
Informatica® SSA-NAME3(EXTN)
10.2

Introduction to SSA-NAME3
(EXTN) Service Groups

Informatica SSA-NAME3(EXTN) Introduction to SSA-NAME3 (EXTN) Service Groups
10.2
December 2020

© Copyright Informatica LLC 1999, 2022

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2022-02-01

Table of Contents

Preface . 4
Informatica Resources. 4

Informatica Network. 4

Informatica Knowledge Base. 4

Informatica Documentation. 4

Informatica Product Availability Matrices. 5

Informatica Velocity. 5

Informatica Marketplace. 5

Informatica Global Customer Support. 5

Chapter 1: Introduction. 6
The Need for Name Search. 6

The Name Search Problem. 6

The Algorithm Design Problem. 10

Chapter 2: SSA-NAME3 Overview. 11
Product History. 11

Major Features. 12

The SSA-NAME3 Service Group Environments. 14

SSA-NAME3 Services. 17

SSA-NAME3 CJK-SUPPORT. 19

Chapter 3: Introduction for Application Programmers. 20
Overview. 20

What is the Purpose of SSA-NAME3?. 20

How to Use SSA-NAME3 Matching to Make the Choice Easier?. 23

Appendix A: Glossary. 25

Index. 31

Table of Contents 3

Preface
Welcome to the Informatica SSA-NAME3 (Extn) Introduction Guide.

This guide is intented for users who has no knowledge of the product and wants to know about it. It explains
the problems SSA-NAME3 overcomes and what approach it uses in doing so.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

4

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 5

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Introduction
This manual is intended for new users of SSA-NAME3. It provides a background into the Name Search
problem and an overview of Informatica Corporation approach. It can be read by any person involved with
name searching - the IS manager, system designer, end-user, business analyst, analyst/programmer, DBA or
systems programmer.

The Need for Name Search
As the use of computer systems has evolved, a growing mass of data about people and organizations has
been, and is continually being, collected and processed. In most cases this data is associated with a formal
identity such as an account number, national identity number etc., and it is true that the majority of accesses
to this data will be made by that identification number.

In many countries, however, every important service that could be provided to a person, company, business or
household, has been computerized, and this has led to a proliferation of identification numbers. Due to the
size of our growing populations, this has also meant that such numbers and codes are increasing in diversity
and complexity. The opportunities for an identity number to be incorrect are increasing every day, despite our
attempts at reliability through the use of check-digits, bar-codes and codes built from actual identification
data.

In addition, some systems must cope with finding and matching data when there is no stable or reliable
identification number available, (for example, police persons of interest, directory inquiries, prospect and
marketing lists, intra-organization data matching, check payments with no payment slip, fraud investigation
systems, grouping of accounts in a bank or insurance company application, data warehouse creation, credit
reference checking etc.).

Another factor affecting the availability of identity numbers is that many people do not have them readily
available when making an inquiry or filling out a form, and often even if they do, do not provide them.

The need for retrieval or matching of databases on names and addresses has become quite common and
well known and the number of applications where ’name searching and matching’ techniques are needed is
growing rapidly.

The Name Search Problem
The nature of applications requiring name searching and matching vary considerably as does the relative
importance of ’name search’ between different applications and users.

6

In the past, this ’name search’ problem has been studied and researched for some very restricted application
areas where successful retrieval was critical (e.g. law enforcement searches). The more general approach to
solving the name search problem has been for systems designers and analysts to design their own solutions
typically using methodologies such as exact match alpha key, soundex, match-code, wild-card and text
retrieval, and to apply the same solution to all system areas requiring name search.

Each of these methodologies we will call a name search ’Algorithm’.

The growing duplication of records in databases, the increasing frustration of customer service operators at
slow or unreliable name searches, and worsening fraud problems based on name or address variations, all
point to the fact that most of these Algorithms are, alone, not adequate for today’s volumes of data and
nature of society.

The reasons are many. As soon as a system requires a search by name, the designers and eventually the
users start encountering some or all of the following problems:

• Errors made in spelling the spoken name.

• Transcription errors for written names.

• Missing first names or initials.

• Mixed usage of first names and initials.

• Nick-names, abbreviations, synonyms, unintentional concatenation or splitting of names

• Extra words and word sequence variations.

• Growing multiculturalism bringing more and more names and name structures which are not easily
recognizable by the ’locals’.

• Failures to find all parts of compound or account names.

• Anglicization (Localization) of names causing variation between formal name as on Driver’s License and
informal names on other documentation.

• The problems created by the frequent use of certain common last and first names.

If the application has any significant volume of data at all the following problems will arise:

• Length of response time of the system before an answer is available.

• The problem of the system eliminating relevant names, and on the other hand, of showing too many
names to make a choice.

If the problem is of special concern or is researched fully, the following points are often encountered:

• The design of dialogues so that neither the operator nor the system comes too quickly to the conclusion
that there is not a relevant match. (e.g. volume can cause data to be missed).

• That increasing the width of the search to allow for more error significantly aggravates the response time
and performance problem.

• That progressive refinement of the system by addressing special cases introduces undiscovered
problems elsewhere and progressively degrades the system.

• That the system’s name rules cannot be changed unless all files are fully reprocessed according to the
new rules.

• That integration of data from different systems into an integrated search leads to new frustration for
users because of variations in the name handling.

• That a change in the Name search algorithm may improve overall performance and quality while achieving
less success for certain previously satisfied special cases.

The On-Line Response Time Problem

An important characteristic of a name search is the response time it takes before the search Algorithm
presents a good candidate to the user.

The Name Search Problem 7

The ’on-line response’ performance of a name search Algorithm is an important concept. An Algorithm that
analyses thousands of records and, after a long period, supplies a small group of candidates to a user is
usually less acceptable than an Algorithm that can rapidly supply the user with a few highly probable
candidates, but takes quite a long time to display the low probability candidates.

An example of the difficulty with this aspect can be seen in those algorithms that provide an exact match as
a fast path to the file entries. While there is certainly a fast response to some matching records many other
records that are from a business point of view just as significant (e.g. minor variations only), are not available
unless the rest of the algorithm is used. This exact match with its quick response often leads to the other
entries being ignored.

The important aspect to consider is that the algorithm used must not force users to either extreme. The
algorithm should allow rapid access to records of a particular significance. Each search dialogue that is
designed should be able to take any level or depth of search that is relevant to the problem and should not be
constrained by the algorithm.

Most implementations of name search algorithms do not provide multiple levels or depths of search from a
physical access point of view. Such algorithms provide one ’group code’, ’coded name’ or ’phonetic key’ that
is used to select or access a ’bucket’ of file entries. This whole group or bucket is then analyzed to choose
what to show to the user. Of course, this group can be ’scored’ to achieve a particular probability to decide
what to show the user. However, if the first level or depth of search is inadequate the whole group or bucket
is reprocessed to provide the next level. With large volumes these buckets or groups are themselves very
large.

Good algorithms will actually allow buckets or groups to be subdivided based upon the concept of level,
depth or probability such that only the records of appropriate level, depth or probability are physically
accessed.

The Name Distribution Problem

The most confusing and aggravating characteristic of files of names is the unusual distribution of the actual
names. It is common knowledge that there are a few family names that encompass large groups of each
population. It is also common knowledge that this is so for given names.

It is not so obvious as to how extreme this distribution really is.

It is not unusual to find several common surnames (e.g. SMITH or WILLIAMS) in a population of file entries
where each accounts for in excess of 1% of the population (thus on a 5,000,000 record file the group with
that surname may exceed 50,000 entries).

What is not usually realized is that this fact is devastatingly important as, not only is the file distributed in
such a skewed fashion, it is also usually true that the queries or searches will be identically distributed. That
is, that in excess of 1% of the searches can be on one common surname.

If you extend this observation, to the fact that usually 10% of searches made will, with the above example,
access a surname group where at least 25,000 entries exist, one can imagine how easy it is to bias the
design of an algorithm to the ’common names’ area.

Conversely the distribution has an enormous ’tail’ of very uncommon names where very few members of the
population have these names. If the algorithm design is biased towards performance for this ’tail’ it also
usually aggravates the problem for common names.

In fact algorithms that are badly formulated often confuse a large percentage of the uncommon names with
the common names they were derived from.

This distribution problem is not as stable as most designers would imagine. In a particular country its name
distribution characteristics may be stable, but imagine a system specializing in Vietnamese migrants where
30% of the population hold one surname and another 15% has another (ie.45% of the population is covered by
two surnames.)

8 Chapter 1: Introduction

The most successful name handling algorithms have to be aware of or designed for a specific population of
names.

The Variation Problem

The reasons, that two reports covering the same individual person (organization or address), end up with
differing variations of the person’s names stored in the system, are many. Understanding these variations will
lead to an appreciation of the ’search’ problem.

Phonetic Variation

Where names are spoken, especially over a radio or telephone, a whole class of variations in the spelling can
occur. This is usually referred to as a phonetic problem and the recognition of its existence leads to such
original algorithms as PHONIC and SOUNDEX.

This phonetic variation is itself compounded by the fact that even when a name is spelled out by saying the
letters, a degree of phonetic confusion can still occur.

The false presumption of many algorithms is that the phonetic problem is in its own right the major variation.

There is in fact some evidence to suggest that phonetics accounts for less than 25% of the variations.

Subconscious Correction

Probably one of the most common reasons for variation is to do with automatic or subconscious "correction"
of names that have sounds or letter combinations that are very similar to common names. For example,
SMITHY becomes SMITH; WILLIAM as a family name becomes WILLIAMS.

Such variations are often well handled by ’phonetic’ algorithms.

Orthographic Variation

A significant amount of error can occur when transcribing names from paper to paper or computer terminal.
This type of error is often mechanical and can be keyboard dependent (e.g. R instead of E on a QWERTY
keyboard). This error is often a mental one as in transcription or truncation (e.g. beth becomes beht).

However, the major form of this error is to do with substitution of a graphically similar letter when using hand
writing (e.g. G for Q or S for Z or M for N).

Real Variation

A possible but usually low volume problem is associated with name changes. The familiar one being
associated with marriage and divorce.

The most normal and fortunately addressable problem is Anglicization (more generally localization into local
language, style or dialect). In populations where foreign migrants are frequently introduced it is normal to
adjust the pronunciation and then the spelling of a foreign name to fit into local conventions.

Sequence Variation

A large class of variation arrives from the fact that several words can be used to make up either a surname or
a person’s given names.

In some cases words are left out, especially middle names. In other cases they are re-sequenced. In certain
cases, the set of words used is a choice from one of two or three subsets of a group of name words. This is
typical of names given in cultures where it is normal to adopt new legal given names at puberty or on coming
of age (e.g. Papua New Guinea) or in Western style countries where eastern faiths are common (e.g. Fiji).

One of the most complex cases encountered is that where identification of the family name is difficult.

This can arise for many reasons not the least of which is frequently used names that can be either family or
given names (e.g. William Andrews or Joseph James).

There are also several populations where the practice is to create compound family names out of both
parents’ family names. In certain Spanish, Portuguese and Far East countries this problem is exaggerated by

The Name Search Problem 9

the fact that different sequences are used by different members of the same family when referring to the
same individual.

The Algorithm Design Problem
When one sets out to develop an algorithm that solves the problems previously described, one encounters a
whole class of new project management and testing problems.

• To establish test data to test volume performance for on-line search is difficult let alone expensive.

• To establish test data to allow one to examine algorithm performance requires a representative set from a
real population. The data one is interested in could be as low as 0.1% of a real population. Identifying it is
nearly impossible.

• The absence of objective criteria for deciding if a change to an algorithm is right or wrong leads to
empirical testing only. This means that simulation testing is necessary across the whole population of
names. It is no good testing test cases or problem cases because every change to the algorithm
introduces both benefits and disadvantages. The only process for deciding to accept the change is to
measure the net gain in benefit in real use on a real population. The extreme skew distribution of names
coupled with the high degree of refinement being sought leads to one discarding sampling even when
working on very large populations.

• The relative significance of problems, with an algorithm, change with volume. (An example would be the
barrier one goes through when a set of candidates no longer normally fits on one screen in a dialogue).

• The preoccupation of the designer, programmer, and users with "special cases" leads to an enormous
waste of time.

• The fact that the algorithm needs to work on different populations of users in one organization can
confuse the decision making.

• The reluctance of users to accept new algorithms that give ’better answers’ in the majority of cases
but ’not the same’ answers in the minority.

We have encountered users with an algorithm with 92% reliability and 2% selectivity refuse one with 98%
reliability and 0.1% selectivity because it did not give the same answers in a parallel run.

10 Chapter 1: Introduction

C h a p t e r 2

SSA-NAME3 Overview
This chapter includes the following topics:

• Product History, 11

• Major Features, 12

• The SSA-NAME3 Service Group Environments, 14

• SSA-NAME3 Services, 17

• SSA-NAME3 CJK-SUPPORT, 19

Product History
The Informatica Corporation software was born in 1986 out of the experience gained by its original architects
in building bespoke name matching systems, mostly for government agencies.

This experience had shown that, while the significance of name matching in different systems varied
considerably, there had always been the same basic set of concerns:

1. Solving the performance implication that the most frequently occurring names are also those upon
which searches are most often performed.

2. The problems of widely based phonetic algorithms creating a response time problem and also a user
problem in locating the match from many candidates.

3. That true phonetics is only a subset of the errors in names.

Some of the projects undertaken emphasized the need to quickly achieve a match, if there was one. Others
placed their emphasis on proving that there was no match at all.

One project presented the unusual opportunity for empirically developing and modifying an algorithm
designed to solve phonetic, orthographic and Anglicization problems in more than 2,000,000 hand written
credit records.

During the project development activity some 300,000 computerized matches were compared to manually
made matches done by expert searchers. Whenever the searcher found data not found by the system, the
algorithm was revised.

Another project involved the re-processing of 25 million records where it was known that at least 99% of the
records were in fact pairs of records about the same person. This project also included the need to develop a
name search system to handle over 30,000 inserts per day.

This project demanded a performance breakthrough as the design objective was to support a 50,000,000
record on-line database. The successful solution, based on the fact that the project’s purpose was to identify

11

the records that were not in pairs, and that this population was smaller than the error rate in the data,
required considerable research.

One of the characteristics of SSA-NAME3 is that it is an empirical rather than theoretical solution to the
aforementioned problems.

The original company set up to develop and market this technology was known as Search Software America
(SSA), giving meaning to the "SSA" in SSA-NAME3. The Search Software America name existed until 2005
when the company name was changed to Identity Systems. In May 2008 Informatica Corporation acquired
Identity Systems. Even after the company name changes, the SSA-NAME3 product name was retained
because of its brand awareness and usage in hundreds of production systems worldwide.

The early releases of the SSA-NAME3 Algorithms were known as SSA-NAME1. These were superseded by
SSA-NAME2 and the latest generation was called SSA-NAME3. At this point, the underlying algorithm design
stabilized and the product name stayed as SSA-NAME3.

Since inception, our mission has been to help organizations design optimum dialogues for their specific
needs, and overcome the complexities and variation in their data. The experience gained from these diverse
projects and those of our customers around the world is incorporated into the ongoing development and
maintenance of SSA-NAME3.

In the late 1990’s SSA-NAME3 also became the core-technology inside our two newer products, the Data
Clustering Engine (DCE) and the Informatica Identity Resolution (IIR). While SSA-NAME3 continues to be sold
and supported as a software development kit, it is now more commonly distributed as the core component of
these newer solution based products.

Continuing research & development into the core SSA-NAME3 key-building algorithms, search strategies,
match processes and multi-country support continues apace, (a) because of the large installed SSA-NAME3
user base and (b) because the IIR and DCE products are highly dependent on the quality, reliability and
selectivity generated by SSA-NAME3.

Major Features
SSA-NAME3 provides any computer system with a variety of access paths to data using names or addresses.

Applications dealing with relatively reliable and complete data can use a high performance access path, while
applications dealing with less reliable data or with a more critical problem can use more complex access
paths. For any name or address, SSA-NAME3 provides a logical access path to the set of records that are
likely to include relevant matching records.

In an application where a match is expected to be found (e.g. customer search), it is possible to present to a
user, or process, a set of highly relevant records and then, if necessary, cast a wider net for records that are
less likely to be relevant. We call this a ’positive’ search. This approach allows the designer to use techniques
that progressively increase the depth of the search. At each particular depth or level it is only necessary to
physically access the set of records that match that depth of search. This is significantly different than the
approach of accessing a large bucket including all possible candidates and then refining the records using a
"scoring" technique to control the depth. For example:

Figure 1: Diagrammatic example of a ’positive’ search * means "and anything else"

12 Chapter 2: SSA-NAME3 Overview

In applications where the search or file data is unreliable or incomplete, or where a match is not expected to
be found, or where the search is critical, it is possible to invoke different types of search depending on the
thoroughness required or the extent of the unreliability. These are collectively called a ’negative’ search. For
example, this is one type of negative search:

Figure 2: Diagrammatic example of a ’negative’ search

The major features of SSA-NAME3 are summarized below:

SSA-NAME3:

• addresses the problems of error, variation and performance for systems which need to use name or
address data for searching or matching.

• can be applied to any types of names including Person, Company and Business names, Account and
Compound names, Addresses, Product names, Song Titles, Book Titles and any other short descriptive
text.

• is a set of Callable software tools which provide key generation, search strategy, data matching and other
services to applications.

• can be used by applications in either on-line or batch mode.

• allows applications to achieve very high-performance by using the full-name in a search where a match is
expected to be found (the typical customer search).

• provides different search strategies for different application and user needs (e.g. ’positive’ and ’negative’
search strategies).

Major Features 13

• is extensively customizable and automatically tailors its Algorithms to the users actual population of
names.

• performs with large files of names (100,000 to 100,000,000 or greater).

• once installed in a particular environment, can be used by all systems in that environment.

• is hardware independent.

• can be used with any programming language that supports a Call to an external routine.

• will work with any access method or DBMS that provides a key sequential access path on either its
primary or secondary keys.

SSA-NAME3 will work equally well in the following environments:

Environment As

Index Sequential a primary key or secondary if supported.

VSAM a key sequential set key or as secondary key if logical sequential supported.

Hierarchical for VSAM

Network an access key

Inverted List as long as the key is inverted

Relational an index, preferably

Object an index, preferably

The SSA-NAME3 Service Group Environments
Once installed, SSA-NAME3 has a Customization Environment and a Development/Run-time Environment.

The SSA-NAME3 Customization Environment

The customization environment is comprised of five major components:

• The Country specific Definition files, which contain the default rules for how the name search & matching
software operate on data for different populations and different countries.

• The Customization and Generation modules, which allow the default Definition files to be customized for
an organization’s data and applications, and then re-built.

• The Testing module, which allows a callable SSA-NAME3 module to be tested in a stand-alone manner.

• The Visual Workshop, which allows the definition files to be customized, generated and tested in a visual
environment.

The customization environment is on Windows for all platforms except MVS, where native customization is
available. (However, MVS users are encouraged to use Windows as there are certain benefits).

The Country Specific Definition Files are supplied pre-loaded with the basic definitions suitable for a given
country. These are called "Fast-start" definition files and are usually used as the basis for any customization
work.

14 Chapter 2: SSA-NAME3 Overview

There is a minimum amount of customization that must be done to these files and tables before SSANAME3
can be used. See Tips on Customizing an Algorithm section in the DEFINITION and CUSTOMIZATION GUIDE
FOR SSA-NAME3 SERVICE GROUPS guide for more details.

In summary, the customizable components within the Country Definition files are:

Algorithms

For a given population of names or addresses, an Algorithm manages the way a name or address within
that population is transformed prior to key-building or matching. This is done by selecting the Character-
set tables, Edit-lists, Frequency tables, Scaler Frequency tables (optional), Word Stabilization routines
and other processes it will use. An Algorithm also controls the type, style and number of keys generated
for a name or address.

Character-set tables

These tables control the way individual characters are treated. Examples of treatment are casing,
dropping of accents and deletion of non alpha-numeric characters.

Edit-lists

An Edit-list controls the way common words or phrases within a name or address population are
transformed or marked. Examples of transformation are replacements for nick-names, abbreviations,
synonyms & phrases; deletions for noise, delete or stop words; concatenation or splitting for prefixes
and suffixes. Examples of marking are, finding the major word and, classification of data.

Frequency tables

These tables are automatically built from the user’s data and control the way common words within the
name or address population are compressed into keys.

Scaler Frequency tables

These tables are optionally built from either the user’s data or the user’s SSA-NAME3 keys. They
enhance the Scale value returned in the NAMESET search ranges.

Search Strategies

A Search Strategy controls the way name or address key index is searched and varies according to the
needs of the application. A customer search is one search strategy, a pre-insert search is another and a
fraud search may be quite different again.

Matching Schemes

A Matching Scheme controls the way two records, usually a search and a file record, are matched.
Matching occurs after Searching and can be performed on names, addresses, dates, telephone numbers,
codes and other data strings. The goal of a Matching Scheme is to mimic the choice process of a user.
The results of Matching are used for filtering, matching or ranking records.

After these Definition files and tables have been customized, they are then generated. If the development
environment is on a different platform to the customization environment, the Service Group Data File must be
transferred to the target platform. The Data File is plain ASCII text which should be considered when
transferring.

A final Gendll step is performed which creates the dll/shared object that can be called from the program.

The SSA-NAME3 Service Group Environments 15

The SSA-NAME3 Development/Run-time Environment

The development environment is on the platform where the applications which will use SSA-NAME3 are
developed. This is often referred to as the target platform as it is the target for the customization work. The
development environment is comprised of:

• The Core modules, which represent the non-modifiable kernel of the software and without which the other
components would not work.

• The Testing module, which allow a callable SSA-NAME3 module to be tested in a stand-alon manner.

• The API’s, which allow user applications to call SSA-NAME3 Services.

Most major platforms are catered for as targets.

The run-time environment is on the platform where the applications, which will use SSA-NAME3, are
executed. The run-time environment is comprised of:

• The Callable SSA-NAME3 module, which has been prepared in the development environment. No other
SSA-NAME3 modules are required in the run-time environment.

User applications communicate with the Callable SSA-NAME3 Service Group via documented API
conventions. For on-line applications, it is normal for one copy of the SSA-NAME3 Service Group to be shared
by many user transactions. For batch applications, it is more common for the Service Group to be statically
linked to the application.

User applications use the SSA-NAME3 Service Group for three main reasons:

1. To build keys for the name or address population to be searched. The User application calls the SSA-
NAME3 Service Group passing it a name or address and indicating which Algorithm it wishes to use. The
Service Group passes back one or more keys ("Keys Stack") which are to be stored by the application in
the user’s database. These keys are either 5-bytes binary or 8-bytes character depending on the DBMS
being used. Applications making use of this service are commonly the initial key-load program, and
name or address maintenance programs. For example,

16 Chapter 2: SSA-NAME3 Overview

2. To build search strategies for a search name or address. The User search application calls the SSA-
NAME3 Service Group passing it the name or address and indicating which Algorithm and Search
Strategy it wishes to use. The Service Group passes back an array of key ranges which define the sets of
records which are candidates for this name or address search. The User application then does a key
sequential access of its SSA-NAME3 key index for the key range or key ranges specified. It returns the
name or address and other data from the database which is then used for matching.

3. To match two records, a search record and a file record. After reading a candidate record in the search,
the User application calls the SSA-NAME3 Service Group indicating which Matching Scheme to use and
passing it the search name or address, and any other identity data entered, and a file name or address,
and the identity data retrieved for the file record. The Service Group compares the two records and
passes back a Score between 1 and 100. The User Application may then use the Score to match, filter or
rank the records. For example,

SSA-NAME3 Services
The following paragraphs give an overview of the various SSA-NAME3 Services, what function they perform
and in some cases, their basic operation.

Key and Search Strategy Building

The Service used to perform Key and Search Strategy building is called NAMESET.

When a name or address is passed to NAMESET, the Algorithm to use is also identified by the Calling
program. This Algorithm will cause the passed name or address to be processed in four phases:

SSA-NAME3 Services 17

Cleaning

This routine uses internal routines and the Algorithm’s Character-set tables to edit the passed string.
Common actions include removing special characters and replacing lower-case with upper-case. The
Cleaning routine itself is not customizable.

Formatting

This routine uses internal routines and the Algorithm’s Edit-list to edit the passed string into separate
words, removing noise, delete or stop words, replacing selected words, concatenating prefix words and
other such actions. The Formatting routine itself is not customizable, however, an exit is supplied which
may be customized. A working example of this exit is supplied for English style nick-name processing.

Word Stabilization

This routine stabilizes the Cleaned, Formatted words using country specific rules to cater for phonetic
and orthographic error. For example de-duping double characters is one common rule. The Stabilization
routine is not generally available for customization.

Key and Search Strategy Generation

Builds the keys to be stored in the database, and the key ranges to be used at search time. The type,
style and number of keys is controlled by user customizable Algorithm options. The type of Search
Strategy is controlled either by Algorithm options or by the Calling program.

Matching

The Service used to perform Matching is called MATCH.

When two records are passed to MATCH for matching, the name of the Matching Scheme to use is also
identified by the Calling program. This Matching Scheme has been pre-defined as part of the customization
process and contains the view of the passed records, which Matching Methods are to be used for each field
in the record view, and what weights to assign to each field. There are different methods for matching
names, address, dates, codes and other strings.

The Methods used for matching names or addresses indicate which Algorithm to use as part of the Matching
process. Before two names or two addresses are compared they are first processed through the Cleaning &
Formatting processes of the Algorithm as described in the previous section. The Matching Method then uses
its own internal processes, which respond to customizable options, to compare the two Cleaned and
Formatted strings. The Method may also resort to using the Word Stabilization routine as part of the
matching process.

The Matching Methods used for dates, codes and other strings do not use Algorithms. These Methods use
their own internal processes, which respond to customizable options, to compare the two fields.

Other SSA-NAME3 Services

The overview of SSA-NAME3 so far has concentrated on its ’core’ services, that is name and address
searching, and matching.

SSA-NAME3 also provides other services. These are:
Word-key

Builds a compact key for a user supplied word (as opposed to a ’name’). For example, can be used to
build fuzzy keys for text indexing.

Major-word-key

Builds a compact key from the one word in a name which is most suitable for indexing.

18 Chapter 2: SSA-NAME3 Overview

Trace

Traces the actions taken by the Formatting process and makes these available back to the Caller. For
example, can be used to identify the components of a name or address for such business needs as
personalization of marketing letters, or geo-coding of addresses.

Support Routines

Access is provided to the Cleaning, Formatting and Word Stabilization routines directly. For example,
names or addresses could be cleaned before they are stored in the database or before printing. The
Formatting routine could be called directly to ’tokenize’ a name or address for some other purpose.

Test-bed

A stand-alone test facility which can invoke other SSA-NAME3 services and show the results of the Call.

Browse

Reports internal data and is generally used for debugging purposes.

Info

An API for retrieving information from internal SSA-NAME3 tables.

Debug

Assists in developing the rules for record matching by allowing user programs to dynamically alter
Matching rules.

SSA-NAME3 CJK-SUPPORT
SSA-NAME3 CJK-SUPPORT is the name given to a separately licensable product which deals with the special
nature of Chinese, Japanese and Korean data. Its features include the ability to recognize and encode double-
byte names and addresses, handle special representations of Chinese numbers, and allow Edit-lists to be
maintained using the CJK language characters.

SSA-NAME3 CJK-SUPPORT 19

C h a p t e r 3

Introduction for Application
Programmers

This chapter includes the following topics:

• Overview, 20

• What is the Purpose of SSA-NAME3?, 20

Overview
The purpose of this section is to describe SSA-NAME3 Service Groups and its usage at a high-level and from
the analyst programmer’s point of view. The example application being described is that of an on-line
customer name search, but could be interpreted for any type of search.

What is the Purpose of SSA-NAME3?
The purpose of using SSA-NAME3 is to find potential matches on a database for exact, incomplete or
inaccurate names upon which we are SEARCHING. For example, if Mary Evans Jones is stored on the
customer database, we want to be able to retrieve her record even if we search on Mary Evans, Maria Jones,
M. Evens, or M E Jones, to name a few.

How do we Achieve this?

This is accomplished by storing specially formatted 5-byte KEYS (8-byte keys in some implementations) for
each customer. Then, for a search name, we locate all keys within a RANGE that is likely to include this
search name or a variation of it.

In fact, we usually store MORE THAN ONE KEY – alternate keys – for each customer. For example, for Mary
Evans Jones, we would include a key not only with Jones as its major component, but also one with Evans as
a major word. Then, if an operator searches on the name Mary Evans, the search key range produced for Mary
Evans will INCLUDE the Mary Evans key we had created for the customer Mary Evans Jones.

Where are the SSA-NAME3 Keys Stored and in What Format?

These keys are stored on ANY TYPE OF INDEXED FILE and in ANY RECORD LAYOUT. The only requirement is
that they are stored somewhere where you can FIND or LOCATE a given key and then READ NEXT until the end
of a range of keys is reached.

20

If you are accustomed to using a relational database, you could define a simple relational table containing
the SSA-NAME3 key, the customer name from which the SSA-NAME3 key was created, and the unique key for
this customer record - for example, customer number.

It will become clearer as to why the format of the indexed file is unimportant to SSA-NAME3. But how do you
decide, then, exactly how to lay out this file? Here is an EXAMPLE of a typical record layout for what we will
refer to as the SSA-NAME3 KEY FILE:

SSA-NAME3 Key Customer Name Other Identifying
Data

Customer No

@#$%ˆ John Smith . . . A12345

(&%$# John Smith . . . A12345

(*#$% Geoff Brown . . . B23671

)(&&% Geoff Brown . . . B23671

With this type of format, there will be MULTIPLE SSA-NAME3 key records for most customer names - one for
each alternate key for this customer. Moreover, the customer name and other identifying data will be
REPEATED for each SSA-NAME3 key record created. You could also simply store the SSA-NAME3 key and the
Customer No, however, the above method will provide the best performance when doing name searches and
is well worth the extra disk space required. For more information on the subject of database design and
performance, see the How Does a User Determine Which is the Correct Record? section below, or the Database
Design Notes section in the APPLICATION REFERENCE FOR SSA-NAME3 SERVICE GROUPS manual.

How are the SSA-NAME3 Keys Created?

You first create a KEY LOAD application program, using COBOL, Visual Basic or whatever development
language you are accustomed to using. The program should be linked or have access to the Callable SSA-
NAME3 routine using the conventional methods for your environment.

The key load program will CALL SSA-NAME3 with each customer name as a parameter passed to it; all SSA-
NAME3 keys (i.e., alternate keys) for that customer name will be returned in an array. You then WRITE these
keys to the "SSA-NAME3 Key" database table (or other indexed file), along with whatever other matching
information you have decided to store, and in whatever format you decided upon. As you read on to see more
on how SSA-NAME3 is used, you will better be able to decide just what information you want stored on the
SSA-NAME3 Key File.

The following pseudo-code for the key load program (with comments) will help clarify how this works:

READ NEXT CUSTOMER DATA BASE RECORD UNTIL EOF;
 MOVE CUSTOMER-NAME TO SSA-NAME3-NAME-IN;
 MOVE ’BLDKEY’ TO SSA-NAME3-FUNCTION;
 CALL SSA-NAME3 USING SSA-NAME3-FUNCTION,
 SSA-NAME3-NAME-IN;

Note: The above Call does not show the exact API requirements – these are described in the APPLICATION
REFERENCE FOR SSA-NAME3 SERVICE GROUPS manual.

You now have returned to you a KEYS-STACK array with the different alternate keys for this customer. For
each key in the array, create a record in the SSA-NAME3 Key File.

DO FOR (ALL KEYS IN KEYS-STACK FOR THIS CUSTOMER-NAME);
 MOVE KEY(N) TO SSA-NAME3-KEY-FILE.SSA-NAME3-KEY;
 MOVE CUSTOMER-NAME TO SSA-NAME3-KEY-FILE.CUST-NAME;

What is the Purpose of SSA-NAME3? 21

Optionally, move other identifying information. This will be addressed at a later stage.

 MOVE CUSTOMER-ID TO SSA-NAME3-KEY-FILE.CUST-ID;
 WRITE SSA-NAME3-KEY-FILE RECORD;
END DO;

Note that the only interface the key load application program had with SSA-NAME3 was to send it a name and
some other parameters. SSA-NAME3 didn’t care what kind of database this name came from. Also, all that
SSA-NAME3 returned essentially was an array of keys. It didn’t care where those keys were stored they could
be written to a DB2 or Oracle table, a VAX RMS file, a VSAM KSDS, or any other type of indexed data base or
file system.

What we have at the conclusion of the load program is a file indexed on SSA-NAME3 key.

How are the SSA-NAME3 Keys Used for Searching?

The initial loading of the SSA-NAME3 keys is a one-time operation. Of course, in a production environment,
whenever new customers are added to the database, or names changed, new SSA-NAME3 keys must be
generated for these - this is normally done as part of the maintenance transactions.

Once the SSA-NAME3 Key file has been created you can use it from within an application program that
performs the SEARCH function. Let’s assume that the search program is an on-line program, although the
concepts apply as well to batch programs.

The following pseudo-code will help describe how this search program works:

GET CUST-SEARCH-NAME FROM SCREEN;
MOVE CUST-SEARCH-NAME TO SSA-NAME3-NAME-IN;
MOVE ’POSSRCH’ TO SSA-NAME3-FUNCTION;
CALL SSA-NAME3 USING SSA-NAME3-FUNCTION,
 SSA-NAME3-NAME-IN;

Note: The above Call does not show the exact API requirements – these are described in the APPLICATION
REFERENCE FOR SSA-NAME3 SERVICE GROUPS manual.

The example POSSRCH function will return an array of SEARCH KEY RANGES. It is these SEARCH ranges that we
are now interested in, rather than the storage keys.

The positive search ranges in this example go from narrow (only the closest matches to search record
returned) to wider than would ever actually be used in practice. The choice of which search range(s) to use is
a discussion in itself, and should be discussed more thoroughly with an SSA technical support person. Let’s
assume we’re using the narrowest range (the first one in the search table array).

To continue with the code:

FIND SSA-NAME3-KEY-FILE.SSA-NAME3-KEY >= START-SEARCH-KEY
DO WHILE (SSA-NAME3-KEY-FILE.SSA-NAME3-KEY <= END-SEARCH-KEY);
 MOVE SSA-NAME3-KEY-FILE.CUST-NAME TO DISPLAY SCREEN;
 MOVE SSA-NAME3-KEY-FILE.CUST-ID TO DISPLAY SCREEN;
 READ NEXT SSA-NAME3-KEY-FILE RECORD;
END DO;

What are the Results of the Search?

After performing the above search you will have on the screen a list of customer names whose SSANAME3
keys fall within the search range just referenced.

Now your application program may provide a facility for the operator to select one of these names and
retrieve the actual CUSTOMER DATA BASE record to which a certain SSA-NAME3 KEY FILE record points.

For example, if the customer search name was Mary Evans Jones, the list displayed may contain:

 Name Customer No

22 Chapter 3: Introduction for Application Programmers

 Mary Jones 1236
 Mary Evans 9812
 M.Jones 7745
 M.E.Jones 2176
 M.Evans 3737
 Evan Marie 9508

How Does a User Determine Which Is the Correct Record?

Displaying the name alone will most likely not be enough to tell the user which customer is the correct one
other identifying information will be required. The operator could go and display the customer master record
for each name, but this is not the most efficient way.

This brings us back to one of the first questions - what data do we store on the SSA-NAME3 Key File? In the
key load example described above we stored the customer name and customer id along with each SSA-
NAME3 key created. This customer name is what is displayed on the screen list of names.

For efficiency, we also recommend storing additional identifying information with each key on the SSA-
NAME3 key file. For example, you may want to store date of birth and street address if this what the users
would commonly use to confirm a match. Now, when you display the records retrieved from the SSA-NAME3
Key File for a given search range, you will see not only the customer name but this additional information as
well making the choice easier.

The reason for storing the other identifying data in the same table as the SSA-NAME3 name keys is that the
application or DBMS does then not need to join multiple tables to retrieve that data, and this leads to a saving
in I/O. Equally as important for performance is that the table must be ordered physically by the SSA-NAME3
name key this means that records with similar names are stored physically close to each other in the table
and the DBMS will need less I/O to retrieve those records.

How to Use SSA-NAME3 Matching to Make the Choice Easier?
If your database contains a large number of records, and the search name was for example, John Smith or
some very common name in your population, the number of records and screens to be displayed could be
significant. In this case, simply showing the other identifying data on the screen is not enough to make the
choice easy for the user because the correct record could be on the last screen.

This is where SSA-NAME3 Matching comes in. If the user also enters some of the other identifying data as
part of his/her search criteria, this data, along with the name, can be used to get a ’Score’ for each candidate
record found in the search. This Score is a value between 1 and 100 and can be used in a number of ways:

• When each candidate record is retrieved you can pass it to SSA-NAME3 for Matching and use the Score to
ELIMINATE the candidate from the list to be displayed.

• After all of the candidate records have been read and matched, you can sort the candidate list in
descending order by the Score before they are displayed. This way, the most likely candidates will appear
at the top of the first screen.

For example, if your search criteria was:

 Name: Mary Evans Jones
 Address: 1445 East Putnam Avenue

Using Matching, the search results could be returned in the following order:

 Name Address Cust Id
 M E Jones 1445 E. Putnam Ave. 2176
 Mary Jones 14 Peter Street 1236
 M. Evans 107 Putnam Drive 3737

What is the Purpose of SSA-NAME3? 23

The following updated pseudo code shows how Matching fits into the Search program:

 GET CUST-SEARCH-NAME,SEARCH-ADDRESS FROM SCREEN;
 MOVE CUST-SEARCH-NAME TO SSA-NAME3-NAME-IN;
 MOVE ’POSSRCH’ TO SSA-NAME3-FUNCTION;
 CALL SSA-NAME3 USING SSA-NAME3-FUNCTION,
 SSA-NAME3-NAME-IN;
 MOVE CUST-SEARCH-NAME TO SEARCH-RECORD.NAME;
 MOVE CUST-SEARCH-ADDRESS TO SEARCH-RECORD.ADDRESS;
 MOVE ’SCH01’ TO SSA-NAME3-MATCH-SCHEME;

 FIND SSA-NAME3-KEY-FILE.SSA-NAME3-KEY >= START-SEARCH-KEY
 DO WHILE (SSA-NAME3-KEY-FILE.SSA-NAME3-KEY <= END-SEARCH-KEY);
 MOVE SSA-NAME3-KEY-FILE.CUST-NAME TO FILE-RECORD.NAME;
 MOVE SSA-NAME3-KEY-FILE.ADDRESS TO FILE-RECORD.ADDRESS;
 CALL SSA-NAME3 USING SSA-NAME3-MATCH-SCHEME,
 SSA-NAME3-SEARCH-RECORD,
 SSA-NAME3-FILE-RECORD;

Note: The above Call does not show the exact API requirements these are described in the APPLICATION
REFERENCE FOR SSA-NAME3 SERVICE GROUPS manual.

 IF SSA-NAME3-SCORE > ’050’
 MOVE SSA-NAME3-KEY-FILE.CUST-NAME TO PROGRAM ARRAY;
 MOVE SSA-NAME3-KEY-FILE.CUST-ID TO PROGRAM ARRAY;
 MOVE SSA-NAME3-SCORE TO PROGRAM-ARRAY;
 END-IF
 READ NEXT SSA-NAME3-KEY-FILE RECORD;
 END DO;

 SORT PROGRAM ARRAY DESCENDING BY SSA-NAME3-SCORE;
 DISPLAY PROGRAM ARRAY TO SCREEN;

24 Chapter 3: Introduction for Application Programmers

A p p e n d i x A

Glossary
This section provides glossary of terms.

Account Name

A name field, often referring to account details, which implicitly refers to more than one simple name, for
example,

JOHN AND MARY SMITH
See also section Compound Name.

Algorithm

A combination of SSA-NAME3 routines that have been generated for a specific Population (example,
person names, company names, street names). The Algorithm is accessed through Calls to Services
which are linked to it.

Alternate Keys

The Name-key(s) built from different word orders in a name. These can be either Positive or Negative
Keys.

Authorization

The process of collecting the signatures and details of the routines linked to an Algorithm. These
signatures are checked at run-time to ensure that no ’rogue’ modules have been linked.

Authorized Algorithm

The Algorithm for a Population that is currently available for use by application programs.

Bad key

SSA-NAME3 never returns an unusable Name-key. If for some reason a key could not be generated a
special "bad key" is returned. This bad key has a value of 800000HEX, when using 5-byte binary keys, and
K$$$$$$$ when using 8-byte character keys. It can be used to group bad names so that they can be
found.

An example would be the name, THE LIMITED. If both words in this name are removed by the Edit-list the
result is that there is no name to build the key from. In this case the bad key is returned.

Candidates

The set of records returned from a Name search. For optimum quality these candidates should be
passed to the Matching Service for further qualification before being displayed or otherwise used in a
search process.

25

Cascade

The name given to the Search-table structure built for the most common type of Positive Search
strategy. The Search-table starts with the narrowest Name-key range, which could contain the ’searched-
for’ record, and continues with progressively widening ranges.

Cleaning

The process of applying character set conversion rules to a Name with the intention of cleaning and/or
converting unwanted characters.

Code-character

Any character marked as a code in character-set table 2. This is normally only the digits 0 - 9.

Code-word

Any token with one of the following attributes:

1. 2 or more code characters,

2. an initial that is a code character,

3. 1 or 2 characters in length and either preceded or followed by a Code-word.

Common Name

A Name that occurred often enough in the sample user data provided to the section Frequency Table
generation to be considered common.

Compound Name

A Name field which explicitly refers to more than one simple name, for example,

JOHN SMITH AND GEORGE BROWN
See also section Account Name.

Delimiter

Any character defined as a delimiter in character-set table 4.

Edit-list

A table of user controlled words & phrases that undergo special processing in Name-key building and
Matching, example, noise words, personal titles, prefixes & suffixes, nicknames, common abbreviations,
phrase replacements and Compound Name markers.

Edit-rule

A line in an Edit-list, for example the line

RR ROB >ROBERT <
is an Edit-rule that says "Replace ROB with ROBERT".

Fast-start

A collection of sample definition modules for a specific country used to create a first-cut Service Group.
The Fast-start definition files are used when first installing SSA-NAME3 as a quick way to test the
Installation process and environment. They are later used as the basis for further customization work to
make SSA-NAME3 achieve the objectives of the application and end-users.

Filtering

The process of Matching Candidates to reduce the number of records shown to the user.

Formatting

The process of applying Edit-rules to words, phrases and sub-strings.

26 Appendix A: Glossary

Frequency Table

A table generated from an organization’s Name data holding the most frequently used words that have
not been deleted or skipped as a result of Edit-list processing.

Generation

The process of creating compilable source code modules from Definition files, either on a Windows
computer or an MVS system.

Initial

A single character word or the first character of a word.

I+n

Nomenclature for "Initial plus n consonants".

Key Generation

The process of building one or more Name-keys from the Cleaned, Formatted and Stabilized Tokens of a
Name.

Major-word

The word in a Name identified as being the most significant. It is used as the primary part of the
Preferred Key, as the primary part of the Search key ranges of a positive search, and for weighting in
Matching Schemes. See also section Minor-word.

Major word-key

A 3-byte or 6-byte key generated from the Major-word of a Name.

Matching

The process of determining the probability that a search identity and a File entry are the same identity.

Matching Method

The way in which section Matching matches two data items of the same data type. There are methods
for names, addresses, dates, strings and codes. (See section Method).

Matching Scheme

A definition of the structure of the data items to be matched and the Matching Methods and options to
be used.

Method

A routine used for Matching two data items. There are Matching Methods for names, dates, codes and
strings. For example, in the following Matching Definition line,

DEFINE METHOD=METHOD1,EP=N3SCL,ALGORITHM=PERSON
The method is N3SCL (the name matching method).

Minor-word

Any token in a Name which is not the Major-word and is not a word deleted by an Editrule.

Name

The name of a person, company, business or organization; an address; a product title, song title or book
title; any short description. A name consists of a number of words, each with a limit of 24 characters.

Name-key

A compressed five-byte binary or eight-byte character key built from a Name using the NAMESET
Service.

 27

Negative Keys

The Name-key(s) built using each non-delete Token (word) in a Name in combination with every other
word in the name. See the Positive Keys section.

Negative Search Strategy

A method of building a Search-table for a search application whose normal requirement is to prove that a
name does not already exists on a database.

Population

Population refers to a class or group of names that requires its own SSA-NAME3 Algorithm. Typical
examples of "populations" are: customers, street lines from addresses, song titles, file titles etc.

Positive Keys

The Name-key(s) built using each non-delete Token (word) in a Name followed by the other words in a
set order. See the Negative Keys section.

Positive Search Strategy

A method of building a Search-table for a search application whose normal requirement is to find a
name that already exists on a name database.

Preferred Key

The Name-key built from the Major-word followed by the Minor-words in a Name.

Probe

A very narrow search range.

Ranking

The process of sorting the Matched section Candidates to show the records to the user in descending
order of their likeness to the search identity.

Reliability

The probability that a section Search Strategy will find a name if one exists that should be considered as
a match to the search Name.

Response Code

A unique number indicating the success or otherwise of the Service just called.

Scaler Frequency Table

Atable generated from an organization’s Name data or an organization’s SSANAME3 keys holding the
most frequently occurring Name-keys. Generation of this table is optional, and it is used to enhance the
scale value returned in the NAMESET search ranges. See the Search Scale section.

Score

A value between 1 and 100 returned by the Matching Service to an application. This defines the level of
confidence that two candidate records match.

Search Contents

A term used to describe the number of Tokens (words and Initials) used in a particular search range.

Search Depth

A term used to describe the width of a Name-key search range or its Selectivity.

28 Appendix A: Glossary

Search Dialogue

The method by which a search application processes a Search-table and displays the Candidates to the
user.

Search Scale

An estimate of the number of Candidates that would be returned using a particular search range.

Search Strategy

The method by which a Search-table is built to achieve the optimum search results for the particular
application requirement (e.g. Positive Search Strategy or Negative Search Strategy).

Search-table

A table of Name-key ranges used by a search application to access a Name database on a Name-key
index. This is the physical implementation of a section Search Strategy.

Selectivity

The percentage of records that are accessed to satisfy the average search.

Service

An SSA-NAME3 function that has been defined and generated for some specific user required purpose
and for a specific Population; e.g. building Name-keys and Search-tables; Matching two records
according to a specific set of rules.

Service Group

A collection of SSA-NAME3 Services that are grouped as one program under one name. In Call
statements you call a Service Group name requesting a Service, passing parameters according to the
service rules.

Service Group Data File

An ASCII text file containing the Service Group "ruleset". It is invoked at runtime by the shared object or
dll code.

Service Name

The name used when referring to a Service, e.g. NAMESETP is a name typically used to define a service
of type NAMESET for the PERSON Algorithm.

Service Type

The type of a Service, this defines its functionality whereas the Service Group Data File An ASCII text file
containing the Service Group "ruleset". It is invoked at runtime by the shared object or dll code. Service
Name is simply a handle to refer to the Service with, e.g. the Service NAMESETP is of type NAMESET.

Skip-word

Any Token in a Name which is defined by an Edit-rule not to take part in Name-key building.

SSA-NAME3

The latest version of the SSA-NAME3 Algorithms.

Stabilization (Word Stabilization)

The process of applying phonetic and orthographic transformation rules to Name Tokens to stabilize the
error and variation.

Suspect Code-word

A word of 3 or more characters that includes 1 Code-character. See the Code-word section.

 29

Token

The individual word components of a section Name after Cleaning are called Tokens.

Target Platform

The combination of hardware and software that will execute an SSA-NAME3 Algorithm.

Test-bed

An SSA-NAME3 utility which enables quick and reliable testing of Algorithms and Matching Schemes,
either interactively or in batch mode. For Microsoft Windows, a Windows based Test-bed can also be
used.

Vowel

Any character defined as a vowel in character-set table 4.

Word-key

A 3-byte or 6-byte key generated from any single Token (word).

Word-type

A one-character code assigned to a Token by the Formatting routine. Possible values are:

B - a Suspect Code-word.

C - a Code-word.

D - a deleted word (used only by the TRACE Service)

I - an Initial.

M - the Major-word.

N - the Major-word if it is a Code-word.

S - a Skip-word.

T - a Skip-word if it is a Code-word.

Y - any other word

30 Appendix A: Glossary

I n d e x

A
algorithm 10
Algorithm 6

C
customization environment 14

E
Edit-list 14

K
Key and Search Strategy 17
KEY LOAD 20

M
Matching 17

N
name search 6
name searching 6
NAMESET 17

O
on-line response 6

P
phonetic variation 6

R
RANGE 20

S
Score 23
scoring 12
Search

negative 12
positive 12

Search Strategy 14
SEARCHING 20
SSA-NAME3 Algorithms 11
SSA-NAME3 CJK-SUPPORT 19
SSA-NAME3 Matching 23

V
Variation

Phonetic 6
Real 6
Sequence 6

31

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction
	The Need for Name Search
	The Name Search Problem
	The Algorithm Design Problem

	Chapter 2: SSA-NAME3 Overview
	Product History
	Major Features
	The SSA-NAME3 Service Group Environments
	SSA-NAME3 Services
	SSA-NAME3 CJK-SUPPORT

	Chapter 3: Introduction for Application Programmers
	Overview
	What is the Purpose of SSA-NAME3?
	How to Use SSA-NAME3 Matching to Make the Choice Easier?

	Appendix A: Glossary
	Index

