returned.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_layout
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>

449 USING IIR WITH XML

<viewType>value</viewType>
<func>value</func>
<names_num>1</names_num>
<names_size>256</names_size>
<lengths_num>1</lengths_num>
<offsets_num>1</offsets_num>
<repeats_num>1</repeats_num>
<formats_num>1</formats_num>
<formats_size>256</formats_size>
</ids_search_layout>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_layout_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<namesArray>
<names>value</names>
</namesArray>
<lengthsArray>
<lengths>301</lengths>
</lengthsArray>
<offsetsArray>
<offsets>301</offsets>
</offsetsArray>
<repeatsArray>
<repeats>301l</repeats>
</repeatsArray>
<formatsArray>
<formats>value</formats>
</formatsArray>
</ids_search_layout_response>
</soap:Body>
</soap:Envelope>

Parameters:

search is the name of the Search which was performed.

viewType the type of view: input or output.

func describes the order of fields.

names is the area into which an array containing the fieldnames will be copied.

lengths is the area into which an array containing the lengths of the fields will be copied.
offsets is the area into which an array containing the offsets of the fields will be copied.
repeats is the area into which an array containing the number of repeats in a field will be copied.

formats is the area into which an array containing the format a field will be copied. The format of a
fields is a 50 character string in the following format:

ids_search_layout 450

Character 0: Justification (‘L’eft or ‘R’ight)

Character 1: Compression (‘'F’ixed, “V’ariable or ‘L’ong)

Characters?2 - 3: Fill (2 characters containing the fill character in hexadecimal)
Character 4: Fill type (‘T’ext or ‘B’inary)

Characters 5 - 6: Base (2 characters containing the base in decimal)

Character 7: Format (‘T’ext, ‘N'umeric, ‘V’ariable or ‘B’inary)

Character 8 - 9: Reserved

Characters 10 - 11: Binary key number (2 hexadecimal digits)

Character 12: Character width (‘W’ide, ‘N’arrow)

Characters 13 - 50: Reserved

Note: It is recommended that the FORMATS_SIZE constant be used to prevent errors from
undersized strings.

Return Code:

negative for error, 0 for success

ids_search_profile_count
Description:

Count the number of profile entries available

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_profile_count
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_search_profile_count>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_profile_count_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>

451 USING IIR WITH XML

<count>302</count>
</ids_search_profile_count_response>
</soap:Body>
</soap:Envelope>

Parameters:

count Returns the number of elements

Return Code:

negative for error, 0 for success

ids_search_profile_get
Description:

Get the profiling times, with each field comprising of an id, a name and a time

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_profile_get
xmlns="http://mwww.identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<ids_num>1</ids_num>
<names_num>1</names_num>
<names_size>256</names_size>
<times_num>1</times_num>
</ids_search_profile_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_profile_get_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<idsArray>
<ids>301</ids>
</idsArray>
<namesArray>
<names>value</names>
</namesArray>

ids_search_profile_get 452

<timesArray>
<times>301</times>
</timesArray>
</ids_search_profile_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

ids the numeric identifiers for each field, valid walue are 0 The total time 1 The time to assemble the
search record 2 The time to select the key field 3 The time to generate fuzzy ranges 4 The time to read
candidates from the database 5 The time to score candidates 6 The time to sort candidates

names the names for each field

times the times for each field in microseconds Returns the number of elements

Return Code:

negative for error, 0 for success

ids_search_start
Description:

Performs a search using a pre-constructed search-record (searchrec). Alternatively you can supply
fields (parameters) and have ids_search_start construct the record. The order of the field values
in parameters should be the same as that returned by ids_search_fields_get. You can either search the
database or search against a supplied list of records (records). There is a limit of 64K bytes of data that
can be sent to the Server. If the supplied list of records is too large, split it into smaller groups and make
multiple calls.

Note: The first search for a given System incurs an additional overhead to allocate database
resources and access the Rulebase. Switching between searches on a particular connection
is equivalent to starting a new search and therefore incurs some overhead. Applications re-
quiring the best possible search performance should be designed to avoid switching between
searches. The easiest way to do this is to use separate (dedicated) connections for each Search.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_start
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<search_width>value</search_width>
<match_tolerance>value</match_tolerance>
<parametersArray>

453 USING IIR WITH XML

<parameters>value</parameters>
</parametersArray>
<parameters_num>1</parameters_num>
<parameters_size>50</parameters_size>
<searchrec>value</searchrec>
<searchrec_size>50</searchrec_size>
<AnswersetName>value</AnswersetName>
<recordsArray>
<records>value</records>
</recordsArray>
<records_num>1l</records_num>
<records_size>50</records_size>
</ids_search_start>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_start_response
xmlns="http://www.identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<searchrec>value</searchrec>
<recs>302</recs>
</ids_search_start_response>
</soap:Body>
</soap:Envelope>

Parameters:

search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

ids_search_start 454

records contains a list of records to search on. If you wish to search on the database then specify this
as containing 0 records.

Return Code:

negative for error, 0 for success, and 1 for truncation of the search set, 2 for exceeding
SEARCH_LIMIT and 3 if the query timeout value set by ids_set_timeout or the environment vari-
able SSADB_QUERY_TIMEOQOUT has been exceeded.

ids_search_start_via_parameters
Description:

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_start_via_parameters
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<search_width>value</search_width>
<match_tolerance>value</match_tolerance>
<parametersArray>
<parameters>value</parameters>
</parametersArray>
<parameters_num>1</parameters_num>
<parameters_size>50</parameters_size>
</ids_search_start_via_parameters>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_start_via_parameters_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<datalen>302</datalen>
<recs>302</recs>
</ids_search_start_via_parameters_response>
</soap:Body>
</soap:Envelope>

Parameters:

search is the name of the search to be performed.

455 USING IIR WITH XML

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

parameters contains the field values used to construct a search record (searchrec). The order
of the field values must correspond to the order of fields returned by ids_search_fields_get. If
insufficient fields are supplied, the remaining fields in the constructed search record will be blank filled.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_start_via_record
Description:

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_start_via_record
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<search_width>value</search_width>
<match_tolerance>value</match_tolerance>
<searchrec>value</searchrec>
<searchrec_size>50</searchrec_size>
</ids_search_start_via_record>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_start_via_record_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>

ids_search_start via_record 456

<datalen>302</datalen>
<recs>302</recs>
</ids_search_start_via_record_response>
</soap:Body>
</soap:Envelope>

Parameters:
search is the name of the search to be performed.

search_width specifies either Narrow, Typical or Exhaustive to nominate how many candi-
dates should be selected. If left blank, the Search_Level in the Controls will be used.

match_tolerance specifies either Conservative, Typical or Loose to nominate how aggressive
the matching scheme should be in rejecting candidates. If left blank, the Match_Level in the Controls
will be used.

searchrec is the record that we will search on (in IDT format, or the input view if specified). If
searchrec is specified it will be used to search (provided no parameters are supplied). Alterna-
tively if parameters are specified then the search will be on a record constructed on those parameters
and returned to the user.

datalen will return the length of a record.

recs number of records that matched the search criteria. The count reflects the number of records
prior to sorting the result set. If the sort uses the Unique_Keys option to remove duplicates, the
resulting set may contain less than recs records. In this case, you must use the response code from
ids_search_get to determine when the end of set has been reached.

Return Code:

negative for error, 0 for success

ids_search_tolerances count
Description:

Returns the match tolerances count that have for the search. The match tolerance defines how aggres-
sively the matching scheme should be in rejecting candidates.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_tolerances_count
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
</ids_search_tolerances_count>
</soap:Body>
</soap:Envelope>

457 USING IIR WITH XML

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_tolerances_count_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<count>302</count>
</ids_search_tolerances_count_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

ids_search_tolerances_get
Description:

Returns the match tolerances that have been defined for the search. The match tolerance defines how
aggressively the matching scheme should be in rejecting candidates.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_tolerances_get
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
<tolerances_num>1</tolerances_num>
<tolerances_size>256</tolerances_size>
</ids_search_tolerances_get>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

ids_search_tolerances_get 458

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_tolerances_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<tolerancesArray>
<tolerances>value</tolerances>
</tolerancesArray>
</ids_search_tolerances_get_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname the search to count.

tolerances is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_search_view_get
Description:

Returns the name of the current input or output view, together with information about the
view: view_field_count is needed to dynamically allocate the arrays used for calls to
ids_search_layout and view_length is used to dynamically allocate memory for input/output
records.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_view_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<viewType>value</viewType>
<viewName_size>256</viewName_size>
</ids_search_view_get>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

459 USING IIR WITH XML

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_view_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<viewName>value</viewName>
<viewFieldCount>302</viewFieldCount>
<viewRecLen>302</viewRecLen>
</ids_search_view_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

search is the name of the Search

viewType the type of the view (input or output)
viewName is the name of the view to query

viewFieldCount the number of fields in the view

viewRecLen is the length of the view

Return Code:

negative for error, 0 for success

ids_search_view set
Description:

Sets a view as the active input or output view

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_view_set
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<search>value</search>
<viewType>value</viewType>
<viewName>value</viewName>
</ids_search_view_set>
</soap:Body>
</soap:Envelope>

Output message:

ids_search view_set 460

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_view_set_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_search_view_set_response>
</soap:Body>
</soap:Envelope>

Parameters:
search is the name of the Search
viewType the type of the view (input or output)

viewName the name of the view to use

Return Code:

negative for error, 0 for success

ids_search_widths_ count
Description:

Returns the count of search widths that have been defined for the search. The search width defines how
many items are selected by the search

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_widths_count
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
</ids_search_widths_count>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

461 USING IIR WITH XML

<ids_search_widths_count_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<count>302</count>
</ids_search_widths_count_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname is the name the search to used by the call.

count is the number of widths for the search by the call.

Return Code:

negative for error, 0 for success

ids_search_widths_get
Description:

Returns the search widths that have been defined for the search. The search width defines how many
items are selected by the search

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_widths_get
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searchname>value</searchname>
<widths_num>1</widths_num>
<widths_size>256</widths_size>
</ids_search_widths_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_search_widths_get_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>

ids_search_widths_get 462

<widthsArray>
<widths>value</widths>
</widthsArray>
</ids_search_widths_get_response>
</soap:Body>
</soap:Envelope>

Parameters:
searchname is the name the search to used by the call.

widths is the list of null terminated strings returned by the call.

Return Code:

negative for error, 0 for success

ids_server_version_get
Description:

Get the version information associated with the server.

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_server_version_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<server_version_size>256</server_version_size>
</ids_server_version_get>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_server_version_get_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<server_version>value</server_version>
</ids_server_version_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

server_version is the area into which the string containing the version information will be copied.

463 USING IIR WITH XML

Return Code:

negative for error, 0 for success

ids_session_close
Description:

Closes the session currently allocated. This will cause the databases kept open by the connection server
to close and prevent the reuse of the session by subsequent calls by ids_session_open.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_session_close
xmlns="http://www.identitysystems .com/xmlschema/iss —version—11">
<session>3436273</session>
</ids_session_close>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_session_close_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_session_close_response>
</soap:Body>
</soap:Envelope>

Parameters:

none

Return Code:

negative for error, 0 for success

ids_session_open

ids_session_close 464

Description:

Allocates resources for a socket. This is an API to the IDS Connection Server. The IDS Connection
Server sits between the client and the IDS Search Server. A session prevents the IDS Search Server
from reopening databases by keeping the databases open between connections. A timeout value can be
specified when starting the IDS Connection Server. If the session has not been reused or closed before
the timeout period it will be closed automatically.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_session_open
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>—1</session>
</ids_session_open>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_session_open_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>303</session>
</ids_session_open_response>
</soap:Body>
</soap:Envelope>

Parameters:

session is the number of the session to open (-1 for a new session).

Return Code:

negative for error, 0 for success

ids_set_encoding
Description:

Informs the Search Server of the encoding used for fields of type "W’ (UNICODE data). ISS stores and
retrieves W fields using an UTF-16 encoding. Search records should use this encoding for W columns
if possible. If they do not, the caller must use this API to inform the Search Server of the alternate
encoding used so that the Server can convert the data prior to using it. The W fields in each record of

465 USING IIR WITH XML

the result set will be converted (if necessary) to the caller’s encoding prior to return. If no encoding is
specified, ISS assumes that the search data matches the file data and no conversion is performed. Refer
to the Globalization section of the OPERATIONS manual for further details and restrictions.

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_set_encoding
xmlns="http://www.identitysystems .com/xmlschema/iss —version—11">
<session>3436273</session>
<encoding>301</encoding>
</ids_set_encoding>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_set_encoding_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_set_encoding_response>
</soap:Body>
</soap:Envelope>

Parameters:

encoding 6=UTF-16/UCS-2 (LE), 7=UTF-16/UCS-2 (BE), 8=UTEF-8, 4=UCS-4

Return Code:

negative for error, 0 for success

ids_set_timeout
Description:

Informs the Search Server of the timeout value in seconds The timeout value is used to set the
SQL_ATTR_QUERY_TIMEOUT value. This should stop a long running search at the value of time-
out although it depends on the configuration of the database server and database client as a default
minimum timeout value may already be set (some databse servers/clients may also have a periodic
value for checking if the timeout value has been reached)

ids_set_timeout 466

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_set_timeout
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<timeout>301</timeout>
</ids_set_timeout>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_set_timeout_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_set_timeout_response>
</soap:Body>
</soap:Envelope>

Parameters:

timeout timeout 0 is disable timeout, a positive value in seconds for the timeout

Return Code:

negative for error, 0 for success

ids_set_vpd_user
Description:

Provides the Search Server with information required to set a Virtual Private Database context. Refer
to the DESIGNER MANUAL, VPD section for details about VPD.

Input message:
<?xml version="1.0"?7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_set_vpd_user
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">

467 USING IIR WITH XML

<session>3436273</session>
<vpd_user>value</vpd_user>
<vpd_ctx>value</vpd_ctx>
</ids_set_vpd_user>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_set_vpd_user_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_set_vpd_user_response>
</soap:Body>
</soap:Envelope>

Parameters:
vpd_user Connection string of the actual user

vpd_ctx the name of the PL/SQL context setting package

Return Code:

negative for error, 0 for success

ids_system_close
Description:

closes the system and frees any remaining resources.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_close
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_system_close>
</soap:Body>
</soap:Envelope>

Output message:

ids_system_close 468

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_close_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_system_close_response>
</soap:Body>
</soap:Envelope>

Parameters:

none

Return Code:

negative for error, 0 for success

ids_system_idtname_count
Description:

Returns the number of active idt names. (i.e. those whose IDT has been loaded).

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_idtname_count
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_system_idtname_count>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_idtname_count_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<idtcount>302</idtcount>
</ids_system_idtname_count_response>
</soap:Body>
</soap:Envelope>

469 USING IIR WITH XML

Parameters:

idtcount is the number of idtnames defined on the system

Return Code:

negative for error, 0 for success

ids_system_idtname_get
Description:

Get the names of all IDTs that are active. (i.e. those whose IDT has been loaded).

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_idtname_get
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<idtnames_num>1</idtnames_num>
<idtnames_size>256</idtnames_size>
</ids_system_idtname_get>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_idtname_get_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<idtnamesArray>
<idtnames>value</idtnames>
</idtnamesArray>
</ids_system_idtname_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

idtnames is the area into which an array of the idtnames defined on the rulebase will be copied (the
idtnames are all null terminated strings).

ids_system_idtname_get 470

Return Code:

negative for error, 0 for success

ids_system_ notify
Description:

Notifies search server on a system.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_notify
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<rulebase>value</rulebase>
<sysname>value</sysname>
<message>value</message>
</ids_system_notify>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_notify_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_system_notify_response>
</soap:Body>
</soap:Envelope>

Parameters:
rulebase is the name of the rulebase.
sysname is the name of the system

message is a messagevto be delivered

Return Code:

negative for error, 0 for success

471 USING IIR WITH XML

ids_system_open
Description:

opens a system.

Input message:

<?xml version="1.0"?7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_open
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<rulebase>value</rulebase>
<system>value</system>
<verbosity>value</verbosity>
<Options>value</Options>
</ids_system_open>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_open_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_system_open_response>
</soap:Body>
</soap:Envelope>

Parameters:
rulebase is the name of the rulebase.
system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

options LOGOUT filename for server output for this session.
LOGERR filename for server errors for this session.
LOGTEST filename for server search trace for this session.
SHOWALLSEARCHES modifies the behavior of

WORKDIR used to inform the search server as to which directory is to be used as the working direc-
tory for this session.

Return Code:

negative for error, 0 for success

ids_system_open 472

ids_system_search_finish
Description:

Finishes the search and closes the system.

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_search_finish
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_system_search_finish>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_search_finish_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
</ids_system_search_finish_response>
</soap:Body>
</soap:Envelope>

Parameters:

none

Return Code:

negative for error, 0 for success

ids_system_search_start

Description:

Opens a system and constructs and initialises a search using the fields passed to it in parameters. Refer
to ids_search_start for a more detailed description of the parameters.

473 USING IIR WITH XML

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_search_start

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<rulebase>value</rulebase>
<system>value</system>
<verbosity>value</verbosity>
<options>value</options>
<search>value</search>
<parametersArray>

<parameters>value</parameters>
</parametersArray>
<parameters_num>1</parameters_num>
<parameters_size>50</parameters_size>
<AnswersetName>value</AnswersetName>
</ids_system_search_start>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_search_start_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<datalen>302</datalen>
<recs>302</recs>
</ids_system_search_start_response>
</soap:Body>
</soap:Envelope>

Parameters:

rulebase is the name of the rulebase.

system The name of the system in the rulebase

verbosity specifies the verbosity level. See the Verbosity section for details.

options consists of one or more keywords and their respective values in the form
KEYWORD1=VALUE1l, KEYWORD2=VALUEZ,

search is the name of the search in the system in the Rulebase that will be used.
parameters is the array which contains the field values to be used to construct the search.

AnswersetName is used store the search results in an AnswerSet. AnswersetName is used to identify
the Search results in the table. The maximum AnswersetName length is 32 characters. If you do not
wish to store the search results in an AnswerSet, set AnswersetName to an empty String.

ids_system_search_start 474

datalen will return the length of a record.

recs count of records that matched the search criteria

Return Code:

negative for error, 0 for success

ids_system_searches_count
Description:

Returns the number of runnable searches. (i.e. those whose IDX has been loaded). To return the number
of defined searches, add the SHOWALLSEARCHES keyword to the option string of ids_system_open.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_searches_count
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
</ids_system_searches_count>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_searches_count_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<searchcount>302</searchcount>
</ids_system_searches_count_response>
</soap:Body>
</soap:Envelope>

Parameters:

searchcount is the number of searches defined on the system

Return Code:

negative for error, 0 for success

475 USING IIR WITH XML

ids_system_searches_get

Description:

Get the names of all searches that are runnable. (i.e. those whose IDX has been loaded). To re-
turn the names of all defined searches, add the SHOWALLSEARCHES keyword to the option string of
ids_system_open.

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_searches_get
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<searches_num>1</searches_num>
<searches_size>256</searches_size>
</ids_system_searches_get>
</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_system_searches_get_response
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<searchesArray>
<searches>value</searches>
</searchesArray>
</ids_system_searches_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

searches is the area into which an array of the searches defined on the rulebase will be copied (the
searches are all null terminated strings).

Return Code:

negative for error, 0 for success

ids_systems_count

ids_system_searches_get 476

Description:

the number of systems in the rulebase.

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_systems_count
xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">
<session>3436273</session>
<rulebase>value</rulebase>
</ids_systems_count>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_systems_count_response
xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">
<response>0</response>
<session>3436273</session>
<systemscount>302</systemscount>
</ids_systems_count_response>
</soap:Body>
</soap:Envelope>

Parameters:
rulebase is the name of the rulebase.

systemscount the number of systems in the rulebase.

Return Code:

negative for error, 0 for success

ids_systems_get
Description:
Get the names of all the systems defined in the rulebase.

477 USING IIR WITH XML

Input message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_systems_get

xmlns="http://mwww. identitysystems .com/xmlschema/iss —version —11">

<session>3436273</session>
<rulebase>value</rulebase>
<systems_num>1</systems_num>
<systems_size>256</systems_size>
</ids_systems_get>
</soap:Body>
</soap:Envelope>

Output message:
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ids_systems_get_response

xmlns="http://www. identitysystems .com/xmlschema/iss —version —11">

<response>0</response>
<session>3436273</session>
<systemsArray>
<systems>value</systems>
</systemsArray>
</ids_systems_get_response>
</soap:Body>
</soap:Envelope>

Parameters:

rulebase is the name of the rulebase.

systems is the area into which an array of the systems defined in the rulebase will be copied (the

systems are all null terminated strings).

Return Code:

negative for error, 0 for success

ids_systems_get

478

Common Parameters

The following are the main input parameters used in the API function calls:

Verbosity

Some API functions must specify a verbosity level. The verbosity determines the amount of statistical
information that will be written to the server log files. It is primarily used when tuning a search. Valid
values are —v [verbosity options] .

Where verbosity options is a string consisting of one or more of the following characters:

0 (zero) turn off all verbosity
s search statistics
u database usage statistics

i info (used currently only by updsync)

479 COMMON PARAMETERS

Address Standardization

The Address Standardization APIs are used to parse addresses into their components fields and to
validate them against postal reference databases. They can only be used successfully if the separately
licensable Address Standardization Module has been installed.

This section of the documentation describes the semantics, process flow, parameter values / setting and
returned data. The syntax of the API calls is described in the Function Details section of this manual.

Initialization

Each caller must initialize the Address Standardization sub-system by calling ids_addr_init. This
API must be called prior to calling any other Address Standardization APIs.

ids_addr_set_option:

Note: By default ASM uses AddressDoctor v4. To use ASM with AddressDoctor v5 call
ids_addr_set_option API prior to calling ids_addr_init.

Refer below table for

Option Name Option | Meaning
Value

LIBRARY_VERSION | V5 Use ASM with AddressDoctor v5.
V4 Use ASM with AddressDoctor v4.

Character Sets and Countries

Initialization must be followed by a call to ids_addr_set_attrib. This is used to define the charac-
ter set of the input data. The parsed / validated address fields will be returned to the caller using this
character set as well. A list of supported character sets appear below for ASM using AddressDoctor v4:

Character Set

UTF32BE

UTEF32LE

UTF16BE

UTF16LE

UTEF8

UCS4BE

UCS4LE

UCS2BE

UCS2LE

1SO8859_1

table continued on next page

480

table continued from previous page

Character Set

1S08859_2
1508859_3
1S08859_4
1S08859_5
1S08859_6
1508859_7
1S08859_8
1S08859_9
1SO8859_10
1508859_15
IBM437
IBM850
IBMS52
IBM855
IBM857
IBMS862
WIN1250
WIN1251
WIN1252
WIN1253
WIN1254
WIN1255
WIN1256
WIN1257
BIG5

JIS

GBK
UHC
ASCII
EBCDIC

Note: Character sets like UTF32BE, UTF32LE, UCS4BE and UCS4LE not supported by ASM
using AddressDoctor v5.

As some of these character sets are multi-byte, ids_addr_set_lines and
ids_addr_get_field idx transfer address data using the Block data type (fixed length, not

481 ADDRESS STANDARDIZATION

nul-terminated pieces of memory).

The ids_addr_set_attrib API is also used to specify a default country. This value is used only
when address parsing fails to find a valid country within the address. A list of valid country names

appear below:

Country Name

Aruba

Afghanistan

Angola

Anguilla

Albania

Andorra

Netherlands Antilles

United Arab Emirates

Argentina

Armenia

American Samoa

Antarctica

French Southern Territories

Antigua and Barbuda

Australia

Austria

Azerbaijan

Burundi

Belgium

Benin

Burkina Faso

Bangladesh

Bulgaria

Bahrain

Bahamas

Bosnia and Herzegovina

Belarus

Belize

Bermuda

Bolivia

Brazil

Barbados

Brunei Darussalam

Bhutan

Bouvet Island

Botswana

Central African Republic

Canada

Cocos Islands

Switzerland

Chile

China

Cte d'Ivoire

Cameroon

Congo, The Democratic Republic of the

Congo

table continued on next page

Character Sets and Countries

482

table continued from previous page

Country Name

Cook Islands

Colombia

Comoros

Cape Verde

Costa Rica

Cuba

Christmas Island

Cayman Islands

Cyprus

Czech Republic

Germany

Djibouti

Dominica

Denmark

Dominican Republic

Algeria

Ecuador

Egypt

Eritrea

Western Sahara

Spain

Estonia

Ethiopia

Finland

Fiji

Falkland Islands

France

Faroe Islands

Micronesia, Federated States of

Gabon

United Kingdom

Georgia

Ghana

Gibraltar

Guinea

Guadeloupe

Gambia

GuineaBissau

Equatorial Guinea

Greece

Grenada

Greenland

Guatemala

French Guiana

Guam

Guyana

Hong Kong

Heard Island and McDonald Islands

Honduras

Croatia

table continued on next page

483 ADDRESS STANDARDIZATION

table continued from previous page

Country Name

Haiti

Hungary

Indonesia

India

British Indian Ocean Territory

Ireland

Iran, Islamic Republic of

Iraq

Iceland

Israel

Italy

Jamaica

Jordan

Japan

Kazakstan

Kenya

Kyrgyzstan

Cambodia

Kiribati

Saint Kitts and Nevis

Korea, Republic of

Kuwait

Lao People’s Democratic Republic

Lebanon

Liberia

Libyan Arab Jamabhiriya

Saint Lucia

Liechtenstein

Sri Lanka

Lesotho

Lithuania

Luxembourg

Latvia

Macau

Morocco

Monaco

Moldova, Republic of

Madagascar

Maldives

Mexico

Marshall Islands

Macedonia, The Former Yugoslav Republic of

Mali

Malta

Myanmar

Mongolia

Northern Mariana Islands

Mozambique

Mauritania

Montserrat

table continued on next page

Character Sets and Countries

484

485

table continued from previous page

Country Name

Martinique

Mauritius

Malawi

Malaysia

Mayotte

Namibia

New Caledonia

Niger

Norfolk Island

Nigeria

Nicaragua

Niue

Netherlands

Norway

Nepal

Nauru

New Zealand

Oman

Pakistan

Panama

Pitcairn

Peru

Philippines

Palau

Papua New Guinea

Poland

Puerto Rico

Korea, Democratic People’s Republic of

Portugal

Paraguay

Palestinian Territory, Occupied

French Polynesia

Qatar

Runion

Romania

Russian Federation

Rwanda

Saudi Arabia

Sudan

Senegal

Singapore

South Georgia and the South Sandwich Islands

Saint Helena

Svalbard and Jan Mayen

Solomon Islands

Sierra Leone

El Salvador

San Marino

Somalia

Saint Pierre and Miquelon

table continued on next page

ADDRESS STANDARDIZATION

table continued from previous page

Country Name

So Tom and Prncipe

Suriname

Slovakia

Slovenia

Sweden

Swaziland

Seychelles

Syrian Arab Republic

Turks and Caicos Islands

Chad

Togo

Thailand

Tajikistan

Tokelau

Turkmenistan

Timor-Leste

Tonga

Trinidad and Tobago

Tunisia

Turkey

Tuvalu

Taiwan, Province of China

Tanzania, United Republic of

Uganda

Ukraine

United States Minor Outlying Islands

Uruguay

United States

Uzbekistan

Holy See

Saint Vincent and the Grenadines

Venezuela

Virgin Islands, British

Virgin Islands, U.S.

Viet Nam

Vanuatu

Wallis and Futuna

Samoa

Yemen

Serbia and Montenegro

South Africa

Zambia

Zimbabwe

The character set and default country are used for the life of the session or until they are changed.

Providing an Input Address

Address data can be provided in "10 line format" or "5 line format", by calling ids_addr_set_lines.
When using "5 line format" (which is the most similar to an address as it would appear on an envelope),

Character Sets and Countries

486

the remaining lines should be passed as empty strings.

Alternatively, the address may be entered as individual fields, assuming that it has already been parsed.
Use the ids_addr_set_field_idx API for this purpose.

When calling the CASS certified engine (Val_Mode=Certify), only 4 lines of input are accepted. Any
additional lines will be ignored. The input lines must correspond to

+ Organization,

¢ Delivery Address,

o Locality (City, State and Zip), and

+ Country

When using "Val_Mode=Complete", an address must be entered as individual fields.

Parsing an Address

Parsing is the process of separating the address lines into separate address fields. It does not check
whether or not the address fields constitute a valid postal address.

A call to ids_addr_parse returns a Long Array of field lengths. These correspond to the lengths
of the parsed address fields, as per the table below. Fields with a length of zero simply mean that a
particular address component was not present (for example, a middle name).

Field Index | Address Field

Organization

Department
Nobility (e.g. Lord)
Title (e.g. Mr)

First Name

Middle Name

Last Name

Function (e.g. Manager)

Building
Sub-Building
Street_1
Street_2

O ([0 [N [0 |Q1 [l [N |~ |O

Jut
e}

—_
—_

—_
N

House Number
P.O. Box

—_
[68]

—_
=

Dependent Locality (e.g. URB, Colonia)

—_
Q1

Locality (e.g. County)

—_
(o)

Province (e.g. State)

table continued on next page

487 ADDRESS STANDARDIZATION

table continued from previous page

Field Index | Address Field

17 Zip Code

18 Country

19 Double Dependent Locality
20 Sorting Code (Mail Sort)
21 County Information

22 Zip+4

23 Geocoding Latitude

24 Geocoding Longitude
25 Geocoding Unit

26 Residue

For example, field length [13] represents the length of the "PO Box" component of the address.

Validating an Address

Note: Some fields are not supported in AddressDoctor v4. ASM will not return values for
these fields (i.e. geocoding related fields) when using AddressDoctor v4.

Validating involves parsing the address into its component fields and checking those fields against
a postal validation database. ids_addr_validate returns a status that indicates whether or not
the address was valid, and if not, whether it could be corrected and its likelihood of being delivered
successfully. Refer below table for validation status for ASM using AddressDoctor v4:

Status Code | Meaning

Address is correct

Address was corrected

Needs correction; deliverability high

Needs correction; deliverability fair

Needs correction; deliverability small

Country not recognized

No valid country database found

Country not unlocked

No validate called yet

O ([0 [N | (Gl [| W |N [k |O

Insufficient information

—_
o

No suggestions

—_
—_

Suggestions incomplete

table continued on next page

Validating an Address

488

table continued from previous page

Status Code

Meaning

12

Suggestions

Refer below table for validation status for ASM using AddressDoctor v5:

489

Status Code | Meaning

0 Verified - Input data correct - all elements were checked and in-
put matched perfectly

1 Verified - Input data correct on input but some or all elements
were standardised or input contains outdated names or exonyms

2 Verified - Input data correct but some elements could not be ver-
ified because of incomplete reference data

3 Verified - Input data correct but the user standardisation has de-
teriorated deliverability

4 Corrected - all elements have been checked

5 Corrected - but some elements could not be checked

6 Corrected - but delivery status unclear

7 Corrected - but delivery status unclear because user standardis-
ation was wrong

8 Data could not be corrected completely, but is very likely to be
deliverable - single match

9 Data could not be corrected completely, but is very likely to be
deliverable - multiple matches

10 Data could not be corrected, but there is a slim chance that the
address is deliverable

11 Data could not be corrected and is pretty unlikely to be delivered

12 FastCompletion Status - Suggestions are available - complete ad-
dress

13 FastCompletion Status - Suggested address is complete but com-
bined with elements from the input

14 FastCompletion Status - Suggested address is not complete

15 FastCompletion Status - Insufficient information provided to
generate suggestions

16 Country recognized from ForceCountryISO3 Setting

17 Country recognized from DefaultCountryISO3 Setting

18 Country recognized from name without errors

19 Country recognized from name with errors

20 Country recognized from territory

21 Country recognized from province

table continued on next page

ADDRESS STANDARDIZATION

table continued from previous page

Status Code | Meaning

22 Country recognized from major town

23 Country recognized from format

24 Country recognized from script

25 Country not recognized - multiple matches

26 Country not recognized

27 Parsed perfectly

28 Parsed with multiple results

29 Parsed with Errors - Elements change position

30 Parse Error - Input Format Mismatch

31 Validation Error: No validation performed because country was

not recognized

32 Validation Error: No validation performed because required ref-
erence database is not available

33 Validation Error: No validation performed because country
could not be unlocked

34 Validation Error: No validation performed because reference
database is corrupt or in wrong format

35 Validation Error: No validation performed because reference
database is too old - please contact AddressDoctor to obtain up-
dated reference data

The validation process may generate a number of suggested addresses when the input address is am-
biguous. For example, the address

1520 Chestnut
Anytown AT 12345

may be ambiguous because both 1520 Chestnut Drive and 1520 Chestnut Court exist and without ad-
ditional information, we cannot tell them apart. The number of suggestions returned is an output
parameter from the validate call.

Retrieving Address Fields

After parsing or validation, individual address fields are available for collection as part of a "sugges-
tion". Suggestion 0 always holds the parsed fields. Suggestions numbered 1 and above hold the vali-
dated address fields.

Individual fields are retrieved one by one, using ids_addr_get_field_idx, by nominating the sug-
gestion index and field index. Since some fields may be missing, only those fields that have a non-zero
length (as determined by calling ids_addr_parse or ids_addr_get_field_info) should be re-
trieved.

After validation, a field may be retrieved with ids_addr_get_field. This API is similar to
ids_addr_get_field_idx but returns two extra codes that describe how the particular field

Retrieving Address Fields 490

matched the validation data (val_status), and whether or not it was changed by the validation pro-
cess (val_mods). Refer below table for val_status and val_mods for ASM using AddressDoctor
vé:

val_status | Meaning

0 Empty

1 Not found

2 Not Checked (no reference data or no chance of success)
3 Matched with errors

4 Matched without errors

val_mods | Meaning

Empty
Not checked
Not checked but standardized

Checked and corrected (changed or inserted)

Validated, but changed (synonyms, old names)

Validated, but standardized

N O [| W N |~k O

Validated and unchanged

Refer below table for val_status and val_mods for ASM using AddressDoctor v5:

val_status | Meaning

Empty
Not found

Not checked (no reference data)

Wrong - Set by validation only

Match with errors in this element

Match with changes

N O [| W N |~ O

Match without errors

val_mods | Meaning

0 Empty
1 Not validated and not changed
2 Not validated bus standardized

table continued on next page

491 ADDRESS STANDARDIZATION

table continued from previous page

val_mods | Meaning

3 Validated but not changed due to invalid input

4 Validated but not changed due to lack of reference data

5 Validated but not changed due to multiple matches

6 Validated and changed by eliminating the input value

7 Validated and changed due to correction based on reference data

8 Validated and changed by adding value based on reference data

9 Validated, not changed, but delivery status not clear

12 Validated, verified but changed due to outdated name

13 Validated, verified but changed from exonym to official name

14 Validated, verified but changed due to standardization based on
casing or language

15 Validated, verified and not changed due to perfect match

optional
ids_addr_set_option APL

Setting Options

aspects

of Address Standardization behavior may be set

Option Name | Option | Meaning

Value

Val_Mode

Correct Correct the input address. Do not generate
suggestions. Generally used in batch mode.

Suggest Generate suggestions (the default). Generally
used by online applications where the operator
can choose between a list of possibilities.

Complete | Use an incomplete address (fragment) to
quickly generate suggestions. Used for online
"fast completion" style of applications.

Certify Use CASS certified validation rules defined by
the USPS. Certify mode is only available for
US addresses and requires additional database
files to be installed in the DB directory.

Force_Country True Force the use of the Default Country
False Use Country detected from parsing the Ad-
dress. This is the Default.
FORMAT_ZIP True To format the zip code in country specific for-
mat
False To unset the format of zip code in country spe-

cific format. This is the Default.

table continued on next page

Retrieving Address Fields

the

492

table continued from previous page

Option Name | Option | Meaning
Value
BASE_ZIP True To retrieve the zip code in Base format
False To unset the base format of zip code. This is
the Default.

Getting Options

Some aspects of Address Standardization behavior may be obtained with the ids_addr_get_option
APL.

Option Name | Option | Meaning
Value

VERSION N/A Gets the version number of the valida-
tion database

Sample Code

Sample code that demonstrates the API calls is in the samples directory. C Code for example can be
found here ssaas/ad/samples/addrstd.c.

This code is compiled and linked in the same way as the other sample programs found in the Client
and Developer Components install package in samples/programs.

It only requires one command line parameter to run: the host : port of the Search Server. For example
addrstd -h%SSA_SEPORTS

The sample code makes use of the Swiss validation database. This should be installed prior to use. See
the Validation Database Files section for details.

The sample code by default makes use of ASM with AddressDoctor v5. To use ASM with AddressDoc-
tor v4 run sample code with —v4 command line option. For example

addrstd -h%SSA_SEPORTS% -v4

Validation Database Files

The validation process makes use of postal validation databases stored in a sub-directory of
the IIR Server’s installation named ssaas/ad/ad/db for ASM using AddressDoctor v4 and
ssaas/ad5/ad/db for ASM using AddressDoctor v5.

The Address Standardization Module installer does not install any validation databases. They are
ordered separately by contacting Informatica LLC. When you receive these files (named * .MD), you

493 ADDRESS STANDARDIZATION

must copy them into the directory specified above. You will also receive a file named key that contains
an unlock code for your specific databases. This file must be copied to the same directory. Also in case
of ASM using AddressDoctor v5 to support geocoding, unlock code for geocoding should be present

in file named key . geo. This file must be copied to the same directory where key is copied.

ASM configuration for AddressDoctor v5

The values of unlock key, number of threads, maximum number of address object to be used for Ad-

dress Standardization are determined from the values in the file ssaasmv5 . xml.

Note: The format of the ASM ADv5 configuration XML should be in UTF-8. I

Address Standardization XML configuration file samples:

The simplest XML configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCodex**</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
</ASM_ADv5_Config>

Note: MAX_THREAD value should not be set to a larger value than the number of cores/CPUs.
Its recommended to set the value of MAX_ADOBJECTS as twice the number of threads set
using MAX_ THREAD. Also these options should be set before starting IIR servers.

XML Configuration with multiple license key:

<?xml version="1.0" encoding="UTF-8"?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCode 1**</UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCode 2x*</UNLOCK_CODE>

<UNLOCK_CODE>*x*Placeholder for UnlockCode N**</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
</ASM_ADv5_Config>

XML configuration with preload options:

<?xml version="1.0" encoding="UTF-8"?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCode 1**</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
<PRELOAD_COUNTRIES>
<PRELOAD TYPE="FULL">Switzerland</PRELOAD>
<PRELOAD TYPE="PARTIAL" VALMODE="CORRECT">Canada</PRELOAD>
<PRELOAD VALMODE="CERTIFY">Australia</PRELOAD>
</PRELOAD_COUNTRIES>
</ASM_ADv5_Config>

Retrieving Address Fields

494

Note: Refer to section Character Sets and Countries chapter for valid country name for
preload.

XML configuration with enrichment options:

<?xml version="1.0" encoding="UTF-8"?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCode 1x*</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
<PRELOAD_COUNTRIES>
<PRELOAD TYPE="PARTIAL" VALMODE="CERTIFY">Australia</PRELOAD>
</PRELOAD_COUNTRIES>
<PROCESS_OPTION>
<ENRICHMENT_OPTION>EnrichmentGeoCoding</ENRICHMENT_OPTION>
<ENRICHMENT_OPTION>EnrichmentCASS</ENRICHMENT_OPTION>
</PROCESS_OPTION>
</ASM_ADv5_Config>

Note: To get CASS, GeoCoding, AMAS, SERP enrichment fields we need to specify en-
richment options. EnrichmentGeoCoding, EnrichmentCASS, EnrichmentAMAS, Enrich-
mentSERP, EnrichmentSNA etc. are the possible values for enrichment option.

XML configuration with input options:

<?xml version="1.0" encoding="UTF-8"7?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>*x*Placeholder for UnlockCode 1+%</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
<PRELOAD_COUNTRIES>
<PRELOAD TYPE="PARTIAL" VALMODE="CERTIFY">Australia</PRELOAD>
</PRELOAD_COUNTRIES>
<PROCESS_OPTION>
<ENRICHMENT_OPTION>EnrichmentGeoCoding</ENRICHMENT_OPTION>
<ENRICHMENT_OPTION>EnrichmentCASS</ENRICHMENT_OPTION>
</PROCESS_OPTION>
<INPUT_OPTION>
<INPUT_PARAMETER TYPE="FormatDelimiter">COMMA</INPUT_PARAMETER>
</INPUT_OPTION>
</ASM_ADv5_Config>

Note: FormatDelimiter is from a choice of (default is CRLF): CRLF, LF, CR, SEMICOLON,
COMMA, TAB, PIPE or SPACE.

XML configuration with result options:

<?xml version="1.0" encoding="UTF-8"?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCode 1**</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
<PRELOAD_COUNTRIES>
<PRELOAD TYPE="PARTIAL" VALMODE="CERTIFY">Australia</PRELOAD>
</PRELOAD_COUNTRIES>
<PROCESS_OPTION>
<ENRICHMENT_OPTION>EnrichmentGeoCoding</ENRICHMENT_OPTION>
<ENRICHMENT_OPTION>EnrichmentCASS</ENRICHMENT_OPTION>
</PROCESS_OPTION>

495 ADDRESS STANDARDIZATION

<INPUT_OPTION>
<INPUT_PARAMETER TYPE="FormatDelimiter">COMMA</INPUT_PARAMETER>
</INPUT_OPTION>
<RESULT_OPTION>
<RESULT_PARAMETER TYPE="AddressElements">DETAILED</RESULT_PARAMETER>
</RESULT_OPTION>
</ASM_ADv5_Config>

Note: AddressElements is from a choice of (default is STANDARD): NONE, STANDARD or
DETAILED. Setting AddressElements to DETAILED displays all residue elements.

XML configuration with postal reference database path:

<?xml version="1.0" encoding="UTF-8"?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<POSTAL_DB_PATH>**Placeholder for postal database pathx+</POSTAL_DB_PATH>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCode 1**</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
<PRELOAD_COUNTRIES>
<PRELOAD TYPE="PARTIAL" VALMODE="CERTIFY">Australia</PRELOAD>
</PRELOAD_COUNTRIES>
<PROCESS_OPTION>
<ENRICHMENT_OPTION>EnrichmentGeoCoding</ENRICHMENT_OPTION>
<ENRICHMENT_OPTION>EnrichmentCASS</ENRICHMENT_OPTION>
</PROCESS_OPTION>
<INPUT_OPTION>
<INPUT_PARAMETER TYPE="FormatDelimiter">COMMA</INPUT_PARAMETER>
</INPUT_OPTION>
</ASM_ADv5_Config>

XML configuration with postal reference database path for preload:

<?xml version="1.0" encoding="UTF-8"?>
<ASM_ADv5_Config>
<MAX_THREAD>1</MAX_THREAD>
<MAX_ADOBJECTS>2</MAX_ADOBJECTS>
<POSTAL_DB_PATH>**Placeholder for postal database pathx*</POSTAL_DB_PATH>
<AD5_UNLOCK_CODE>
<UNLOCK_CODE>**Placeholder for UnlockCode 1x*</UNLOCK_CODE>
</AD5_UNLOCK_CODE>
<PRELOAD_COUNTRIES>
<PRELOAD TYPE="FULL"
POSTAL_DB_PATH="*xPlaceholder for postal database path**">United States</PRELOAD>
<PRELOAD VALMODE="CERTIFY">Germany</PRELOAD>
</PRELOAD_COUNTRIES>
<PROCESS_OPTION>
<ENRICHMENT_OPTION>EnrichmentGeoCoding</ENRICHMENT_OPTION>
<ENRICHMENT_OPTION>EnrichmentCASS</ENRICHMENT_OPTION>
</PROCESS_OPTION>
<INPUT_OPTION>
<INPUT_PARAMETER TYPE="FormatDelimiter">COMMA</INPUT_PARAMETER>
</INPUT_OPTION>
</ASM_ADv5_Config>

Batch Test Utility

Provided with the Address Standardization Module is the batch utility asmiss. This program utilizes
all of the API functions. It takes address from an input file and can perform both parsing and validation.
It is ideal for verifying programs that utilize the Address Standardization Module API or for batch
processing a number of addresses.

$SSABIN%\asmiss InputFile -hHostName:PortNumber [Options]

Retrieving Address Fields 496

Where

InputFile The input file will consist of addresses in a ten line format. Addresses with less than 10
lines must be terminated with a comment line. This is a line beginning with the comment string which
defaults to the "#’ character.

-hHostName:PortNumber Search Server Host name and Port Number.

-a Prints the suggested address label.

-A Force the use of archive tables.

-b Force the use of ASM using AddressDoctor v5 (default v4).

-cCharSet The Character set to use. The default is WIN1250.

-dDefaultCountry The Country to use when parsing can not determine a country from the address.

-f Force the use of the Default Country.
-gFileNameCASS summary report file-name.

-i Individual field-level input. When specified, each input address consists of # lines, where 7 is the
maximum number of Field-Index values supported, as documented in the Parsing An Address section.
Each field value must be prefixed by 3 bytes (which are ignored). This reserves space for a 2 digit field-
index plus a space, used for documentation purposes. For example, a valid input file may look like
this:

00

01

02

03 Mr.
04 John
05 Peter
06 Smith
07

08

09

11

12 100 Apt 23A
13

14

15

16 NY

17 10023
18

\#

-1 Remove line separator from input.
-Lpreload_country The Country to use during preloading of database into memory.

-mValMode The Mode to use for validation purposes valid values are Suggest, Correct, Complete
and Certify. The default value is Suggest.

-0 PO Box complete flag.
-P Force the use of partially fielded. This should be accompanied with Individual field-level input.

-rString Set the comment character/string. This defaults to "#".

497 ADDRESS STANDARDIZATION

-S Prints the address match score.

-Tpreload_type Set the preload type This defaults to ' NOPRELOAD'.
-v Performs Validation. The default is to parse only.

-xml Generate CASS 3553 summary report in xml format..

-y Set preferred language type.

-z Prints the Validation database version.

-ZzipFormat Set the format of the output zip code. The valid values are BASE_ZIP and FORMAT_ZIP.

Retrieving Address Fields 498

AnswerSet

AnswerSet provides the ability to store the search results in a database table. Some programming
environments may not have the ability to retrieve search results, so it may be more convenient to initiate
a search using the APIs and read the search results from a database table using SQL.

Table Name and Index

An AnswerSet table is created automatically the first time it is required. Only one AnswerSet table is
created per IDT and is shared by all users of that IDT.

The table is named IDS_SystemQualifier_AS_IDTname where

SystemQualifier is the qualifier wused in the Database Name (eg the 01 in
"odb:01l:scott/tiger@oracle”

IDTname is the IDT-NAME= parameter from the IDX-Definition. The length of the table name is
limited by the target database.

An AnswerSet index is also created. Its name has the following format:
IDSX_ SystemQualifier_AS_ IDTname

Storage options (extents, tablespace, etc) for an AnswerSet are defined using the DATABASE-OPTIONS=
parameter in the System-Definition.

Table Layout

An AnswerSet Table contains the following columns:

+ Set-Id CHAR(32)

+ ScoreNUMBER (3,0)

o+ File Record-IdNUMBER (10)

+ the columns from the IDT

The Set-Id is used to identify a result set. The caller of the API specifies this value (maximum of 32

bytes). The Score represents the score (0-100) of how well the search record matches the file record. The
File Record-1d uniquely identifies the file record and corresponds to the Recld column in the IDT.

Adding Rows

The AnswerSet table is populated with rows as a result of calling ids_search_start or
ids_system_search_start and specifying a Set-Id.

If a Set-Idis already in use, the new search results will overwrite the existing set.

499 ANSWERSET

Clearing the Table

All AnswerSets can be cleared by dropping the AnswerSet table and AnswerSet index. This should
only be done when the Search Server is down. The table and index will be recreated automatically
when required.

Oracle | MS-SQL Server: The table and index can be truncated to clear all rows.

Relate & DupFinder Set-lds

Relate and DupFinder can write their output to an AnswerSet.

For Relate, Set-Ids are created by concatenating the Set-Id prefix (-a parameter) to the record number
from the input file.

For DupFinder, Set-Ids are created by concatenating the Set-Id prefix (-a parameter) to the record-id of
the search record.

Oracle RAC

Customers running with Oracle’s Real Application Clusters (RAC) may need to set the initialization
parameter MAX_COMMIT_PROPAGATION_DELAY to 0. This will prevent a delay in synchronizing An-
swerSets committed on one instance and read from another. Refer to MetaLink Docld 259454.1 for
details.

Clearing the Table 500

DupFinder

The DupFinder is a facility for detecting duplicate IDT records. It is accessed via the search API. Instead
of passing a search record to search with, it is called with special parameters that tell it to acquire search
records from the IDT.

It uses the same calling protocol as a normal search; start a search with 1ids_search_dedupe_start,
read set members with ids_search_get, close the set with ids_search_finish.

Each set contains the duplicate records including the search record, or optionally, the search record
only, or all records without the search record.

Normally DupFinder only returns to the caller when it finds a duplicate or has processed all the IDT
records. This saves on network traffic. However, you can control how many IDT records are searched
before DupFinder returns. You may wish it to return after processing a fixed number of records
(DEDUP-PROGRESS= in the Multi-Search Definition) if you do not expect many dupes and/or want
to search a range of record-ids. The search returns a flag indicating the number of records found, and
the last Record-Id it searched.

If it found duplicates and you specified an AnswerSet id (SetId) within the
ids_search_dedupe_start, use the SetId to retrieve the set members from the AnswerSet
table. If you did not specify an AnswerSet id (Set Id) you can retrieve the set members using repeated
calls to ids_search_get. Close the set using ids_search_finish. Issue a new search to start the
next search.

Each ids_search_dedupe_start call passes a parameter named recid that sets the start-
ing Record-Id for the search. Set it to 0 to start a new sweep of the IDT. On return
ids_search_dedupe_start returns the recid of the source record that has a duplicate. Simply
pass the same value to the next ids_search_dedupe_start call to find the next set of dupes. If the
recidis 0, it means it has reached the end of the IDT and there are no more records left to process.

ids_search_dedupe_start will return an empty set (recs=0) when the search record matched
no IDX records, or if DEDUPE-PROGRESS= was specified and the max was reached. If
DEDUPE-PROGRESS= was not specified, the situation indicates an integrity error, or a lack of synchro-
nization between the IDT and IDX. In this situation, it also writes a warning message on the search
server’s log.

Here is some java sample code illustrating the use of the functions:

for (;i) |
rc = ssaids.ids_search_dedupe_start (
search, /* IN: Search name =*/
"Typical", /+ IN: Search Width =/
"Typical", /* IN: Match Tolerance x/
parameters, /* IN: Search values - not used =/
searchRec, /+ IN: search record =/
searchRec.length,
setId,
flags,
recld,
recsFound) ; /* OUT: Number of records found */
System.out.println (prog + "> [" + currentSearch +
"] Search_Record = """ +
new String (searchRec) + "'");
System.out.println (prog + "> [" + currentSearch +
"] records found=" + recsFound[0]);

501 DUPFINDER

System.out.println (prog + "> [" + currentSearch +

"]l recId = " +recId[0]);

if (1 == rc) {

System.out.println (prog + "> Dedupe truncated.");

if (0 == recId[0]) {
System.out.println (prog + "> Dedupe completed.");
break;
}
if (0 == recsFound[0]) {
System.out.println (prog +
"> Dedupe progress notification.");
continue;
}
while (0 == ssaids.ids_search_get (
search, /* IN: Search name =*/
rec, /+ OUT: Record =/
searchRec.length,
score, /% OUT: Score =*/
sreps, O, /* OUT: Sreps - not used x/
freps, 0)) { /% OUT: Freps — not used */
System.out.println (prog + "> [" + currentSearch +

"] IDT_Record = """ +

new String (rec) + "'");
System.out.println (prog + "> [" +

"] Score = " + score [0]);

ssaids.ids_search_finish (search);
++currentSearch;

AnswerSet

currentSearch +

DupFinder results can be stored in an AnswerSet . In order to identify the search record, the Set-Id
of the AnswerSet is created by concatenating the Set-Id provided by the caller to the 10 byte Search

Record-Id from the IDT.

Therefore, when adding DupFinder results to an AnswerSet the Set-Id parameter is limited to 22

bytes.

MVS: AnswerSets created by a DupFinder must be placed in a separate tablespace using the

DATABASE-OPTIONS= clause.

AnswerSet

502

Match Explain API

Match Explain Record Formats

Match Explain records are described by the header ssaexpl.h. There are 6 different types of record.
Each record start with a series of 9 ascii digits which are explained as:

1. 3 digits describing the type of record
2. 3 digits showing the parent sequence number of the record (0 = no parent) - which is useful for
implementing tree displays

3. 3 digits showing the sequence number of the record
The types of record and what follows is shown below:

1. Type 000 The base record (there will be one of these for each phase performed, and parent sequence
number will be 0) gives the overall result which is already available to the user. The record header is
followed by:
(a) A 3 digit number for score
(b) A single character for decision (A = Accepted, R = Rejected, U = Undecided).
(c) A 3 digit match explain API version number (the current version is 001) (new for 9.5.3)
(d) A single character denoting the phase the summary describes (L)WM or Name(3) (new for 9.5.3)
(e) A single character showing if LWM was performed (Y/N) (new for 9.5.3)
(f) A single character showing if Name3 was performed (Y/N) (new for 9.5.3)

2. Type 001 This level of record displays operators and brackets. The header is followed by a 2 digit
number indicating which operator applies. The meaning of codes are:

01 AND

02 OR

03 Open Bracket
04 Close Bracket
05 NOT

3. Type 002 This level of record give the summary for an SSA-NAME3 Purpose. The header is fol-
lowed by 76 bytes for Purpose Name, 3 bytes for score, 1 byte for decision, 32 bytes for match tolerance,
a 3 digit number for each of accept and reject limits and a single byte flag (Y/N) indicating if an early
exit was taken.

4. Type 003 Type 3 records indicate the grouping of fields in a Purpose — currently there are best and
required groups. A single byte (B/R) indicating which type of group follows the record header. The
remainder of the record is dependent on the type of group. ‘Best’ groups are following by a 3 digit
number which indicates how many bytes are used for the label of the group. 'Required’ groups are
followed by a 2 digit number indicating how many group members must be found, a 2 digit number
showing drop and a 2 digit number showing slide, followed by a 3 digit number indicating length of
the final label field. Drop indicates the maximum field score available and Slide indicates the score
penalty applied if not all group members are present.

5. Type 004 This record describes field (method) results. The header is followed by 32 bytes indicat-
ing field name, a 3 digit score, a 4 digit weight (scale factor of 100 has been applied), a 3 digit original
weight (at original scale), a weight flag (W = weight, A = adjusted) byte, a contributed flag byte (Y/N),
an optional flag byte (Y/N), a 3 digit field contribution; a repeating field flag (Y/N), and a 2 byte index
for each of search and file fields used (will be 0 if not used)

503 MATCH EXPLAIN API

6. Type 005 This record simply shows the field data used in the match call. The header is followed
by a single byte indicating if (F)ile or (S)earch data, then a 3 digit number indicating the length of the
field data which completes the record.

Match Explain Scores

As described in the previous section, Type 004 records contain the scores achieved by individual
fields. Note that these individual scores may not add up to the score returned for the whole Purpose.
This is due to the fact that these field scores have already been rounded up or down before being
returned to the user.

Match Explain Scores 504

Index

AnswerSet, 19, 499, 501, 502
C, 30

C#,135

CICS, 184

Cobol, 184
Compile, 22, 184, 493

HTTP, 391
Java, 238
Perl, 292
SOAP, 392
Unicode, 394

verbosity, 479
Visual Basic .NET, 341

WSDL, 391

XML, 391
XML Search Server, 391

505

	Table of Contents
	Introduction
	Process Overview
	Concepts
	Connections
	Sessions
	Systems
	Searches

	Basic API
	Advanced API

	Sample API Programs
	Sample System
	Directory Structure
	Population
	Installing
	IDT Layout
	Building the Programs
	Language specific notes

	Running the Samples
	C
	C#
	Java
	Perl
	VB.NET

	Sample 1 - Basic API
	Logic
	Open a socket to the Search Server
	Open a System and start a Search
	Retrieve Result Set
	Terminate the Search and close the System
	Disconnect from the Search Server

	Sample 2 - Advanced API
	Logic
	Open a socket to the Connection Server
	Open a Session
	Open a System
	Retrieve the Input-View layout
	 for each Search
	Close System
	Close Session (optional)
	Disconnect from the Connection Server

	API Reference
	Data Types
	Strings
	String Arrays
	Blocks
	Block Arrays
	Nulls and NULs

	Error Handling

	Calling from C
	Constants
	Parameter types

	ids_addr_get_cass_field
	ids_addr_get_cass_field_cnt
	ids_addr_get_cass_field_info
	ids_addr_get_del_lines_ext
	ids_addr_get_field
	ids_addr_get_field_count
	ids_addr_get_field_ext
	ids_addr_get_field_idx
	ids_addr_get_field_info_ext
	ids_addr_get_field_len
	ids_addr_get_line_len
	ids_addr_get_option
	ids_addr_info
	ids_addr_init
	ids_addr_parse
	ids_addr_preload_country
	ids_addr_set_attrib
	ids_addr_set_del_lines
	ids_addr_set_field_case
	ids_addr_set_field_ext
	ids_addr_set_field_idx
	ids_addr_set_field_name
	ids_addr_set_lines
	ids_addr_set_option
	ids_addr_std
	ids_addr_validate
	ids_connect
	ids_disconnect
	ids_error_get
	ids_errors_get_all
	ids_identify
	ids_is_little_endian
	ids_match_explain
	ids_match_explain_count
	ids_real_time_async_get
	ids_real_time_async_start
	ids_real_time_flul_add
	ids_real_time_flul_close
	ids_real_time_flul_delete
	ids_real_time_flul_find_rule
	ids_real_time_flul_get_rule
	ids_real_time_flul_init
	ids_real_time_sync_get
	ids_real_time_sync_start
	ids_scores_get
	ids_search_comment_get
	ids_search_dedupe_start
	ids_search_fields_count
	ids_search_fields_get
	ids_search_filter
	ids_search_finish
	ids_search_get
	ids_search_get_complete
	ids_search_get_detail
	ids_search_IDT_get
	ids_search_layout
	ids_search_profile_count
	ids_search_profile_get
	ids_search_start
	ids_search_start_via_parameters
	ids_search_start_via_record
	ids_search_tolerances_count
	ids_search_tolerances_get
	ids_search_view_get
	ids_search_view_set
	ids_search_widths_count
	ids_search_widths_get
	ids_server_version_get
	ids_session_close
	ids_session_open
	ids_set_encoding
	ids_set_timeout
	ids_set_vpd_user
	ids_system_close
	ids_system_idtname_count
	ids_system_idtname_get
	ids_system_notify
	ids_system_open
	ids_system_search_finish
	ids_system_search_start
	ids_system_searches_count
	ids_system_searches_get
	ids_systems_count
	ids_systems_get

	Calling from C without Arrays
	Constants
	Parameter types

	ids_addr_get_cass_field
	ids_addr_get_cass_field_cnt
	ids_addr_get_cass_field_info
	ids_addr_get_del_lines_ext
	ids_addr_get_field
	ids_addr_get_field_count
	ids_addr_get_field_ext
	ids_addr_get_field_idx
	ids_addr_get_field_info_ext
	ids_addr_get_field_len
	ids_addr_get_line_len
	ids_addr_get_option
	ids_addr_info
	ids_addr_init
	ids_addr_parse
	ids_addr_preload_country
	ids_addr_set_attrib
	ids_addr_set_del_lines
	ids_addr_set_field_case
	ids_addr_set_field_ext
	ids_addr_set_field_idx
	ids_addr_set_field_name
	ids_addr_set_lines
	ids_addr_set_option
	ids_addr_std
	ids_addr_validate
	ids_connect
	ids_disconnect
	ids_error_get
	ids_errors_get_all
	ids_identify
	ids_is_little_endian
	ids_match_explain
	ids_match_explain_count
	ids_real_time_async_get
	ids_real_time_async_start
	ids_real_time_flul_add
	ids_real_time_flul_close
	ids_real_time_flul_delete
	ids_real_time_flul_find_rule
	ids_real_time_flul_get_rule
	ids_real_time_flul_init
	ids_real_time_sync_get
	ids_real_time_sync_start
	ids_scores_get
	ids_search_comment_get
	ids_search_dedupe_start
	ids_search_fields_count
	ids_search_fields_get
	ids_search_filter
	ids_search_finish
	ids_search_get
	ids_search_get_complete
	ids_search_get_detail
	ids_search_IDT_get
	ids_search_layout
	ids_search_profile_count
	ids_search_profile_get
	ids_search_start
	ids_search_start_via_parameters
	ids_search_start_via_record
	ids_search_tolerances_count
	ids_search_tolerances_get
	ids_search_view_get
	ids_search_view_set
	ids_search_widths_count
	ids_search_widths_get
	ids_server_version_get
	ids_session_close
	ids_session_open
	ids_set_encoding
	ids_set_timeout
	ids_set_vpd_user
	ids_system_close
	ids_system_idtname_count
	ids_system_idtname_get
	ids_system_notify
	ids_system_open
	ids_system_search_finish
	ids_system_search_start
	ids_system_searches_count
	ids_system_searches_get
	ids_systems_count
	ids_systems_get

	Calling from C#
	Installation - Win32 client
	Constants
	Response code
	Parameter types

	Constructor
	addr_get_cass_field
	addr_get_cass_field_cnt
	addr_get_cass_field_info
	addr_get_del_lines_ext
	addr_get_field
	addr_get_field_count
	addr_get_field_ext
	addr_get_field_idx
	addr_get_field_info_ext
	addr_get_field_len
	addr_get_line_len
	addr_get_option
	addr_info
	addr_init
	addr_parse
	addr_preload_country
	addr_set_attrib
	addr_set_del_lines
	addr_set_field_case
	addr_set_field_ext
	addr_set_field_idx
	addr_set_field_name
	addr_set_lines
	addr_set_option
	addr_std
	addr_validate
	disconnect
	error_get
	errors_get_all
	identify
	is_little_endian
	match_explain
	match_explain_count
	real_time_async_get
	real_time_async_start
	real_time_flul_add
	real_time_flul_close
	real_time_flul_delete
	real_time_flul_find_rule
	real_time_flul_get_rule
	real_time_flul_init
	real_time_sync_get
	real_time_sync_start
	scores_get
	search_comment_get
	search_dedupe_start
	search_fields_count
	search_fields_get
	search_filter
	search_finish
	search_get
	search_get_complete
	search_get_detail
	search_IDT_get
	search_layout
	search_profile_count
	search_profile_get
	search_start
	search_start_via_parameters
	search_start_via_record
	search_tolerances_count
	search_tolerances_get
	search_view_get
	search_view_set
	search_widths_count
	search_widths_get
	server_version_get
	session_close
	session_open
	set_encoding
	set_timeout
	set_vpd_user
	system_close
	system_idtname_count
	system_idtname_get
	system_notify
	system_open
	system_search_finish
	system_search_start
	system_searches_count
	system_searches_get
	systems_count
	systems_get

	Calling from Cobol (z/OS)
	Constants
	Installation
	Installation (TSO/batch)
	Installation (CICS) -static calls
	Installation (CICS) - dynamic calls
	Defining programs to CICS
	Parameter types

	IDS-ADDR-GET-CASS-FIELD
	IDS-ADDR-GET-CASS-FIELD-CNT
	IDS-ADDR-GET-CASS-FIELD-INFO
	IDS-ADDR-GET-DEL-LINES-EXT
	IDS-ADDR-GET-FIELD
	IDS-ADDR-GET-FIELD-COUNT
	IDS-ADDR-GET-FIELD-EXT
	IDS-ADDR-GET-FIELD-IDX
	IDS-ADDR-GET-FIELD-INFO-EXT
	IDS-ADDR-GET-FIELD-LEN
	IDS-ADDR-GET-LINE-LEN
	IDS-ADDR-GET-OPTION
	IDS-ADDR-INFO
	IDS-ADDR-INIT
	IDS-ADDR-PARSE
	IDS-ADDR-PRELOAD-COUNTRY
	IDS-ADDR-SET-ATTRIB
	IDS-ADDR-SET-DEL-LINES
	IDS-ADDR-SET-FIELD-CASE
	IDS-ADDR-SET-FIELD-EXT
	IDS-ADDR-SET-FIELD-IDX
	IDS-ADDR-SET-FIELD-NAME
	IDS-ADDR-SET-LINES
	IDS-ADDR-SET-OPTION
	IDS-ADDR-STD
	IDS-ADDR-VALIDATE
	IDS-CONNECT
	IDS-DISCONNECT
	IDS-ERROR-GET
	IDS-ERRORS-GET-ALL
	IDS-IDENTIFY
	IDS-IS-LITTLE-ENDIAN
	IDS-MATCH-EXPLAIN
	IDS-MATCH-EXPLAIN-COUNT
	IDS-REAL-TIME-ASYNC-GET
	IDS-REAL-TIME-ASYNC-START
	IDS-REAL-TIME-FLUL-ADD
	IDS-REAL-TIME-FLUL-CLOSE
	IDS-REAL-TIME-FLUL-DELETE
	IDS-REAL-TIME-FLUL-FIND-RULE
	IDS-REAL-TIME-FLUL-GET-RULE
	IDS-REAL-TIME-FLUL-INIT
	IDS-REAL-TIME-SYNC-GET
	IDS-REAL-TIME-SYNC-START
	IDS-SCORES-GET
	IDS-SEARCH-COMMENT-GET
	IDS-SEARCH-DEDUPE-START
	IDS-SEARCH-FIELDS-COUNT
	IDS-SEARCH-FIELDS-GET
	IDS-SEARCH-FILTER
	IDS-SEARCH-FINISH
	IDS-SEARCH-GET
	IDS-SEARCH-GET-COMPLETE
	IDS-SEARCH-GET-DETAIL
	IDS-SEARCH-IDT-GET
	IDS-SEARCH-LAYOUT
	IDS-SEARCH-PROFILE-COUNT
	IDS-SEARCH-PROFILE-GET
	IDS-SEARCH-START
	IDS-SEARCH-START-VIA-PARAMETERS
	IDS-SEARCH-START-VIA-RECORD
	IDS-SEARCH-TOLERANCES-COUNT
	IDS-SEARCH-TOLERANCES-GET
	IDS-SEARCH-VIEW-GET
	IDS-SEARCH-VIEW-SET
	IDS-SEARCH-WIDTHS-COUNT
	IDS-SEARCH-WIDTHS-GET
	IDS-SERVER-VERSION-GET
	IDS-SESSION-CLOSE
	IDS-SESSION-OPEN
	IDS-SET-ENCODING
	IDS-SET-TIMEOUT
	IDS-SET-VPD-USER
	IDS-SYSTEM-CLOSE
	IDS-SYSTEM-IDTNAME-COUNT
	IDS-SYSTEM-IDTNAME-GET
	IDS-SYSTEM-NOTIFY
	IDS-SYSTEM-OPEN
	IDS-SYSTEM-SEARCH-FINISH
	IDS-SYSTEM-SEARCH-START
	IDS-SYSTEM-SEARCHES-COUNT
	IDS-SYSTEM-SEARCHES-GET
	IDS-SYSTEMS-COUNT
	IDS-SYSTEMS-GET

	Calling from Java
	Java Version
	Overview
	Constants
	Parameter types

	Error Handling
	Deprecated APIs
	ClieSock Constructor
	ids_addr_get_cass_field
	ids_addr_get_cass_field_cnt
	ids_addr_get_cass_field_info
	ids_addr_get_del_lines_ext
	ids_addr_get_field
	ids_addr_get_field_count
	ids_addr_get_field_ext
	ids_addr_get_field_idx
	ids_addr_get_field_info_ext
	ids_addr_get_field_len
	ids_addr_get_line_len
	ids_addr_get_option
	ids_addr_info
	ids_addr_init
	ids_addr_parse
	ids_addr_preload_country
	ids_addr_set_attrib
	ids_addr_set_del_lines
	ids_addr_set_field_case
	ids_addr_set_field_ext
	ids_addr_set_field_idx
	ids_addr_set_field_name
	ids_addr_set_lines
	ids_addr_set_option
	ids_addr_std
	ids_addr_validate
	ids_disconnect
	ids_error_get
	ids_errors_get_all
	ids_identify
	ids_is_little_endian
	ids_match_explain
	ids_match_explain_count
	ids_real_time_async_get
	ids_real_time_async_start
	ids_real_time_flul_add
	ids_real_time_flul_close
	ids_real_time_flul_delete
	ids_real_time_flul_find_rule
	ids_real_time_flul_get_rule
	ids_real_time_flul_init
	ids_real_time_sync_get
	ids_real_time_sync_start
	ids_scores_get
	ids_search_comment_get
	ids_search_dedupe_start
	ids_search_fields_count
	ids_search_fields_get
	ids_search_filter
	ids_search_finish
	ids_search_get
	ids_search_get_complete
	ids_search_get_detail
	ids_search_IDT_get
	ids_search_layout
	ids_search_profile_count
	ids_search_profile_get
	ids_search_start
	ids_search_start_via_parameters
	ids_search_start_via_record
	ids_search_tolerances_count
	ids_search_tolerances_get
	ids_search_view_get
	ids_search_view_set
	ids_search_widths_count
	ids_search_widths_get
	ids_server_version_get
	ids_session_close
	ids_session_open
	ids_set_encoding
	ids_set_timeout
	ids_set_vpd_user
	ids_system_close
	ids_system_idtname_count
	ids_system_idtname_get
	ids_system_notify
	ids_system_open
	ids_system_search_finish
	ids_system_search_start
	ids_system_searches_count
	ids_system_searches_get
	ids_systems_count
	ids_systems_get

	Calling from Perl
	Constants - Object Oriented
	Installation - Win32 client
	Installation - Unix client
	Parameter types

	addr_get_cass_field
	addr_get_cass_field_cnt
	addr_get_cass_field_info
	addr_get_del_lines_ext
	addr_get_field
	addr_get_field_count
	addr_get_field_ext
	addr_get_field_idx
	addr_get_field_info_ext
	addr_get_field_len
	addr_get_line_len
	addr_get_option
	addr_info
	addr_init
	addr_parse
	addr_preload_country
	addr_set_attrib
	addr_set_del_lines
	addr_set_field_case
	addr_set_field_ext
	addr_set_field_idx
	addr_set_field_name
	addr_set_lines
	addr_set_option
	addr_std
	addr_validate
	disconnect
	error_get
	errors_get_all
	identify
	is_little_endian
	match_explain
	match_explain_count
	real_time_async_get
	real_time_async_start
	real_time_flul_add
	real_time_flul_close
	real_time_flul_delete
	real_time_flul_find_rule
	real_time_flul_get_rule
	real_time_flul_init
	real_time_sync_get
	real_time_sync_start
	scores_get
	search_comment_get
	search_dedupe_start
	search_fields_count
	search_fields_get
	search_filter
	search_finish
	search_get
	search_get_complete
	search_get_detail
	search_IDT_get
	search_layout
	search_profile_count
	search_profile_get
	search_start
	search_start_via_parameters
	search_start_via_record
	search_tolerances_count
	search_tolerances_get
	search_view_get
	search_view_set
	search_widths_count
	search_widths_get
	server_version_get
	session_close
	session_open
	set_encoding
	set_timeout
	set_vpd_user
	system_close
	system_idtname_count
	system_idtname_get
	system_notify
	system_open
	system_search_finish
	system_search_start
	system_searches_count
	system_searches_get
	systems_count
	systems_get

	Calling from Visual Basic .NET
	Constants
	Installation - Win32 client

	Constructor
	addr_get_cass_field
	addr_get_cass_field_cnt
	addr_get_cass_field_info
	addr_get_del_lines_ext
	addr_get_field
	addr_get_field_count
	addr_get_field_ext
	addr_get_field_idx
	addr_get_field_info_ext
	addr_get_field_len
	addr_get_line_len
	addr_get_option
	addr_info
	addr_init
	addr_parse
	addr_preload_country
	addr_set_attrib
	addr_set_del_lines
	addr_set_field_case
	addr_set_field_ext
	addr_set_field_idx
	addr_set_field_name
	addr_set_lines
	addr_set_option
	addr_std
	addr_validate
	disconnect
	error_get
	errors_get_all
	identify
	is_little_endian
	match_explain
	match_explain_count
	real_time_async_get
	real_time_async_start
	real_time_flul_add
	real_time_flul_close
	real_time_flul_delete
	real_time_flul_find_rule
	real_time_flul_get_rule
	real_time_flul_init
	real_time_sync_get
	real_time_sync_start
	scores_get
	search_comment_get
	search_dedupe_start
	search_fields_count
	search_fields_get
	search_filter
	search_finish
	search_get
	search_get_complete
	search_get_detail
	search_IDT_get
	search_layout
	search_profile_count
	search_profile_get
	search_start
	search_start_via_parameters
	search_start_via_record
	search_tolerances_count
	search_tolerances_get
	search_view_get
	search_view_set
	search_widths_count
	search_widths_get
	server_version_get
	session_close
	session_open
	set_encoding
	set_timeout
	set_vpd_user
	system_close
	system_idtname_count
	system_idtname_get
	system_notify
	system_open
	system_search_finish
	system_search_start
	system_searches_count
	system_searches_get
	systems_count
	systems_get

	Using IIR with XML
	WSDL
	Creating a proxy with .NET
	Creating a proxy with Apache Axis2
	XML and HTTP
	XML and SOAP

	XML and Unicode
	Parameter types

	ids_addr_get_cass_field
	ids_addr_get_cass_field_cnt
	ids_addr_get_cass_field_info
	ids_addr_get_del_lines_ext
	ids_addr_get_field
	ids_addr_get_field_count
	ids_addr_get_field_ext
	ids_addr_get_field_idx
	ids_addr_get_field_info_ext
	ids_addr_get_field_len
	ids_addr_get_line_len
	ids_addr_get_option
	ids_addr_info
	ids_addr_init
	ids_addr_parse
	ids_addr_preload_country
	ids_addr_set_attrib
	ids_addr_set_del_lines
	ids_addr_set_field_case
	ids_addr_set_field_ext
	ids_addr_set_field_idx
	ids_addr_set_field_name
	ids_addr_set_lines
	ids_addr_set_option
	ids_addr_std
	ids_addr_validate
	ids_connect
	ids_disconnect
	ids_error_get
	ids_errors_get_all
	ids_identify
	ids_is_little_endian
	ids_match_explain
	ids_match_explain_count
	ids_real_time_async_get
	ids_real_time_async_start
	ids_real_time_flul_add
	ids_real_time_flul_close
	ids_real_time_flul_delete
	ids_real_time_flul_find_rule
	ids_real_time_flul_get_rule
	ids_real_time_flul_init
	ids_real_time_sync_get
	ids_real_time_sync_start
	ids_scores_get
	ids_search_comment_get
	ids_search_dedupe_start
	ids_search_fields_count
	ids_search_fields_get
	ids_search_filter
	ids_search_finish
	ids_search_get
	ids_search_get_complete
	ids_search_get_detail
	ids_search_IDT_get
	ids_search_layout
	ids_search_profile_count
	ids_search_profile_get
	ids_search_start
	ids_search_start_via_parameters
	ids_search_start_via_record
	ids_search_tolerances_count
	ids_search_tolerances_get
	ids_search_view_get
	ids_search_view_set
	ids_search_widths_count
	ids_search_widths_get
	ids_server_version_get
	ids_session_close
	ids_session_open
	ids_set_encoding
	ids_set_timeout
	ids_set_vpd_user
	ids_system_close
	ids_system_idtname_count
	ids_system_idtname_get
	ids_system_notify
	ids_system_open
	ids_system_search_finish
	ids_system_search_start
	ids_system_searches_count
	ids_system_searches_get
	ids_systems_count
	ids_systems_get

	Common Parameters
	Verbosity

	Address Standardization
	Initialization
	Character Sets and Countries
	Providing an Input Address

	Parsing an Address
	Validating an Address
	Retrieving Address Fields
	Setting Options
	Getting Options
	Sample Code
	Validation Database Files
	ASM configuration for AddressDoctor v5
	Batch Test Utility

	AnswerSet
	Table Name and Index
	Table Layout
	Adding Rows
	Clearing the Table
	Relate & DupFinder Set-Ids
	Oracle RAC

	DupFinder
	AnswerSet

	Match Explain API
	Match Explain Record Formats
	Match Explain Scores

	Index

