4;» Informatica

Informatica® MDM Registry Edition
10.2 HotFix 1

Operations Guide

Informatica MDM Registry Edition Operations Guide
10.2 HotFix 1
September 2021

© Copyright Informatica LLC 2010, 2022

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2022-01-26

Table of Contents

Prefaceo e 9
Learning About Informatica MDM Registry. 9
What Dol Read If. 10
Informatica Resources. 10
Informatica Network. 11
Informatica Knowledge Base. 11
Informatica Documentation. 11
Informatica Product Availability Matrices. 11
Informatica Velocity. e 11
Informatica Marketplace. e 11
Informatica Global Customer Support. 12

Chapter 1: Introduction............c.coiiiiiiiiii it it iiiieeenenee... 13

OVEIVIBW. .« . 13
Conventions. 13
Rulebase and Database Names. 13
Database Object Names. 17
Error LOgS. . . . o o e 19
Utility Locking. o e 20
(001 F: 1] (=] g YT - 21
COoNCEePES. . . . 21
Configuration. e 23
Starting the MDM Registry Edition Servers. 24
Default Configuration. 25
Custom Configuration. e 26
Search and Rulebase Servers. 27
Connection Server. e 29
CONSOle SEIVEr. o 29
SIOPPING. . . . o e 31
Restarting. 32
Server Statistics. 33
Rulebase Server Groups. o ot e e 34
Environment Variables. 38
WINdows ServiCes. 42
idssve Utility. 42
updsve Utility. . . . oo 43

Chapter 3: ConsoleClient...........c.coiiiiiiiiiiiiiiiiiiiiiiiiiieeenenen... 45

OVEIVIBW. . . . e 45

Table of Contents 3

4

Modes. . . . e 47
Window Layout. e 48
Menu Items. 50
Starting fromthe Console. e 55
Jobs Menu. . . . 56
System Editor. 57
Log VieWeT. e 57
Chapter 4: Search Clients...........couiiiiiiiiiiiiiiiiii ittt iiiieeeeaenn 59
OVEIVIEW. . . o 59
Deployable Search Clients. 60
Administrator Search Clients. 61
Default Client. 63
Lite Client. 63
HTTP Search Client. e e 64
Operation. e 65
Relate. 66
Starting fromthe Console. e 66
Starting from the Command Line. 67
Report Formats. 70
Threads. o 71
SQLINPUL. « o o 71
XML INpUL. . . . e 71
Delimited Input. e 72
DupFinder Mode. e 73
Output View Layout. e 73
DUpFINder. e 74

Chapter 5: Table Loader..........cccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieenenene.. 15

CONCEPES. . . . e 75
Starting. 75
Restarting. e 77
Performance. 78

Sort Buffers. 79
Fault Tolerance - Data Errors. e 80
Locales. 81
Chapter 6: Update Synchronizer............cocoiiiiiiiiiiiiiiiiiiiiienennn. 83
OVEIVIEW. . . . 83
updsync utility. 86
updmulti utility. 90
Restarting Automatically. e 95

Table of Contents

Synchronization Level. 95

Transaction File / Table. 97
Integrity Checking. e 100
Performance. 101
Timing Window. e 103
Chapter 7: Globalization.............c.coieiiiiiiiiiiiiii i iiiiieeene 104
OVeIVIEW. . . . 104
Character Sets. 104
Database Support for UNICODE. e e e e 105
Binary Mode Utilities. e 107
Loading IDTS. oo 108
MDM-RE Clients. 109

Relate. . . . 109

JavaSearch Client. 110

Synchronizer. 110

SSA-NAME3 V2. .« 110
Debugging a Search. 110
Miscellaneous Tips. i e 111

Chapter 8: Siebel Connector..........cccoviniiiiiiiiiiiiiiiiiiiiiieeeee.... 113

OVEIVIEW. . . . 113
Configuring Siebel. 113
Constructing Load Data. e 114
Synchronization Setup. e 114
Integration Object. 114
MDM-RE Business Service. 115
Error Handling. e 115
Workflows. . . o 115
Load ACtion Set. 117
Synchronization Action Sets. 118
Synchronization Run Time Events. e 119
Profile Attributes. 119
Configuring MDM-RE. e 120
System Definition. 120
Environment Variables. 120
Loading Data. e 121
Synchronization. L e 121
XS SerVer. . o 121
Restrictions. 122
Chapter 9: Web Services..........ooviiiiiiiiiiiiiiiiii i 123
INntroduction. 123

Table of Contents

5

6

MDM-RE Web Services. e 123

XML Search Service. 124
XML Console Service. 134
NSA-BatCh Service. 149
Real Time Web Service. 150
Configuration Settings. 151
Generic Mode. 152
Custom Mode. 153
Sequence NUMDbErS. 154
Operation TYPES. it 154
Real Time Reject table layout. 155
Real Time Failure on System RefreshandDelete. 155
Deploying a Real-Time Web Service. 155
Example Soap MeSSages.o e 157
Custom HTTP Header. e 161
Notification Service. 161
UDDL. o ot 169
Chapter 10: ASM Workbench........ ..ot 172
INntroduction. 172
Launching the ASM Workbench. 172
ASM Workbench Input Options. e 173
Country Specific Input. e 173
Character Set. 174
Country Preload Option. 174
Address INput Type. 174
OpliONS. . . . e 175
Parsing and Validation Frame. e 175
Attributes. . . . L 175
Suggested Address Label Display. 176
Address Result Panel Display. e 177
Validation Status and Database Version Display. 177
Output Result Frame Column SelectionMenu. 179
Field Status Display. e 180
CASS Field Status Display. e 182
CASS Summary Report Display. 183
Statistics Reports - CASS Certification. 184
File Menu Options. 184
ASM Workbench and Batch Test utility. 185

Chapter 11: Cluster MergeRules.ccoiiiiiiiiiiiiiiiiinnenen.... 187
OVEIVIEW. . . o o 187

Example SDF. e 187

Table of Contents

Master Rules. e 189

most filled. 189
mostdata. 190
COIUMN MAX. . . . ottt e e e e e e e e e 190
COlUMN MIN. . . o 191
columnequals. 191
Column Rules. 192
most-data. 193
MEAN. 195
othercolumnequals. e 196
othercolumn min. 196
othercolumnmax. 197
Chapter 12: Forced Linkand Unlink. ...t 198
OVEIVIBW. . . o o e 198
Defining Link and Unlink Rules. e 198
Loading Link and Unlink Rules. e 200
Console Client. 200
Using APl . . o e 202
Cluster Adjustments. e 202
Chapter 13: System Backup and Restore.............ccoeviiiiiiiinnnnen.. 203
OVEIVIEW. 203
Back Up the System. 203
Restore the System. e 204
Chapter 14: Batch Utilities.............cocoiiiiiiiiiiiiii i 205
Batch Utilities. 205
Common Parameters. 206
ssachdb Utility. e 207
Synchronization Considerations. 207
dbinit Utility. 208
idsinit Utility. 208
lockmgr Utility. 208
version Utility. e 210
idsbatch Utility. e 210
checkiirtable Utility. e 210
iirconfig-tool Utility. 211
loggrabr Utility. e 213
logfrmat Utility. 214
db_util Utility. 215
Command File Syntax. e 216

Table of Contents

7

8

Table of Contents

Preface

Read the Informatica MDM Registry Edition Operations Guide to learn about the operation of the run-time
components of MDM Registry Edition, such as servers, search clients and other utilities.

Learning About Informatica MDM Registry

This section provides details of documentation available with the Informatica MDM Registry product.

Introduction Guide

Introduces MDM Registry product and it's related terminology. It may be read by anyone with no prior
knowledge of the product who requires a general overview of MDM Registry.

Installation Guide

This manual is intended to be the first technical material a new user reads before installing the MDM Registry
software, regardless of the platform or environment.

Design Guide

This is a guide that describes the steps needed to design, define and load an MDM Registry "System".

Developer Guide

This manual describes how to develop a custom search client application using the MDM - Registry Edition
API.

Operations Guide

This manual describes the operation of the run-time components of MDM - Registry Edition, such as servers,
search clients and other utilties.

Populations and Controls Guide

This manual describes SSA-Name3 populations and the controls they support. The latter are added to the
Controls statement used within an IDX-Definition or Search-Definition section of the SDF.

Security Framework Guide

This manual describes how to implement security in the MDM-RE product.

Release Notes

The Release Notes contain information about what’s new in this version of MDM - Registry Edition. It is also
summarizes any documentation updates as they are published.

What Do | Read If. . .

lam. ..
... abusiness manager

The INTRODUCTION to MDM- Registry Edition will address questions such as "Why have we got MDM -
Registry Edition?", "What does MDM - Registry Edition do"?

lam. ..
... installing the product?

Before attempting to install MDM-RE, you should read the INSTALLATION GUIDE to learn about the
prerequisites and to help you plan the installation and implementation of the MDM-Registry Edition.

lam. ..
...an Analyst or Application Programmer?

A high-level overview is provided specifically for Application Programmers in the INTRODUCTION to MDM
Registry Edition.

When designing and developing the application programs, refer to the DEVELOPER GUIDE which describes a
typical application process flow and APl parameters. Working example programs that illustrate the calls to
MDM-RE in various languages are available under the <MDM-RE client installation>/samples directory.

lam. ..
...designing and administering Systems?

The process of designing, defining and creating Systems is described in the DESIGN GUIDE. Administering
the servers and utilities is described in the OPERATIONS manual.

Informatica Resources

Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

10 Preface

Informatica Network

The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:
e Search the Knowledge Base for product resources.

e View product availability information.

e Create and review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices

Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Preface 11

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com

Informatica Global Customer Support

You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:

https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

12 Preface

https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

CHAPTER 1

Introduction

This chapter includes the following topics:

Overview, 13

Conventions, 13

Overview

This manual describes the operation of the run-time components of Informatica MDM Registry Edition.

The components covered are as follows:

Console Server and Client

Search Server and Connection Server

Update Synchronizer

Online Rulebase Search Client and Applet

Batch Rulebase Search Client (Relate and DupFinder)
Batch Utilities

Debugging facilities

The Rulebase editor is covered in the Informatica SSA-NAME3 Application and Database Design Guide.

Conventions

MDM Registry Edition uses the following naming conventions to manage the database objects:

Rulebase and Database Names

MDM Registry Edition Rulebase contains the rules that describe Systems. An MDM Registry Edition Database
is the implementation of those rules, and the database contains IDTs and IDXs.

The Rulebase and Database are physically implemented as a set of tables and indexes in a relation database.

MDM Registry Edition supports multiple Database Management Systems, and the Rulebase and Database
names consist of the following components:

Database interface to use

13

14

¢ Interface-specific information
The name uses the following syntax:
Interface:Interface specific

Interface identifies the database interface to access the DBMS. The supported values are as follows:

e odb. Specifies the ODBC interface. Supported target database types are Oracle, UDB/DB2, and Microsoft
SQL Server. You can also use other ODBC data sources for unsynchronized source access.

e ids. Specifies the Dictionary Alias. You can use ssa instead of ids.

The format of the Interface specific information is described in the following sections:

odb: Interface - ODBC

The Interface specific information uses the following syntax:
SystemQualifier:Userid/Password@Service

The Interface specific information uses the following values:
SystemQualifier

A number between 0 and 99, which qualifies the names of any database objects that MDM Registry
Edition creates.

The default SystemQualifiers for the Rulebase and Database are 0 and 1 respectively. They must be
different. For information about the naming conventions, see the Database Object Names section.

Userid
User name to access the database.
Password
Password for the user name.
Service
Name of the service that you specify in the odbc. ini file.

For information about ODBC configuration, see Informatica MDM Registry Edition Installation and
Configuration Guide.

For example, odb:0:scott/tiger@server specifies an ODBC host DBMS. Identity Resolution prefixes the
tables that it creates with 1Ds_00_(where the _00_ component is the SystemQualifier). MDM Registry
Edition connects to the database identified as "server" using the user id "scott" and a password of "tiger."

Oracle Operating System Authentication

MDM Registry Edition supports Oracle’s Operating System Authentication. In this scenario, clients can omit
the Userid, Password, or Service when connecting to the servers. As the MDM Registry Edition processes
initiate all database connections, they connect to Oracle using the operating system account ID of the user
who launched them. Therefore, a user that has been granted access to Oracle must launch the servers.

For example, suppose the MDM Registry Edition Administrator’s userid is SSA. Oracle is configured with the
following parameters:

0S_AUTHENT PREFIX = OPS$

REMOTE OS_AUTHENT = TRUE (only if a Service is specified)

An
An Oracle Userid 0pPs$Ssa is created with the appropriate privileges required by MDM Registry Edition. When a
client specifies a Rulebase name of odb:0:/@server734 and the host/port number of Rulebase Server, the

Chapter 1: Introduction

server connects to Oracle using the Administrator’s userid and password. All database objects created by the
server are in the 0PS$SSA schema.

ids: Interface - Dictionary Alias

You can use alias name for the rulebase, database, or source name, which hides the actual connection string
from the application programs.

Note: On UNIX platforms, only the MDM Registry Edition Administrator must have read and write permission
on this file.

To use the alias feature, perform the following steps:

1. Create a text file that contains the alias names followed by their actual connection string, separated with
tabs or spaces. For example:

rb odb:0:username/password@dbserver
db odb:1l:username/password@dbserver
src odb:99:username/password@dbserver

2. Define an environment variable in the server’s environment to find the dictionary file.
e On Windows: set SSA DBDICT=%SSAWORKDIR%\mydict.dic.

e On UNIX:

SSA DBDICT=$SSAWORKDIR/mydict.dic
export SSA DBDICT

If you do not define this variable, the default dictionary file is $SSABIN/dbdict.dic.

3. Use the alias names instead of the actual connection string. You must set Interface to ids to enable
this alias lookup feature. For example, use ids:rb to refer the rulebase, ids:db to refer the database and
ids:src to refer the source.

ids: Interface - Encrypted Dictionary Alias

MDM Registry Edition can use an encrypted dictionary file to hide the actual connection string from the users
who have access to the file system. The encrypted dictionary file is a text file that you can transfer through
FTP in ASCII mode if needed.

Note: On UNIX platforms, only an MDM Registry Edition administrator must have the read and write
permissions on the file.

Use the iirdict utility to create an encrypted dictionary file. The utility uses the 256-bit Advanced Encryption
Standard (AES) algorithm for encryption.

You can specify the name of a file that you create or update as a command line argument. If you do not
specify the name as a command line argument, the utility uses the file specified in the SSA_DBDICT
environment variable. If you do not set the SSA_DBDICT environment variable, the utility uses the $SSABIN/
dbdict.dic file.

S$SSABIN/iirdict xxx.dic

iirdict <revision>

Enter a password:

Re-enter password:

Operating on ’'xxx.dic’

Command (a=Add d=Delete 1=List t=Test g=Quit)?
If the encrypted dictionary file does not exist, the utility creates the file and prompts you to provide a
password. The password does not echo at the command prompt. If the encrypted dictionary file exists, you
must enter the correct password.

Conventions 15

You can use the following commands:

e a. Adds an entry to the encrypted dictionary.

d. Deletes an entry from the encrypted dictionary.

I. Lists the log of changes made to the encrypted dictionary.

t. Tests a database connection to see if it is working.

q. Exits the iirdict utility.

The following sample session adds an alias:

iirdict <revision>

Enter password:

Operating on ’'xxx.dic’

Command (a=Add d=Delete 1=List t=Test g=Quit)? a
Enter alias: rb

Enter connection details:

Type (odb):

System Qualifier: 1

Userid (ssa):

Password:

Re-enter password:

Service: dbserver

Connection string is ’odb:1l:ssa/@dbserver’
(p=Proceed r=Re-enter d=Discard): p
iirdict> alias 'rb’ tested successfully
iirdict> alias 'rb’ added successfully

Note: If you update the dictionary file, ensure that you restart the MDM Registry Edition servers to reflect the
changes.

You can also use the HTTP authentication mechanism to encrypt the connection string. To use the HTTP
authentication mechanism, specify http in the Type prompt. The following sample session uses the HTTP
authentication mechanism:
iirdict <revision>
Operating on 'D:\builds\a3pi\bin\dbdict.dic'
Enter password:
Command (a=Add d=Delete 1=List t=Test g=Quit)? a
Enter alias: realm
Enter connection details:
Type (odb): http
Realm userid: user2
Realm password:
iirdict> alias 'realm' added successfully
Command (a=Add d=Delete 1l=List t=Test g=Quit)? d
Comment: g

For information about these fields, see the Database Object Names section.
Note: Password does not echo at the command prompt.

When you enter an alias, the iirdict utility tries to validate the connection. The alias is added regardless of
any connection errors, which can be caused by an external problem, such as an incorrect ODBC or database
configuration.

For example, if you want to change the connection to change the password, you must delete the connection
and add it again. The iirdict utility does not allow the file to contain two aliases with the same name.

Use the list command to list the log of changes made to the encrypted dictionary.
Command (a=Add d=Delete 1l=List t=Test g=Quit)? 1
Tue Feb 9 23:22:07 2010 ssa Created
Wed Feb 10 00:09:29 2010 ssa Added alias ’rb’

In this example, ssa is the name of the MDM Registry Edition administrator.

16 Chapter 1: Introduction

You can define the SSA_DBDICT environment variable in the server’s environment, as in the previous section.

It defaults to $SSABIN/dbdict.dic.

Database Object Names

This section describes the way in which names are generated for MDM-RE objects.

Control Objects

The following objects are created on the MDM-RE Database (target database) to provide control information:

Object Object Type
IDS_FDT_META Table
IDS_FDT_META_DBID_I Index
IDS_FDT_META_ID_I Index
IDS_FDT_META_NAME_I Index
IDS_FDT_META_NMIDDB_I Index
IDS_FDT_RECID Table
IDS_FDT_RECID_NO_I Index
IDS_RB_GROUPS Table
IDS_RB_GROUPS_I Index
IDS_2PC Table
IDS_UPD_SYNC_NSA Table
IDS_UPD_SYNC_NSA_I Index

ID Tables and Indexes

The following objects are created in the MDM Registry Edition database when an Identity Table is loaded. The
object names include a prefix, 1DS, and a two-digit system qualifier, nn. System qualifier is the numeral value
in a database connection string. For example, if the database connection string is odb:1:userid/
password@service, the system qualifier is 1.

Object Object Type | Description

IDS_nn_IDTName Table ID Table

IDS_nn_IDLName Table Link Table

IDS_nn_IDTName_I[1..n] Index ID Table Indexes. _I is the Recld index. _I{1..n} are the PK / join indexes.

Conventions

17

Object Object Type | Description

IDSX_nn_IDXName Table IDX Table
IDSX_nn_IDXName_| Index IDX Index
where

nn indicates the system qualifier.

IDTName is the value of the NAME= parameter from the IDT-Definition.

IDLName is the value of the IDL-NAME= parameter from the Multi-Search-Definition.
IDXName is the value of the ID= parameter from the IDx-Definition.

RuleBase Objects

Object Object Type
IDS_nn_INUSE Table - Rulebase Lock
IDS_nn_SSARBN Table - Data
IDS_nn_RECOVERY Table - Restart/Recovery
IDSX_nn_SSARBN Index

where

nn indicates the rulebase qualifier, which is the numeral value in a rulebase connection string. For example, if
the rulebase connection string is odb:0:userid/password@service, the rulebase qualifier is 0.

Synchronizer Objects

The Update Synchronizer is supported by various objects which are created by the SQL scripts updsyncu.sqgl
and updsynci.sql. These objects are created in the source database (containing User Source Tables).

Object Object Type
IDS_UPD_SYNC_TXN Table
IDS_UPD_SYNC_TXN_I Index
IDS_UPDATE_SYNC_SEQ Sequence
IDS_UPDATE_SYNC Package
IDS_UPDATE_SYNC Package Body
IDS nnnnn Triggers

The System Loader will create triggers on the USTs if the SYNC option was specified. All triggers use the
following naming convention:

o 1Ds fixed prefix

18 Chapter 1: Introduction

e nnnnn unique identifier (base 36 number)

Error Logs

MDM-RE error logs may be output by various utilities and/or returned in response to an ids_error_get API call.

This is a sample Error Log created by the Table Loader:

ErrorLog: [1.773 2] loadit > It is now 20020612123407
ErrorLog: [1.773 2] exit code -252010410

ErrorLog: [1.543 2] loadit.c 3013 rc 10 32520104*100
ErrorLog: [1.493 2] thread init failed

ErrorLog: [1.442 2] loadit.c 2494 rc 4 325201*100
ErrorLog: [1.392 2] match rb open returned -325201
ErrorLog: [1.342 2] utils.c 1342 rc 1 3252*100

ErrorLog: [1.292 2] connect to rb server failed -3252
ErrorLog: [1.242 2] sockapi.c 394 rc 2 23*10

ErrorLog: [1.192 2] socket.c 1765 rc 3 2*10

ErrorLog: [1.142 2] socket.c 581 rc 2

ErrorLog: [1.092 2] send(568) failed -1: winsock error 0
ErrorLog: [1.022 2] sockapi.c 627 rc 2 325*10

ErrorLog: [0.972 2] sockapi.c 595 rc 5 32*10

ErrorLog: [0.922 2] socket.c 1860 rc 2 3*10

ErrorLog: [0.872 2] socket.c 1833 rc 3

ErrorLog: [0.822 2] ssasocket recv n: received zero bytes
ErrorLog: [0.581 2] loadit.c 2848 rc 3 3691524*100
ErrorLog: [0.531 2] process input: thread init failed for thread
#1

ErrorLog: [0.481 2] loadit.c 2729 rc 24 36915*100
ErrorLog: [0.431 2] loadit.c 1448 rc 15 369*100

ErrorLog: [0.361 2] ssaxld init failed -369:

ErrorLog: [0.311 2] dbops.c 4815 rc 9 36*10

ErrorLog: [0.201 2] ssaodbc.c 15352 rc 36

ErrorLog: [0.151 2] ssadb6_ssaxld init failed: SSAST Could not

get memory
ErrorLog: [0.101 2] sort.c 1775 rc 13
ErrorLog: [0.050 2] sort.c 1305 rc 6

Interpreting an Error Log

Find the oldest message. It indicates the first error that occurred. It is identified by the smallest relative
timestamp. For example, the last line from the log above is: ErrorLog: [0.050 2] sort.c 1305 rc 6

This line of data has the following format:
e Timestamp - message relative (0.050)
e Thread number (2)

e Module name (sort.c)

e Line number (1305)

e Response code (6)

We can infer that an error occurred in a sort routine. Continue up the stack in order of increasing timestamp
looking for a text message. The messages containing module names and line numbers can be ignored. They
simply give context information (a stack trace) of who called the function that reported the error.

The first text message is as follows:
ErrorLog:[0.151 2] ssadb6 ssaxld init failed: SSAST Could not get memory

This message indicates that the sort routine failed when attempting to allocate some memory. In response to
this you could add some RAM and/or increase the available swap space, or decrease the amount of memory
required by the Table Loader by adjusting its parameters.

Conventions 19

20

You could continue up the stack looking for more information. However, the first message is the important
one. The other messages may report consequential errors, and are of less interest.

Some Error Logs will contain two error stacks. This typically occurs when two communicating processes fail.
For example, when a search client (say relate) calls the Search Server which subsequently reports an error,
both processes will report their Error Logs.

Utility Locking

Some utilities require exclusive use of certain MDM-RE system resources. These include the:
e Table Loader

e Update Synchronizer

o Refresh / Delete utility

When the utility starts it will acquire application level locks within the Rulebase for the appropriate resources.
Other processes that require the same locks will not be allowed to run.

For example, locks are used to prevent two Update Synchronizers from updating the same IDT and IDXs
concurrently.

The lockmgr utility (documented in the Batch Utilities chapter) is used to list and delete locks in the situation
when a utility terminates abnormally while holding locks. In most situations MDM-RE is able to determine that
the utility has crashed to unlock the resources automatically. The lockmgr utility can be used to manually
unlock resources in the rare circumstances when automatic unlock is not possible.

System Name

Select a system from the list of available systems in the current Rulebase, to view the list of job names
belonging to the system.

Job Name
Select a job name from the list of available jobs in the selected system, to view the run information.
System Logs
Check this option to see the System dependant logs.
Global Logs
Check this option to see the System independent logs.
Run-Information

The user is presented with a run information list of the selected system job. The user can at this time
make a selection to view the relative step information.

Step Logs

The user is presented with a list of steps belonging to the selected job. The user can now view the run
logs, error logs, output files (if any) of each step by selecting the desired option.

Chapter 1: Introduction

CHAPTER 2

Servers

This chapter includes the following topics:

e Concepts, 21

e Configuration, 23
e Starting the MDM Registry Edition Servers, 24

e Stopping, 31
e Restarting, 32
e Server Statistics, 33

e Rulebase Server Groups, 34

e Environment Variables, 38

o Windows Services, 42

Concepts

The following sections provide an overview of the concepts that are relevant to MDM Registry Edition.
Search Server

The MDM Registry Edition supports multiuser search and matching facilities by using the data stored in the
MDM-RE Tables. Search clients access the Search Server using an Application Program Interface (API).

The MDM Registry Edition Search Server is a multithreaded application, with one thread allocated to each
client connection. Each Search Server process supports a limited number of connections, which are database
and environment dependent. Multiple Search Server processes can be started to handle as many concurrent
Search Clients as required.

Clients communicate with the server by using TCP/IP sockets. Ideally, the server is started on the same
machine as the DBMS to avoid excessive network overhead when it communicates with the database.

The Search Server by default uses all available CPUs to provide the fastest possible matching. See Switches
to see how to control how many match threads to use.

The Search Server maintains a pool of previously run search requests. The Search Server loads each search
request into memory and initializes it. The Search Server uses the ids_search_start function to initialize a
search request. When an ids_search_start function fails because of an transient error, the Search Server
retries up to five times. The function does not retry when it returns a fatal error. If the function fails after five
times, it returns a fatal error.

21

22

When the search request is complete, the Search Server adds the search request to the pool of search
requests. The Search Server reuses these search requests, instead of reinitializing them whenever a client
switches to another search. This method reduces overhead such as reading metadata and establishing
database connections and improves the search performance.

By default, session pooling is enabled. You can disable it by setting the SSA_SESSION_POOL_MAX
environment variable to 0 on the machine hosting the Search Server.

Rulebase Server

The MDM Registry Edition Rulebase Server supports multiuser access to the rules stored in the Rulebase.
Search clients do not directly access this server. The Search Server, Console Server, and MDM-RE utilities
access the Rulebase Server.

The Rulebase Server caches rules read from the Rulebase to speed up access. One Rulebase server is
permitted for each Rulebase (to maintain cache consistency). A single Rulebase Server can serve multiple
clients and multiple Rulebases.

Connection Server

The MDM Registry Edition Connection Server is an optional server process. It is used to improve the
performance of search clients that continually connect and disconnect from the Search Server.

Stateless transaction based searches, such as Web searches would benefit from using the Connection
Server. For example, a Perl search client launched by a Web CGl-script might start a search, collect the
results and terminate. Each search transaction opens a connection to the Search Server (and database) and
closes it. This is inefficient.

To overcome this problem, use MDM Registry Edition to provide a Connection Server. When a transient
search client connects to the Connection Server, the server allocates a Session-1Id.

The Connection Server passes the request to the Search Server. The Connection Server returns the results to
the search client without closing the connection to the Search Server. When the search client makes a
second or subsequent call identified by the same session-1d, the Connection Server reuses the connection
established on the first call. It avoids the overhead of reconnecting with the Search Server. The connection is
closed when the search client requests to terminate the session, or the session remain unused for the
Connection Server's time-out period.

The client and Connection Server must reside on the same machine. It ensures that opening a (socket)
connection from the client to the Connection Server is inexpensive (relative to connecting to a remote
machine). If the client and Search Server use different character sets (example: EBCDIC/ASCII), the
Connection Server must run on the same machine as the client. It is because the Connection Server does not
perform any character set translations.

Console Server

The MDM Registry Edition Console Client accesses the MDM Registry Edition Console Server. Use the server
to provide support facilities for the Console Client, such as RuleBase access, file access, and launching MDM
Registry Edition utilities.

XML Console Server (CX)

The MDM Registry Edition XML Console Server is an optional server that implements the Console API using
an XML protocol. For information about the XML Console Service, see the Web Services section of this guide.

XML Search Server (XM)

The MDM Registry Edition XML Search Server is an optional search server that implements the search API
using an XML protocol. For information about the search API, see the Developer Guide.

Chapter 2: Servers

Synchronization Server (XS)

The Synchronization Server is an optional server which has a Web Service-style interface to the following
services:

e The Real Time Web Service, which propagates the User Source Tables updates to the IDT in real time.
¢ The Real Time API, which supports the client programs to apply updates to the IDT in real time.

e The NSA-Batch Service which integrates MDM Registry Edition with a Siebel CRM application using the
MDM Registry Edition Siebel Connector. The Synchronization Server accepts XML messages from the
Siebel Connector and stores them in the NSA Transaction Table.

HTTP Search Server

This optional server acts as a HTTP (Web) server to process search requests from a browser. Any browser
can act as a web-based Search Client when pointed to the host:port of HTTP the Search Server . For
information about configuring the HTTP Search Server, see the Search Clients chapter.

License Server

The License Server monitors a directory containing license files. These files define the products and optional
components that might be installed and run in your environment. For information about the License Server,
see the MDM Registry Edition Installation Guide.

Configuration

The following section discusses how to decide which servers are required and how to configure them. Server
configuration and placement is important as it affects performance.

The Search and Rulebase Servers are packaged together in one executable image called ssasrsv. Based on
start up parameters, ssasrsv can function as one of the following servers:

e Search Server
e Rulebase Server
e Search and Rulebase Servers

All clients communicate with the servers using a socket interface over TCP/IP. Communication costs vary
based on where the client and server are placed. In order of most expensive to least expensive, they are:

e remote machines
e same machine
e same executable process

Clients on remote machines incur the cost of network transmission. Clients on the same machine will take a
shortcut through the TCP/IP protocol stack and avoid the transmission costs. A combined Search and
Rulebase server takes this one step further by bypassing TCP/IP altogether. Therefore it is advantageous to
run a combined Search/Rulebase Server. If more Search Servers are required, they can be started as
standalone Search Servers configured to access the Rulebase in the combined server.

Before launching the servers you must decide:

e which servers are required
e how many Search Servers are required

e which machines the servers will run on

Configuration 23

The Console Server is required if you want to use the Console Client to administer MDM Registry Edition. A
Connection Server is recommended for stateless search clients. At least, one search Server is required. In
general, one Rulebase Server must be started.

Session Pooling Parameters

You can configure the session pooling method by setting the following environment variables in the env
\mdmres.bat (Windows) or env/mdmres (UNIX) file:

SSA_SESSION_POOL_MAX

Maximum number of search requests that the Search Server can retain in the pool of search requests.
The configuration does not impact the maximum number of search requests that the Search Server can
run simultaneously. After the Search Server completes the search requests, it retains the maximum
number of search requests that you had set in the pool.

Default is 100. You can disable the session pooling method by setting the SSA_SESSION_POOL_MAX
variable to 0. Disabling the session pooling method results in the creation and destruction of the search-
related resources based on the demand.

SSA_SESSION_POOL_TIMEOUT

Time period for a search request to remain unused in the pool of search requests. After the specified
time period, the Search Server releases the unused searches from the pool, which frees the server
resources and closes the database connections. You can specify the time period in seconds (s), minutes
(m), or hours (h).

Default is 7200 seconds, and the default unit is seconds. For example, if you set the value as
SSA_SESSION_POOL_TIMEOUT=3600 or SSA_SESSION_POOL_TIMEOUT=1h, the Search Server releases
the unused search requests from the pool after one hour.

SSA_SESSION_POOL_LOGGING

Level of logging that you want for a search request. The logging level ranges from 1 to 3, where 1
indicates minimal logging and 3 indicates extensive logging. Default is 0, which turns off the logging
function.

Search Client Limit

The Search Server supports approximately 250 concurrent search clients. The limit is dependent on many
factors, including available memory, free sockets, and the type of searches defined in your System. Multi-
searches require more internal resources than individual searches, and searches that use SSA-NAME3
require more resources than searches using database indexes (such as Lite-Indexes). In the following
discussion, the quoted limit of 250 must be understood as an approximate limit. Your implementation might
support many more users, or in some particularly resource intensive cases, somewhat less than 250.

Will there be more than 250 concurrent search clients? If not, you must start a combined Search/Rulebase
Server. If you expect more than 250 clients, start a combined Search/Rulebase Server, and one or more
standalone Search Servers. It is assumed that your Application Server performs load balancing by
distributing search client connection requests between all Search Servers.

Is your database in a cluster? If so, consider running multiple Search Servers and a Rulebase Server Group.

Starting the MDM Registry Edition Servers

Before you start the MDM Registry Edition Servers, ensure that the License Server is running.

24 Chapter 2: Servers

Default Configuration

This section provides steps on how to start the MDM-RE Servers.

» To start MDM-RE Servers in the default configuration, click the Start Server icon in the Informatica
program group (Win32), or run the shell script $SSABIN/idsup (UNIX platforms).

The default configuration starts a Console, Connection and combined Rulebase/Search Server. This
configuration is suitable for most users. Errors encountered during startup are recorded in the server
installation’s iirlog directory.

Note: For Win32: The Start Server icon runs a script in the server installation’s bin directory called
idsup.bat.

For UNIX: Some platforms require the use of nohup when launching servers. Example, nohup $SSABIN/
idsup &

Custom Configuration

If you wish to run servers in a custom configuration (such a multiple Search Servers or with Rulebase Server
Groups) you will need to write your own scripts to start and stop servers. The following section describes the
parameters required to start individual servers.

Configure Mode (Install tests)

MDM-RE Servers can be started in a special mode known as Configure Mode. This mode is used to start
servers in the default configuration and run the standard installation test. When servers are started in this
mode the first Console Client to connect to the server will automatically run the install test. Once the test has
completed successfully the servers will automatically switch out of Configure Mode and behave as normal
servers.

For Win32: Servers will be started automatically in Configure Mode by the installation process if you check
the Run Tests checkbox. If the option is not selected during the installation phase they may be started later
using the Start Server (Configure Mode) icon in the Informatica program group.

UNIX: Refer to the Post Installation Steps\ Regression Test \ UNIX section of the Installation Guide for
instructions on how to start the Servers in Configure Mode.

Host Names / IP Addresses

MDM-RE Server start-up parameters usually include a host name. Although not explicitly noted in the
following parameter descriptions, an IP address may be substituted for a host name.

Sample Server Start-up and Shutdown Scripts

The Windows MDM-RE Server installation contains two sample scripts, idsseup.bat and idssedn.bat, that can
be used to start Server processes in various configurations.

Note: These scripts do not support Rulebase Server Groups.
To use these scripts, you need to set the following environment variables:
SSA_SESV_RBPORT

Set to the port number that the Rulebase Server will be listening on. Set to 0 (zero) to prevent the
Rulebase Server process from starting/stopping. In this case a separate Rulebase Server process must
be running and the environment variable SSA_SESV_RBHOST must be set to the host:server address of
the Rulebase Server process.

Starting the MDM Registry Edition Servers 25

26

SSA_SESV_SEPORT

Set to the port number that the Search Server will be listening on. Set to 0 (zero) to prevent the Search
Server process from starting/stopping.

SSA_SESV_XMPORT

Set to the port number that the XML Search Server will be listening on. Set to 0 (zero) to prevent the XML
Search Server process from starting/stopping.

SSA_SESV_XSPORT

Set to the port number that the Synchronization Server will be listening on. Set to 0 (zero) to prevent the
Synchronization Server process from starting.

SSA_SESV_HTPORT

Set to the port number that the HTTP Search Server will be listening on. Set to 0 (zero) to prevent the
HTTP Search Server process from starting/stopping.

SSA_SESV_HOST

The host name of the computer on which the various server processes are running. This variable is used
only by the idssedn script.

Custom Configuration

If you wish to run servers in a custom configuration (such multiple Search Servers or with Rulebase Server
Groups), you will need to write your own scripts to start and stop servers. The following section describes the
parameters required to start individual servers.

Configure Mode (Install tests)

MDM Registry Edition Servers can be started in a special mode known as Configure Mode. This mode is used
to start servers in the default configuration and run the standard installation test. When servers are started in
this mode the first Console Client to connect to the server will automatically run the install test. Once the test
has completed successfully the servers will automatically switch out of Configure Mode and behave as
normal servers.

For Win32: Servers will be started automatically in Configure Mode by the installation process if you check
the Run Tests checkbox. If the option is not selected during the installation phase they may be started later
using the Start Server (Configure Mode) icon in the Informatica program group.

For more information about starting the server in the configure mode, see the Informatica MDM Registry
Edition Installation and Configuration Guide.

Host Names / IP Addresses

MDM Registry Edition Server start-up parameters usually include a host name. Although not explicitly noted
in the following parameter descriptions, an IP address may be substituted for a host name.

Sample Server Start-up and Shutdown Scripts

The Windows MDM Registry Edition Server installation contains two sample scripts, idsseup.bat and
idssedn.bat, that can be used to start Server processes in various configurations.

Note: These scripts do not support Rulebase Server Groups.
To use these scripts you need to set the following environment variables:
SSA_SESV_RBPORT

Set to the port number that the Rulebase Server will be listening on. Set to 0 (zero) to prevent the
Rulebase Server process from starting/stopping. In this case a separate Rulebase Server process must

Chapter 2: Servers

be running and the environment variable SSA_SESV_RBHOST must be set to the host:server address of
the Rulebase Server process.

SSA_SESV_SEPORT

Set to the port number that the Search Server will be listening on. Set to 0 (zero) to prevent the Search
Server process from starting/stopping.

SSA_SESV_XMPORT

Set to the port number that the XML Search Server will be listening on. Set to 0 (zero) to prevent the XML
Search Server process from starting/stopping.

SSA_SESV_XSPORT

Set to the port number that the Synchronization Server will be listening on. Set to 0 (zero) to prevent the
Synchronization Server process from starting.

SSA_SESV_HTPORT

Set to the port number that the HTTP Search Server will be listening on. Set to 0 (zero) to prevent the
HTTP Search Server process from starting/stopping.

SSA_SESV_HOST

The host name of the computer on which the various server processes are running. This variable is used
only by the idssedn script.

Search and Rulebase Servers

Specify appropriate switches to start an XML Search Server, Synchronization Search Server, HTTP Search
Server, Rulebase Server, or a combined Search and Rulebase Servers.

Run the following command to start a Search Server or a Rulebase Server:
e On Windows: $SSABIN%\ssasrsv <Switches>
e On UNIX: $SSABIN/ssasrsv <Switches>

If you want to start a Search Server or a Rulebase Server as a background process, run the following
command:

e On Windows: start "<Window Title>" %SSABIN%\ssasrsv <Switches>
e On UNIX: $SSABIN/ssasrsv <Switches> &
Use the following switches when you start a Search Server or a Rulebase Server:
-n<SePort>

Starts a Search Server that listens for client connections on the specified port number.
-x<XmPort>

Starts an XML Search Server that listens for client connections on the specified port number.
-s<XsPort>

Starts a Synchronization Server that listens for client connections on the specified port number.
-disable-idtlock

Removes the lock on the Identity Table. If the Identity Table is not locked, you can run multiple
Synchronization Servers in parallel. When you have multiple transactions for a record, different
Synchronization Servers might process the transactions out of order, which can cause data integrity
errors. Use this switch with caution.

Starting the MDM Registry Edition Servers 27

28

-H<HtPort>

Starts a HTTP Search Server that listens for client connections on the specified port number.
-m<RbPort>

Starts a RuleBase Server that listens for client connections on the specified port number.
-h<Host>:<Port>

Starts a Search Server configured to access a remote Rulebase Server. Specify the host name of the
Search Server and the port number on which the server listens for client connections. Use the -h switch
with the -m switch.

-readonly
Starts the Search Server and the Rulebase Server, and runs the Rulebase Server in the read-only mode.
The following sample command runs the Rulebase Server in the read-only mode:
SSSABIN/ssasrsv -readonly -mlocalhost:1666 -nlocalhost:1667 &
-readonly-no-socket

Starts the Search Server and the Rulebase Server, and runs the Rulebase Server in the read-only mode.
Use this switch when you do not want to specify a port number for the Rulebase Server.

The following sample command runs the Rulebase Server in the read-only mode:
$SSABIN/ssasrsv -n$SSA SEPORT -readonly-no-socket &
-g<Rulebase Server Group>
Specifies the Rulebase Server Group.
-use-abort

Applicable only for UNIX. Performs a forced restart of the Rulebase Server. Use this switch only if the
Rulebase Server does not restart after a database connection failure.

=W<n>
Specifies the polling frequency of a Rulebase Server Group in seconds. Default is 1.
-z<n>

Specifies the number of requested match threads. The default value is 1. Specify this argument if your
typical usage is a small number of long running searches that might require multiple threads.

-y<Max>[,<Wait>]

Specifies the maximum number of times to retry (Max) when a connection to the database fails and the
number of seconds (Wait) that a Search Server or the Rulebase Server waits to retry the connection. For
example, -y5, 3 indicates that the Search Server or the Rulebase Server can try up to five times to
connect to the database for every three seconds. The default value is 0, 0. If Max=0, the Search Server or
the Rulebase Server retries indefinitely until the connection to the database succeeds.

-1<File>

Specifies the file that logs the standard output messages (stdout).
-2<File>

Specifies the file that logs the standard error messages (stderr).
-3<File>

Optional. Specifies the file that logs the error and debug messages.
-u<Rulebase Options>

Controls optional aspects of the Rulebase Server behavior.

Chapter 2: Servers

Use the following Rulebase Server options:

e 0x0001 (14¢). Stores the Rulebase cache in memory when no users are currently connected.
Specifying this option improves the Rulebase Server performance, and omitting this option reduces
the memory utilization.

e 0x0100 (2564¢). Forces the Rulebase Server to restart when a Rulebase read operation fails. This
option is helpful when the database server bounces and disconnects the Rulebase Server's
connections. If you do not set this option, the Rulebase Server might fail a client’s requests that
require database access. However, the clients that access the cached rules function normally.

The value that you specify with the -u switch is treated as a decimal value, unless you prefix the value
with x. You can specify a combination of options by adding the values together. For example, to store the
Rulebase cache in memory and force the server to restart on a read error, specify -ux101 or -u257.

Use the following guidelines when you start a server:

e To start a combined Search and Rulebase Servers, specify the -n and -m switches.
e To start a standalone Search Server, specify the -n and -h switch.

e To start a standalone Rulebase Server, specify the -m switch.

e To start a standalone XML Search Server, specify the -x switch.

e To start a standalone Synchronization Server, specify the -s switch.

e To start a standalone HTTP Search Server, specify the - switch.

Connection Server

The MDM-RE Connection Server can be started from the command line as follows:
For Win32: %SSABIN%\ssacosv Switches

For UNIX: $SSABIN/ssacosv Switches

where Switches are

-hHostname:hostport This is the hostname or IP address of the machine where the MDM-RE Search Server
is running. If not supplied, the MDM-RE Search Server is assumed to be running on the same machine as the
Connection Server. The hostport enables you to specify the port number used by the MDM-RE Search Server.

-nListenPort Specifies the port number to use when listening for client connections. The default port
number is 1667.

-tTimeout Specifies the timeout value for a session in seconds.
-1File Specifies the file where messages written to stdout will be redirected.

-2File Specifies the file where messages written to stderr will be redirected.

Console Server

The MDM-RE Console Server can be started from the command line as follows. Optional servers are not
started if their host :port is not specified (-h).

For Win32: %SSABIN%\ssacssv Switches
For UNIX: $SSABIN/ssacssv Switches

where Switches are

Starting the MDM Registry Edition Servers 29

30

-nPort

Defines the Console Server's port number. If the default port number of 1669 is already used by another
application, use this parameter to request a different value. Any client connecting to this server would
then have to specify the same port number.

-hrbHost:Port

Rulebase Server's Host name and port.
-hseHost:Port

Search Server’'s Host name and port.
-hcoHost:Port

Connection Server’s Host name and port.
-hhtHost:Port

Optional HTTP Server's Host name and port.
-hxmHost:Port

Optional XML Server’s Host name and port.
-hxsHost:Port

Optional XS Server's Host name and port.
-1File

Specifies the file where messages written to stdout will be redirected.
-2File

Specifies the file where messages written to stderr will be redirected.
-3File

Specifies the file where error and debug messages will be written.
-wWorkDir

Specifies the working directory for the Console Server process.
-zn

Passes through as argument to Search Server.

Specify Rulebase Server options to be passed to the spawned RB server. This option uses the same
values as documented in the RB Server Options section but is prefixed by -m instead of -u.

-0
Launch the Console Server without launching the Connection and combined Rulebase/Search Servers.
-tDirectory

Specifies the absolute name of the directory which contains the test files used in Configure Mode. The
install test is in $SSAWORKDIR/systems. On Win32 platforms this parameter is supplied by the Installer.

-iFile
Informs the server to start in Configure Mode. This option is set in order to complete a new installation.
It causes the first console client to start a session to run the install test. File is a file in the directory
specified by the -t switch. It contains a list of system import files. These files are used during the testing

phase of the setup. The name of this file should be tests.dat. On Win32 platforms the server is started
in this mode by the Installer.

Chapter 2: Servers

-uUID -pPWD -sSVC

These specify the User’s Database Userid, Password and Service to be used when communicating with
the Database in Configure Mode. They are passed to the client as default values to be used during the
test. If not supplied, these values default to blanks. If any of these options are supplied in "normal" mode
they are ignored.

Stopping

This section provides information about how to stop the servers.
Default Configuration
Win32

Servers are stopped using the Server Shutdown icon in the Informatica’s Products folder or by running the
script %SSABIN%\idsdown.

UNIX

Server are stopped using the script SSSABIN/idsdown. It must be run from a shell that has the Informatica’s
environment variables set (by sourcing the ssaset script first).

Normal vs Hard Shutdown

Under normal circumstances, a server will shutdown when all active clients disconnect from it. In some cases
it may be desirable to request an immediate shutdown, for example, when the stop request has come from a
Windows Service just prior to 0/S shutdown. In this case, idsdown may be called with the hard parameter,
which forces an immediate shutdown by closing all active client connections.

Custom Configuration

Use the ssashut utility to stop individual servers or close (flush) sessions held by the Connection Server.
For Win32: %SSABIN%\ssashut Switches

For UNIX: $SSABIN/ssashut Switches

where Switches are
-hHost:Port

Host and Port specify the host name and port number of the server to be shut down.

Flush sessions instead of shutting down the server.
-v

Verbosity.
-z

Hard shutdown. This option forces the server to shutdown immediately by closing active connections.
Any active clients will receive socket-related error messages. This option is mutually exclusive with -f.

Note: ssashut may report that a connection could not be established to the nominated server. Some of the
possible reasons include:

e Wrong host or port number or both was specified, or

Stopping 31

e Server is not currently running.

Note: See also the description of the Windows sample script idssedn.bat in the Sample Server Start-up and
Shutdown Scripts sections above.

Restarting

32

All servers (Connection Server, combined Search/Rulebase Servers and Console Server) are launched as a
pair of processes. The first process spawns a second server process that acts as the real server that clients
connect to. If the spawned server crashes, the parent process automatically spawns a new copy of itself.
This provides a degree of fault tolerance.

Rulebase Server

The Rulebase Server has special restart requirements because it uses a locking mechanism to protect itself.
The locking mechanism prevents two Rulebase Servers updating the same Rulebase tables.

When a parent Rulebase server starts, it generates a unique Id and passes it to the child server. When the
child opens the Rulebase it saves the Id in the Rulebase.

If another Rulebase server attempts to open the same Rulebase, its Id will not match the value held in the
Rulebase and an error message similar to this is displayed:

Rulebase is locked

Rulebase In use by ssa.identitysystems.com IP=203.2.203.105 on port=1668,
ID=271259152

IS ANOTHER RULEBASE SERVER RUNNING?

Automatic Restart
If the child server crashes, the parent server spawns a new child with the same Id as the original child.

When the child server starts and finds an Id already present, it compares it to the parent’s. If they are the
same it displays the following message and restarts successfully:

This is an automatic restart
Manual Restart

If the computer crashes (and all processes terminate), the Rulebase remains locked. The next time a new pair
of parent/child Rulebase Servers are started, the parent generates a new unique Id. It will not match the Id
stored in the Rulebase, so the child server will fail to start. In this situation, you can manually override the
lock by setting an environment variable to the same Id that currently locks the Rulebase. For example,

SSA_RB_RESTART ID=271259152

When the Rulebase server is started, it will use the environment variable to unlock the Rulebase (as long as
the two Ids match). It will then use the freshly generated parent Id to re-lock it. Therefore the environment
variable can only be used once to unlock the database. A manual restart generates the following message in
the server log:

This is a manual restart
Automatically Restarting After Common Failures

A manual restart is usually required after a power outage or reboot. When SsA_RB_RESTART IDis setto 0,
MDM-RE will automatically attempt to detect if the original process that locked the Rulebase is still running.
If it is not, the restart will be automatic (with no intervention required).

IS ANOTHER RULEBASE SERVER RUNNING?
Rulebase ’sdb:file:c:\a3i\ids\rule’ In use by

Chapter 2: Servers

ssa.identitysystems.com IP=203.2.203.109 on port=1668, SSA RB_RESTART_ ID=281728582
Other RB information: ip=203.2.203.109 pid=299
host='ssa.identitysystems.com’ ps='2002/11/28 06:29:10.8233"
Other RB server not running
This is an automatic restart
However, if the original job is running, or its status cannot be determined, MDM-RE will not automatically

unlock the Rulebase.

Note: When sSa_RB_RESTART IDis setto O it is possible to inadvertently start multiple Rulebase servers. If
this occurs, Rulebase corruption will result. We strongly recommend that SSA_RB_RESTART ID is not leftin
any start-up script or in the environment after a server restart.

Note: This facility requires that various operating system functions will return consistent results. For
example, the host name of the machine and the output of the ps command must return the same result when
called repeatedly. Any inconsistencies may result in the Server concluding that the previous server is no
longer running and to start a second instance. If the previous server is still running, Rulebase corruption may
result.

Connection Aliases

Users must not connect to the same Rulebase Server using multiple userids or service names that are aliases
for the same physical rulebase.

For example, if the service names Jupiter and Mars are aliases for the same Oracle service, all rulebase
connection strings must specify either Jupiter (or Mars) but must not use a mixture. Similarly, when using
Oracle’s Operating System Authentication feature, a connection string that explicitly provides a userid may be
an alias of one that does not, as they may both be routed to the same physical rulebase. In this case, use one
consistent form for the connection string, or consider using a dictionary alias.

The rulebase name is used to identify a cache containing updated rulebase data. The use of alias names will
create multiple caches, which will be written to the same physical rulebase, causing corruption.

MDM-RE will detect if an alias is used and refuse to open the connection, stating that the rulebase is already
owned by another user.

Server Statistics

Progress information can be retrieved for the servers, which are themselves jobs started by the Console. See
Console Client below for details about progress information. The slider can be used to slow the refresh rate
from once per second (the default) to up to 30 seconds.

Because this has the potential to impact performance, it is not switched on by default. Some environment
variables are required to be set in order for this feature to become available.

In the <MDM Registry Edition Installation Directory>/env/mdmres script, set the SSA_SERVER_STATS
environment variable to YES, and set the SSA_RBNAME environment variable to the rulebase connection
string with the rulebase number that you currently use.

For example:

e On Windows: set SSARB NAME=odb:0:userid/password@service Of set SSARB NAME=iir:rb

e On UNIX: export SSARB NAME="odb:0:userid/password@service" or export SSARB NAME="iir:rb"
Note: To keep your password secure, Informatica recommends that you use a Dictionary Alias.

When you start the servers, issue a refresh. The jobs window displays the search server progress
information.

Server Statistics 33

Note: If the rulebase has only just been created, first use the console client to stop and restart the servers.

There will be two entries. One will be an overview job whose function is to restart the servers if one fails. It
will state how long it has been running and what servers are active. Its logs are often interesting though.

The other will have the progress details of the search servers, if SSA_SERVER STATS=YES. Otherwise it will
merely list the individual servers and their start times.

The progress will look something like this:

ssasrsv: server 0:28:14.000

rulebase server: active

clients 4

rulebases 1

status available

search server: active

== Search clients ====

formerly active clients: 6

currently active clients: 1

maximum concurrent clients: 2

minimum duration: 0.000 seconds

maximum duration: 30 minutes 28.979 seconds
total duration: 37 minutes 21.435 seconds
average duration: 320.205 seconds

==== Searches ====

formerly active clients: 53558

currently active clients: 0

maximum concurrent clients: 1

minimum duration: 0.004 seconds

maximum duration: 1.692 seconds

total duration: 3 minutes 58.877 seconds
average duration: 0.004 seconds

==== Name3 clients ====

formerly active clients: 2

currently active clients: 0

maximum concurrent clients: 2

minimum duration: 6 minutes 37.422 seconds
maximum duration: 6 minutes 37.532 seconds
total duration: 13 minutes 14.954 seconds
average duration: 397.477 seconds

A particular job may run a series of searches, some in parallel. The maximum and minimum duration are
recorded rather than the average. Generally speaking, a large maximum that continues getting larger
indicates a client that has failed to disconnect. It can be seen that a small number of search clients can carry
out a large number of searches. The average can be found by dividing the total duration by the total number
of searches. Here 37m21s = 2241s/7 = 320s

Rulebase Server Groups

34

Use the Rulebase Server Groups (RBSG) to run Rulebase Servers on every node of a cluster.

Overview

Rulebase Server Groups provide Rulebase redundancy by allowing several Rulebase Servers to run
concurrently. Only one Rulebase Server is permitted to respond to queries (known as the Primary).

The other Rulebase Servers (the Secondaries) periodically poll the Primary to determine if / when it is no
longer working so that one of them may assume the role of the Primary.

This feature is designed to be used in a distributed database (cluster) environment where multiple database
servers are running on different network nodes (machines) while presenting a unified appearance as a "single

Chapter 2: Servers

database". All nodes are connected to a shared disk sub-system by a storage area network. From a database
client’s perspective, the database remains available when at least one of the nodes remains operational.
Additional nodes can be started or shutdown transparently, without affecting database client connectivity or
data integrity.

Different software vendors use different names for this sort of technology. For example, Microsoft SQLServer
Clusters and Oracle’s Real Application Clusters are capable of providing the database functionality and a
Veritas Cluster Server could be used to provide the Operating System dependent cluster related services.

The RBSG implementation does not make use of any proprietary features from any particular vendor. It
simply requires that a consistent view of the database remains accessible when at least one node is
operational.

Discussion

The database instance that the Rulebase Server is accessing must be absolutely robust, in the sense that
there is no possibility of it becoming unavailable while there is a working network and at least one working
machine in that network.

Only one Rulebase Server will respond to Rulebase requests no matter how many Rulebase Servers are in the
group.

A RBSG is shut down using the idsdown script. This will stop all Rulebase Servers. There is no mechanism to
shut down an individual Secondary Rulebase Server other than to kill it.

The Search and Rulebase Servers must always be started as separate servers and communicate through
sockets. A combined Search / Rulebase Server is not permitted.

A unique ssA RB_RESTART ID for a RBSG will be set once when the group starts and will remain unchanged
for the life of the group.

The Console Server must not automatically launch any other servers. You must start it with the -o switch.
Use the -g switch to assign Rulebase Servers to groups.
Parameters for the Rulebase and Search Servers

When you start a Rulebase or Search Server, you can specify the following parameters:
-e

Indicates not to shut down the secondary servers when the primary server shuts down.
-g<Rulebase Server Group Connection Name>,<Rulebase Connection String>

Adds the server to the Rulebase Server Group.

Use one of the following formats for the rulebase connection string:

e odb:0:userid/password@service

e iir:rb
-o<Restart Option>

Indicates how the server must behave when the connection to the database is lost. You can use one of
the following options:

e r.Indicates to restart the server.

e 1.Indicates to check whether the database table is accessible. If the database table is accessible, the
server connects to the database. If the database table is not accessible, the server waits until the
database connection is restored.

e 2. Indicates to restore the database connection.

Rulebase Server Groups 35

36

e 0. Indicates to retry until the database connection is restored.
-t<Number of Retries>,<Frequency>

Indicates the maximum number of attempts for the secondary server to establish the database
connection and the time interval between two attempts. Default number of attempts is 500, and default
time interval is 5 seconds.

-w<Frequency>,<Priority>

Indicates the polling frequency in seconds and the priority for the server. When the primary server is
down, the secondary server with the highest priority becomes the primary server. The number 1 indicates
the highest priority. Default polling frequency is 1.

-m<Port Number>

Indicates the port number on which the Rulebase Server listens.
-n<Port Number>

Indicates the port number on which the Search Server listens.
Parameters for the Console Server

When you start a Console Server, you can specify the following parameters:
-g<Rulebase Server Group Connection Name>,<Rulebase Connection String>

Adds the server to the Rulebase Server Group.

Use one of the following formats for the rulebase connection string:

e odb:0:userid/password@service

e iir:rb
-n<Port Number>

Indicates the port number on which the Console Server listens.
-0

Indicates not to start other servers.
-h<Host Name>

Indicates the server that you want to automatically start.
Parameters for the XML Search Server

When you start an XML Search Server, you can specify the -x<Port Number> parameter that indicates the
port number on which the XML Search Server listens.

rbsgdown Utility

Use the rbsgdown utility to shut down all the primary and secondary Rulebase Servers. You can specify the
command at any node. The rbsgdown utility stops all the clients connected to the Rulebase Servers. The
rbsgdown utility cannot be used for other servers and is specifically for the Rulebase Servers.

The following is a code sample to specify the command:

rbsgdown -gfranky,<Rulebase Connection String>
Use one of the following formats for the rulebase connection string:
e odb:0:userid/password@service

e iir:rb

Chapter 2: Servers

Example
The name of the RBSG used in this example is franky.

The environment variable %SSA_GRPDBY% contains the connection string to the cluster database. This
database must contain the Rulebase objects and the IDS_RB_GROUP table. For example, it might be defined as
odb:99:uid/pwd@clusterdb.

Start the first Rulebase Server in the group:

set SSA PRM="MDM-RE rbl Server for group port 9997"

set SSA LOGS=-1%SSAWORKDIR%\idsrblv.log -2%SSAWORKDIR%\idsrblv.err -3%SSAWORKDIRS%
\idsrblv.dbg

set SSA ISSUP CMD=start %SSA PRM% "$SSABIN%\ssasrsv"

$SSA_ISSUP _CMD% -m9997 -gfranky,%SSA GRPDB% -wl %SSA LOGS%

UNIX example

SSA_LOGS="-1$SSAWORKDIR/idsrblv.log -2$SSAWORKDIR/idsrblv.err -3$SSAWORKDIR/idsrblv.dbg"
export SSA LOGS
$SSABIN/ssasrsv -m9997 -gfranky, $SSA GRPDB -wl $SSA LOGS

Start a second Rulebase Server in the same group:

set SSA PRM="MDM-RE rb2 Server for group port 9999"

set SSA LOGS=-1%SSAWORKDIR%\idsrb2v.log -2%SSAWORKDIR%\idsrb2v.err -3%SSAWORKDIR%
\idsrb2v.dbg

set SSA ISSUP CMD=start %SSA PRM% "$SSABIN%\ssasrsv"

$SSA ISSUP CMD% -m9999 -gfranky,%SSA GRPDB% -wl %SSA LOGS%

UNIX example

SSA LOGS="-1$SSAWORKDIR/idsrb2v.log -2$SSAWORKDIR/idsrb2v.err -3$SSAWORKDIR/idsrb2v.dbg"
export SSA LOGS
$SSABIN/ssasrsv -m9999 -gfranky, $SSA GRPDB -wl $SSA LOGS &

If the two servers are started on the same machine they must have different port numbers (9997 and 9999
respectively). If they are started on different machines they could use the same port numbers.

We now have two Rulebase Servers running. One will become the Primary Rulebase for this RBSG and the
other will go into Secondary polling mode where it will just monitor the first Rulebase and take over if it
detects that the Primary Rulebase has ceased to work.

We may start as many Rulebase Servers as necessary. All additional servers will become secondary servers.

Start a Search Server:

set SSA PRM="MDM-RE se Server on %SSA SEHOST%"

set SSA LOGS=-1%SSAWORKDIR%\idssexx.log -2%SSAWORKDIR%\idssexx.err -3%SSAWORKDIR%
\idssexx.dbg

set SSA ISSUP CMD=start %SSA PRM% "$SSABIN%\ssasrsv"

SSA_ISSUP_CMD% -n%SSA_SEPORT% -gfranky, 3SSA_GRPDB% %SSA LOGS$%

UNIX example

SSA LOGS="-1$SSAWORKDIR/idssexx.log -2$SSAWORKDIR/idssexx.err -3$SSAWORKDIR/idssexx.dbg"
export SSA_LOGS
$SSABIN/ssasrsv -n$SSA SEPORT -gfranky,$SSA GRPDB $SSA LOGS &

Do not assign a RB Server port to the Search Server, as it will automatically determine the correct one based
on the -g parameter. An error will be generated if a RuleBase Server and the -g switch are both specified.

Start the Console Server:

set SSA PRM="MDM-RE cs Server on %SSA CSHOSTS%"

set SSA LOGS=-1%SSAWORKDIR%\idscsxx.log -2%SSAWORKDIR%\idscsxx.err -3%SSAWORKDIRS%
\idscsxx.dbg

set SSA ISSUP CMD=start $%SSA PRM% "$SSABIN%\ssacssv"

set SSA ISSUP_HOSTS=-hco%SSA COHOST% -hse%SSA SEHOST% -hxm%SSA XMHOST% -gfranky,
$SSA GRPDB% %SSA ISSUP CMD% -o -n%SSA CSPORT% $SSA ISSUP HOSTS% -w¥SSAWORKDIR%
%$SSA_LOGS%

Rulebase Server Groups 37

UNIX example

SSA LOGS="-1$SSAWORKDIR/idscsxx.log -2$SSAWORKDIR/idscsxx.err -3$SSAWORKDIR/idscsxx.dbg"
export SSA LOGS

SSA_ISSUP HOSTS="-hco$SSA_COHOST -hse$SSA SEHOST -hxm$SSA XMHOST -gfranky, $SSA_GRPDB"
export SSA ISSUP_HOSTS

$SSABIN/ssacssv -o -n$SSA_CSPORT $SSA_ISSUP HOSTS -w$SSAWORKDIR $SSA_LOGS &

Do not assign a Rulebase Server port to the Console Server, as it will automatically determine the correct one
based on the -g parameter. Use the -0 switch to prevent Search and Rulebase Servers from being spawned
automatically.

Environment Variables

38

The Console Server uses utility programs to perform tasks such as creating a system, loading an IDT, and
running the batch search client. Some of these processes allow environment variables to control or alter their
behavior. The utility programs inherit the server’s environment variables.

Win32

Use the <MDM Registry Edition Installation Directory>\env\mdmres.bat file to set the server's
environment variables.

UNIX

Use the <MDM Registry Edition Installation Directory>/env/mdmres script to set the server's
environment variables.

Variable Descriptions
SSADB_QUERY_TIMEOUT

Sets the timeout interval in seconds for a search request to query the database.
SSADB_RECID_INCREMENT

Sets the increment value for the record identifiers. The increment value is applicable only for the
synchronization process. Default is 1.

SSA_IGNORE_ODBC_SQLSTATE

Specifies the types of errors to ignore based on the SQLSTATE value. You can also specify a message
code number to ignore the specific error.

For example: SSA_IGNORE ODBC_SQLSTATE=S1000,29725 ignores the following error:

SQLSTATE='S1000"' NATIVE ERR=29275 Reason: [Oracle] [ODBC] [Ora]ORA-29275: partial multibyte
character

SSA_LITEINDEX_DONOTSEARCHNULLKEY

Skips the null values when you use Lite Indexes to search. To skip the null values, set the environment
variable to any whole number. For example, SSA LITEINDEX DONOTSEARCHNULLKEY=1.

SSA_LISTEN_FAILURES_ABORT

Indicates whether to perform a forced restart of a server after the server exceeds the allowed number of
consecutive connection failures.

Use one of the following values:

e 1. Performs a forced restart.

Chapter 2: Servers

e 0. Disable this option. Default is 0.
SSA_LISTEN_FAILURES_ALLOWED

Maximum number of consecutive connection failures allowed for a server. Set the environment variable
to any whole number. For example, SSA_LISTEN FAILURES ALLOWED=10.

SSANOSORTIDX

Indicates whether to disable sorting when you run the Table Loader utility. To disable sorting, set the
environment variable to 1.

For example: SSANOSORTIDX=1.
SSAOPTS
Sets various logging and trace options. You can use one or more of the following values:

e +r. Logs all the search records to the idssrsv.dbg file. Use +r to identify a particular search
transaction that causes a server crash.

e +T. Logs search trace information to the idssrsv.dbg file. You can use the LOGTEST trace file in
addition to the search trace information in the event of a server crash.

e +u. Logs process resource usage, such as the number of threads, sockets, and stack space to the
*.dbg files. The value also logs database resource utilization when users connect or disconnect.

For example, SSAOPTS=+rTU.
SSAPR

Directory name that contains the SSA-NAME3 population files.
SSA_RB_ERROR_IS_NOT_FATAL

Converts a data integrity error to a warning. To convert errors to warnings, set the environment variable
to any whole number. For example, SSA_RB_ERROR_IS NOT FATAL=1.

SSA_RESTRICTED_VARS

Specifies a colon-separated list of environment variables which cannot be set by the console client.
SSA_SEARCH_MAX_RETRY

Maximum number of times you want to retry a search request before it fails.
SSASQLLDR

Fully qualified name of the loader utility, which is specific to each database. Use one of the following
values:

e sglldr for Oracle

e db2 for IBM DB2 UDB

e Dbcp for Microsoft SQL Server
SSA_SOCKET_MAXIMUM_ALLOWED

Maximum number of sockets that listen for connections. Set the environment variable to any whole
number. For example, SSA_SOCKET MAXIMUM ALLOWED=10. By default, you do not have any restriction on
the number of sockets.

SSADB_MAX_DB_CONNECTIONS

Maximum number of database connections that the Identity Resolution servers can use. For example,
SSADB_MAX DB _CONNECTIONS=500 limits the database connection to 500. Default is 1024.

Environment Variables 39

40

SSA_SOCKET_TIMEOUTS

Specifies the timeout periods as a comma-separated list for all the MDM Registry Edition servers. The
SSA_SOCKET_TIMEOQUTS environment variable uses the following format:

SSA SOCKET TIMEOUTS=<Idle>,<Connection>,<Write>,<Read>

Configure the following parameters:
Idle

Time period for a client session to remain idle before the server cancels the session. The default
timeout period is 86400 seconds.

Connection

Time period for a client to wait before an attempt to establish a connection to the server is
terminated. The default timeout period is 15 seconds.

Write

Time period to wait for a write or send operation to complete successfully. The default timeout
period is 7200 seconds.

Read

Time period to wait for a read or receive operation to complete successfully. The default timeout
period is 7200 seconds.

If you configure the SSA_SOCKET_TIMEQUTS variable, you must specify the timeout periods for all the
operations. For example, SSA_SOCKET TIMEOUTS=86400,15,7200,7200

SSA_THREAD_MAXIMUM_ALLOWED

Maximum number of threads that process the data. Set the environment variable to any whole number.
For example, SSA_ THREAD MAXIMUM ALLOWED=10.By default, you do not have any restriction on the
number of threads.

SSATEMP

Some MDM Registry Edition programs and scripts require output to be written to a temporary directory.
The location of this directory is controlled by the SSATEMP variable. The default location of this directory
is $HOME/tmp in UNIX and $TEMP% in Windows installations. It is recommended that a separate location is
created for each user (each instance or running servers). This directory must have write and execute
permissions.

SSA_TREAT_C_TYPE_AS_LATIN1=1
Converts the Latin-1 character set to the UTF-8 character set.
SSA_USE_SQLDRIVERCONNECT

Indicates whether to use the SQLDriverConnect or SQLConnect function to connect to the target
database. When you use the sQLDriverConnect function, you can specify multiple connection attributes.

To use the sQLDriverConnection function, set the environment variable to 1. By default, MDM Registry
Edition uses the sQLConnect function.

The sQLDriverConnect function uses the following format for the connection string:

DSN=<Data source name>;UID=<User ID>;PWD=<Password>;<Parameter 1>=<Value 1>;<Parameter
2>=<Value 2>.

For example, the following sample connection string sets the minimum and maximum pool size:

DSN=<datasourcename>; UID=<userid>; PWD=<password>;Pooling=true;Pool Size Min=10;Pool Size
Max=50.

Chapter 2: Servers

SSA_USE_SQLDRIVERCONNECT_ATTRIBUTES

Specifies the additional attributes for the soLDriverConnect function. Applicable only when you set
SSA_USE_SQLDRIVERCONNECT=L.

For example, when SSA USE_SQLDRIVERCONNECT=1 and

SSA USE SQLDRIVERCONNECT ATTRIBUTES=Pooling=true;Pool Size Min=10;Pool Size
Max=50;Connection Lifetime=120;Connection Timeout=60;Incr Pool Size=5;Decr Pool Size=2,
MDM Registry Edition uses the following connection string:

DSN=<datasourcename>; UID=<userid>; PWD=<password>;Pooling=true;Pool Size Min=10;Pool Size

Max=50;Connection Lifetime=120;Connection Timeout=60;Incr Pool Size=5;Decr Pool Size=2.
SSA_USE_SQLDRIVERCONNECT_ATTRIBUTES_ONLY

Indicates whether to use only the connection string keywords specified in the
SSA_USE_SQLDRIVERCONNECT ATTRIBUTES environment variable to create a connection string. You can
set any value. For example, SSA_USE_SQLDRIVERCONNECT ATTRIBUTES ONLY=YES.

If you want to use the specified keywords with other database source definitions, such as database
alias, to create the connection string, do not configure this variable.

The following sample configuration indicates to use only the connection string keywords specified in the
SSA USE_SQLDRIVERCONNECT ATTRIBUTES environment variable:

SSA USE SQLDRIVERCONNECT ATTRIBUTES=DSN=%S;UID=%U;PWD=%P;
SSA _USE_SQLDRIVERCONNECT ATTRIBUTES ONLY=YES

Note: If you enter variables such as %5, %P, $U as the values in the

SSA_USE_SQLDRIVERCONNECT ATTRIBUTES environment variable, MDM Registry Edition replaces these
variables with the server name, password, and user ID configured in other database source definitions to
generate the connection string.

SSA_WSTIMEOUT

Specifies the timeout periods as a comma-separated list for the XML Search Server. The
SSA_WSTIMEOUT environment variable uses the following format:

SSA WSTIMEOUT=<Idle>,<Connection>,<Write>,<Read>

Configure the following parameters:

Idle
Time period for a client session to remain idle before the server cancels the session. The default
timeout period is 86400 seconds. If you want to use the default timeout period, set the value as 0.

Connection
Time period for a client to wait before an attempt to establish a connection to the server is
terminated. The default timeout period is 15 seconds. If you want to use the default timeout period,
set the value as 0.

Write
Time period to wait for a write or send operation to complete successfully. The default timeout
period is 7200 seconds. If you want to use the default timeout period, set the value as 0.

Read

Time period to wait for a read or receive operation to complete successfully. The default timeout
period is 7200 seconds. If you want to use the default timeout period, set the value as 0.

If you configure the SSA_WSTIMEOQUT variable, you must specify the timeout periods for all the
operations. For example, SSA_WSTIMEOUT=1200,0,0,0

Environment Variables 41

Note: If you configure both the SSA_SOCKET_TIMEOUTS and SSA_WSTIMEOUT environment variables,
the SSA_WSTIMEOUT variable takes precedence over the SSA_SOCKET_TIMEOUTS variable for the XML
Search Server.

Windows Services

42

You can create Windows services that run programs or batch scripts to start and stop MDM Registry Edition
servers and other processes.

Use the following utilities to create a Windows service that runs a program or a batch script during a
Windows service startup or shutdown process:

e idssvc for all the servers except the Synchronization Server.

e updsvc for the Synchronization Server.

Note: If you plan to start the MDM Registry Edition servers as Windows services, you must use a database
client installed on a local drive instead of a shared network drive to connect to the database.

idssvc Utility

Use the idssvc utility to create or delete a Windows service for all the servers except the Synchronization
Server. The idssvc utility uses the following syntax:
e To create a Windows service:
idssvc install <Service Name> <Start Program Name> <Stop Program Name>
e To delete a Windows service that you create:
idssvc delete <Service Name>

The idssvc utility uses the following parameters:
Service Name

Name of the service that you want to create. The idssvc utility adds the 1Ds_ prefix to the service name
to ensure that the MDM Registry Edition services group together when you view them in the Service
Control Manager.

Start Program Name

Fully qualified name of a program or script to run when you start the service. Enclose the name of the
program or script and its parameters within double quotes ().

Stop Program Name

Fully qualified name of a program or script to run when you stop the service. Include all the parameters
that you specify in the start Program Name parameter, and enclose them within double quotes ().

For example, the following command creates a Windows service, l1icenseserver. When you start the
licenseserver Service, the service starts the License Server, and when you stop the 1icenseserver service,
the service stops the License Server:

idssvc install licenseserver "$SSABIN%\liup.bat" "$SSABIN%\lidown.bat"

Note: Informatica recommends that you use batch scripts instead of programs because a batch script can
establish environment variables that MDM Registry Edition requires to function correctly. For example, when
you set a service startup type to automatic, a batch script can set the environment variables before starting
the MDM Registry Edition servers so that the servers function correctly.

Chapter 2: Servers

After you create a Windows service, you can manually start or stop in the Service Control Manager or from a
command line. To start or stop a service from a command line, run the following commands:

e To start a service, net start <Service Name>

e To stop a service, net stop <Service Name>
Note: When you specify a Windows service name, ensure that you include the 1Ds_ prefix.
You can use the Service Control Manager to change the service startup type to automatic.

The <service Name>.log file in the following directory logs all the error messages and informational
messages associated with the service: <MDM Registry Edition Installation Directory>\bin. The
service does not log the messages to the Windows Event Log, which requires the provision and registration
of a dependent message DLL file.

Sample Script to Create a Windows Service

You can find a sample script in the following directory: <MDM Registry Edition Installation Directory>
\bin\svcdemo.bat

The following example uses the sample script for both the start and stop calls. However, in the production
environment, you can use different start and stop scripts. Specify the start parameter with the start script
name so that the scripts do not run in the same shell.

idssvc install demo "c:\InformaticaIR\bin\svcdemo start" c:\InformaticaIR\bin\svcdemo

Use the following guidelines if you create a script that runs when you start or stop a Windows service:

e Call the following file to establish the MDM Registry Edition environment variables:
<MDM Registry Edition>\env\mdmres.bat

e Start all the processes with the start parameter so that the processes do not run in the current shell. For
example, if you start the Update Synchronizer without the start parameter, the service script cannot
return the control until the Update Synchronizer stops.

Note: The idsup.bat file located in the following directory uses the start parameter internally:
<MDM Registry Edition>\bin

e Call other scripts, but ensure that you transfer the control by using a call parameter. Otherwise, the
control never returns when the called script ends, and the service script cannot return the control.

* When you stop the servers by using the idsdown.bat file located in the following directory, you can
specify the hard option to force an immediate shutdown that disconnects the active clients:
<MDM Registry Edition>\bin

For example, you can start the Update Synchronizer with the --rbcheck switch to periodically test the
Rulebase connectivity and to abort the connection when the Rulebase Server is inaccessible. This switch
avoids the need to run the syncstop script.

e Set the response code to indicate success or failure at the end of the script. Use the cmd /c exit /b
$5SARC% command, which sets SSARC to 0 for success and 1 for failure.

updsvc Utility

Use the updsvc utility to create a Windows service for the Synchronization Server. Before you run the utility,
you must update the values of the following environment variables in the <MDM Registry Edition
Installation Directory>\bin\multistart.bat file:

¢ SSATOP=<MDM Registry Edition Installation Directory>
e SSA_SEHOST=<Search Server Host:Port>

Windows Services 43

44

e SSA_RBHOST=<Rulebase Server Host:Port>

e SSA_CSHOST=<Console Server Host:Port>

¢ SSAWORKDIR=<Absolute Path for the Log Files>

The updsvc utility writes the log messages to the sync.log and sync.err files when a service runs.
Use the following syntax to run the updsvc utility:

updsvc install <Service Name> "$SSABIN%\multistart.bat odb:0:userid/password@service <System>
<IDT>" "$SSABIN%$\multistop.exe -p<System> -e<IDT> -h<Console Server Host:Port>"

Configure the following parameters:
Service Name

Name of the service that you want to create. The updsvc utility adds the 1DS_ prefix to the service name
to ensure that the MDM Registry Edition services group together when you view them in the Service
Control Manager.

odb:0:userid/password@service

Rulebase connection string. A rulebase connection string includes the rulebase number, the service
name that MDM Registry Edition uses to refer to the database service, and the user credentials to access
the database service. For example: odb:99:ssa/ssalora920

System
Name of the system to synchronize.
IDT

Name of the identity table that you want to process. Ensure that the identity table is available in the
specified system.

Console Server Host

Host name of the Console Server.
Port

Port number on which the Console Server listens.
After you create a service, use the command line or the Service Control Manager to start the service.
To start a service from the command line, run the following command:
sc start IDS <Service Name>, where Service Name is the name of the service that you want to start.
To stop a service from the command line, run the following command:

sc stop IDS <Service Name>, Where Service Name is the name of the service that you want to stop.

Chapter 2: Servers

CHAPTER 3

Console Client

This chapter includes the following topics:
e Overview, 45

e Starting, 45
o Modes, 47

e Window Layout, 48

e Menu ltems, 50

e System Editor, 57
e Log Viewer, 57

Overview

The MDM-RE Console provides the user with centralized control of the various components that make up the
MDM-RE system.

The Console is a client/server application.

The Console server is a non-interactive program, which would normally run on the machine where the
database resides. When it is run, the Console Server will establish its environment and then wait for clients to
connect. Once one or more clients are connected, the server launches and monitors the progress of the
various MDM-RE programs at the request of these clients.

The Console client is a Java GUI program. It can be launched on any machine which is connected through
TCP/IP to the Console Server's machine and which has a Java Runtime Environment.

Starting

This section provides information on how to start the Console client.
Starting from Shortcuts

Two (Windows) icons for the Console Client are placed in the SSA Program folder by the Installation process.
Click the Console Clienticon to start the client in read-only mode. This mode is used to run search clients
while restricting access to System maintenance utilities.

45

Use the Console Client (Admin Mode) icon to allow update activity such as creating, deleting and loading
Systems.

Starting from Command Line
Once the Console Server is running, the Console Client can be started using this command:

For Win32:

$SSABINS\idsconc [-cWORKDIR] [-dX] [-hHOST] [-rhRBHOST]
[-rnRBNAME] [-pPROFILE] [-wWORKDIR] [-VVERBOSITY] [-a]

For Unix:

$SSABIN/idsconc [-cWORKDIR] [-dX] [-hHOST] [-rhRBHOST]
[-rnRBNAME] [-pPROFILE] [-wWORKDIR] [-vVERBOSITY] [-a]

where the optional switches are:

-a
starts the client in Admin mode which permits System maintenance. Omitting this switch will place the
Console Client in a non-administrative mode.

-DX
X is the debug level and determines how much debug information will be logged. It must be in the range
0-3. 0 requests no debug information, while 3 requests that all debug information be logged. 0 is the
default.

-cWORKDIR
This defines the name of the Work Directory to be used by client programs. This parameter is optional. If
specified, it must specify a directory that is accessible to the machine on which the Client is running. At
present, this parameter is used only by the Relate Client. If you are not planning to run the Relate Client,
then there is no need to supply this parameter.

-hHOST
This parameter may be used to determine which Console Server the client will connect to. It should be in
the form host:port, where host is the hostname or IP address of the machine where the Console Server
is running and port is the port number on which the Console Server is listening.
The default value is 1ocalhost:1669.

-pPROFILE
This parameter may be used to define a Profile name. A profile is used to store session state
information in the Rulebase. This allows a client to restart using the same settings as the previous time
that profile was used. Using a profile can cause problems if you are planning to reinitialize the Rulebase
or switch Rulebases mid-session. In such cases, use -p-to disable profiles.

-rhRBHOST
Optional parameter.

-rnRBNAME
These optional parameters may be used to set the initial Rulebase Host and Rulebase Name values for
the client. If present these values will override any default values supplied by the Console Server.

-wWORKDIR

This defines the value for SSAWORKDIR to be used by the Console Server on behalf of this client. This is a
directory on the machine where the Console Server is running.

46 Chapter 3: Console Client

-vVVERBOSITY
This defines the default verbosity setting to be used.

Note: The case of option letters is significant.

Modes

This section provides information on the modes you can connect.
Configure Mode
Configure Mode is used to run the Installation tests.

When the Console Client is run, it interrogates the Server to determine the Server's mode of operation. If the
Server is in Configure mode, the Client initiates the setup process by displaying several dialogs. The user is
prompted to supply the required information such as the user’s database name.

The user should fill in each of the required fields and then click Finish. The console will then go through the
steps involved in completing the installation of MDM-RE.

These include:
e creating and initializing a Rulebase
¢ running the standard tests

This serves to confirm that the MDM-RE installation is working correctly. Upon successful completion, the
Server and Client change to normal mode of operation. The Client can then be used to carry out normal MDM-
RE operations. There is no need to restart either the Client or the Server.

On the other hand, if an error should occur, the Server remains in Configure mode and the install process can
be repeated if required.

Normal Mode

When the Console Client is started it connects to the Console Server determined by the -h parameter, if
supplied, or to the default Console Server. It then determines from the Server the mode of operation.

If the mode of operation is not Configure Mode, the Client presents a dialog to the user that contains a list of
user-settable variables. These variables are described below.

Rulebase Name
The name of the Rulebase to be used.
Work Directory

The name of the directory on the server’'s machine where output files will be placed. This field is
mandatory. Note that this value can be set using the -w command line option.

Client Work Directory

This defines the name of the Work Directory to be used by Client programs. If specified, it must specify a
directory which is accessible to the machine on which the Client is running. At present, this parameter is
used only by the Relate Client. So, if you are not planning to run the Relate Client, then there is no need to
supply this parameter.

Modes 47

Service Group Directory

When a new System is created, MDM-RE will look in this directory for any required SSA-NAME3 v1.8
service groups (in the form of .dat files). This value can be overridden by a parameter in the Create
System dialog. This parameter should be left blank if SSA-NAME3 v1.8 is not used.

Rulebase Server

The name of the host where the Rulebase Server to be used during this session is running.
Port

The port number on which the Rulebase Server is listening.
Connection Server

The name of the host where the Connection Server to be used during this session is running.
Port

The port number on which the Connection Server is listening.
Search Server

The name of the host where the Search Server to be used during this session is running.
Port

The port number on which the Search Server is listening.
Statistics

If selected, the log files will include statistics.
Usage Summary

Select this option to produce database usage statistics.
Server Trace

If selected the Console Server produces verbose output. This is for troubleshooting purposes and should
normally be disabled.

Live Progress
Check this option to see the live progress every time an action is performed.

All the above variables are used by the Console Server to service requests from the Client. Therefore, care
should be taken to see that the values are correct. The user should make any required changes and click OK.
At this point, the Main Console Window is displayed.

Window Layout

48

The user may now make a selection from the various buttons to perform the desired task. The buttons are
arranged in two groups. The row of buttons along the top of the Console window are associated with the
various objects with which a user might want to work, such as System, Rulebase, etc. Click one of these
buttons causes a second group of buttons to appear down the left-hand side of the Console window. These
buttons are associated with various actions that can be carried out on the object selected from the first
button group. Example, if the user click Rulebase then the possible actions will be Edit and Create and two
buttons will appear in the second button group to allow the user to select the desired action. In addition,
there is a group of four buttons at the bottom of the left hand panel. These buttons are independent of the
top row of buttons and provide quick access to some basic functions.

Chapter 3: Console Client

In addition to the buttons there is a menu bar. In general, the options on the menu bar mirror those available
through the buttons mentioned above.

To the right of the second button group is the messages panel. This is a read only area where Console will
display progress and error messages.

Along the bottom of the window is the status bar. This contains the current settings for Work Directory,
Rulebase and System.

Launched Jobs

This is a list of all the jobs launched during the current session. Each user can access more information
about a particular job in the list. Click the Open button.

When reconnecting the client to the console server, the list will display all the currently running jobs for all
console clients using the same Rulebase.

The progress messages for each job are not displayed automatically when a Client reconnects. The user
must select a running job from the list and click Open (or double-click the item). This will open the usual
progress window.

Options
Open
Opens a status window for the selected job.
Delete
Remove the selected job from the list. Note that only completed jobs may be removed from the list.
Refresh
Refreshes the list with the currently running jobs for the same Rulebase.
Server Status Indicators
Work directory

The name of the work directory on the server's machine where temporary and the output files will be
placed.

Rulebase
Name of the Rulebase currently being used.
System Name
The name of the system in use.
Profile Name
The name of the profile in use.
Console Server Status

Indicates, if the Console Server is running or not.
If Console Server is running.

X

If Console Server is not running.

Search Server Status Indicates, if the Search Server is running or not.

If Search Server is running.

Window Layout 49

X

If Search Server is not running.

Connection Server Status Indicates, if the Connection Server is running or not.

If Connection Server is running.

X

If Connection Server is not running.
Common Toolbar Buttons

The following describes the functionality provided by the four buttons Status, Settings, View Logs and Clear
Messages:

Server Status

This button activates the Status dialog, which reports the status of the MDM-RE servers, the Rulebase and the
database associated with the current system.

Settings

This option will display the dialog containing the current environment of the client. This is the same dialog as
the one presented when the Client is first started. The user may make any required changes to the
environment variables.

View Logs

Use this button to activate the Log Viewer. The Log Viewer allows the various output files produced by MDM-
RE to be viewed.

The Log Viewer displays the files in a Tree layout with the file size (rounded to the nearest kB) and indicates
if a file is empty. The Log Viewer also gives the user the ability to delete individual logs as well as all the logs
associated with the run itself.

Clear Messages

Click this button to clear the main message window.

Menu Items

50

This section describes about the menu items in MDM-RE.
Servers Menu

Many of the following menu items refer to file names. MDM-RE Console does not support spaces in file
names; its behavior is undefined if such file names are used.

Menu item Function

Start Allows the user to start the MDM-RE Servers.

Stop Allows the user to stop the MDM-RE Servers.

Status Allows the user to determine the current status the MDM-RE Servers.

Chapter 3: Console Client

Rulebase Menu

Menu item Function

Select Allows the user to switch between different Rulebases.

Edit Invokes the Rulebase Editor to edit the current Rulebase, defined by Rulebase Name and
Rulebase Server.

Create Allows the user to create and initialize a new Rulebase.

Resync Use this option to force the Console Client to resynchronize its connection to the Rulebase.

Rulebase in any way.

This may be necessary if a batch script has been run which has altered the state of the

Note: It should not be necessary to use this option in the majority of cases. Only users who
are running scripts which interact with MDM-RE outside of the Console may need to do so.

Database Menu

Menu item

Function

Create

Allows the user to create and initialize a new Database.

System Menu

Menu item

Function

Parameters

New

Use this option to create a new
System. A dialog will be presented
allowing the user to indicate the
source of the new System, which can
be "SDF File" or "Clone the Current
System". When a selection has been
made, click OK and a appropriate
dialog appears.

Create System
from an SDF

Allows the user to specify a
system.sdf file. The Console
Server then runs sysload to load the
definitions in system. sdf into the
Rulebase. This new System will then
be added to the list of available
Systems. The user must also supply
the database name to be used during
the System Load.

System Name: The name of the new system to be created
must be specified here. This name must match with the
name specified in the system definition file. (Mandatory
parameter.)

Definition File: Specify the name of the system definition
file which describes the new system. Mandatory
parameter.

Database: The name of the database to be used by the
system.

Menu Items

51

52

Menu item

Function

Parameters

Import a
System from a
flat file

Creates (restores) a System from a
flat file which was created using the
System > Exportoption. Systems can
only be imported using the same
software version there were exported
with.

Input file: Specify the name of the flat file, which contains
the System to be imported. Mandatory parameter.

System name: Specify the name of the system to be
imported, into the current Rulebase. This name may be
different from the original System which was exported.
Mandatory parameter.

Match System name: Check this option to verify that the
new system name, supplied by the user, matches the
System name stored in the input file.

Import As Template: Import normally restores all system
rules including the status of all objects that have been
implemented. This is analogous to a database "restore”
operation. Specifying Import As Template instructs the
process to remove information about implemented objects
so that the System can be used as a template for a new
System.

Clone the
current System

Make a copy of the currently selected
System. The new system is assigned
a new, user-supplied, name and is
given a status of "build".

New System name: Specify the name to be given to the
new System. Mandatory parameter.

Database: The name of the database to be used by the new
System.

the current Rulebase. Before an
already loaded system can be
deleted, its status must be changed
from "Locked".

Select The user can select a System from System Name: Select a system from the list of available
the current Rulebase. This System systems in the current Rulebase, to be used as the default
becomes the default System to be system.
used in any subsequent operations,
which require a System.

Delete The user can delete a System from System Name: Select a system from the list of available

systems in the current Rulebase, to be deleted from the
Rulebase.

System Status

Displays the status of the current
System and allows the user to
change it.

When performing an operation that is
incompatible with an object’s status
(for example, refreshing a locked
system) the Console will permit the
user to automatically unlock the
object for a single operation or,
optionally, for the entire session.
This makes it easy to prototype
multiple system changes and load
operations without the need to
constantly unlock it.

Build: If the system status is set to "build" then it means
that the system has not been loaded yet.

Locked: Select this option, to lock the current system, and
no changes can be done to it until it is unlocked. By
default, the Table Loader will set the status to "Locked"
after a successful load.

Production: By selecting this option, the current system
status will be set to "Production”. No further changes can
be made to the system.

Test: By selecting this option, the current system status
will be set to "Test". A test system can be modified.

Prototype: This option sets the System status to
"Prototype". No further changes can be made to the
System including changing its status. Prototype Systems
can only be copied to a new System (that is they can be
used as a template). Users can not set Systems to this
status.

Edit

This option allows the user to either
edit a new system or continue editing
of a previously edited system.

Chapter 3: Console Client

Menu item

Function

Parameters

Export Export an existing System’s rules. Output file: Specify the name of the file that will contain
This is usually done for backup the exported system. Mandatory parameter.
purposes or to transfer the System
rules to another Rulebase.
The output is written in SDF format,
which is useful when transferring
clear-text rules to another Rulebase.
Use System > New > Create System
from SDF to load a system from an
SDF file.
Load Load the system. Load System: Check this option to load the selected
system in the current Rulebase. Mandatory parameter.
Load SSA-NAME3 SVG's: Check this option to load SSA-
NAME3 v1.8 Service Groups (deprecated).
Export SVG Export an SSA-NAME3 v1.8 Service Service Group: Select the name of the Service Group to be
Group from the current system to a exported.
flat file (deprecated). Output file: Specify the name of the flat file, which will
contain the exported Service Group.
Refresh The user can delete all existing

database objects created for this
system (IDTs, IDXs, PID, Forced Link/
Unlink rules and triggers). Before an
already loaded system can be
refreshed, its status must be
changed from "locked".

Menu Items

53

54

Tools Menu

Menu item

Function

Parameters

Search Client

Launches the MDM-RE Search
Client.

The parameters passed to the
Client will be the current
System name, current
Rulebase name and current
Search Server address. Note
that this option can be used to
launch several Search Clients
one after the other. So, by
launching a Search Client,
changing the default System
name and then launching
another Search Client it is
possible to have two Search
Clients running
simultaneously but using
different Systems.

DupFinder

Run the DupFinder utility
(that is relate in DupFinder
mode).

Output File Specify the name of the file to store the matching
records (all records not written to the optional -m0 and -m1
files). Mandatory parameter.

Search Definition Select a Search Definition to be used.
Mandatory parameter.

Search Width Select a predefined search width. Narrow, Typical,
Exhaustive or Extreme to be used.

Match Tolerance Select a predefined match tolerance:
Conservative, Typical or Loose to be used.

Output Format Specify the report format. Values 0-7 are valid.
Starting Record ID Specify the starting record id here.

Return Search records Only Check this option to display only the
duplicate search records.

Remove Search Record Check this option to remove the search
record from the resulting set.

Append New Line Check this option, if a new line has to be
append after each search record and viceversa. Valid only for
output formats 0 and 3.

Trim Trailing Blanks Check this option, if the blank spaces have

to be trimmed and vice-versa. Valid only for output formats 0
and 3.

Run Clustering

Runs a selected clustering
Once data has been loaded
into an IDT, it may be
clustered. This is the process
of grouping like rows. For
example, you may cluster by
name in order to identify
duplicates, or you may wish to
cluster by name and address
to identify "households".

Search Definition Select a Search Definition to use. Mandatory
parameter.

Singles Report File Specify the name of report file to have
single-member clusters.

Plurals Report File Specify the name of report file to have multi-
member clusters.

All Clusters Report File Specify the name of report file to
contain single-member clusters (a.k.a. Singles), as well as
multi-member clusters (a.k.a. Plurals).

Chapter 3: Console Client

Menu item Function Parameters
Load ID-Table Allows the user to select a Loader Definition Select the name of the loader-definition to be
Loader-Definition. The run.
Console Server then executes
the utilities required to load
the ID-Table.
Run Program Runs a user-specified program | Command Line Specify the program to run followed by its
on the server. parameters.
Relate Runs Relate on the Server
using the Search-Definition
selected by the user.
Execute SQL Allows the user to specify a Log On Identifies the database against which the SQL should be
file containing SQL. The run.
CO"STE Server.thetnhmvokes Default Logon Check this option to use the default logon.
ssaplus, passing the))) -
supplied name as a File Name Specify the file containing the SQL to be executed.
parameter.
Relperf Run the Relative Performance Input File: Name of the file containing input records. Mandatory
Utility to compare search parameter.
strategies. Output File: The name of the output file to use. Mandatory
parameter.
Search Definition: Select a Search Definition to be used.
Mandatory parameter.
Output View: Name of the output view to use.
Input View: Nominates the view that describes the input
records. If not specified then the IDT layout will be assumed.
Text Report: Generated report with be in text format. The
default is a tab delimited report ideal for use with spread
sheets.
Secondary Report: Generate a second report for each search
ordered by Match Tolerances instead on SearchWidths.
Alternate Report: Generate an alternative style report with a
histogram of accepted count.
Build Default Stats View: Check this option to generate a default
statistical view for use during the relperf run. When using this
option an output view does not need to be specified. If an
output view is specified then the generated view will consist of
all the fields in the specified view plus any fields in the default
statistical view that are not already present.
Clustering The Clustering Viewer can be
Viewer used to view the results of
various Clustering runs.

Starting from the Console

Clustering Viewer can be started from the Console Client by selecting Tools > Clustering Viewer.

Menu Items 55

@ Clusteri ng Report Viewer ; Elgl

File Tools Windows Help

& C:\test_clusters |Z |E|E|
L

MANME

AMIT VOHRL
FRISHAN EITMAR
BEALETR STHNGH
AJIT 3INGH
CHIMAN LAL GARG
RAVI DUTT JOSHI
SATHAM STHNGH
IRFAN SAFRI
IEFAN SAFRI
KESAR SINGH
KESAR SINGH
JHREE WITAY INDER PLASTICS
HARBANS EATTR
HARBANE EATTR
HARBANS EATTR
HAREBANS ATR

T 5 RATTLN
JAGDIZH EAUER
DAVINDER 3INGH
DAVINDER SINGH
JEET 3INGH
RELIABLE JERVICE CENIRE
RAMESH CHOANDER
AMARTIIT 3INGI
Wy SHIPPING AGENCIES PVT LTD
SANJEEY 300D
SANJEEV 200D
JARVNEET 3INGH
IPINDER SINGH
BALJINDER KR
DAVINDEER SINGIYT
NEVEEN ZHARMAL
NEVEEN 3JHARMA
SATINDER 3INGH

Cluster

a
c
E]

@ =1 o | dm W [

LY el Y OO R S)

HE=NEIEREEEEEE

=1

—
]
L=

(=
o
(=]

[=]

o
=]

FEEEEIEERE AR EEEEEEEEE -

o|o|oo/olo|alo

The File menu will allow you to open a Post Report or a Database. You can open the same one several times
if you wish. This makes it easier to visually compare different parts of the same report at the same time.

Jobs Menu

This section describes about the Jobs menu options.
Edit
This option allows the user to

e Define a new job
e Edit a predefined job and also

o Delete a pre-existing job

Run

This option allows the user to select and run a job, from a list of predefined jobs belonging to the system.
Parameters

e Job NameSelect a job name to run from the list of available jobs in the current system.

56 Chapter 3: Console Client

o Start FromStep Select the name of the step at which the job should start running. Steps previous to the
one selected will be skipped.

System Editor

The System Editor is a GUI tool to create a new system and also edit an existing system. System editor has
five options:

Load

Use this option to load the changes made to the system.

Add

Use this option to add a new definition to the system.
Clone

Use this option to clone an existing definition in the system.
Delete

Use this option to delete an existing definition in the system.
Close

Use this option to close the editor.

Refer to the Editing a System section of the DESIGN GUIDE for more details on using the System Editor.

Log Viewer

Every time a procedure such as Load-1IDT, Relate or a user-defined Job is started, a Run Number is assigned
to that run and all relevant information is stored in the Rulebase. This information includes the Completion
Status and details of any output files created during the run. The Run Number is used to uniquely identify the
run.

The Log Viewer provides the user with the ability to access the run information for previously run jobs. There
are two classes of Jobs; System Jobs and Global Jobs. System Jobs are jobs that are run against a
particular system, such as Relate. Global Jobs are jobs that are not run against a particular System. These
jobs either involve more than 1 System (example, Clone System) or are responsible for setting up a System
(example, Create System).

Choosing The Run To Be Viewed

Select the type of Job, either system Jobsor Global Jobs, using the Radio buttons. If System Jobs is
selected, select the required System using the dropdown list of Systems. If Global Jobs was selected, then
the System need not be selected. Now choose the job name from the dropdown list of jobs. User-defined jobs
are identified by their user-assigned names. Other procedures, such as Relate, are identified by the
procedure name surrounded by asterisks. Example, *Import System*. An exception to this rule is Load IDT
for which the name of the Loader-definition will be used, again surrounded by asterisks. Example, *table-1*.

When the job has been selected a list of runs for this job will be listed on the left-hand side of the Log Viewer.
The runs will be sorted in ascending order, so the most recent run will appear at the bottom of the list. The

System Editor 57

title for each run consists of the date and time when the job started and the Run Number which was assigned
to this run. Select the run in which you are interested.

A list of the output files created by this run will appear below the list of runs. The most recently created
output file will be automatically displayed in the right hand pane of the Log Viewer. To view other files in the
list simply click the required file in the tree display.

Note: The Log Viewer will truncate (for display only) log files larger than 960KB.
Other Functions Provided By The Log Viewer
Delete File

Use this option to physically delete the currently selected file.

Delete Run

Use this option to delete all output files and run information for the currently selected run.

Refresh

Use this option to reread the run information from the Console Server. This option is useful if a job is
currently running and you want to check if anymore output has been created.

Close

Use this option to Close the Log Viewer and return to the Main Console Window.

58 Chapter 3: Console Client

CHAPTER 4

Search Clients

This chapter includes the following topics:

e Qverview, 59

e Deployable Search Clients, 60

e Administrator Search Clients, 61
e HTTP Search Client, 64
e Relate, 66

e DupFinder, 74

Overview

MDM-RE provides several "out of the box" search clients that may be used as soon as a system has been
defined and loaded. Although you are free to create your own customized search clients using the MDM-RE
Search API, these clients provide facilities to quickly utilize and/or deploy search functionality without any
coding.

Online Search Clients

Online Search Clients dynamically adjust their dialogues based on the Search-Definitions defined in the
Rulebase. There are three main categories of online clients:

Deployable search clients are restricted in functionality. They are used to quickly deploy fixed search
capabilities to end-users. These clients cannot switch between searches or change search strategies.

Administrator search clients are intended to be used by an MDM-RE Designer / Administrator. They are
functionally rich and provide access to all searches and search/match strategies defined in a system. They
also contain tracing and debugging facilities to help tune searches.

Web: Any web browser that is pointed to the MDM-RE HTTP Server can act as a search client.
Batch Search Clients
MDM-RE provides two "out of the box" batch search clients:

Relate runs a number of searches using search records selected from an input file or database table. Results
are written to an output file.

DupFinder identifies duplicate records in the IDT and writes results to an output file.

59

Deployable Search Clients

60

Deployable search clients are designed to help MDM-RE Administrators to quickly deploy search functionality
to end-users. These clients are specifically designed to only run a pre-defined Search so that end-users
cannot change search and matching strategies.

Java Applet

A Java Applet suitable for embedding within an HTML page is available as a Web based client. A Java
enabled browser must be used to run the applet. A Java plug-in of version 1.4 or higher is recommended.

Parameters
The following parameters are mandatory:
HostPort

The Port number that the MDM-RE Connection Server is listening on. Note that the Connection Server
and Web Server must run on the same computer.

RulebaseName
The name of the Rulebase
WorkDirectory
The working directory.
System
The name of the System to open at startup.
Search
The name of the Search to open at startup.

HTML

The following HTML code snippet demonstrates how to instruct a browser to load the applet. The applet’'s
code resides in a JAR file that is in the same directory as the HTML document. This example sets the initial
size of the applet to 800 x 600 pixels.

<APPLET ARCHIVE="sclient.jar" CODE="ssa.clients.sclient.SsaClient"

WIDTH=800 HEIGHT=600>

<PARAM NAME="HostPort" VALUE="1667">

<PARAM NAME="RulebaseName" VALUE="odb:0:ssa/ssalora8l7">
<PARAM NAME="WorkDirectory" VALUE="c:\InformaticaIR\ids">

An example HTML is provided in samples/programs/applet/SimpleSearchClient.html.
Usage
To initiate a search, enter the required data and click the Search button.

The output results are shown in a table format and may be customized to reorder, resize and/or hide
columns. Columns are reordered and resized by dragging their titles. Columns can be hidden or reenabled by
right-clicking on the output table and selecting the appropriate option on the pop-up menu.

You can double-click on a specific record in the output table to perform a new search.

Chapter 4: Search Clients

Administrator Search Clients

Administrator search clients are for the exclusive use of MDM Registry Edition System Administrators. They
provide a rich set of features used to test and tune search strategies.

MDM Registry Edition provides two administrator search clients:

o A default search client that contains facilities to expand records and save history and to start a new
search using the previous search results. However it does not work with multi-byte character sets or
UNICODE data.

e A Lite client that supports multi-byte and UNICODE data. It also contains facilities to trace client side
search data. This is particularly useful when debugging searches containing multi-byte data.

Starting from the Console

You can start the Administrator Search Client from the MDM Registry Edition Console Client by selecting
Tools > Search Client.

Starting from a Shortcut

On windows, select Search Client from the Informatica program group.

Starting from the Command Line

To start the Administrator Search Client from the command line, run the following command:

e On Windows:

$SSABIN%\ssacs [-h<Host>:<Port>] [-s<Search>] [-w<WorkDir>] [-p<System>]
[-r<Rulebase>]
e ON UNIX:
$SSABIN/ssacs [-h<Host>:<Port>] [-s<Search>] [-w<WorkDir>] [-p<System>] [-r<Rulebase>]

Configure the following parameters:
-h<Host>:<Port>

Name of the host and the port number of the Connection Server.
-s<Search>
Name of the search.
-w<WorkDir>
Absolute path for the working directory.
-p<System>
Name of the system.
-r<Rulebase>
Rulebase connection string.

The scripts also use environment variables to set some parameters. You can alternatively set the following
parameters through environment variables:
RulebaseName

Name of the Rulebase. Specify the SSA_RBNAME environment variable.
ConnectionServer

Name of the host and port number for the Connection Server. Specify the SSA_COHOST environment
variable.

Administrator Search Clients 61

62

WorkDirectory
Specify the SSAWORKDIR environment variable.
Client INI file
Some parameters for the client can be set using an INI file called idsclie.ini.

Note: The following parameters are specified on the command line in the client starting script ssasc:
ADDRESS, PORT, SEARCH, SYSTEM , RULEDB, WORKDIR. Unless these parameters are not removed from the
script the corresponding settings in the INI file are ignored.

The following parameters are common to both clients:

RULEDB= the Rulebase (default 0:system/manager).

ADDRESS= the Host name of the MDM-RE Connection Server.

PORT= the Host port of the MDM-RE Connection Server.

SEARCH-= the initial Search to open (optional)

SYSTEM= the name of the System to open (default is "test").

The following parameters are for the default Search Client:

SIZE= the initial size of the window (default 1100x820)

FONT= the initial font of the tables (default Courier).

FONTSIZE= the initial font size of the table (default 12).

DIV_LOCATION= the location of the divider between the history pane and the current pane of a search (default 0.5).

REFRESH_RATE-= the number of records which will be loaded before the screen is refreshed (default is 2).

OUI_VERBOSITY= the verbosity of an OpenUser call.

If an ADDRESS is not specified the MDM-RE Client will display a dialog box to obtain the Host Name of the
MDM-RE Search Server. Similarly if a Search is not specified the Client will start without opening any MDM-
RE-ID Tables.

Note: If any of the text which follows the = character in each line of the INI file contains certain characters,
then those characters must be preceded by a \ (backslash) character. These characters are:

o #(hash)

¢ I(exclamation)
e =(equals)

e :(colon)

o \(backslash)

For example, to specify a Rulebase whose name is odb:0:5SA12/SSA12@SSAL9
the idsclie. ini file should contain this line:

RULEDB=0db\:0\:SSA12/SSA12@SSA19

Chapter 4: Search Clients

Client Selection INI file

When the Administrator Search Client first starts, a dialog is presented that allows the user to select between
these two clients. The choice is stored in the client selection INI file’s (adminsc.ini) SMODE parameter. The
mode may be switched using Options > Search Client Selectionmenu on the Default client and through the
Client Selection button on the Lite client.

SMODE= the client mode (1=Lite search client, 2=Default search client)

Default Client

Upon startup, the Client prompts for the ADDRESS of the Server. Enter the Host name (or IP address) of the
MDM-RE Search Server. If left blank, the Host name defaults to the name of the machine running the Client.

If the MDM-RE Client is started without an initial Search you must choose a Search either from the Search
menu or from the Searches on the search toolbar. With a Search selected the program will open a new
window for the MDM-RE-ID Table. Each window represents one MDM-RE-ID Table, thus if multiple searches
are defined on the one MDM-RE-ID Table it will not open a new window. However, if a Search is selected
which is not defined on any of the currently open MDM-RE-ID Tables a new window will be opened.

With a window open and a Search selected you will be prompted to input the required parameters for the
Search. You can pressEnter or click the Search button to perform a search. The data will be loaded and
sorted by score. Select the STOP button, it will cause all current searches being loaded to stop.

If you wish to input values from an existing search simply select the field either before selecting the Search
button (or menu) or whilst the search panel is displayed.

To zoom view a record, double-click therecord. Right-click the record to bring up a pop-up menu with various
options of that record.

Note: The Print menu option doesnot currently work, due to limitations in Java.

You can dynamically resize or reposition any of the columns in the table view simply by either "grabbing" a
column header and repositioning it or dragging the border of the header in order to resize it. Furthermore
there is a menu option under Layout > Define Layoutwhich enables you to configure which columns are
visible.

Under File there is the option to Save an output file. There is also the option to Zoom All records or Dismiss
All zooms.

There is a scrapbook that enables copying any relevant records for later perusal. You can launch searches
from these records in a similar fashion as from the main window.

This client’s INI file is created/updated whenever this client shuts down.

Lite Client

At startup, the client presents the user with a list of available Systems. The default selection will be the first
available System in the Rulebase.

If you want to swtich between Systems and Searches by, click the Options button.

The Options dialog also allows the user to fine-tune the Search Widths and Match Tolerances. The options
presented may vary, as they are dependent on the System and Search definitions.

After you enter the required data, to initiate a search, click the Search button.

The output results are shown in a table format and may be customized to reorder, resize and/or hide
columns. Columns are re-ordered and re-sized by dragging their titles. Columns can be hidden or re-enabled.
To do this, right-click the output table and select the appropriate option on the pop-up menu.

Administrator Search Clients 63

A new search can be performed using a specific record in the output table. To do this, double-click that
record.

HTTP Search Client

64

MDM-RE supports the use of an Internet Browser as a search client. Web pages containing dynamically
generated search dialogues based on your Systems are served up by the MDM-RE HTTP Search Server.

Simply point your browser at the HTTP Search Server by typing its host :port in the Location Bar and follow
the prompts. The default port number of the HTTP Search Server is 1672.

If prompted for a Rulebase name, the client must supply the information using a Dictionary Alias without the
ids: prefix. See the Dictionary Alias section for more information. This is the only acceptable form of
Rulebase name and is necessary to avoid passing clear text passwords to the server. To avoid the need for
Rulebase names altogether, the administrator should define them in the HTTP Search Server’s .ini file. Refer
to the Configuring section below.

You do not need to enable any active content facilities such as Javascript. The Web pages are compatible
with Netscape 4, Internet Explorer 5 and Firefox 1.0 (or later versions).

Configuring
The HTTP Search Server will not start unless it has been enabled and configured.

It is enabled by allocating the server’'s host name ssA_HTHOST and port number SSA_HTPORT in the env
\mdmres.bat (Windows) or env/mdmres (UNIX) scripts.

The configuration process consists of creating a simple text file named htserv.ini. The file can be located
in $SSAINI, SHOME or $SSABIN, which are searched in that order.

The content of this file determines which Searches and Rulebases are visible to the Web client. It is read at
server initialization, so changes to the configuration become effective only after the HTTP Search Server is
bounced. Lines starting with a semi-colon (;) are treated as comments. White space in the section headings
(example, [profile:basic]) is not permitted, except as part of a name.

Generic Mode

The simplest possible file contains the following lines:

[Server]

mode = generic
This directs the HTTP Search Server to prompt the client for a Rulebase name and does not restrict access to
any systems or searches. The optional line

rulebase = <dbtype>:<dbid>:<uid>/<pwd>@<svc>

may follow the mode line to specify the Rulebase to use. When provided, the client will not be prompted for
this information. When omitted, the HTTP Search Server will request the client to enter the name of the
Rulebase.

Note: Rulebase names are sent from the client to the server in clear text using the HTTP protocol. To avoid
passing database passwords, clients must specify Dictionary Alias names without the ids: prefix. The
HTTP Search Server assumes all Rulebase names received through HTTP are Dictionary Aliases and
automatically prefixes them with ids: before use.

Chapter 4: Search Clients

Custom Mode

Custom mode is use to configure the Systems, Searches and Rulebases visible to the Web client. When the
HTTP Search Server runs in custom mode.

[Server]

mode = custom

profiles = basic
the Web client will offer the choice of one of a number of predefined profiles, that have been defined to allow
access to a specific Rulebase, System and Search(es).

For example,

[profile:basic]

rules = just one_search

[rule:just one search]

rulebase = odb:0:ssa/ssalorallg

system = testx216

searches = Claimant Names

[search:Claimant Names]

sdf-search = claimant-names

sdf-view = names 1dt216
The example defines one profile named basic, however, multiple profiles can be specified by listing them as
a comma separated list. Each profile may contain one or more rules, listed with the rules parameter (which is
a comma separated list). In this case, there is just one rule named just_one_search. Each rule must have a
corresponding definition that nominates the Rulebase name, System name and a comma separated list of

Searches (Claimant Names in this example) that can be used by a user of this profile.

Note: The search names may contain spaces. This is allowed for aesthetic reasons, as the Search names are
displayed by the Web client.

Each search must have a corresponding definition that nominates the name of the Search-Definition in the
SDF (claimant-names). It may also optionally nominate an output view.

Output views are useful in that they can be used to define the order and/or columns displayed by the Web
client. They can also add extra statistical information such as the Score or the number of the Multi-Search

that returned the data.
A more complicated configuration may provide a second profile for advanced users too. For example:

[profile:advanced]

rules = just one search,other searches
[rule:other searches]

rulebase = ids:rb

system = testx217

searches = All Names

[search:All Names]

sdf-search = all-names

Profiles, rules and searches may be defined in any order, and must be defined if referenced.

Operation

Upon connection, the HTTP Search Server will prompt you for the Rulebase, followed by the system and
search you would like to perform. When selecting the rulebase, note that the user must specify a Dictionary
Alias name without the ids:prefix. This avoids having to give users access to the database password. This
requirement is not available in Custom Mode, as the Rulebase must be specified in the config file.

Once in the search page, users can switch between different searches available to them. To switch between
tabs, click the tabs at the top of the page.

HTTP Search Client 65

To perform a search, the user must enter the appropriate information in the search fields on the top left of
the page, then press enter, or click the Search button. The search data and browser encoding should be in
UTF-8 format.

If the results are too wide, or too long to fit within the browser view port, scrollbars will appear indicating that
more data is available. These scrollbars will scroll the results only - not the whole page. You can centre the
results in the viewport so that they fill the whole browser. To centre the results, click the result summary (56

results found for ...).

You can manually override the prompt used by setting an environment variable with the desired label. This
must be defined in the execution environment of the Search server. For example,

SSA_CNDS_LABEL=MySearch

Relate

relate is a batch search application that accesses the MDM-RE Search Server using the standard Search
APIs.

It reads an input file containing search transactions. Each search transaction is passed to the Search Server
which uses the nominated Search Definition to find matching records. These are written to the output file by
relate.

Input records must be separated by a newline. By default their format must match the layout of the IDT to be
searched. If the format differs from the IDT layout, the -iswitch can be used to nominate an input format.
Multiple output formats are supported. These are controlled with the -o switch.

Normally all records returned by the Search Server are written to the output file. That is those records that
have an acceptable score as determined by the Search Definition. Additional filtering is possible with the -I
and -u switches. These are used to set upper and lower bounds for acceptable scores and are applied by
relate prior to emitting records to the output report. Note that filtering with -I and -u is not integrated with the
other options. The filter will remove all records that are not within bounds, even if this will result in an empty
set, irrespective of whether or not non-empty sets were requested. For example with the -x or -m switches.
These filters are primarily used to experiment with score thresholds. Once correct thresholds have been
determined, add them to the Search Definition and discontinue the use of -l and -u.

The -m switch can be used to create multiple output files.

relate can also search for duplicate records in the IDT. When started with the -x switch, relate runs in
DupFinder mode.

Note: The input and output files need to be local to where the relate process runs. If relate is started from
the command line, the files must be addressable from the same machine. If relate is started through the
Console Client, it will run on the same machine as the Console Server.

Starting from the Console

Relate can be started from the MDM-RE Console Client by selecting Tools > Relate. The utility is started by
the Console Server and therefore runs on the same machine as the Console Server. The input and output file
names must use paths that are valid within the context of that machine.

66 Chapter 4: Search Clients

Starting from the Command Line

You can start Relate from the Command line on Windows or UNIX.
Use the following syntax to run Relate on Windows:

$SSABINS\relate Search Infile Outfile -rRulebase -pSystem -hHost:Port -wWorkDir [Optional
Switches]

Use the following syntax to run Relate on UNIX:
$SSABIN/relate Search Infile Outfile -rRulebase
-pSystem -hHost:Port
-wiWorkDir [Optional Switches]

Use the following options when you run Relate:

Search
Nominates the Search Definition to use.

Infile

The name of the file containing input records. When reading records from an SQL database, specify
1file=xxx Where xxx is the name of the Logical-File-Definition that describes the SQL source. The same
applies when reading records from an XML file. Specify 1fi1le=xxx where xxx is the name of the Logical-File-
Definition that describes the XML file.

Outfile

The name of the file that contains the matching records. These records are not written to the optional -m0
and -m1 files.

--append-to-output-file

Optional. Indicates to append the matching records to the output file. By default, the Relate process
overwrites the output file.

-rRulebase

Required. The name of the Rulebase.
-pSystem

Required. The name of the System.
-hHost:Port

Required. The name of the host and the port number of the Search or Connection server.
-wWorkDir

Required. Work Directory.
-mOFile

Optional. The name of the file to hold records that had no match.
-m1File

Optional. The name of the file to hold records that had one match.

Optional. A binary input file containing records of fixed length. The record length must match IDT record
length or Input View length.

-cOutputViewName

Optional. Nominates the name of the output view used to format the records returned by the search.

Relate

67

68

-dd<c>

Optional. Field delimiter character.
-df<c>

Optional. Field separator character.
-dr<c>

Optional. Record separator character.

Optional. Record layout.
-eEncoding

Optional. Nominates the UNICODE encoding used for W fields. The valid values are:

e 6 =UTF-16 Little Endian

e 7 =UTF-16 Big Endian

e 8=UTF-8
--failed-searches-log

Optional. Absolute path and file name for the log file to log details about the failed searches.
--failed-searches-count

Optional. Maximum number of allowed searches that can fail. Default is 0.
--skip-input-records

Optional. Number of input records that you want to skip. Default is 0.
--query_timeout

Optional. Set the timeout interval in seconds for a search request to query the database.
-Ffilter

Optional. Nominates a single dynamic SQL Filter. For individual searches within a Multi-Search, this switch
does not support multiple filter values.

-ilnputViewName
Optional. Nominates the view that describes the input records. The default is the IDT layout.
-jSearchWidth

Optional. Nominates a predefined search width that overrides the width in the Search Controls: Narrow,
Typical, Exhaustive or Extreme. You cannot use this parameter with a Multi-Search.

-kMatchTolerance

Optional. Nominates a predefined match tolerance that overrides the tolerance specified in the Search
Controls: Conservative, Typical or Loose. You cannot use this parameter with a Multi-Search.

-nx[:yl:z]]l

Optional. Use x search threads with an input queue of y records and an output queue of z records for each
thread.

--retry-options=<Number of Retries>,<Time Interval>,<Number of Retries for Intermittent Errors>
Optional. Sets the following values:

e Maximum number of times you want to retry a search request before it fails. Default is 5.

Chapter 4: Search Clients

« Time interval in seconds for the first retry attempt. The time interval doubles with every retry attempt.
Default is 5.

e Maximum number of retries for any intermittent errors, such as socket error. Default is 5.

-s
Optional. Create a histogram of search transaction durations.
-ss
Optional. Provide individual timings for each search transaction.
-t
Optional. Append newline. The supported output formats are 0 and 3.
-tt
Optional. Append newline and trim trailing blanks. The supported output formats are 0 and 3.
-Tnum[,score]
Optional. Limit to num the number of records written from a result-set to the output file. Optionally, write more
records than num if the records have a Score that is equal or greater than score.
-on
Optional. Specifies the report output format.
-In
Optional. n = Lower score limit. Default is 0.
-un
Optional. n = Upper score limit. Default is 100.
-V

Optional. Verbosity level.
-Vpackage:parm

Optional. The VPD context-setting package and corresponding parameter.

-y

Optional. Print output view information at the start of the output file. Requires you to specify -c.
-x[{n|s}|[rpt,recid]

Optional. DupFinder mode.
-X

XML output.
--Cdisablesearchnumber

Excludes the search number in the XML and CSV outputs.
-- DisableSearchRecord

Excludes the search record in the XML and CSV outputs.

Relate

69

70

Report Formats

When you write to output files, choose a report value based on the output format that you want.

The following table describes the report format for each report value.

Report Report Format

Value

0 Prints each file record found on a new line. The following text shows sample output based on the
report value:
JobN000005A ALGER COLLINS
JobN000032A COLLINS

1 Prints a line for each file record returned that consists of the search record, a nine digit search number
that corresponds to the number of the search record in the input file, a three digit score, and the file
record. Report prints nothing if no match is found. The following text shows sample output based on
the report value:
JobN0O0000O5A ALGER COLLINS#000033064 100 JobN00OOO5A ALGER COLLINS JobNO00005A
ALGER COLLINS#000033064 099 JobNO00032A COLLINS

2 Prints a group of records. The first line consists of the search record and then the search number. This
is followed by one line per file record. Each file record is indented and is followed by the search
number and score. Report prints nothing if no match is found. The following text shows sample output
based on the report value:
JobNO000OO5A ALGER COLLINS #000033064 JobN0O00OOS5A ALGER COLLINS #000033064 100
JobN000032A COLLINS #000033064 099

3 Prints the search record and a set of file records. A search number, surrounded by asterisks, precedes
the search record. A three digit score precedes each file record. Report prints nothing if no match is
found. The following text shows sample output based on the report value:
*xxxxAAAAA (000033064 FAAAAFFFIX ———JobNOOOOOSA ALGER COLLINS} 100JobNO0000SA
ALGER COLLINS} 099J0obN000032A COLLINS

4 Prints the search number and the file record on the same line. Report prints nothing if no match is
found. The following text shows sample output based on the report value:
00033064J0bN000005A ALGER COLLINS
00033064J0bN000032A COLLINS

5 Prints the best file record for each search. You cannot specify a single match file (-m1). If you do not
specify -m0, the output file contains the search record followed by the best file record, both on the
same line. Report prints nothing if no match is found. If you specify -m0, the output file contains the
best record, if any match is found. Else, the record is written to the unmatched file. The following text
shows sample output based on the report value:
JobN000005A ALGER COLLINS JobN00OOOSA ALGER COLLINS

Chapter 4: Search Clients

Report Report Format

Value

6 Prints the search number and the file record on the same line. Also sets the search number to zero.
The following text shows sample output based on the report value:
00000000J0bN000005A ALGER COLLINS
00000000JobN0O00032A COLLINS

7 Prints the best file record and the score returned for each search. You cannot specify a single match

file (-m1). If you do not specify -m0, the output file contains the search record followed by the best file
record, both on the same line. Report prints nothing if no match is found. If you specify -m0, the output
file contains the best record, if any match is found. Else, the record is written to the unmatched file.
The following text shows sample output based on the report value:

100J0bNO0OO0OO5SA ALGER COLLINS JobN0000OO5A ALGER COLLINS

Threads

Relate can run in a multi-threaded mode when the -n option is specified. Each search thread will
independently connect to the Search Server and process searches in parallel.

There are two additional parameters associated with the -n switch: input queue and output queue.

The input queue specifies the length of queue that each thread will use to store the search records in. This
queue must be long enough to allow the thread not to wait for 1/0 on the local relate input file. In general the
default of 100 will be ample.

The output queue specifies the length of the queue that will hold each search thread'’s results. If any
individual searches are expected to generate many matches, increasing the output queue size may improve
performance.

Note: The output order of duplicate sets in a multi-threaded DupFinder report is dependent on the number of
threads used to create the report.

SQL Input

relate can read input records from an SQL database instead of a file. In order to do this you must

» define source table(s) in the UST Section of the SDF using the define source clause
e create a Logical-File Definition with INPUT-FORMAT=SQL

e run relate with the input file parameter set to 1file=xxx where xxx is the name of the Logical-File
Definition.

The source definition should match the layout of the IDT (same field names, offsets and lengths). If it does
not, use the -iswitch to specify an input view so that the Search Server will convert the input record into IDT
format prior to searching.

Note: A define source clause automatically creates an input-view with the same name as the source.

XML Input

relate can read input records from a XML file instead of a flat file or SQL database. In order to do this you
must:

» define source table(s) in the UST Section of the SDF using the define source clause

Relate 71

72

e create a Logical-File Definition with INPUT-FORMAT=XML

e run relate with the input file parameter set to 1file=xxx where xxx is the name of the Logical-File
Definition.

The source definition must match the layout of the IDT (same field names, offsets and lengths - and XML
tags are case sensitive). If it does not, you can specify an XSLT clause, which is a reference to another XML
logical-file-definition, which must be a valid XSLT stylesheet. This can be used to transform the XML input file
into the required form.

For example:

logical-file-definition
*

NAME= lf-relate-xml
INPUT-FORMAT= XML

PHYSICAL-FILE= "+/data/relate.xml"
XSLT= lf-input-stylesheet

*

logical-file-definition
*

NAME= lf-input-stylesheet

COMMENT= "input stylesheet for initial load"
PHYSICAL-FILE= "+/data/relate.xsl"

FORMAT= XML

*

Delimited Input

Relate can read delimited input files. The field delimiter, field separator and record separator are defined with
the -dd, -df and -dr switches respectively. They may specify a printable character or an escape sequence such
as \n or \x0a. The default values are:

e Field delimiter -dd"
e Field separator -df,

e Record Separator -dr\n

Note: When using a UNIX based operating system, it is best to use hexadecimal values to define the
delimiters, as certain ASCII characters have a reserved meaning and must be "escaped" by preceding them
with a backslash (\) character.

The delimited data must be transformed into a format that matches the input view used by relate (specified
with the -iswitch). If no input view is used, the delimited data must be transformed into IDT layout. Having
determined the input view that will be used, the -dIswitch is used to describe how to transform the delimited
data into that format. It specifies a comma-separated list of triplets:

-dl<triplet>, ...
where each <triplet> consists of

¢ Field length (in printable decimal digits),
e R/L justification (optional, if omitted L is the default),

e Filler character preceded by a dash (optional, if omitted the default is a blank). It may be specified using
an escape sequence.

The following example defines three fields. The first is 30 bytes long and uses the default justification and
filler. The second field is 10 bytes, right justified and filled with 0. The third field is 50 bytes in length, left
justified and filled with "'’ (ASCII 0x21).

-d130,10R-0,50L-\x21

Chapter 4: Search Clients

The triplets are used by the transformation engine to convert the delimited data. The field lengths must
match the length and order of fields in the input view. If a delimited field is longer than the field length, it will
be truncated. If it is shorter than the field length, it will be either left or right justified and padded with the
filler character up to the specified field length.

DupFinder Mode

Relate performs the DupFinder function when you start it with the -x switch.

For more information about DupFinder, see Informatica MDM Registry Edition Developer Guide.
The DupFinder function uses the following syntax:

-x[s|n|m] [rpt, recid]

The DupFinder function uses the following options:

s
Returns search record in set. Required if you do not use the n or m option.
n
Does not return search record in set. Required if you do not use the s or m option.
m
Filters the preferred records from the search process, and the output results do not report the preferred
records as duplicates. Required if you do not use the s or n option.
rpt
Maximum number of times to call ids_search_dedupe_start (0=unlimited). Use it with the DEDUP-
PROGRESS= parameter in the Multi-Search Definition to return after processing DEDUP-PROGRESS records.
recid

Starting record identifier for the search process. The default identifier is 0, which indicates the beginning of
the IDT.

Output View Layout

IDT records can be returned using an output view by specifying the -cswitch. Adding the -y switch will print
the output view layout in the beginning of the report file.

The format of this output view layout is as follows: The first line indicates the name of the output view. The
second line gives title information. Each line after this gives details of a single field in the output view. These
details are the ordinal number, name, offset, length and format of each field. For example,

ViewName: REPORTT

Title: # FieldName Off Len Fmt
Field: 00000 Cro id 00000 00008 C
Field: 00001 CompanyName 00008 00100 C

Field: 00002 Addressl 00108 00050 C

Field: 00003 Address2 00158 00050 C

Field: 00004 Address3 00208 00050 C

Field: 00005 Address4 00258 00050 C
Field: 00006 Address5 00308 00050 C
Field: 00007 Postcode 00358 00008 C

Field: 00008 Company ID 00366 00010 C

Field: 00009 Address6 00376 00015 C
Field: 00010 Telephone 00391 00013 C

Field: 00011 Suspension Flag 00404 00015 C

Field: 00012 MAX-SCORE 00419 00003 R
Field: 00013 CLUSTER 00422 00008 X

Relate 73

Field: 00014 ATTRIBUTES 00430 00008 X
Field: 00015 00011 C

DupFinder

DupFinder is a search client that detects duplicate IDT records.
DupFinder reads the IDT and treats each record as a search record. Output is written to an external flat file.

The duplicate finding process must use a suitably defined Multi-Search Definition (see DESIGN GUIDE) and
can process all, or a subset of the IDT records. Limiting the number of records is accomplished by specifying
(in the definition) a maximum number of records to process, or by specifying a starting Record-1d.

The output by default includes the search record and its duplicates. An option can be specified to limit the
output to the search records (which found duplicates) only, or a set of duplicates with the search record
removed.

Starting from the Console

The Batch Search Client, DupFinder, is started from the MDM Registry Edition Console Client by selecting
Tools > DupFinder.

74 Chapter 4: Search Clients

CHAPTER 5

Table Loader

This chapter includes the following topics:

e Concepts, 75
e Starting, 75

e Restarting, 77
e Performance, 78

e Fault Tolerance - Data Errors, 80

e Locales, 81

Concepts

The MDM-RE Table Loader extracts data from either a flat-file or database tables and creates an Identity
Table (IDT) and Identity Indexes (IDXs).

It is a multi-threaded application and performs the following tasks in parallel:

e Reads input source (flat-file or database)

e Generates keys (multiple threads)

e Sorts and writes output files for DBMS mass load utilities
¢ Runs DBMS mass load utilities (multiple threads)

The Loader takes checkpoints between phases in its processing and can be restarted after a failure.

Starting

Console

To start the Table Loader, click the System > Load IDT. Select a Loader-Definition from the drop-down list.
Progress messages from the Loader will appear in a new window.

The Stop button in the Progress Window is used to instruct the Table Loader to abort processing. It may not
stop immediately if it is currently running an external process such as the DBMS load utility. The Table
Loader does not kill the utility; it waits for it to complete before stopping.

75

76

Batch
The Table Loader utility is called 1oadit. It is launched and managed in batch mode using the idsbatch utility.

The idsbatch is used to run user-defined jobs. The available jobs are defined in the User-Job-Definition
section of the SDF.

For more information about user-defined jobs, refer to the User-Job-Definition and User-Step-Definition
sections in the DESIGN GUIDE. For more information about the idsbatch utility, refer to the Batch Utilities /
idsbatch section in this guide.

Starting Table Loader

To start the IDT load, along with the regular parameters, create an input text file (which has the instructions
to perform the IDT load job) and pass it to the idsbatch utility. For example,

idsbatch -h%$SSA CSHOST% -id:\idt load.txt -1d:\idt load.log -2d:\idt load.err
Instructions in the idt_load.txt are,

Run user job

$omm oo
action=job-run
job-name=user-job-loadit-IDT
system-name=ssa
rulebase-name=#SSA RBNAME#
work-directory=#SSAWORKDIR#

The job-name (user-job-loadit-IDT in the above example) should be defined in the User-Job-Definition
section of the SDF. For example,

loader-definition
*
NAME=1o0ad-IDT
JOB-LIST=job-loadit-IDT
job-definition

*————

NAME=job-loadit-IDT
FILE=1f-srn-student
IDT=IDT280
logical-file-definition
*

NAME=1f-srn-student

COMMENT="Read from SRN User Source Tables"
PHYSICAL-FILE=IDT280

FORMAT=SQL

user-job-definition

*m———

COMMENT="Load SRN_STUDENT IDT"
NAME=user-job-loadit-IDT
user-step-definition

*

JOB=user-job-loadit-IDT

NUMBER=0

NAME=run-loadit

TYPE="Load ID Table"

PARAMETERS= ("Loader Definition",load-IDT)

Restarting from the beginning

If you wish to completely restart the load from the beginning, you must first Refresh the System. This can be
done using the Console Client, or by defining a User-Job and running it with idsbatch. This will remove the
IDT, IDXs, PID, Forced Link/Unlink rules and any restart information left from the previous load attempt. After
this, start the load again as documented above.

For more information, refer the Forced Link/Unlink section in this guide.

For more information on PID, refer to the Persistent-ID chapter in the MDM-RE Designer Guide.

Chapter 5: Table Loader

DBMS Mass Load Utility Name

The Table Loader will by default use the DBMS load utility that was specified at Install time and is available to
it through the environment variable SSASQLLDR.

This specification can be overridden or redefined using DATABASE-OPTIONS=IDTLOAD (). Refer to the System
Definition section of the DESIGN GUIDE for details.

Restarting

Checkpoints

The Table Loader takes checkpoints after the following major points in its processing:
e Creation of IDT

e Opening data source and creation of triggers (if necessary)

e Source data extraction and key generation

e Load of IDT

e Creation of indexes on IDT

e Analysis of IDT

e Creation, loading and analysis of each IDX

Failures that can be recovered

The Table Loader can be restarted from the last successful checkpoint after a failure, as long as the reason
for the failure has been corrected and it does not change the workflow performed by the Table Loader. For
example, if the Table Loader:

¢ ran out of room in the database and more space has been added, or
e the process was cancelled.

the Table loader can be restarted after the last successful checkpoint.

However, anything that changes the workflow performed, or the output generated by the Table Loader
invalidates the checkpoint information. For example, if you change

e the data source, or

Key-Logic and/or options, or

e the number of indexes, or

e Loader options such as Load-All-Indexes, Re-Index, IDT-Only, etc., or
e Sync-level,

the previous checkpoints are invalid and you must not restart the load.

Note: The Load button in the System Editor deletes all restart information. Do not edit a System when a
restart is pending.

How to Restart

The MDM-RE Console keeps track of the Table Loader’s status. When you click System > Load IDT, the
console will offer to restart a load if it failed last time.

To re-start, click Yes. If you wish to restart from the beginning, the partially loaded IDT and IDX must first be
deleted by running System > Refresh, followed by running System > Load IDT.

Restarting 77

Performance

78

The Table Loader uses multiple threads to overlap its work. Multiple threads are used during the data
extraction, key generation and DBMS load phases:

Reader

Reads source records from the database or input file and places them in a queue for the Key Generation
threads to process.

Key Generation

Processes the source records to create IDX rows. There are n key generation threads by default, where n
in the number of CPUs on the machine.

Writer

Writes the IDT and IDX rows to operating system files. These files are used as input to the DBMS Load
utility. IDT rows are written directly to a flat-file. IDX rows are pushed into the MDM-RE Sort utility where
they are sorted and written to an operating system file.

Loader

Threads merge sort files and run the DBMS load utilities to load the IDT and IDXs in parallel. There are m
Loader threads by default, where m in the number of CPUs on the machine.

The Table Loader can be tuned by setting the size of the Reader’s input queue and the Writer's sort buffers as
well as the number of key generation and loader threads.

Input Queue

The size of the Reader’s input queue is set with the environment variable, SSALDR RBSIZE=nnn

where nnn is the number of records. The default value is 5000.

This parameter is also used to calculate the size of the key generation output queues. They are calculated as
SSALDR RBSIZE / number of key threads * 8

In order to keep the Key Generation and Writer threads busy, the input queue must be filled as quickly as
possible.

Flat-File Input

When reading from a flat-file, the input queue can be filled very quickly, and in general, the bottleneck is in the
Key Generation and/or Writer threads. Since the Writer thread blocks for a short period during sort
processing, it is advantageous to have a large input queue (and therefore large key generation output
queues), so that key generation can proceed concurrently.

Database Input

When the Reader’s input queue is filled from records from a database, the Reader thread is usually the
bottleneck and the other threads spend time waiting for work.

Finding the bottleneck
A thread can wait for two reasons:
e waiting for work in its input queue, or

e waiting for space in its output queue (where it places its results)

Chapter 5: Table Loader

To determine how often a thread had to wait, refer to the statistics in the Table Loader log file. When each
thread ends, it reports the number of times it had to wait for work. For example,

Reader thread [1] ends. Records In 900000. Waits 960
Keygen thread [3] ends. Processed 450000. Waits 214
Keygen thread [4] ends. Processed 450000. Waits 214
Writer thread [2] Extract ends. IDT out 900000 Waits 448

The thread with the least number of "waits" is the busiest thread (bottleneck). In the example above, the Key
Generation threads were the busiest. The Reader thread spent some time waiting for the Key threads to make
room in Reader’s output queue. This is typical of a flat-file load.

When reading from a database, it in not uncommon for the Reader thread to report zero waits. That is, it was
reading records as fast as the DBMS could deliver them and the other threads were able to keep up with the
work load by keeping the input queue in a state where there was always enough room to add the incoming
records.

Tuning
The objective is to make the input queue large enough to keep it from becoming the bottleneck.

If reading from the database and the reader thread reports 0 waits, the reader queue is long enough. If
reading from a flat-file, the reader queue must be set large enough so that the key generation threads are the
busiest (least waits).

Sort Buffers

The Writer thread takes records from the Key Generation output queues and passes them to the MDM-RE Sort
routine. The sort places each row into a memory buffer. When the buffer becomes full, its contents are sorted
and the results are written to a sort work file on disk. Once all groups are sorted, the groups on disk are
merged to create a fully sorted file. The fully sorted file is used as input to the DBMS Load utility.

The performance of the sort is affected by the

e size of the sort buffer,
e number of sort threads, and
e the placement of the disk files.

These are controlled by the DATABASE-OPTIONS=IDXSORT (. . .) parameters defined in the SDF. The default
sort buffer size is 64MB.

A large sort buffer is desirable because

e there will be less sorted groups to merge (less random 1/0)
e sorted groups are written in bursts of I/0, so they create less disk contention
¢ they allow larger 1/0 buffers during the merge phase

However large sort buffers will hold more unsorted records, and therefore they will be sorted less often and
each sort operation will take longer (as compared to a smaller sort buffer).

While sorting occurs, the writer thread is blocked. This means it can not remove records from the key
generation output queues, so they in turn will block if there is insufficient room to write their results.
Therefore it is important that the key generation output queue is large enough to enable key generation to
continue while sorting occurs. Since the key generation output queue size is determined by SSALDR RBSIZE, it
must be set quite high when large sort buffers are in use.

Tuning

Allocate as much sort memory as possible. Make sure it is not so large as to cause swapping to occur, as
this negates the benefit of a memory based sort.

Performance 79

If the Key Generation threads have more waits than the writer thread, it indicates that SSALDR_RBSIZE should
be increased.

Place the sort work file on a different device to the output file to avoid disk contention.
Compress-Key-Data

The appropriate size of the Compress-Key-Data parameter must be determined. Load a representative
sample of data and use the histkg utility to determine the appropriate setting. Refer to the Compressed Key
Data section in the DESIGN GUIDE for details.

DBMS Extents

When loading large amounts of data, it is wise to allocate large extents for the IDT and IDXs. Use the
DATABASE-OPTIONS=IDT(. . .)and IDX(. . .) to allocate large extents and/or place the tables and
indexes in appropriate tablespaces.

Partitioning Data

Loading extremely large systems requires a scalable solution. In this situation, consider partitioning the data
on a logical criterion such as a range of IDs. Create one system per partition and load them in parallel.

CPU and I/0 usage
Key Threads

The Table Loader automatically creates n key generation threads, where n is the number of CPUs
available. You may override this value by setting the environment variable SSALDR_KEYTH=n.

Loader Threads

The number of Loader threads is set to the number of CPUs available on the machine. You may override
this value by setting the environment variable SSALDR_LOADTH=n.

In general, the DBMS load is an I/0 intensive operation. Creating too many Loader threads may cause 1/0
contention that could slow down the load process. Not all loader threads can be used in some cases:

1. When there is insufficient work to utilize all threads.

2. When there are only Lite Indexes left to load and the IDT has not been loaded yet.

3. When loading to a UDB database, UDB creates tablespace locks that prevent concurrent loads.
4

When loading to MSQ, all merge phases must be completed prior to starting the first mass load utilit
(bcp).

Fault Tolerance - Data Errors

80

The Table Loader will terminate with an error if the DBMS Load utility reports any errors while loading the IDT
or IDXs. This may be undesirable if the failure is caused by a small number of data errors in the source rows.

The DATABASE-OPTIONS=IDTERR is used to specify the maximum number of data errors that can occur before
the Table Loader will report a fatal error. The default value is zero.

Note: Allowing data errors may produce integrity errors in the IDT and/or IDXs. The exact nature of the
integrity error is database dependent:

e Oracle’s SQL*Loader and UDB’s LOAD utility reject erroneous rows and writes them to an error file, so they
will be missing from the IDT. However, these rows will still be present in the IDX, since IDX rows are stored
in binary form and are only interpreted by MDM-RE.

Chapter 5: Table Loader

e UDB's Import utility does not reject rows. Instead, the rows are loaded to the IDT with the incorrect column
values set to NULL.

Correcting Errors

The source data should be corrected and the IDT/IDXs reloaded. If the System is synchronized the Update
Synchronizer will automatically correct the IDT and IDXs while processing UST updates. Therefore it is
unnecessary to reload the tables.

Locales

The Table Loader parses the DBMS'’s Load Utility log file in order to determine if the load succeeded. By
default it searches for English language phrases in the log file. However, when the database server is
installed on a machine that uses a non-English locale, the DBMS Load Utility will write its log file using that
character set. In these circumstances, special environment variables must be defined to specify replacement
phrases to search for. Failure to do so will result in erroneous load failure messages reported by the Table
Loader.

Oracle

The MDM-RE Table Loader (loadit) checks the number of records loaded by SQL*Loader. To do this, loadit
parses the text of SQL*Loader’s output looking for particular strings. These strings are expected to be in
English.

When a foreign language version of Oracle is used, two environment variables must be defined to specify the
foreign language text that corresponds to the English strings that loadit is looking for.

Set the environment variables SSALDR_ORA_READ_TXT and SSALDR_ORA_REJECT_TXT to the foreign
language strings that correspond to "Total logical records read:" and "Total logical records rejected:”
messages respectively. These variables must be the complete string, up to and including the "', starting from
the left margin of the output.

Example: An extract from a SQL*Loader Log in English:

Space allocated for bind array:21248 bytes (64 rows)
Space allocated for memory besides bind array:0 bytes

Total logical records skipped: 0
Total logical records read: 6
Total logical records rejected: 0
Total logical records discarded: 0

Example: An extract from a SQL*Loader log using a non-English locale:

Ba lama dizisi i in tahsis edilen bo luk:21248 byte (64 satr)
Bellek i_in ba_lama dizisinin d_nda tahsis edilen bo_luk: 0 bytes

Toplam atlanan mantksal kayt: 0
Toplam okunan mantksal kayt: 6
Toplam edilmeyen mantksal kayt: 0
Toplam atlan mantksal kayt: 0

In this case, set the environment variables to the following:

set SSALDR ORA READ TXT=Toplam okunan mantksal kayt:
set SSALDR ORA REJECT TXT=Toplam edilmeyen mantksal kayt:

Locales 81

MSQ

The MSQ implementation of the Table Loader searches for the phrase " rows copied." as this precedes the
number of rows loaded into the table. For example, 10000 rows were loaded in the follow example:

Starting copy...

1000 rows sent to SQL Server. Total sent: 1000
1000 rows sent to SQL Server. Total sent: 2000
1000 rows sent to SQL Server. Total sent: 3000
1000 rows sent to SQL Server. Total sent: 4000
1000 rows sent to SQL Server. Total sent: 5000
1000 rows sent to SQL Server. Total sent: 6000
1000 rows sent to SQL Server. Total sent: 7000
1000 rows sent to SQL Server. Total sent: 8000
1000 rows sent to SQL Server. Total sent: 9000
1000 rows sent to SQL Server. Total sent: 10000
10000 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.): total 640 Avg 0 (15625.00 rows per sec.)

When using a non-English locale, you may provide alternate text for this phase using the server environment
variable SSALDR_MSQ_COPIED_TEXT.

82 Chapter 5: Table Loader

CHAPTER 6

Update Synchronizer

This chapter includes the following topics:
e Overview, 83

e updsync utility, 86
e updmulti utility, 90

e Restarting Automatically, 95

e Synchronization Level, 95

e Transaction File / Table, 97

¢ Integrity Checking, 100

e Performance, 101

e Timing Window, 103

Overview

The Update Synchronizer is a background process that applies updates to MDM Registry Edition Tables and
Indexes to keep them synchronized with changes to User Source Data. It can also compare the contents of
the IDT/IDX against the User Source Data and report any differences.

IDTs created with the SYNC option can be synchronized with User Source Data.
User Source Data

User Source Data is held in an SQL database but does not have to be. It might be loaded into MDM Registry
Edition from a sequential file (known as a Flat-File in MDM Registry Edition terminology).

When the User Source Data is held in a database that MDM Registry Edition can directly access using SQL,
the data are said to reside in User Source Tables (UST).

Synchronization against a UST includes the following tasks:

¢ reading transactions from an SQL accessible table known as the Transaction Table.
e accessing User Source Data with SQL

e applying updates to the IDTs and IDXs

Synchronization against a Flat-File source includes the following tasks:

e reading transactions from a Flat-File

e applying updates to the IDTs and IDXs

83

84

Supplying Transactions

Transaction Data might be read from a Transaction Table or from a Flat-File.
Source Access - Transaction Table

1. A Transaction Table is an SQL accessible table named 1DS_UPD SYNC TXN held in the source
database. It holds information about inserts, updates, and deletions from USTs.

2. Theinformation in the table records the order in which these events occurred, together with primary
key values of the affected source rows.

3. MDM Registry Edition permits the separation of USTs and IDTs on different databases. All updates
to USTs are logged in a Transaction Table residing in the source database to prevent distributed
database updates when source rows are modified.

Transactions can be added to the table in two ways:
Transactions added by Triggers

By default, database triggers are attached to the USTs by the Table Loader before source extraction. The
triggers automatically insert transactions into the Transaction Table when UST updates occur. Triggers
are a reliable method of transaction creation because the DBMS ensures that triggers are fired whenever
updates occur.

Note: Most databases do not fire triggers when the source table is maintained by using a mass-load
utility. This results in a loss of synchronization.

Oracle does not fire triggers under certain circumstances, such as the addition of records to the source
tables by SQL*Loader when using the DIRECT-PATH facility.

Microsoft SQL Server: If you are using Microsoft SQL Server DTS to bulk load records, clear the Use Fast
Load option (enabled by default) under the Options tab of the Data Transformation Task property sheet.
If the operation is performed using bcp’s BULK INSERT statement, specify the FIRE_TRIGGERS options.

Transactions added Manually

Some OEM developers prefer not to rely on triggers. Instead they want to directly insert transactions into
the Transaction Table at suitable points in their application logic. The disabling of trigger creation is
achieved by setting the Txn-Source clause to a value of MANUAL. The creation of valid transactions then
becomes the user’s responsibility.

As an aid, the Table Loader still generates trigger code but instead of attaching the triggers to the USTs,
it writes their source code to the Table Loader’s log file. The user must perform the equivalent actions as
the trigger code when inserting transactions into the Transaction Table. Any deviation from the order of
transaction creation or content will result in incorrect synchronization results.

Note: Informatica Corporation reserves the right to change the trigger format / content at any time.
Using the manual trigger option exposes you to the possibility that you might have to change your code.
Some degree of independence is afforded by not directly inserting transactions into the transaction
table. Instead, call the IDS_UPDATE_SYNC package to do this (as the automatically generated trigger
code does). The trigger code gathers the required data and passes it to the package for formatting and
insertion into the Transaction Table.

No Source Access (NSA)

When access to the source database is not possible, the synchronization method is known as No Source
Access. In this situation, the transaction data must contain all the information required to add or delete
records from the IDT without referring to any source data. In other words, the transactions must contain
complete IDT records. They can be read from either an operating system file known as the Flat-File or from a
database table (NSA Transaction Table).

Chapter 6: Update Synchronizer

Flat-File

A "flat-file" contains records in IDT format so that the Synchronizer can directly add (delete) them to
(from) the IDT. Of course, the Synchronizer also updates the IDXs to reflect the changes there as well.

If you plan to synchronize using flat files the UST must be sourced from a flat file as well. See the
sourced_from clause in the DESIGN GUIDE for the appropriate syntax. See the Transaction File section
for more details about the Flat-File layout.

NSA Transaction Table

There is an alternative to providing IDT rows in a Flat-File. The Synchronizer can also read transactions
from an SQL table known as the NSA Transaction Table. It is similar in content to a Flat-File. However, it
has the advantage that it does not need to be "closed" before passing it to the Synchronizer for
processing. See the Transaction File section for more details about the NSA Transaction Table.

Synchronizer Process

The Update Synchronizer process updates the IDT database. At startup, it connects to one of the following
components:

e All source databases used by the specified System
e A flat transaction file specified by the -f parameter
e The target database (when using an NSA TransactionTable)

It periodically polls for work by reading the transaction table on each source database. This is known as a
duty cycle. A duty cycle can begin in one of two ways:

* a specified period of time has elapsed since the last duty cycle (-tparameter), or

e anew duty cycle commences immediately (without sleeping) if the previous cycle processed any
transactions.

It processes a maximum of Rate transactions for each duty cycle for each source database before
committing the results. The default Rate of 100 can be changed using the -m parameter. This prevents any
one source database from monopolizing all of the Synchronizer’s time at the expense of less active source
databases.

If the only source is a flat transaction file, the Synchronizer shuts down automatically when it reaches EOF.

Although designed to be a near real-time process, delays in synchronization are possible for multiple
reasons:

e USTs are updated while the IDT is still being loaded (that is, the MDM-RE-ID Table and Indexes do not
exist yet)

e the USTs and IDTs are on different databases and the network link is down.
¢ the Synchronizer process is not running while updates occur.

In these situations, any updates to the USTs are logged and reapplied at a later stage (when using a
Transaction Table).

Synchronizer Utilities
You can use the following Update Synchronizer utilities:
updmulti
You can use the updmulti utility to synchronize with an IDT in the following scenarios:

e |f the IDT uses triggers as the transaction source

e If you apply updates to the IDT by using the Real Time API or the Real Time Web Service

Overview 85

The updmulti utility improves the synchronizer performance when it handles many IDT updates.
updsync

The updsync utility is deprecated, and Informatica recommends that you use the updmulti utility to
synchronize IDTs.

updsync utility

86

The updsync is named as Update Synchronizer utility. This section provides information on how to start and
stop this utility.

Starting updsync
Start the updsync utility from the Console Client, use Tools > Synchronizer or start from the command line.

If you start it from the command line, be sure to specify the -5 switch to enable communication and control
facilities from the Console.

The command uses the following syntax:

On Windows:

$SSABIN%\updsync -r<Rulebase> -p<System> -h<Rulebase Server Host>:<Port> [Optional Switches]
On UNIX:

$SSABIN/updsync -r<Rulebase> -p<System> -h<Rulebase Server Host>:<Port> [Optional Switches]

where
Rulebase

Rulebase connection string. Use one of the following formats for the rulebase connection string:
e odb:0:userid/password@service
e iir:rb
System
Name of the system to synchronize.
Rulebase Server Host:Port
Host name and port of the Rulebase Server.

If you use Rulebase Server Groups, you can replace this parameter with the -g<Rulebase Server Group
Name>, <Rulebase Connection String> parameter.

Optional Switches

The following parameters are supported:
-cMaxCycles

Specifies the maximum number of duty cycles to run before shutting down. The default is to run until
instructed to shut down, see Stopping updsync.

-elDT

Specifies that only transactions that affect the specified IDT will be processed. This permits the
synchronization of a single IDT when multiple IDTs have been defined in the System. The default (when -
e has not been specified) is to synchronize all IDTs in the System.

Chapter 6: Update Synchronizer

-fFlatFile

The name of the transaction file when using flat file synchronization.
-g<Rulebase Server Group Name>,<Rulebase Connection String>

Name of the Rulebase Server Group and the rulebase connection string.
-i[IDT,IDX]]

Check the integrity of all IDTs and IDXs in this system, or a particular IDT and IDX. See the Integrity
Checking section for details.

-k
Display erroneous records in detail. Used in conjunction with -i.

-l
Assume case of system name in txn file/table matches the case of the system name specified with the -
p parameter. When not specified, a case insensitive (more expensive) select and compare mechanism is
used. Transactions stored by triggers in the txn table insert the system name in lower case.

-mRate
Commit rate (defaults to 100).

-n
Treats the transaction file as a text file where records are separated by a newline. Without this option,
the transaction file is interpreted as a binary file.

-oTime
Collect Optimizer statistics every Time seconds.

--parallel=n

Optional. Applicable only for Oracle. Indicates the number of threads that you want to use for the
synchronization process. Use this parameter to perform parallel processing for improved performance.

-recidcache=<n>

Optional. Enables the cache logic for record identifiers to improve the performance of the updsync
utility. Configure an integer value for the cache and the recommended value is from 100 to 1000. If you
configure a higher value, the record identifier values might be wasted or not used. By default, the cache
is disabled.

-tTimeOut

Specifies the number of seconds between duty cycles. The default value is 60 seconds. A value suffixed
with ms is treated as milliseconds.

-vpsui
Verbosity (p=progress, s=stats, u=usage, i=info)
-yMax[,Wait]

Fault tolerance feature. Synchronizer automatically restarts Max times in case of failure. For more
information, see the Restarting Automatically section.

-zTxn
Transaction sequence number to delete.
-5<Job Number>:<Console Server Host Name>:<Console Server Port Number>

Required when you use flat-file synchronization. Indicates that the specified job connects to the Console
Server through the specified port number. Use this parameter to enable the progress messages and the

updsync utility 87

ability to shut down the synchronizer from the console. Specify the job number as 0 to connect to the
Console Server and register the job as an anonymous job. Other job numbers are reserved for the jobs
that the console launches.

--rbcheck

The Update Synchronizer periodically checks its communication channel to the Rulebase Server. Use --
rbcheck to stop the Update Synchronizer when the Rulebase Server stops with a hard shutdown.

The -d option specifies the time duration to retry the connection to the Rulebase Server. If the MDM
Registry Edition system exceeds the time duration to retrieve connectivity, the Update Synchronizer exits
the services.

When you start the Update Synchronizer with —rbcheck, -d, and -y options, the -d option overrides the -y
option in the case of rule base check failure.

--validate
Validates data when you synchronize the data with Identity Table (IDT) using a flat file or NSA table.

By default, the Update Synchronizer performs the following validation checks:

Field Validation

Numeric - N Checks for a numeric value that aligns to the right and has leading zeros instead of
spaces.

Character String - C Checks for spaces. Does not allow a null value (0x0000) as a padding character.

Unicode String - W Checks if the Unicode spaces (0x0020) has padding. Does not allow a null value
(0x0000) as a padding character.

Use the --validate option to validate the data. The following validations are optional as the errors
calculated here are based on percentage of occurrence:

Field Validation

Character String - C Counts the number of rows where values in column are using full buffer. Reports an error
when 99% of data meets this condition. This may not be an error and could be due to
data truncation.

Unicode String - W Counts the number of rows where values in column are using full buffer. Reports error
when 99% of data meets this condition. This might not be an error and can be due to data
truncation.

Count the number of rows where values contains invalid Unicode spaces as padding
character, that is mix of endianess 0x2000 and 0x0020. The problem is 0x2000 is also
valid Unicode, so if the 75% or more rows are ending with 0x2000 character on a big
endian system or 0x0020 on little endian system, then report it as an error.

Count the number of rows where values contains ASCII spaces instead of Unicode
spaces as padding character, that is 0x2020 is used instead of 0x0020. Again the
problem is 0x2020 is also a valid Unicode, so if the 75% or more rows are ending with
0x2020 character then report it as an error.

--se=<Search Server Host>:<Port>

Host name and port of Search Server to build and maintain persistent IDs. If you use multiple Search
Servers, use this parameter to specify the Search Server. You must use this parameter if you create

88 Chapter 6: Update Synchronizer

persistent ID before starting the Update Synchronizer. For more information about persistent ID, see
Informatica MDM Registry Edition Design Guide.

--persist=Multi-Search-Name

Specifies the name of the clustering strategy that describes how to perform an initial clustering. The
Update Synchronizer terminates after the initial clustering is created. Do not specify this parameter
during normal synchronization. For more information about persistent ID, see Informatica MDM Registry
Edition Design Guide.

--local_flul_cache=n

Specifies the system to use local Link and Unlink rule cache when n=1. If the value is set to 0, then it
uses the search server cache. The default value is 1. For information about the Forced Link and Unlink
rule, see Informatica MDM Registry Edition Design Guide.

Output goes to the console, and you can redirect it to a log file if required. On Windows, run the following
command to start the updsync utility:

start /min $SSABIN%\updsync -rodb:0:userid/password@service -p<System> -vp
-h%SSA RBHOSTS%

The System parameter indicates the name of the system that you want to synchronize, and the odb:
0:userid/password@service string indicates the rulebase connection string. You can also use iir:rb as the
rulebase connection string, which does not expose the password on the command line.

Stopping updsync
You can stop this utility using the console or through script.
Via Console

You can shut down the Update Synchronizer if you started it from the Console or from a command line with
the -5 switch.

The Console sends a message to the Synchronizer to stop when the next duty cycle begins. The Synchronizer
will acknowledge the receipt of the shutdown request by displaying a progress message and will shutdown in
due course.

Via Script

Alternatively, you may schedule the Synchronizer to shut down by running the following script to add a
Shutdown Request to the transaction file. It will not shut down until it processes the request. This may take a
while if there is a backlog of transactions to process. Therefore it is recommended that the Synchronizer be
shut down via the Console.

For Win32:

$SSABIN%\syncstop System Uid Pwd Svc [DBType]
For Unix:

$SSABIN/syncstop System Uid Pwd Svc [DBType]

where
System

The name of the System being synchronized.
Uid
The SSA userid defined for UST database.

updsync utility 89

Pwd

The password for the SSA userid defined for UST database.
Sve

The name of the UST database.
DBType

An optional database type of the UST database specified when the environment variable SSA_DB_TYPE
is not set. Specify ora, udb, myg or msq.

The Update Synchronizer will shut down when the next duty cycle begins.
UDB/DB2: The Win32 syncstop script must be run from a DB2 Command Window.

Note: The syncstop script cannot be used to stop a synchronizer that is processing transactions from the
NSA table. To stop a synchronizer that is processing transactions from the NSA table, use one of the
following options:

e The Stop button on the console.
e The --rbcheck switch.

e The multistop utility. You can use this option only if you start the updsync utility with the ssa_cszost
parameter and the Console Server runs.

e The stop record that can stop the updsync utility after processing all the records. For example, the
following sample shows C as the stop record:
updsync> Shutdown requested
updsync> 9999999 -1 C 00000000 0 0O O OO OOO0O " "
updsync> Shutdown: 5985 transactions: 0 failed, 0 warnings
{{updsync> Child exiting: reason=0 }}
{{ 0:0059 MAO213 030000 2021-07-02 18:09:21.506451 updsync> IDX-Usage: IDX usage
summary: IDXNSA}}

Server Shutdown

MDM Registry Edition servers do not shut down if the clients are attached, unless you use the hard shutdown
option.

updmulti utility

90

This section provides on how to use the updmulti utility.
Prerequisites

updmulti is a client of the Real Time Web Service. Therefore, the Synchronization Server must be running and
the Real Time Web Service must be configured appropriately for the IDT to be synchronized. See the Enabling
the Real Time Web Service for details.

Starting updmulti
You can start updmulti from the Console Client by selecting Tools > Synchronizer.

You can specify the --multi and --se= options in the Extra Options field of the Update Synchronizer dialog.
The --se= parameter nominates the Search Server to use.

Chapter 6: Update Synchronizer

@ informatica IR - U pdate Synchronizer

Dty Cycle Frequency (secands)

Waximum Duty Cyeles

Commit Rate | 100

Collect Optirmizer s1atistics D Freguency (seconds) I:I

Transaclion File | |

Extra Options |——mu.l.ti ——se=lncalhost:1566| |

[] Transaction File is Tewt

I[Ok]I Cancel

Alternatively, you can launch it from the command line. If you use the command line method, be sure to
specify the -5 switch to enable communication and control facilities from the Console.

The command uses the following syntax:

On Windows:

$SSABIN%\updmulti -r<Rulebase> -p<System> -h<Rulebase Server Host>:<Port> -e<IDT>
--se=<Search Server Host>:<Port> [Optional Switches]

On UNIX:

$SSABIN/updmulti -r<Rulebase> -p<System> -h<Rulebase Server Host>:<Port> -e<IDT>
--se=<Search Server Host>:<Port> [Optional Switches]

where
Rulebase

Rulebase connection string. Use one of the following formats for the rulebase connection string:

e odb:0:userid/password@service

e iir:rb
System

Name of the system to synchronize.
IDT

Specifies the IDT that you want to process. Ensure that the IDT is available in the specified system.
Rulebase Server Host:Port

Host name and port of the Rulebase Server.

If you use Rulebase Server Groups, you can replace this parameter with the -g<Rulebase Server Group
Name>, <Rulebase Connection String> parameter.

Search Server Host:Port

Optional. Host name and port of Search Server that you use to run searches. If you use multiple Search
Servers, use this parameter to specify the Search Server.

updmulti utility 91

92

Optional Switches

The following parameters are supported:
-cMaxCycles

Specifies the maximum number of duty cycles to run before shutting down. Not relevant for Flat-File
input. The default is to run until instructed to shut down (see Stopping updmulti).

-fFlatFile

The name of the transaction file when using flat file synchronization.
-g<Rulebase Server Group Name>,<Rulebase Connection String>

Name of the Rulebase Server Group and the rulebase connection string.
-i[IDT,IDX]]

Check the integrity of all IDTs and IDXs in this system, or a particular IDT and IDX. See the Integrity
Checking section for details.

-k
Display erroneous records in detail. Used in conjunction with -i.

-l
Assume case of system name in txn file/table matches the case of the system name specified with the -
p parameter. When not specified, a case insensitive (more expensive) select and compare mechanism is
used.

-mRate
Commit rate (defaults to 100). This parameter is relevant for flat-file synchronization only. Determines
how frequently 2 phase commit records are saved. To set the commit rate for Synchronization Server,
add the txn_commit rate parameter to its configuration file. For more information, see “Configuration
Settings” on page 151.

-n
Treats the transaction file as a text file where records are separated by a newline. Without this option,
the transaction file is interpreted as a binary file.

-oTime
Collect Optimizer statistics every Time seconds.

-Sn
Disconnects the connection to the source database and reconnects to it after the specified number of
duty cycles.

-tTimeOut
Specifies the number of seconds between duty cycles. The default value is 60 seconds. A value suffixed
with ms is treated as milliseconds.

-vpsui
Verbosity (p=progress, s=stats, u=usage, i=info)

-yMax[,Wait]

Fault tolerance feature. Synchronizer automatically restarts Max times in case of failure. For more
information, see the Restarting Automatically section.

Chapter 6: Update Synchronizer

-zTxn
Transaction sequence number to skip.
-ZTxn
Transaction sequence number to delete.
-5<Job Number>:<Console Server Host Name>:<Console Server Port Number>

Required when you use flat-file synchronization. Indicates that the specified job connects to the Console
Server through the specified port number. Use this parameter to enable the progress messages and the
ability to shut down the synchronizer from the console. Specify the job number as 0 to connect to the
Console Server and register the job as an anonymous job. Other job numbers are reserved for the jobs
that the console launches.

--offset=nnn

This is an optional parameter which applies to flat-file processing only. This number, if present, is added
to the sequence number of each record processed. May be used to ensure global uniqueness of flat-file
transactions.

--parallel=n

Optional. Applicable only for Oracle. Indicates the number of threads that you want to use for the
synchronization process. Use this parameter to perform parallel processing for improved performance.

--rbcheck

Requests periodic checks of Rulebase Server connectivity and to abort when inaccessible. Under normal
circumstances, updmulti accesses the RB Server very seldom, and is therefore unaware that it may have
stopped. This option is useful to automatically stop updmulti when the servers have been stopped with a
hard shut down.

--validate
When synchronizing data using flat file or NSA table to Identity Table.

By default, updmulti performs the following validation checks:

Field Validation

Numeric - N Checks for a numeric value that aligns to the right and has leading zeros instead of
spaces.

Character String - C Checks for spaces. Does not allow a null value (0x0000) as a padding character.

Unicode String - W Checks if the Unicode spaces (0x0020) has padding. Does not allow a null value
(0x0000) as a padding character.

updmulti utility 93

94

Use the --validate option to validate the data. The following validations are optional as the errors
calculated here are based on percentage of occurrence:

Field Validation

Character String - C Counts the number of rows where values in column are using full buffer. Reports an error
when 99% of data meets this condition. This may not be an error and could be due to
data truncation.

Unicode String - W Counts the number of rows where values in column are using full buffer. Reports error
when 99% of data meets this condition. This may not be an error and could be due to
data truncation.

Count the number of rows where values contains invalid Unicode spaces as padding
character, that is mix of endianess 0x2000 and 0x0020. The problem is 0x2000 is also
valid Unicode, so if the 75% or more rows are ending with 0x2000 character on a big
endian system or 0x0020 on little endian system, then report it as an error.

Count the number of rows where values contains ASCII spaces instead of Unicode
spaces as padding character, that is 0x2020 is used instead of 0x0020. Again the
problem is 0x2020 is also a valid Unicode, so if the 75% or more rows are ending with
0x2020 character then report it as an error.

When you use the --validate option and it results in errors, the data cannot not be rolled back. It is
recommended to use this option in a test environment. Ensure that the input data has correct Unicode
spaces.

--reader_sz=nnn
Size of reader circular buffer size. The default value is 5000.
--se=<Search Server Host>:<Port>

Host name and port of Search Server to build and maintain persistent IDs. If you use multiple Search
Servers, use this parameter to specify the Search Server. For more information about persistent ID, see
Informatica MDM Registry Edition Design Guide.

--persist=Multi-Search-Name

Specifies the name of the clustering strategy that describes how to perform an initial clustering. The
Update Synchronizer terminates after the initial clustering is created. Do not specify this parameter
during normal synchronization. For more information about persistent ID, see Informatica MDM Registry
Edition Design Guide.

Output goes to the console, and you can redirect it to a log file if required. On Windows, run the following
command to start the updmulti utility:

start /min $SSABIN%\updmulti -rodb:0:userid/password@service -p<System> -vp
-h%SSA RBHOST% --se=%SSA SEHOST$

The System parameter indicates the name of the system that you want to synchronize, and the odb:
0:userid/password@service string indicates the rulebase connection string. You can also use iir:rb as the
rulebase connection string, which does not expose the password on the command line.

Stopping updmulti

This section describes about how to stop the updmulti utility.

Via Console

updmulti can be shut down from the Console if it was started from either

e the Console, or

Chapter 6: Update Synchronizer

e from a command prompt and the -5 switch was specified.

The Console sends a message to updmulti to c"stop when the next duty cycle begins". updmulti will

acknowledge the receipt of the shutdown request by displaying a progress message and will shutdown in due
course.

Server Shutdown

The synchronizer periodically checks its communication channel to the Rulebase Server when started with
the --rbcheck switch. If the Rulebase Server stops for any reason (for example, due to a hard shutdown), the
Update Synchronizer terminates with an error condition.

Note: MDM Registry Edition servers do not shut down if the clients are attached, unless you use the hard
shutdown option.

Restarting Automatically

The Synchronizer has the ability to restart itself automatically in case of failure. This feature should be used
carefully as it is undesirable to attempt a restart when the previous failure was caused by as a non-transient
error, such as a database instance failure or a Tablespace running out of room.

Automatic restarts are enabled using the -y switch:
-yMax[,Wait]

where

Max

This is a positive number and represents the maximum number of restart attempts. A value of zero is treated
as "unlimited". The default value is 100.

Wait
This is optional and represents the number of seconds to wait before attempting a restart. This can be used

as a throttling mechanism to prevent many restart attempts in quick succession. The default value is 5.

We recommend the values -y100, 5. If the Update Synchronizer fails to restart after the specified number of
retries, the error is unlikely to be transient and requires investigation and correction.

Synchronization Level

The Synchronizer operates most efficiently when the nominated primary keys (PKn notation) are guaranteed
to be unique. It is advisable that the User Source Tables are defined with integrity constraints to ensure this
fact. However, in cases where this is not possible, a Synchronization Level can be specified which allows the
Synchronizer to tolerate, or even expect duplicates.

Restarting Automatically 95

96

The following synchronization levels may be specified:

Synchronization Level Check on Load Check on Sync On Sync Error. . .
REJECT_DUPLICATE_PK Yes Yes Stop / Ignore
REPLACE_DUPLICATE_PK Yes Yes (NSA only) Replace row
WARN_DUPLICATE_PK No Yes Issue Warning
ALLOW_DUPLICATE_PK No No N/A

The default level is REJECT _DUPLICATE PK. This specifies that an IDT cannot be loaded when duplicates are
present. Rows containing duplicate PKs will not be added to the IDT, but may exist on the UST (where the
Synchronizer has no control over them). Customers requiring duplicate protection of their source tables
should use database constraints to prevent creating duplicates. The synchronization process operates most
efficiently in this mode.

If only a few duplicates are present and/or you do not want the Synchronizer to stop when a duplicate is
detected, use WARN DUPLICATE_PK. This setting will process transactions less efficiently than

REJECT DUPLICATE PK but will produce correct results even when duplicates are present. In cases where a
duplicate is detected it will issue a warning and continue.

If the PK is known to be non-unique specify ALLOW DUPLICATE PK. This informs the Synchronizer to use
algorithms that produce correct results when duplicates are present. However, this mode is less efficient
than REJECT DUPLICATE PK. This mode must be used when the PK may contain NULL values.

The synchronization level REPLACE DUPLICATE PK can only be used in conjunction with an NSA transaction
source. An add transaction (type 'A’) containing a duplicate PK value will replace the existing IDT row with the
new value from the NSA Transaction Table.

Reject_Duplicate_PK

Correct synchronization relies on the ability to uniquely identify User Source PKn Tables records. A User
Source Table Definition nominates the source table column(s) that are used to create a unique primary key
[with the (Pkn) notation].

When loading the IDT, the host DBMS will check the PK columns for unique values. The MDM-RE Table
Loader will fail with an appropriate error messages if the USTs contain any duplicates. Therefore it is
advisable that User Source Tables are defined with constraints to avoid this potential problem.

Without constraints on the columns, it is possible for a user transaction to create a duplicate PK value via an
insert or update to a UST. The Synchronizer will detect this situation when attempting to add the same record
to the IDT. A new row with a duplicate PK will not be added to the IDT.

If the new "duplicate” row is not identical to an existing row (excluding PK values), the Update Synchronizer
reports the situation with an error message. A sample error message is as follows:

constraint violated by insert/update to UST

IDT "IDS 01 IDTOL’

UST Key field(s): SSA09.TESTX01A.EMPNO

PK1 99’
Note: Identical duplicate rows are not added to the IDT and not reported as duplicates, as there are some
situations where a specific transaction order may produce rows that appear to be duplicates when in fact,
they are not.

The example above tells us that a transaction was applied to an IDT called 1DS_01 1DT01. The PK field for
this IDT contains values extracted from a User Source Table column called SSA09.TESTX01A.EMPNO and we
have attempted to add a duplicate value of 99.

Chapter 6: Update Synchronizer

The Synchronizer will roll back the transaction(s) updated during the current duty cycle and terminate with
the above message. Manual intervention is required to

e repair the UST integrity problem (remove the duplicate), and

¢ inform the Synchronizer to delete the problem transaction.
Repairing the UST
Removing Duplicates

This section is relevant to Synchronization Level REJECT DUPLICATE PK. The record containing the duplicate
primary key must be removed. This is a user responsibility. Once again, this problem could have been
prevented if the UST contained DBMS integrity constraints to enforce the uniqueness of the PK column(s).

After deleting the duplicate record, you must update the original (correct) record to force the Synchronizer to
re-index the IDT using the values in the correct record. This is necessary because the deletion of the
duplicate generates a trigger that will delete all IDT records with this key. The subsequent update will result in
the correct record being added to the IDT.

When updating the correct record, be sure to update a column that is present in the IDT, that is a column from
the UST that appears in the IDT’s sourced_from clause. This is required because update triggers are only
fired when a sourced_from column is modified.

Note: If you do not update the correct record after deleting the duplicate, the IDT will not be correctly
synchronized with the UST.

Restarting the Synchronizer
This section is only relevant to Sync Level REJECT DUPLICATE PK.

It is not possible to simply restart the Synchronizer because the transaction which attempted to add a
duplicate is still in the 1Ds_UPD_SyNC_TxXN table and will be reprocessed. You must inform the Synchronizer to
delete this transaction by using the -z switch.

The recommended procedure is to start the Synchronizer with the -m1 parameter. This will commit updates
after every successful transaction is processed and rollback/terminate when the "duplicate transaction” is
reprocessed leaving it at the head of the transaction queue.

Then start the Synchronizer with the following parameters to delete the "duplicate transaction”, commit it and
shutdown the Synchronizer:

-zTxn -ml -cl

where Txn is the transaction sequence number of the failed transaction. You can now restart the
Synchronizer with its normal parameters.

Transaction File / Table

In the cases where MDM Registry Edition cannot create triggers on the USTs (for example, when the source
database is not supported), or a flat file was used as input to the Table Loader, update transactions must be
provided in either a "flat file" or an NSA Transaction Table.

Flat-File Layout

The "flat file" is a binary file containing fixed length records (with no newline separators). It must start with a
Control Record. The Control Record is immediately followed Transaction Records. Each Transaction Record
consists of a fixed length header followed by an IDT record.

Transaction File / Table 97

Alternatively, the transaction file can be treated as a text file when the Synchronizer is started with the -n
switch. In text mode, the Control Record and all Transaction Records must be separated by a newline
character. Text mode is only suitable when the IDT records do not contain any binary data that may be
confused with a newline. A binary input file is the preferred and safest option.

Control Record

Offset Length Description

0 4 Version

4 32 System Name

36 32 Time Stamp

68 64 Reserved for future use
Version

Defines the version of the Control Record. The only valid value is "0001".
System Name

Defines the System that these transactions belong to. Only one System per transaction file is permitted.
Time Stamp

An alphanumeric string containing the date and time when the file was created. The Synchronizer saves
this field in its restart information. Format is "YYyYMMDD HH:MM:SS" without the quotes.

Reserved
This is not used currently.

Transaction Record

Offset Length Description

0 10 Sequence Number
10 1 Operation Code
1 32 IDT Name

43 variable IDT Record

Sequence Number

The Transaction Sequence Number represented by printable decimal digits. The input file must contain
ascending sequence numbers (right justified and zero filled) starting from 0000000001, without any gaps
in the sequence numbers.

Operation Code

Defines the operation to be applied. Valid values are ‘A’ meaning add this IDT record, and ‘D’ meaning
delete this IDT record.

98 Chapter 6: Update Synchronizer

IDT Name

The name of the IDT that this record belongs to. This is the fully decorated table name as it appears on
the target database. For example an IDT named 1DT-99 in the definition file stored on dbid 01, would be
called IDS 01 IDT 99.

IDT Record

The IDT record in the MDM Registry Edition database format. Fields must be in the same order as
defined in the UST-Definition Section of the SDF file. For more information about the field types, see
Informatica MDM Registry Edition Design Guide.

Flat-File Rules

The transaction file must be closed by the creating application prior to being used as input to the
Synchronizer. The content of the transaction file must not be changed once the update Synchronizer has
started using it. Once all transactions have been processed successfully, as verified by inspection of the
Update Synchronizer output, the file might be deleted.

The Synchronizer uses the Transaction File Name appended to the System Name to store restart information
(like the Time Stamp). When the Synchronizer restarts, it checks the Time Stamp in the Control Record
against the stored value. If they differ it reports a "loss of synchronization error" and aborts. This is because
the contents of the input file has changed since it was first used.

Restart information is never removed. This is a safeguard against accidental reapplication of the same
transaction file. If this were to occur, the Synchronizer will recognize that it has completed processing the file
and ignore the transactions.

Since restart information is not removed, Transaction File Names can not be reused. The best approach is to
generate file names from the current date and time such that each one is unique. This also helps to identify
which one is to be applied next (as transactions must be applied in chronological order).

There is no operation code for an update. Updates are processed using the trigger paradigm. That is, an
"update" consists of two transactions; a delete transaction (containing a copy of the IDT record prior to the
"update"), followed by an add transaction (containing a copy of the IDT record after the "update").

Special handling is required for non-unique PKs. The Synchronizer will delete all records with the same PK
value when processing a Delete transaction (as it does not distinguish between them). The user must re-add
other records that should have not been deleted (if desired).

The IDT layout must be specified in the UST-Definition Section of the SDF file and not the Files- Definition.
The latter is used for unsynchronized flat-file input. Refer to the User Source Table section of the DESIGN
GUIDE.

NSA Transaction Table

NSA is an acronym for No Source Access. The NSA Transaction Table (NSATT) is used to store transactions
pertaining to a source database to which we have no source access (non-SQL or unsupported DBMS).

The transaction data contained within the NSATT is similar to a Flat-File. It contains the following columns:

Column Max Length Description
SYSTEM 32 System name in lowercase.
SEQ 32 Transaction sequence.

Transaction File / Table 99

Column Max Length Description

oP 1 Operation code. Use one of the following values:
- A. Adds the record.

- D. Deletes the record.

- S. Shuts down the Synchronization Server.

IDT_NAME 32 IDT name.

IDT_REC DBMS Dependent IDT record.

The System Name, Operation Code, IDT Name, and IDT Record are identical to those already described in the
Flat-File Layout.

Transaction Sequence uses different semantics. In the NSATT it is not a number but an alphanumeric string.
SEQ is implemented as a VARCHAR column and therefore its ordering is determined by the collation order of
the DBMS.

It is critical that the sequence number of a newly added row is greater than the sequence number of all rows
already in the table. Failing to do so may lead to incorrect synchronization results.

Set the 0P column value to s to stop the Synchronizer that processes the NSATT. To stop the Update
Synchronizer successfully, ensure that the other columns in NSATT has valid values.

Note: The syncstop script cannot be used to stop a Synchronizer that is processing the NSA TT. The
supported mechanisms are the Stop button on the Console and setting the op column value to s in the
NSATT.

Integrity Checking

100

The Update Synchronizer can be used to check the integrity of the IDT. When started with the -i switch, the
Update Synchronizer compares the current contents of the User Source Tables against the current state of
the IDT and report any differences. It can also check the integrity of the IDT vs IDXs.

This process does not take into account the following anomalies that might cause an incorrect error report:
e unapplied transactions held in the Transaction Table

e updates to the UST that have occurred while opening the cursors that reads it.

Therefore any errors reported may be transient. The best way to check is to run the Update Synchronizer to
process all known updates and run the integrity checker a second time to see if the errors are transient.

Note: The IDT vs IDX integrity check confirms that every IDT row has at least one IDX entry. If the IDX has
been built with the NO-NULL-KEY option, some IDT rows may not have a corresponding row in the IDX as they
generated NULL keys. The integrity checker flags this case as an error when in reality no error exists.

Syntax
The integrity checker is invoked with the -i switch:
-i[IDT[, IDX]]

If -1 is specified without an IDT nor IDX name, it will check all IDTs within the System, and all IDXs against
each IDT.

If an IDT name is provided, that specific IDT will be checked against all IDXs.

Chapter 6: Update Synchronizer

If an IDT and IDX name is provided, only that specific IDT/IDX combination will be checked.

The optional -k switch can be used to display detailed (field level information) for any erroneous records.

Performance

Update Synchronization is inherently expensive because MDM-RE denormalizes the USTs in order to provide
very fast search performance. The disadvantage is that updates are slower. Conversely, had MDM-RE not
denormalized the data, the searches would be much slower and updates would be faster. This is a tradeoff in
the design.

The following sections describe methods to optimize update performance.
Overlap Processing

Run one Synchronizer per IDT so that update processing is overlapped for multiple IDTs in a System (-e
switch).

IDT/IDX Design

The design of each IDT directly impacts the Synchronizer’'s performance. It can be improved by minimizing
the use of expensive features where possible:

e reduce the amount of denormalization (the number of joins and especially the number of one:many joins).
e use Flattening where possible.
e avoid non-unique PKs

¢ reduce the size of the IDT and IDX records by ensuring that only those columns required for key
generation and matching are sourced from USTs.

¢ reduce the number of keys per IDT record (standard or limited key options)
¢ do not use the Auto-Id feature for synchronized tables
Compressed Key Data

Specify a Compress-Key-Data value for each IDX that minimizes the number of database blocks required to
store it. This will improve the performance of searching and updating the IDXs. A poorly selected value for
Compress-Key-Data can easily double or triple the amount of I/0 required.

Use the histkg utility to analyze the report file created by the Table Loader. For each IDX, determine the
segLen value that minimizes DB-blocks. This usually occurs when segs/key is a multiple of a whole number.
The best value occurs when segs/key is near 1.0.

Refer to the Compressed Key Data section in the DESIGN GUIDE for details.
Network Issues

Reduce network overhead by running the Synchronizer and the Rulebase Server on the same machine as the
database server. If this is not possible, tune your network parameters to optimize throughput.

SQL*Net / Net8

The SDU parameter controls the network packet size. The default value of 2048 is slightly too small to hold a
complete Transaction-Table record (2178 bytes). This causes packet fragmentation as the Server must send
two packets to the Client (Update Synchronizer) to return each transaction.

Increase the SDU to at least 2200. A value of 3000 is recommended for Ethernet networks, as it is a multiple
of Ethernet frame size (1500 bytes).

Performance 101

102

Change $ORACLE_HOME/network/admin/listener.ora (on the server) to include the SDU parameter and stop/
start the listener using the Isnrctl utility. For example:

SID LIST LISTENER =
(SID LIST =

(SID_DESC =
(SDU=3000)
(GLOBAL DBNAME= ssal6.)
(ORACLE _HOME= /home/oracle/u0l/app/oracle/product/8.0.5)
(SID NAME = dba)

You must also change the client side configuration file to specify a matching SDU, as the SDU is negotiated
down to the smallest value when the client connects to the server. Change $ORACLE_HOME/network/admin/
tnsnames.ora to add the SDU parm. For example:

ssal6t =

(DESCRIPTION =
(SDU=3000)
(ADDRESS = (PROTOCOL= TCP) (Host= ssal6) (Port= 1521))
(CONNECT DATA = (SID = dba))

)

However on fast (low traffic) networks, this will only provide a minor performance boost.

A major improvement comes from specifying the TCP parameter NoDelay (assuming that TCP/IP is the
protocol being used). This tells TCP to flush buffers without waiting for them to fill. Modify (or create)
SORACLE HOME/network/admin/protocol.ora and add a line to it that specifies, tcp.nodelay=yes

Optimizer Statistics

Ensure that DBMS optimizer statistics are up-to-date. This is especially important if a batch job has added
many new transactions to the Synchronizer’'s Transaction Table. Use the SQL ANALYZE command to update
the Optimizer's statistics, or use the Synchronizer’s -o switch to regularly update statistics automatically.

analyze table ids_upd sync txn estimate statistics

The USTs and IDT/IDXs should also be analyzed regularly. The Table loader will automatically analyze the
IDTs and IDXs after they have been loaded.

Database Table Maintenance

You might want to periodically run the ANALYZE TABLE/INDEX queries to improve the database performance.
You can run the ANALYZE, UPDATE STATISTICS, and RUNSTATS queries as required.

Based on your database, you can run the following queries after connecting to your database:

e |IBM Db2. RUNSTATS ON TABLE <Object Name>

e Oracle. ANALYZE <Object Type> <Object Name> ESTIMATE STATISTICS

e MSSQL. ANALYZE LOCAL TABLE <Table Name> Or UPDATE STATISTICS <Table Name>

Commit Rate

An appropriate commit rate needs to be selected by tuning.

In general, a high commit rate will provide better transaction throughput. However, too high a rate may cause
the database to run out of rollback space in a multi-user update environment, and updated records won't be
visible to searches for long periods. A database failure that interrupts Synchronization processing will mean
more work will be repeated when the Synchronizer is restarted.

A very low commit rate will cause frequent database I/0 that slows down the Synchronization process.

Chapter 6: Update Synchronizer

The commit rate must tend toward a low value when multiple Synchronizers are running simultaneously
against the same database. High commit rates will create contention for the table that allocates the unique
record numbers for each IDT, causing lots of database 1/0 to maintain "read consistency".

Flat-File Synchronization

The two-phase commit table (IDS_2pC) is used to record the file-names of the files that have been applied.
File-names are not removed from this table, so that if an input-file is accidentally reused, the situation will be
recognized and the transactions will be ignored.

The consequence of this is that the table will grow at the rate of one row per input-file processed. The table is
not normally indexed in order to optimize update performance when very few rows are present (as is the case
for user-source synchronization). As the number of rows grows, performance will slowly degrade. To avoid
this problem, create an index on the table:

CREATE INDEX IDS 2PC I ON IDS 2PC (ID);
ANALYZE TABLE IDS 2PC ESTIMATE STATISTICS;

Timing Window

When the MDM-RE Table Loader creates an IDT it creates triggers on the User Source Tables, commits them
and opens a cursor to extract data from the USTs. A very small timing window exists between the commit
and the opening of the cursor.

If a user transaction starts, adds a new record and commits inside this window, the trigger is fired and an
"add" transaction is logged to the transaction table. The cursor used to unload the UST records will also see
this new record so it is added to the IDT as part of the initial load process. When the Synchronizer starts
processing transactions and attempts to "add" the same record it will detect that the record already exists
and will terminate with a PK violation error.

In the unlikely event that this happens, you may delete the transaction using the steps outlined in the
Repairing a UST section.

Timing Window 103

CHAPTER 7

Globalization

This chapter includes the following topics:
e Overview, 104

e Character Sets, 104

e Database Support for UNICODE, 105

e Binary Mode Utilities, 107

e Loading IDTs, 108
e MDM-RE Clients, 109

e Debugging a Search, 110

e Miscellaneous Tips, 111

Overview

This chapter deals with MDM-RE issues relating to multiple languages, character sets and UNICODE.

Each DBMS that MDM-RE supports handles those issues differently. This chapter discusses the issues in a
general way first and then presents DBMS specific issues.

Character Sets

A character set is used to represent all characters (or code points) in a language or script. The first
character sets were single byte, meaning that they could only define a maximum of 256 characters.

A code point is simply a binary value that represents a character in a character set. ASCIl and EBCDIC are
examples of two single byte character sets that use different code points to represent the same set of
characters. For example, the code-point 0x41 represents the ASCII letter ‘A’ but in EBCDIC, the same letter is
represented by 0xC1.

Some complex scripts contain more than 256 characters, so they need to use multiple bytes to represent a
single character. The most common multi-byte character set is UNICODE.

The characters in a character set may be encoded in many ways. For example, a single byte character set
could use a 7-bit or 8-bit encoding. A multi-byte character set could use a fixed width, variable width, or shift-
sensitive variable-width encoding.

104

UNICODE Encoding
UNICODE supports three main encodings:
UCs-2 a 2 byte fixed width encoding.

UTF-16a 2 byte fixed width encoding. In order to increase the range of characters that can be represented, a
character may be followed by a supplemental character increasing the length to 4 bytes.

UTF-8 a variable length encoding ranging from 1 to 4 bytes in length. 7-bit ASCII characters are represented
by a single byte in UTF-8 and use the same code-points. Therefore ASCII characters are indistinguishable
from their UTF-8 encoded, Unicode counterparts.

Operating System Character Set

The operating system must have the appropriate character sets installed to be able to render the characters
properly. Install a native language version of the operating system, or on Win32 install the English version
with additional character sets.

Microsoft Windows

On Windows operating systems your Locale determines the ANSI character set used for rendering text in GUI
applications. The corresponding OEM character set is used by console applications (those that run in a DOS
Box). For example, U.S. English uses ANSI code page 1252 and OEM code page 437.

The Locale also determines the way numbers, currency, time and dates are displayed. The Locale is set using
the Regional Options/Setting dialog, which is accessible from the Control Panel.

Note: The Input Locale (as distinct from the Locale) determines your keyboard to character setting mapping.
MS-DOS Box

In order to render characters using different Locales from within an MS-DOS Box, select a True Type font.
Raster Fonts cannot be used.

OEM code pages can be set explicitly with the chcp utility from within a DOS Box. For example:
C:\>chcp /?
Displays or sets the active code page number.
CHCP [nnn]
nnn Specifies a code page number.
Type CHCP without a parameter to display the active code page number.

C:>chcp
Active code page: 437

Rendering CJK with English Locales

A useful tool for displaying CJK characters on an English/Western version of Windows is NJWIN’s CJK
Viewer.

Database Support for UNICODE

There are two main ways that databases support UNICODE characters:

Database Support for UNICODE 105

Database Level Some databases store all columns of all tables as UNICODE. This allows multiple database
clients to use different character sets and have their data stored without loss since UNICODE is a superset of
all client character sets.

Column Level Some databases allow individual columns in a table to be defined as UNICODE, while others
are not. The UNICODE data types are usually preceded by the letter ‘N’ (for National). For example NCHAR,

106

NVARCHAR, NCLOB, etc.
Oracle

Oracle Database

UNICODE support for Oracle databases may be implemented in two ways by defining:

¢ the database character set as UTF8 so that UTF-8 encoded characters may be stored in all CHAR data

types (CHAR, VARCHAR?2, CLOB), or

¢ individual columns as UNICODE data types (NCHAR, NVARCHAR2, NCLOB). This allows you to add
UNICODE support incrementally for only some specific columns in your tables.

Oracle databases define two character sets when the database is created:

e database character set (NLS_CHARACTERSET), and

e the character set used for NCHAR or NVARCHAR columns (NLS_NCHAR CHARACTERSET). Valid values are

UTF8 or AL16UTF16.

The following SQL*Plus script can be used to determine how the database was configured:

select parameter, substr(value,1,20) from NLS DATABASE PARAMETERS;

PARAMETER

NLS_LANGUAGE
NLS_TERRITORY
NLS_CURRENCY

NLS_ISO CURRENCY
NLS_NUMERIC CHARACTERS
NLS_CHARACTERSET
NLS_CALENDAR
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_SORT BINARY
NLS_TIME FORMAT
NLS_TIMESTAMP FORMAT
NLS_TIME TZ FORMAT
NLS_TIMESTAMP TZ FORMAT

SUBSTR (VALUE, 1, 20)

AMERICAN

$

I
UTF8
GREGORIAN
DD-MON-RR
AMERICAN

HH.MI.SSXFF AM

DD-MON-RR HH.MI.SSXF
HH.MI.SSXFF AM TZH:T

DD-MON-RR HH.MI.SSXF

NLS_DUAL_CURRENCY $

NLS_COMP BINARY
NLS_NCHAR CHARACTERSET UTF8
NLS_RDBMS_VERSION 8.1.7.0.0

18 rows selected.

Oracle Client

Although Oracle can store data as UNICODE characters, the client application may not be aware of this
because data are converted upon retrieval. The environment variable NLS_LANG defines the character set of
the database client. This character set is not necessarily UNICODE, although UNICODE is a valid option.

NLS_LANG has the format x_Y.z where
X is the value of NLS_LANGUAGE
Y is the value of NLS_TERRITORY, and

z is the value of NLS CHARACTERSET

Chapter 7: Globalization

Multi-byte data in a non-UNICODE column

It is possible to store multi-byte characters in a non-UNICODE database and/or column. Data stored in CHAR/
VARCHAR columns is normally translated between the client and server’s character sets when transferred
between client and server. But if the client and database are configured to use the same character set, no
conversion is performed. This makes it possible to store multi-byte characters within CHAR/VARCHAR columns
without interference from the DBMS.

Microsoft SQL Server

A column defined as a non-UNICODE data type can only store a single code page (character set). The code
page is determined by the collation of the column defined at table creation time, or if none was specified, the
collation of the database.

Columns defined using UNICODE data types such as NCHAR and NVARCHAR can store/retrieve UNICODE
characters. They always use an UCS-2/UTF-16 encoding. MSQ database clients work directly with "raw"
UNICODE characters, without translation to a client character set.

uDB

For UDB, the database must be created as a UNICODE database. By using code set utf-8, Unicode data will be
stored in UTF-8 form.

The easiest way to check that this is the case is with the following command:
db2 get database config for mydb

The response will be something like:

Database Configuration for Database mydb

Database configuration release level = 0x0a00

Database release level = 0x0a00
Database territory = AU
Database code page = 1208
Database code set = UTF-8

Database country/region code = 61

The data file used by the load process will be in UTF-16 which will be converted to UTF-8 by UDB.

Binary Mode Utilities

Multi-byte data should be treated as binary data. That is, DBMS and MDM-RE utilities must be informed that
they are operating on binary data so that they read the data using binary mode file 1/0.

By default, MDM-RE and Oracle utilities assume they are operating on text data, and will read and write files
in text mode. If a character in the input file matches a newline (CR/LF) or End-of-File marker (Ctrl-Z), the input
file will not be read correctly and records may be accidentally split and/or the whole input file may not be
read. This is more likely to occur with UTF-16/UCs-2 data.

Binary Mode Utilities 107

Loading IDTs

108

The MDM-RE Table Loader generates DBMS load files in delimited text format by default. Specify the Loader-
Definition option FIXED to generate fixed length binary files instead.

To verify that the input data has been read and processed properly, you may specify the Loader- Definition
option Keep-Temp. This will prevent the DBMS loader files from being deleted after the load completes so that
they may be examined.

Flat-File Input

If input data is read from a flat-file, make sure that

¢ the file contains fixed length records

e FORMAT=Binary is specified in the Logical-File-Definition
o the format of the input records matches the Input-View

e the record length is the sum of the field lengths in the View
MSQ

Data loaded from a flat-file into CHAR or VARCHAR columns will be translated from the client’'s code page into
UNICODE, transferred to the server and then translated into the server’s code page and stored.

The client’s code page should be identical to the server's code page, otherwise the conversion could be lossy.

If the character set of the data file does not match the client’s code page (Locale) specify the
DATABASEOPTIONS= IDTCP parameter to specify the code page of the data.

User Source Table Input

During data extraction from a User Source Table’s CHAR/VARCHAR columns, the data is translated from the
Server’s code page to the client’s code page (Table Loader). The client’s code page should be identical to the
server's code page; otherwise the conversion could be lossy.

Oracle

A safe approach is to use a UNICODE character set for the database and to specify a UNICODE character set
for the client (MDM-RE Servers and utilities). MDM-RE automatically requests UNICODE data to be returned
as UTF-16 .This ensures that no lossy conversions are performed when reading/writing data to/from the
database.

The mass loader file generated by the Table Loader will automatically use a Fixed length format when
UNICODE columns are present.

MSQ
NCHAR and NVARCHAR columns are not converted. They remain in UNICODE format.

Target Column Size

The format and length of an IDT column defaults to the same values as the source column. In most cases,
this is adequate. However, if the source and target databases do not use the same character set, it may be
necessary to increase the size of the target column to accommodate the change of encoding.

For example, suppose a source column is defined as CHAR(5) encoded in a Central European character set
such as Windows Code Page 1250. Suppose a particular row in the source table contains 5 bytes of data,
with four of them being Latin characters (hexadecimal values <0x7F) and one of the characters being the
Latin character A with an Acute (= 0xC1 = U+00C1).

When encoded in this character set, the data only requires 5 bytes. However, if it is now stored in an IDT on a
database that uses UTF-8 as its character set, the data will be converted. The Latin characters will still only

Chapter 7: Globalization

require one byte when expressed as UTF-8 but the 2 + Acute will be encoded using 2 bytes, with the total
storage requirement being 6 bytes.

If the default column size is insufficient, use a length override in the definition of the target column to
increase its size.

MDM-RE Clients

Custom Search Client

The search APl ids_set_encoding is used to inform the Search Server of the encoding used by the client
application for UNICODE columns (data type ‘W’).

If an encoding has been specified that is different to the encoding used by the Search Server (UTF-16), the
search data will be converted prior to searching and similarly, prior to the return of the result set.

UTF-16 UTF-8 conversions occur on the machine running the Search Server. UTF-16 data is assumed to be
encoded in the byte order of the Search Server’s machine.

Note: If the search client requests UTF-16 data (the default for 'W’ columns), they will be encoded using the
native byte order of the Search Server, which may be different to the byte order of the client machine.

Oracle

Oracle W fields are stored as UNICODE in the database’s national character set using NCHAR/NVARCHAR? data
types. Upon retrieval by the Search Server the data is converted to UTF-16 (if necessary). If the caller’s search
data is encoded differently, the caller must call ids_set_encoding to inform the Search Server.

MSQ

MDM-RE stores and retrieves data for W fields as UNICODE characters encoded as UTF-16. If the caller’s
search data is encoded differently, the caller must call ids_set_encoding to inform the Search Server.

For example, if the client’s search data is encoded as UTF-8 the Search Server will convert incoming data
from UTF-8 to UTF-16, perform a search and translate the search results back to UTF-8.

Relate

The batch search client relate will need to read the input file in binary mode (-b switch). Make sure that the
input file contains fixed length records matching the input view length (-1 switch).

The output is written in binary mode when -b is specified with fixed length records of IDT record length, plus
any header information. The -o switch determines the exact layout.

You may wish to add newlines to the output by specifying -t. This will make the output easier to view in a
text editor, but it is only useful if the binary data does not contain any newline characters; otherwise output
lines will be split.

The search trace facility is enabled with the --3 switch. It automatically detects non-printable characters
when processing the Search and File records and will log them in hexadecimal format when necessary.

Search records should use UTF-16 for W columns. If they use UTF-8, specify the -e switch to inform the
Search Server of the encoding used for the input fields.

MDM-RE Clients 109

Java

Search Client

Java applications use UTF-8 encoding for UNICODE data. The MDM-RE GUI Search Client automatically
informs the Search Server that incoming data is encoded as UTF-8.

Synchronizer

The Update Synchronizer can handle binary data in CHAR/VARCHAR2 columns with one exception: columns
defined as Primary Keys (PK) must not contain the NUL (binary zero, 0x00) character.

Columns of type W cannot be used as PK fields.

SSA-NAME3 V2

When indexing or searching a field containing Unicode, specify Key-Logic and Search-Logic Controls to
inform SSA-NAMES3 that UTF-16 data is present:

Controls ("UNICODE ENCODING=6")

Debugging a Search

110

UNICODE data is notoriously difficult to handle. It requires an intimate knowledge of the data and micro-
management of the search process to avoid inappropriate conversions and to request conversions when
necessary.

Batch Searches

The most reliable approach to debugging a new search is to use a batch search client such as relate. A batch
client has several advantages over an online search client:

the input file can be viewed and/or manipulated with a hex editor, so you have precise control over the
input data.

search records read from a file are not subject to conversions performed by the Operating System. Use
fixed length records and specify -b to read the file in binary mode. This avoids characters being
interpreted as CR/LF and being converted to LF.

only server side tracing is necessary to verify the search process.

Online Searches

In contrast, an online search client has less control over the input data because the Operating System may
perform unexpected conversions while the data is entered:

Chapter 7:

If the data is typed, the characters that end up in the input buffer are dependent on the keyboard driver,
language, and locale being set correctly.

A cut and paste operation may also perform conversions on the data. It may be corrupted even before you
hit the enter key to start the search.

The correct search results may look wrong if the locale has been configured incorrectly due to incorrect
rendering of the characters.

If you do decide to use the online client, make sure to use the MDM-RE 950 client and enable the client
side logging facility to produce a hex dump of the input data.

Globalization

Server-side Search Tracing

The Search Performance chapter of the DESIGN GUIDE documents provide informatation on how to enable the
Search Trace facility. This feature is particularly useful when debugging UNICODE problems as it logs the
Search Record and File Records in hexadecimal format. It also displays the records before and after view
conversion and/or UNICODE encoding conversion.

Miscellaneous Tips

Loading User Source Tables - Oracle

When loading data to User Source Tables, make sure that the input file contains fixed length records and
instruct the DBMS loader to read the file in binary mode.

For Oracle this is done with the FIX option. For example, if the input file contains fixed length records 16
bytes long encoded as UTF-8, the following control file could be used:

LOAD DATA
CHARACTERSET AL32UTF8
LENGTH SEMANTICS BYTE
INFILE ’testx182.ut8’ "FIX 16"
REPLACE
INTO TABLE TESTX182A
(
NAME POSITION(1: 16) CHAR
)

If the input file contains fixed length records 16 bytes long encoded as UTF-16, the following control file
could be used.

Note: The byte order must be specified so that SQL*Loader can convert it to match the DBMS Server
machine’s byte order, if necessary.

LOAD DATA

CHARACTERSET UTF16

LENGTH SEMANTICS BYTE

BYTEORDER LITTLE

INFILE 'testx182.u6l’ "FIX 16"

REPLACE

INTO TABLE TESTX182B

(

NAME POSITION(1: 16) CHAR
)

Validating Loaded Data
Binary data stored in CHAR or VARCHAR2 columns may be displayed using a number of methods:

It is easiest to work in hexadecimal format by converting the CHAR data to RAW, as SQL*Plus automatically
displays RAW data in hexadecimal format. A sample package called ids_conv is provided that will convert
CHAR to RAW and vice versa. For example, the following script installs the package and calls it:

@%SSABIN%\idsconv9.sql
select row_id, ids_conv.chartoraw(name) from T106;

It produces output similar to this:

ROW_ID IDS CONV.CHARTORAW (NAME)

Miscellaneous Tips 111

28C3COB9FA29CFD6B4FA;6ABCEF7B7BDB9ABCBBE202020202020202020202020202020202
28C3COB9FA29CFD6B4FA§6ABCEF7D1D4B9ABCBBE202020202020202020202020202020202
BOAEDZCOCBB9D6DOB9FA§7A2B5E7D3DOCFDEB9ABCBBE20202020202020202020202020202
BOAEDZCOCBB9D6DOB9FA§3DOCFDEB9ABCBBE2020202020202020202020202020202020202
BOD7B5C3B2B9B1A6B8D633DOCFDEB9ABCBBEC9CFBAA3C1AAC2E7B4A620202020202020202
BOB2B4EFDOC528C9CFBA2329C6F3D2B5D7C9D1AFD3DOCFDEB9ABCBBE20202020202020202
BOB2B4EFDOC52EBBAAC7;FBBElBCC6CAA6CAC2CEF1CBF9202020202020202020202020202
BOB2B4EFDOC5BCC6CBESSBFADOC5CFAZCFB5CDB3B1B1BEA9D3DOCFDEB9ABCBBE202020202
BOB2B4EFDOC5C7E5BBAA§4F3D1A7DOC5CFA2CFB5CDB328B1B1BEA929D3DOCFDEB9ABCBBE2
BOB2B5C2COFBD3DOCFD%§9ABCBBE202

An alternative is to use the pump function to display table data in hexadecimal format. This also displays the
name of the database character set used to store the column. For example,

select dump(ids_name,1016) from idt182;
DUMP(IDS_NAME,1016)

Typ=1 Len=6 CharacterSet=AL16UTFl6: 30,a0,30,al,30,a2
Typ=1 Len=6 CharacterSet=AL16UTFl6: 30,f0,30,f1,30,f2

dd
The dd utility can be used to add newlines to a file containing fixed length records. Use

dd InputFile OutputFile 0 RecLen -a -b

112 Chapter 7: Globalization

CHAPTER 8

Siebel Connector

This chapter includes the following topics:
e Qverview, 113

e Configuring Siebel, 113

e Configuring MDM-RE, 120

Overview

You can configure MDM Registry Edition to load, synchronize, and search against data stored in a Siebel 7.7
CRM application. This chapter provides detailed instructions for integrating MDM Registry Edition with Siebel.

Siebel application data is held in an Oracle, UDB or Microsoft SQL Server database. At a physical level, the
data are held in base tables. However, base tables are not accessed directly. Instead, Siebel provides a higher
level of data abstraction with its Object Manager (OM). The joins base tables to provide highlevel Integration
Objects (10) that the user works with.

As Siebel prohibits the creation of triggers on base tables, MDM Registry Edition treats Siebel as a No Source
Access (NSA) style of database. The fundamental unit of data that can be extracted or synchronized is an 10,
which is mapped 1:1 to an MDM Registry Edition IDT.

To extract and synchronize data, the Siebel administrator must first define an 10 using Siebel Tools. A
matching IDT-Definition is created in an MDM Registry Edition System.

MDM Registry Edition provides a Siebel Workflow to extract data using the Object Manager. The workflow will
query Siebel to extract the 10 data, encode them using XML and write them to a flat-file. This file can then be
loaded into MDM Registry Edition.

Synchronization workflows (activated by Run-Time Events) are provided to pass synchronization messages
to MDM Registry Edition whenever an object is added, deleted, or modified. The messages are encoded as
XML and sent over a socket using HTTP to the MDM Registry Edition XS Server. The XS Server stores
transactions in the NSA Transaction Table for processing by the Update Synchronizer.

Configuring Siebel

The Siebel application must be configured using Siebel Tools. The following section describes the process.

113

Constructing Load Data

To produce an XML file for the load process, the Workflow Launch Build Load File will need to be invoked.
The following steps outline what is required to invoke the workflow.

e Create and Compile an appropriate integration Object. See the Integration Object section.

e Create an appropriate MDM-RE System to match your Integration Object. See the Configuring MDM-RE
section.

¢ |mport and Compile The MDM-RE Business Service.
e Import, Deploy and Activate the MDM-RE Workflows. See the Workflows section.
e Create an Action set for the Workflow. See Load Action Set section.

e Create a Runtime Event associated with the Action Set. It is left to the user to decide what type event to
use. The user may for instance decide to create a MiniButton within an applet and invoke the Workflow
based on this button.

Synchronization Setup

Several Workflow processes are provided to synchronize changes to the BC with the MDM-RE IDT. These
Workflows must be invoked with the appropriate BC Events. The following steps outline what is required to
set up this synchronization process.

e Create and Compile an appropriate Integration Object. See the Integration Object section.

e Create an appropriate MDM-RE System to match your Integration Object. See the Configuring MDM-RE
section.

e |Import and Compile the MDM-RE Business Service.
¢ Import, Deploy and Activate the MDM-RE Workflows. See the Workflows section.
e Create Action Sets for the Workflows. See the Synchronization Action Sets section.

e Create appropriate Run Time Events which use the Action Sets. See the Synchronization Run Time
Eventssection.

e Reload Run Time Events.

Integration Object

The basic mapping of data contained in a Siebel Business Component (BC) to an IDT is through an
Integration Object (10). A Siebel Integration Object will be set up with all the fields in the Business Component
that are desired in the IDT. Then the IDT can be set up to match the XML Tag names for the Integration
Object. What follows is an example of an XML message based on such an Integration Object.

The corresponding MDM-RE UST definition can be found in the Configuring MDM-RE section. You must
always include RowId as an active field in your 10 as it will be used as the primary key in the IDT.

<?xml version="1.0" encoding="UTF-16"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId="1-3HPY" IDS OP="A" IDS SYSTEM="testx218
IDS IDT="IDS 0l CONTACT" MessageType="Integration Object"
IntObjectName="ISS IO Contact"
IntObjectFormat="Siebel Hierarchical">
<ListOfIssIoContact>
<Contact>
<Alias></Alias>
<BirthDate>01/14/1932 00:00:00</BirthDate>
<FirstName>Jean</FirstName>
<LastName>Murasawa</LastName>

114 Chapter 8: Siebel Connector

<MiddleName></MiddleName>
<City></City>
<Country></Country>
<PostalCode>765048832</PostalCode>
<StreetAddress></StreetAddress>
<RowId>12-7ZT80P</RowId>
</Contact>
</ListOfIssIoContact>
</SiebelMessage>

MDM-RE Business Service

All the MDM-RE Workflows require the MDM-RE Business Service (MDM-RE Utility Service). You will need to
import and compile this in order to use the MDM-RE Workflows. This has to be done prior to importing the
Workflow Processes. See the Workflows section. It can be found in the issutilityservice.sif archive file
in the siebel/busservs directory of your MDM-RE installation.

Error Handling

The Workflow 1SSErrorHandler is used by all the MDM-RE Workflows to log errors to a file. The default for
this log file is /tmp/isserror.log. The file name may be changed by modifying the Workflow. Simply change
the File Name value for input in the irite to Error Log step.

Workflows

The MDM-RE Workflows can be found in the siebel/workflws directory of the MDM-RE installation. You will
need to import all 9 Workflows into Tools.

Note: You must import the workflows in order of their dependencies.

After importing, you may need to modify the ISSErrorHandler Workflow (See the Error Handling section). Then
click Deploy for each of the workflows. You will then activate them from the client by navigating to the
Repository Workflow Processes Screen.

Once you have click Activate on all the Workflows they can be found in the Active Workflow Processes list.
More detailed instructions on importing and activating workflows can be found in Siebel’s Bookshelf. The
following is the list of all the MDM-RE workflows.

MDM-RE Build Load File

MDM-RE Delete Record Sync

MDM-RE Launch Build Load File
MDM-RE Launch Delete Record Sync
MDM-RE Launch PreDelete Record Sync
MDM-RE Launch Write Record Sync
MDM-RE PreDelete Record Sync

MDM-RE Write Record Sync
MDM-REErrorHandler

There are dependencies between these Workflows. Siebel will issue validation warning and errors when
deploying a Workflow if any required Workflows are not already deployed or were not imported prior to
importing the current Workflow. You must import and deploy all required workflows first.

The dependancy of the Workflows are:
e MDM-REErrorHandler is required by all other Workflows.
e MDM-RE Launch Build Load File requires MDM-RE Build Load File.

e MDM-RE Launch Delete Record Sync requires MDM-RE Delete Record Sync.

Configuring Siebel 115

e MDM-RE Launch PreDelete Record Sync requires MDM-RE PreDelete Record Sync.

e MDM-RE Launch Write Record Sync requires MDM-RE Write Record Sync.

Workflo

Deploy | Bire | _Revee |

| Process Name Status | \Workflow Modle Changed | Group i‘
| > 1SS Build Load File Long Running Flow v

| 155 Delete Record Sync Service Flow v

| 155 Launch Build load File Completed Long Running Flow v

| ISS Launch Delete Record Sync Completed Service Flow v

| 1SS Launch PreDelete Record Sync Completed Service Flow v

| ISS Launch Write Record Sync Completed Service Flow v

| 1SS PreDelete Record Sync Completed Service Flow v

| ISS Write Record Sync Completed Service Flow v

| 15SErrorHandler Completed Service Flow v

|m| Opportunities || Administration - Business Process |E

‘Workflove Processes Workflow Deployment Workflow Instance Admin ‘Workflow Instance Monitor i
Repository Workflow Processes | [Manu~] [Query | [Activate| oueryResuits 1-.30f3 [G3
Hame Business Object Status Group
> |ISS Build Losd File Completed
IS Delete Record Sync Completed
125 Launch Build load File Completed
1SS Launch Delete Record Sync Completed
IS5 Launch PreDelete Record Sync Completed
ISS Launch wiite Record Sync Completed
ISS PreDelete Record Sync Completed
ISS Wiite Record Sync Completed
ISSErrorHandler Completed
4 | i

| Active Workflow Processes

1-100f 10+

Hame Version Business Object Group Deployment Statu
> (1SS Buiild Load File 1 Active 2

ISS Delete Record Sync 0 Active =

IS5 Launch Build load File o Active)

ISS Launch PreDelete Record S 0 Active

IS5 PreDelete Record Sync 0 Active

ISSErrorHandler 1] Active

IS5 Wite Record Sync 0 Active

IS5 Launch VWrite Record Sync 0 Active

IS5 Launch Delete Record Sync 0 Active &

116 Chapter 8: Siebel Connector

Load Action Set

You Must Create an Actions Set for Calling the Workflow: MDM-RE Launch Build Load File. This Workflow
requires some profile attributes to be set (see Profile Attributessection). Appropriate Actions must be added
to set these Profile Attributes.

You must ensure that the action that triggers the Workflow Process is last in sequence. We recommend
naming this Action Sets with the prefix 15sLOAD then add the name of the Business Component you are
working with (example, ISSLOAD Contact). This Action set will then be associated with an appropriate
Runtime event (Example: The click of a Mini-Button).

ACTION Set

[Home | Accounts | Contacts | Opportunities | Orders | dminstration - Funtime Everts.]

Action Sets Evert Alisses Events

[htenu = | [Mew | [Guery | Ouery Results 1ot [E] =

Hame - Start Date End Date
> |1S5Load Contact

Actiens | |
Hame Action Type Sequence Active Start Date
155 Set Systemn Name Attribute Set 1 v
> |I=% Set Page Size Aftribite et 2 '
IS5 Set File Mame Attribute Set 3 v
IS5 Set DT Mame Attribute Set 4 v
IS5 Set 10 Name Attribute Set 5 v
IS5 Run Yy BusService] v
1 | 3
fe

Menu = Finc E

*Name: | 155 Set Page Size Profile Attributs: IDS_PAGE_SIZE Buziness Service Mame:
*Zequence; 2 = Set Operstar: Set v Buziness Service Method:
*hctive [Walug: 80 [Businezz Service Cortesxt:

i

Configuring Siebel 117

Synchronization Action Sets

You must create Actions Sets for calling the Synchronization Workflows. You will need three Action Sets. One
for the Pre Delete Event which calls the Workflow MDM-RE Launch PreDelete Record Sync, one for the
Delete Event that calls the Workflow MDM-RE Launch Delete Record Sync, and one more for the Write record
event which calls the Workflow MDM-RE Launch Write Record Sync. These Workflows require some profile
attributes to be set (See the Profile Attributes section). Appropriate actions must be added to set these
Profile Attributes.

You must ensure that the action that triggers the Workflow Process is last in sequence. We recommend
naming these Action Sets with the prefix 1sSsYNC then with the event type they will be associated with and
then finally add the name of the Business Component you are working with. For example, I1SSSYNC

WriteRecord Contact.

mll Tl e | Administration - Runtime Events |

Action Sete Event Aligzes Events

Hame Start Date End Date

ISSSYNC DeleteRecord Cortact
ISS5YNC PreDeleteRecord Cortact
> | ISESSYNC WiiteRecord Contact

Actions | [Menu v| [_Newr_j [Query.]
Hame Action Type Sequence Active Start Date
ISS Set IO Name Aftribnte Set 1 v
IS5 Set Id Aftribnte Set 2 v
IS5 Set System MName Adtribute Set 3 v
>|ISS Set IDT Name Aftribwge Set 4 v
ISS Set URL Aftribute Set 5 v
ISS Run YWF BusService B v
More Info
*Name: 1SS Set IDT Name Profile Attribute: IDS_IDT B
*Seguence: 4 = Set Operator: Set | Busir
*Active: [V “Yalue: IDS_01_1DT218 =] Blusir

118 Chapter 8: Siebel Connector

Synchronization Run Time Events

You need to create runtime events that use the Action Sets you have created. These will all be of the Type

BusComp. The Object Name will be set to name of the Business Component you are working with. The Events
will be set to PreDeleteRecord, DeleteRecord and WriteRecord. After you have created these events you will
need to reload the Run Time Events.

[Home | Accounts | Contacts | Opportunites | Orders |
|

Event Aliazes

Administration - Runtime Events
Action Sets

Events

Hame Sequence Object Type Object Name Event Subevent . Conditional Expression Action Set Name
> 1 BusComgp Contact DeleteRecord ISSSYNC DelsteRecord Cortact
1 BusComp Contact PreDeleteRecord ISS5YNC PreDeleteRecord Contact
1 BusComp Contact WirteRecord ISSSYNC WriteRecord Contact

Profile Attributes

The following tables show the profile attributes used by the MDM-RE Workflows.

Attribute Name

Description

IDS_SYSTEM The name of the corresponding MDM-RE system
IDS_IDT The fully-decorated name of the corresponding IDT database table. Example:
IDS_01_CONTACT

IDS_IO_NAME The name of the Integration Object to be used

IDS_10_ID The Id of the primary business Component for the Integration Object, that is [1d]

IDS_URL The URL of the XS Server

IDS_PAGE_SIZE The page file size used by the EAI Siebel Adapter Business Service

IDS_LOADFILE The full path of the XML load file to create

Attribute Name | Launch PreDelete Launch Delete Launch Write Record | Launch Build Load
Record Sync Record Sync Sync File

IDS_SYSTEM Required Required Required

IDS_IDT Required Required Required

IDS_IO_NAME Required Required Required

IDS_I0_ID Required Required

IDS_URL Required Required

IDS_PAGE_SIZE Optional

IDS_LOADFILE Required

Configuring Siebel

119

Configuring MDM-RE

120

Having defined 10s using Siebel Tools, we must now create an MDM-RE System containing equivalent IDTs.

System Definition

Data will be loaded from a Flat-File containing XML messages. Define an IDT in the User-Source-Tables
section of the SDF for each 10.

o All field names must correspond to the names of the fields in the |0. Any fields present in the 10 but not
listed in the IDT definition will be ignored.

¢ Field types must be W (wide format) as the XML messages contain Unicode. Field lengths are specified in
bytes, not Unicode characters.

e [If synchronization is required, the sync_clause should specify SYNC REPLACE DUPLICATE PK TXN-SOURCE
NSA, otherwise NOSYNC.

¢ Specify the Siebel RowId as the primary key (PK).

e The Logical-File-Definition describing the flat file must specify FORMAT=XML and VIEW=<IDTName>1(the IDT
name suffixed by "1" which is the automatically generated view name).

e The Loader-Definition must specify OPTIONS=FIXED.

e The Controls parameter of the IDX-Definition and Search-Definition associated with the IDT must
specify UNICODE-ENCODING=6(for MSQ) and UNICODE-ENCODING=8 (for ORW).

For example,

Section: User-Source-Tables

*

CREATE IDT

Contact

SOURCED FROM FLAT FILE
Alias
BirthDate
FirstName
LastName
MiddleName
City
Country
PostalCode
StreetAddress W

(PK) RowId W(l6)

S=E=====3==

SYNC REPLACE DUPLICATE PK
TXN-SOURCE NSA

’

Environment Variables

The following environment variables must be defined in the environment used to start MDM-RE servers and
utilities.

SSA_XML_UTF16=1 this variable informs MDM-RE to output UTF-16 encoded Unicode into 'W’ columns when
converting data extracted from XML documents produced by Siebel. When set to zero it uses UTF-8. The
default (when not specified) is UTF-16.

SSA_XML_SIZE this variable specifies the size of the XML parsing buffer (in bytes) of the XS Server.

Chapter 8: Siebel Connector

This should be at least as large as IDS_PAGE SIZE * <max bytes per Siebel Msg>. The former is a Profile

Attribute of the 1SSLaunchBuildLoadFile workflow and the latter is a function of the size and number of
fields included in the 10.

SSA_RBNAME this variable specifies the connection string for the Rulebase containing the System. Its format
is described in the Rulebase and Database Names section of this guide.

Loading Data

Invoke the MDM-RE supplied Workflow Process named Launch Build Load File to extract and write your

Siebel data to a XML File, see Constructing Load Data section. This file is used as flat-file input for the MDM-
RE Table Loader process, see Table Loader section.

Synchronization

In order to synchronize MDM-RE with updates to the Siebel application, the Siebel Administrator defines Run-
Time Events on the BCs that require synchronization. When the BCs are updated, Run-Time Events invoke
Action Sets that subsequently call MDM-RE Workflows to send XML messages to MDM-RE XS Server.

Upon receipt of an XML message, the XS Server parses it to determine the System and IDT that this
messages pertains to, and to locate the |0 fields that are replicated in the IDT. An IDT record is constructed

and stored in the NSA Transaction Table (NSA TT). Refer to the Update Synchronizer chapter for details about
this table and the synchronization process in general.

Note: The order of message receipt at the XS Server defines the order in which transactions will be processed
by the Update Synchronizer.

Siebel . KS
AML via HTTP e
b;’urkﬂcrw = > Server %
rocess

-
NSA TXN
TABLE

IDT

, Synchronizer
IDX

XS Server

The Siebel HTTP Transport service is used to send XML messages to the MDM-RE XS Server. Unfortunately,
the service does not close its connection with the XS Server until the Siebel application user that initiated the
connection logs off the Siebel application.

Siebel's failure to close its connections means that the XS Server will not shutdown until all Siebel clients log
off.

Configuring MDM-RE 121

Restrictions

Siebel Restrictions

e There must be one primary BC per I0.

e An |0 may not include any secondary BCs.

e Run-Time Events do not capture batch updates to BCs, leading to a possible loss of synchronization.

e Run-Time Events only trap data changes made by components. Changes made in the Data Manager level
will not trigger Run-Time events.

e The Siebel HTTP Transport service does not close its connection to the XS Server until the client (Siebel
Application user) logs off their Siebel session.

MDM-RE Restrictions

Transaction Sequence Numbers are generated in the order of XML message receipt (necessary due to the
lack of Siebel facilities to generate unique sequence numbers).

¢ Only one XS Server can be defined to accept XML messages. The use of multiple servers will result in the
allocation of duplicate transaction sequence numbers.

e The maximum IDT record length in the NSA Transaction Table is limited by DBMS limits on the size of a
binary column.

e UDB Unicode is not currently supported. Only the ASCII subset of UTF-8 can be loaded.

122 Chapter 8: Siebel Connector

CHAPTER 9

Web Services

This chapter includes the following topics:

Introduction, 123

MDM-RE Web Services, 123
XML Search Service, 124
XML Console Service, 134
NSA-Batch Service, 149
Real Time Web Service, 150
Custom HTTP Header, 161

Notification Service, 161

ubDDI, 169

Introduction

Web services are software that provide a standard means of interoperating between different applications,
running on a variety of platforms over a network. They are characterized by interoperability and extensibility,
thanks to the use of XML messages that follow the SOAP standard. They can be combined to produce a
Service Oriented Architecture.

MDM-RE Web Services

MDM Registry Edition provides four web services:

Search Service
Console Service
NSA-Batch Service

Real-Time Service

This guide describes these web services, and how to use them.

All MDM-RE web services are implemented as free-standing servers rather than as servlets. No web
application server like IBM Websphere Application Server (WAS), Microsoft BizTalk or Apache Tomcat is
required.

123

SOAP

All MDM-RE web services use the Simple Object Access Protocol (SOAP). Both SOAP version 1.1 and SOAP
version 1.2 are supported. A SOAP 1.1 request will receive a SOAP 1.1 response from the MDM-RE web
services; conversely, a SOAP 1.2 request will receive a SOAP 1.2 response.

Unicode

All MDM-RE web services use Unicode. Messages may be sent in UTF-8 or UTF-16. Responses will use the
same character set as the original request.

XML Search Service

124

Deploying the XML Search Service

MDM Registry Edition provides a web-based XML Search Service. The service is implemented by the XML
Search Server, as part of the ssasrsv executable image.

Enabling

The XML Search Server does not start unless it has been enabled and configured. The XML Search Server is
enabled by allocating the server’s host name (Ssa_xMHOST) and port number (SSA_XMPORT) in the env
\mdnres.bat (Windows) or env/mdmres (UNIX). The default port number of the XML Search Service Server is
1670.

Configuring

The configuration process consists of creating a simple text file named either xmserv.ini or xmserv.xml.
The two different extensions represent two different formats that the configuration file can take; an INI file
form and an XML form.

The file can be located in $SSAINI, $HOME or $SSABIN, which the server searches in that order.

The content of this file determines which searches and Rulebases are visible to the client. It is read at server
initialization, so changes to the configuration become effective only after the XML Search Server is restarted
or refreshed.

The xmserv.ini form has the same format as the htserv.ini file used by the HTTP Search Server. Refer to the
HTTP Search Client section of the OPERATIONS Guide for instructions on how to use this format.

Since this is a Web Service, the XML format is recommended.
Generic Mode
The simplest possible file contains the following tags:
<?xml version="1.0" encoding="UTF-8"?>
<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/xmlserv">
<mode>generic</mode>
<rulebase>ids:rb</rulebase>

</server>

Use the simple xmserv.xml file to make all searches in the Rulebase ids:rb available.

Unlike the HTTP Search Server, you must specify a Rulebase for the XML Search server.

Chapter 9: Web Services

Note: Rulebase names are sent from the client to the server in the clear using the HTTP protocol. To avoid
passing database passwords, it is strongly recommended that xmserv.xml files should use Dictionary
Alias names. If you did not, the same file would look something like:

<?xml version="1.0" encoding="UTF-8"?>

<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/xmlserv">
<mode>generic</mode>
<rulebase>odb:0:userid/topsecretpassword@dbserver6</rulebase>

</server>

Custom Mode

Use the custom mode to configure the systems, searches and Rulebases for the Web clients. You can define

one or more profiles. Each profile contains rules that define the Rulebase name, system name, and one or
more search definitions.

You can use the sdf view parameter to specify the output view that you define in the SDF file for each search

definition. A SOAP response might contain different fields for the matching records based on the output
views that you specify in the xmserv.xml file.

The following sample xmserv.xml file defines a single profile in the custom mode:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/xmlserv">
<mode>custom</mode>
<profile name="search profile">
<rule name="search rule">
<rulebase>ids:rb</rulebase>
<system>ssa001</system>
<search name="search name">
<sdf search>name-search</sdf search>
<sdf view>View2</sdf view>
</search>
</rule>
</profile>
</server>

The following sample xmserv.xml file defines multiple profiles in the custom mode:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/xmserv">
<mode>custom</mode>
<profile name="Profile 1">
<rule name="rule2">
<rulebase>ids:rb2</rulebase>
<system>ssa00l</system>
<search name="Name Search">
<sdf search>name-search</sdf search>
<sdf view>View2</sdf view>
</search>
</rule>
</profile>
<profile name="Profile 2">
<rule name="rule3">
<rulebase>ids:rb3</rulebase>
<system>ssa00l</system>
<search name="Name Search">
<sdf search>name-search</sdf search>
<sdf view>View3</sdf view>
</search>
</rule>
<rule name="rulel">
<rulebase>ids:rb</rulebase>
<system>ssa001l</system>
<search name=" Name Search">
<sdf_search>name-search</sdf_search>
<sdf view>Viewl</sdf view>

XML Search Service

125

</search>
</rule>
</profile>
</server>

In the preceding example, you have three rules for three systems, named ssa001, and probably identical, but
perhaps residing in three different Rulebases. In this case, four WSDL files will be generated, called
rulel.wsdl, rule2.wsdl, rule3.wsdl and ssa001.wsdl. The ssa001.wsdl file will correspond to rulel. Each
will have its own target namespace. That of ssa001.wsdl will be http://www.identitysystems.com/
xmlschema/iss-version-8/searchSvc while rulel.wsdl, rule2.wsdl, and rule3.wsdl will use the following
namespaces:

http://www.identitysystems.com/xmlschema/iss-version-8/searchSvc/rulel

http://www.identitysystems.com/xmlschema/iss-version-8/searchSvc/rule?2

http://www.identitysystems.com/xmlschema/iss-version-8/searchSvc/rule3
Note: Two rules cannot have the same name. The server will issue an error.

WSDL File

WSDL files are created in the server work directory for each rule and system defined in the xmserv.xml file
when the server starts or is refreshed.

The WSDL can also be accessed through the server at:
http://<xmhost>:<xmport>/?<system>.wsdl

Which will correspond to the last-named system of that name in the xmserv.xm1 file. For example, the sample
system will usually be found at:

http://localhost:1670/2ssa001.wsdl
The WSDL can also be retrieved from:
http://<xmhost>:<xmport>/?<rule>.wsdl
Re-generating the WSDL File

The WSDL file can be regenerated by issuing a flush command to the server. The server will re-read the
xmserv.xml file and re-create the WSDL file. On a Unix platform this would be done by:

$SSABIN/ssashut -h$SSA XMHOST -f
Or on Windows:
$SSABIN%\ssashut -h%SSA_XMHOST% -f

Note: If a system or search is deleted, it should be manually removed from the xmserv.xml file and a flush
command should be issued to the server to remove the corresponding web service.

Note: Searches are cached. If a system is modified, a flush command should be issued to the server to
regenerate the WSDL file and flush the search cache.

Creating a .NET Proxy

A proxy can be created from the WSDL generated by the XML Search Server using wsdl.exe, which is part of
the Microsoft .NET SDK. Given the WSDL created from the sample system SSA001 (which can also be found
in the MDM-RE samples\programs\csharp-xml directory), one can create a proxy with:

wsdl /out:ssa00l.cs ssa00l.wsdl

This creates a C# public class called IDT0O01.

public class IDTO001 {
public int score;
public string ID;

126 Chapter 9: Web Services

public string Name;

public string DOB;

public string Address;
}

This can be then be compiled with: csc /target:library /out:ssa001.dl1l ssa00Ol.cs
and linked with a client like ws-samplel.cs in the MDM-RE samples\programs\csharp-xml directory.
csc /target:exe /reference:ssa00l1.dll ws-samplel.cs

The samples can be built with the supplied compile.bat script. If you have Microsoft Web Service Extensions
(WSE) 3.0 installed, you may prefer to compile with that instead. The script accepts an argument that
instructs it to use WSE 3.0:

compile wse3

At the heart of the ws-samplel.cs sample is:

try {
ssa00l search = new ssa00l1 ();
IDT001[] results = search.namesearch (
name, address, dob,
null, null, null, workdir,
search width, match tolerance);
foreach (IDT001 idt in results) {
Console.WriteLine ("{0} {1,-24} {2}",
idt.score, idt.Name, idt.Address);
}
} catch (SoapException se) {
Console.Error.Writeline (se.Message);
} catch (WebException we) {
Console.Error.WriteLine (we.Message);

}
From this, we can see that:
e The search class has the name of the MDM-RE system.
e The response class has that of the IDT defined in the MDM-RE system.
e The search class contains search methods, which bear the names of the searches defined in the system.
e The searches take parameters which are the fields of the search, plus four options (see below).
e In every case, you can get the default by passing a null parameter to the method.
e Errors are thrown as SOAPException exceptions.

e There is also the possibility of a WebException exception, which may occur if you try to run the client
without bringing the server up.

XML Search Service 127

Optional parameters:
LOGOUT

Filename for server output for this session.
LOGERR

Filename for server errors for this session.
LOGTEST

Filename for server search trace for this session.
WORKDIR

Used to inform the Search Server which directory is to be used as the working directory for this session.
Search_width

Specifies either Narrow, Typical or Exhaustive to nominate how many candidates should be selected.
Match_tolerance

Specifies either Conservative, Typical or Loose to nominate how aggressive the matching scheme should
be in rejecting candidates

Apache Axis2

An Apache Axis2 sample called Axis2Sample.java is included with the Java samples. If you have Apache
Axis2 installed, and you paths and classpaths set up correctly, you can build a proxy with:

wsdl2java -uri ssa00l.wsdl -d adb -s -p ssa00l1

Then compile it with:

javac ssa001/Ssa001Stub.java ssa001/Ssa001Fault.java
And compile the sample with:

javac Axis2Sample.java

Running the Samples

To get the samples to run you need to load the sample system and create an xmserv.xml file similar to the
simple example above.

SOAP Request

The ws-samplel.cs sample program will generate a SOAP 1.1 request that will look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soap:Body>
<name-search xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/
searchSvc" WORKDIR="d:\a2mi\ids\testx270.dir" search width="Typical"
match tolerance="Loose" system name="ssa001">
<Name>J Smythe</Name>
<Address>157 cathy st</Address>
<DOB>19491231</DOB>
</name-search>
</soap:Body>
</soap:Envelope>

SOAP Response

The response takes the form of a SOAP envelope with an element in the body with the name of the search
followed by " response." This contains a result element named after the IDT, with "Result" added which in

128 Chapter 9: Web Services

turn contains the IDT fields, plus an additional one called "score". All names are exactly as they appear in the
System Definition File.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsse="http://
docs.oasis-open.org/wss/2004/01/0asis-200401-wsswssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wsswssecurity-
utility-1.0.xsd">
<soap:Body>
<name-search response xmlns="http://www.identitysystems.com/xmlschema/iss-
version-8/searchSvc">
<Search(OlResult>
<Search01>
<score>85</score>
<ID>1617</ID>
<Name>M J SMITH</Name>
<DOB>19491018</DOB>
<Address>4/157 CARTHAGE STREET</Address>
<CL_ID />
</Search01>
<Search01>
<score>80</score>
<ID>0000001617</ID>
<IDS-IDX-I0>00000023</IDS-IDX-I0>
<IDS-IDT-I0>00000000</IDS-IDT-I0>
<IDS-KSL-ACCEPTED-COUNT>00000000</IDS-KSL-ACCEPTED-COUNT>
<IDS-KSL-UNDECIDED-COUNT>00000001</IDS-KSL-UNDECIDED-COUNT>
<IDS-KSL-REJECTED-COUNT>00000019</IDS-KSL-REJECTED-COUNT>
<IDS-KSL-TOTAL-COUNT>00000020</IDS-KSL-TOTAL-COUNT>
</Search01>
(more...)
</Search0lResult>
</name-search response>
</soap:Body>
</soap:Envelope>

The SOAP response might contain different fields for the search results based on the output view that you
specify in the xmserv.xml file

Match Explain API

In addition to the XML Search Web Service, there is also an XML Match Explain Web Service. An XML Match
Explain request takes two records, known as the search and file records, and describes the reasons why a
match scored what it did. The search and file records have the same format as the search record used by the
XML SearchWeb Service.

An XML Match Explain request looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope" xmlns:wsa="http://
schemas.xmlsoap.org/ws/2004/08/addressing” xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.ocasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsd="http://
www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action />
<wsa:MessageID>urn:uuid:534141cc-elcl-48d0-97£8-a5a3e38244f7</wsa:MessagelD>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</
wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://host:1665/</wsa:To>
<wsse:Security>
126 Chapter 9: Web Services
<wsu:Timestamp wsu:Id="Timestamp-57d31233-8456-4920-9dac-cb01cb261861">
<wsu:Created>2010-03-30T03:58:40Z</wsu:Created>
<wsu:Expires>2010-03-30T04:03:40Z2</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>

XML Search Service 129

</env:Header>
<soap:Body>
<Explain-name-search xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/
searchSvc" match tolerance="Loose" system name="ssa001">
<Explain-name-search-search>
<Name>J Smythe</Name>
<DOB>19491231</DOB>
<Address>157 cathy st</Address>
</Explain-name-search-search>
<Explain-name-search-file>
<Name>John Smithe</Name>
<DOB>19491231</DOB>
<Address>157 cathy st</Address>
</Explain-name-search-file>
</Explain-name-search>
</soap:Body>
</soap:Envelope>

The response will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope" xmlns:wsa="http://
www.w3.0rg/2005/03/addressing" xmlns:wsse="http://docs.oasis-open.orqg/wss/2004/01/
0asis-200401-wsswssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wsswssecurity-utility-1.0.xsd">
<soap:Header>
<wsa:MessageID>urn:uuid:631cb7e4-2e05-4e3f-b6a2-e0968da50e91</wsa:MessagelD>
<wsa:Action>name-search</wsa:Action>
<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://host:1665</wsa:Address>
</wsa:From>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-aacd0899-39ce-473f-b570-0e7d5c373e06">
<wsu:Created>2010-03-30T04:58:40%Z</wsu:Created>
<wsu:Expires>2010-03-30T05:03:40Z2</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<Explain-name-search response xmlns="http://www.identitysystems.com/xmlschema/iss-
version-8/searchSvec">
<Explain-Result Record-Type="0">
<Explain-Summary Parent-Sequence-Number="0" Sequence-Number="1">
<Score>92</Score>
<Decision>A</Decision>
</Explain-Summary>
</Explain-Result>
<Explain-Result Record-Type="1">
<Explain-Operator Parent-Sequence-Number="1" Sequence-Number="2">
<Type>03</Type>
</Explain-Operator>
</Explain-Result>
<Explain-Result Record-Type="2">
<Explain-Purpose Parent-Sequence-Number="2" Sequence-Number="3">
<Name>Person_Test</Name>
<Score>92</Score>
<Decision>A</Decision>
<Match-Level>Typical</Match-Level>
<Accept-Limit>89</Accept-Limit>
<Reject-Limit>70</Reject-Limit>
<Early-Exit-Taken>false</Early-Exit-Taken>
</Explain-Purpose>
</Explain-Result>
<Explain-Result Record-Type="4">
<Explain-Method Parent-Sequence-Number="3" Sequence-Number="4">
<Field-Name>Person Name</Field-Name>
<Score>86</Score>
<Weight>400</Weight>
<Original-Weight>4</Original-Weight>

130 Chapter 9: Web Services

<Weight-Flag>W</Weight-Flag>
<Contributed>true</Contributed>
<Optional>false</Optional>
<Contribution>49</Contribution>
<Repeating-Field>false</Repeating-Field>
<Search-Index-Used>0</Search-Index-Used>
<File-Index-Used>0</File-Index-Used>
</Explain-Method>
</Explain-Result>
<Explain-Result Record-Type="5">
<Explain-Data Parent-Sequence-Number="4" Sequence-Number="5">
<Type>S</Type>
<data>John Smithe</data>
</Explain-Data>
</Explain-Result>
<Explain-Result Record-Type="5">
<Explain-Data Parent-Sequence-Number="4" Sequence-Number="6">
<Type>F</Type>
<data>J Smythe</data>
</Explain-Data>
</Explain-Result>
<Explain-Result Record-Type="4">
<Explain-Method Parent-Sequence-Number="3" Sequence-Number="7">
<Field-Name>Address Linel</Field-Name>
<Score>100</Score>
<Weight>200</Weight>
<Original-Weight>2</Original-Weight>
<Weight-Flag>W</Weight-Flag>
<Contributed>true</Contributed>
<Optional>true</Optional>
<Contribution>28</Contribution>
<Repeating-Field>false</Repeating-Field>
<Search-Index-Used>0</Search-Index-Used>
<File-Index-Used>0</File-Index-Used>
</Explain-Method>
</Explain-Result>
<Explain-Result Record-Type="5">
<Explain-Data Parent-Sequence-Number="7" Sequence-Number="8">
<Type>S</Type>
<data>157 cathy st</data>
</Explain-Data>
</Explain-Result>
<Explain-Result Record-Type="5">
<Explain-Data Parent-Sequence-Number="7" Sequence-Number="9">
<Type>F</Type>
<data>157 cathy st</data>
</Explain-Data>
</Explain-Result>
<Explain-Result Record-Type="4">
<Explain-Method Parent-Sequence-Number="3" Sequence-Number="10">
<Field-Name>Date</Field-Name>
<Score>100</Score>
<Weight>100</Weight>
<Original-Weight>1</Original-Weight>
<Weight-Flag>W</Weight-Flag>
<Contributed>true</Contributed>
<Optional>true</Optional>
<Contribution>14</Contribution>
<Repeating-Field>false</Repeating-Field>
<Search-Index-Used>0</Search-Index-Used>
<File-Index-Used>0</File-Index-Used>
</Explain-Method>
</Explain-Result>
<Explain-Result Record-Type="5">
<Explain-Data Parent-Sequence-Number="10" Sequence-Number="11">
<Type>S</Type>
<data>19491231</data>
</Explain-Data>
</Explain-Result>
<Explain-Result Record-Type="5">

XML Search Service

131

<Explain-Data Parent-Sequence-Number="10" Sequence-Number="12">
<Type>F</Type>
<data>19491231</data>
</Explain-Data>
</Explain-Result>
<Explain-Result Record-Type="1">
<Explain-Operator Parent-Sequence-Number="1" Sequence-Number="13">
<Type>04</Type>
</Explain-Operator>
</Explain-Result>
</Explain-name-search response>
</soap:Body>
</soap:Envelope>

Refer to the Match Explain APl section of the DEVELOPER GUIDE for a description of the meanings of these
fields.

Web Services Addressing
MDM-RE Web Services supportsWeb Services Addressing.

Web Services Addressing Standards

MDM-RE Web Services supports the Web Services Addressing 1.0 - Core W3C Recommendation dated 9 May
2006, Web Services Addressing 1.0 - SOAP Binding W3C Recommendation dated 9 May 2006, and Web
Services Addressing 1.0 - WSDL Binding W3C Candidate Recommendation dated 29 May 2006.

To deploy this facility on, start the servers by running the shell script $SSABIN/idsup on Unix or the batch
script %SSABIN%\idsup.bat on Windows with the following option:

-qcal.0 Specifies that WS-Addressing 1.0 will be used

With WS-Addressing, a request will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope" xmlns:wsa="http://
schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.ocasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsd="http://
www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action />
<wsa:MessageID>urn:uuid:ec859556-55c3-4256-83bc-e134902£1323</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</
wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://host:1670/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-0d7269e6-691f-4539-bab8-a44677b78d00">
<wsu:Created>2009-07-10T00:16:50Z</wsu:Created>
<wsu:Expires>2009-07-10T00:21:50Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<name-search xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/
searchSvc" WORKDIR="d:\a2mi\ids\testx270.dir" search width="Typical"
match tolerance="Loose" system name="ssa001">
<Name>J Smythe</Name>
<Address>157 cathy st</Address>
<DOB>19491231</DOB>
</name-search>
</soap:Body>
</soap:Envelope>

With wS-Addressing switched on, the servers will require a valid WS-Addressing header to be present.

132 Chapter 9: Web Services

Note: The servers will validate the security timestamp, if present. You may therefore need to ensure that your
server machine’s clock is accurate.

The response will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.0rg/2005/03/addressing" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wsswssecurity-secext-1.0.xsd" xmlns:wsu="http://
docs.oasis-open.org/wss/2004/01/0asis-200401-wsswssecurity-utility-1.0.xsd">
<soap:Header>
<wsa:MessageID>urn:uuid:38bfb6b5-cel0-4768-aaa9-852d1e55605f</wsa:MessagelD>
<wsa:Action>name-search</wsa:Action>
<wsa:To>http://www.w3.0rg/2005/03/addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://host:1670</wsa:Address>
</wsa:From>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-86d8102a-ed7f-4bea-beel-dd17b8dc954a">
<wsu:Created>2009-07-10T01:00:31Z</wsu:Created>
<wsu:Expires>2009-07-10T01:05:31Z2</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<name-search response xmlns="http://www.identitysystems.com/xmlschema/iss-
version-8/searchSvec">
<SearchOlResult>
<Search01>
<score>85</score>
<ID>1617</ID>
<Name>M J SMITH</Name>
<DOB>19491018</DOB>
<Address>4/157 CARTHAGE STREET</Address>
<CL_ID />
</Search01>
<Search01>
<score>70</score>
<ID>1647</1ID>
<Name>JACK SMITH</Name>
<DOB>19201220</DOB>
<Address>22 BRUCE STREET</Address>
<CL_ID />
</Search01>
(more...)
</Search0lResult>
</name-search response>
</soap:Body>
</soap:Envelope>

Web Services Security
MDM-RE Web Services supports Web Services Security.
Web Services Security Standards

MDM-RE Web Services supports the Web Services Security SOAP Message Security 1.1 (WS-Security 2004)
OASIS Standard Specification dated 1 February 2006.

Samples

The sample ws-sample3.cs, which requires WSE 3.0, uses a supplied sample X509 RSA certificate to create a
message which is signed with private key. A copy of the X509 RSA certificate is included in the message.

The MDM-RE servers use the supplied public RSA key to validate the request.

XML Search Service 133

Transport Layer Security

MDM-RE web services can employ HTTPS to implement Transport Layer Security. This will provide point to
point security. To deploy this facility on, start the servers by running the shell script $SSABIN/idsup on Unix
or the batch script %SSABIN%\idsup.bat on Windows with the following options:

-qcFile1

Specifies the PEM file containing an X509 certificate.
-qkFile2

Specifies the PEM file containing an RSA private key.
-qrFile3

Specifies the PEM file containing an X509 root certificate.

The web service will now use HTTPS instead of HTTP. HTTPS sends HTTP messages using SSL, a well
established and widely available security protocol. If HTTPS is specified, any messages sent to the web
service using HTTP will be discarded.

Note: All three options must be specified. The server will report an error on startup if one is omitted.
Timeout Period for XML Search Server

You can specify the timeout periods as a comma-separated list for the XML Search Server when you start the
MDM Registry Edition Server.

To specify the timeout periods when you start the MDM Registry Edition Server, perform the following task:

e On Windows: On a command line, run the idsup.bat -qt"<Idle>,<Connection>,<Read>,<Write>"
command from the <MDM Registry Edition Installation Directory>\bin directory.

e On UNIX: On a shell command ling, run the idsup -gqt<Idle>,<Connection>,<Read>,<Write>command
from the <MDM Registry Edition Installation Directory>/bin directory.

The idsup command uses the following parameters:
Idle

A client session to remain idle before the server cancels the session. Specify the timeout period in
seconds. Set the value as 0 if you want to use the default time period.

Connection

A connection to the server to wait before terminating the attempt. Specify the timeout period in seconds.
Set the value as 0 if you want to use the default time period.

Read

A read or receive operation to complete successfully. Specify the timeout period in seconds. Set the
value as 0 if you want to use the default time period.

Write

A write or send operation to complete successfully. Specify the timeout period in seconds. Set the value
as 0 if you want to use the default time period.

XML Console Service

MDM-RE provides a web based XML Console Service. The service is implemented by the XML Console Server,
as part of the ssacssv executable image.

134 Chapter 9: Web Services

Enabling the XML Console Service
The XML Console Server will not start unless it has been enabled.

The XML Console Server is enabled by allocating the server’'s host name (ssa_cxH0sT) and port number
(ssa_cxpORT) in the env\mdmres.bat (Windows) or env/mdmres (UNIX). The default port number of the XML
Console Server is 1673.

WSDL file

A WSDL file is created in the server work directory when the server starts or is refreshed. The WSDL can also
be accessed through the server at:http://<cshost>:<csport>/?console.wsdl

For example, the sample system will usually be found at: http://localhost:1673/?console.wsdl
Creating a .NET Proxy

A proxy can be created from the console.wsdl using wsdl.exe, which is part of the Microsoft .NET SDK.
wsdl /out:console.cs console.wsdl

XML Console Service Functions

The XML Console server provides Web Services with some of the features of the MDM-RE Console, although
it does not provide all the functionality. The following Console functions are supported:

Web Service Description Parameters Return Code
ssacx_connect Initiates a host is the host to connect to. negative for error, 0 for
socket. port is the port to connect to. success
sockh is a socket handle.

Input message

<?xml version="1.0" ?>

<soap:Envelope

xmlns:soap=" http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_connect
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<host>value</host>

<port>301</por t>

</ssacx_connec t>

</soap:Body>

</soap:Envelope>

Output message

<?xml version="1.0" ?>

<soap:Envelope

xmlns:soap=" http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_connect response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>

<sockh>302</sockh>

</ssacx_connec t response>

XML Console Service 135

136

</soap:Body>
</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_database_crea

Create a new

database name - The name of the

negative for error, 0 for

te database. database. success
work_directory - The work directory
for the server to use.
Input message
<?xml version=" 1 . 0 " ?>

<soap:Envelope

xmlns:soap=" h t t p ://schemas

<soap:Body>

<ssacx_database create
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<database name>value</database name>

<work directory>value</work directory>
</ssacx database create>

</soap:Body>
</soap:Envelope>

Output message

<?xml version="1
<soap:Envelope

0>

xmlsoap

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx database create response

org/soap/envelope/">

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
</ssacx_database create response>

</soap:Body>
</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_database_dele
te

Delete an existing
database.

database name - The name of the
database.

work directory - The work directory
for the server to use.

negative for error, 0 for
success

Input message

<?xml version="1

<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx database delete
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<database name>value</database_name>

<work directory>value</work directory>
</ssacx_database delete>

</soap:Body>
</soap:Envelope>

Output message

<?xml version="1

Chapter 9: Web Services

0>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx database delete response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
</ssacx_database delete response>

</soap:Body>
</soap:Envelope>

Web Service Description Parameters Return Code
ssacx_disconnect Releases none negative for error, 0 for
resources success

allocated to a
socket.

Input message

<?xml version="1

<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_disconnect
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc "></
ssacx_disconnect>

</soap:Body>
</soap:Envelope>

Output message

<?xml version="1

<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_disconnect response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>

</ssacx_disconnect response>

</soap:Body>
</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_errors_get_all

Get the Server side error messages
from the last API function that failed.

This function should be called

repeatedly until it returns 1, meaning

all messages have been retrieved.

msg is an error
message.

negative for error, 0 for
success

Input message

<?xml version="1
<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_errors_get_all
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<msg size>256</msg size>
</ssacx_errors_get all>

XML Console Service

138

</soap:Body>
</soap:Envelope>

Output message

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ssacx_errors_get all response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
<msg>value</msg>
</ssacx_errors_get_all response>
</soap:Body>
</soap:Envelope>

report status when
itis finished.

system name - The name of the system
job_name -The name of the job

job_number- The number of the job
job_report- The report on the progress of the
job

work directory- The work directory for the
server to use

Web Description Parameters Return Code

Service

ssacx_job_r | Run a user job. rulebase name - The name of the rulebase. negative for error, 0 for
un Start the job and success

Input message

<?xml version="1.0"7?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ssacx_job_run
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<rulebase name>value</rulebase name>
<system name>value</system name>

<job_name>value</job_ name>

<job_report_size>256</job_report_size>
<work directory>value</work directory>
</ssacx_job_run>
</soap:Body>

</soap:Envelope>

Output message

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ssacx_job_run response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
<job_number>302</job_number>
<job_ report>value</job report>

</ssacx_job_run response>

Chapter 9: Web Services

</soap:Body>
</soap:Envelope>

Web Description Parameters Return Code

Service

ssacx_job_s | Startauserjoband | rulebase name - The name of the rulebase. negative for error, 0 for
tart return immediately. success

system name - The name of the system
job_name -The name of the job

job_number- The number of the job
work_directory- The work directory for the
server to use

Input message

<?xml version="1.0" ?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ssacx_job start
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<rulebase name>value</rulebase name>
<system name>value</system name>

<job name>value</job name>

<work directory>value</work directory>
</ssacx_job start>
</soap:Body>
</soap:Envelope>

Output message

<?xml version="1.0" ?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx job start response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
<job_number>302</job_number>

</ssacx_job start response>

</soap:Body>
</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_job_stat
us

Get the status
of a user job.

rulebase name - The name of the rulebase.
system name - The name of the system
job_name -The name of the job
job_number- The number of the job

job_status-The status of the job (0 =
success, 1 = running, -ve = failed)
job_report- The report on the progress of the
job

work_directory- The work directory for the
server to use

negative for error, 0 for
success

Input message:

<?xml version="1.0" ?>
<soap:Envelope

XML Console Service

139

140

xmlns:soap=" http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ssacx_job_status

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">

<rulebase name>value</rulebase name>
<system name>value</system name>
<job_name>value</job name>

<job number>301</job number>
<job_report_size>256</job_report size>
<work directory>value</work directory>
</ssacx_job status>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_job_ status_response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">

<response>0</response>

<job status>0</job status>
<job_report>value</job_report>
</ssacx_job_status_response>
</soap:Body>

</soap:Envelope>

Web Service Description Parameters

Return Code

ssacx_job_stop | Stop auserjob. | rulebase name - The name of the rulebase.
system name- The name of the system
job_number- The number of the job

work directory- The work directory for the
server to use

negative for error, 0 for
success

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_job_ stop

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">

<rulebase name>value</rulebase name>
<system name>value</system name>
<job_number>301</job number>

<work directory>value</work directory>
</ssacx_job stop>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"7?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_job stop response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">

<response>0</response>
</ssacx_job_stop response>

Chapter 9: Web Services

</soap:Body>
</soap:Envelope>

Web Service Description

Parameters

Return Code

ssacx_jobs_runni | List all the
ng running jobs

job_name The name of the job

job_number The number of the job
job_stepid The number of the step inside the
job

job_progress A description of the activity of
the job

negative for error, 0 for
success

Input message:

<?xml version="1
<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_jobs running
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc"></
ssacx_jobs_running>

</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1
<soap:Envelope

0" 2>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_jobs running response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<response>0</response>

<jobs_running>

<job name>value</job name>
<job_number>302</job_number>

<job_ stepid>302</job_ stepid>
<job_progres sArray>
<job progres s>value</job progress>
</job_progres sArray>

</jobs running>

</ssacx_jobs_running response>

</soap:Body>
</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_rulebase_creat
e

Create a new
rulebase.

rulebase name -The name of the rulebase

work_directory- The work directory for
the server to use

negative for error, 0 for
success

Input message:

<?xml version="1
<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_rulebase create
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<rulebase_name>value</rulebase_name>

<work directory>value</work directory>
</ssacx_rulebase create>

</soap:Body>
</soap:Envelope>

XML Console Service

141

142

Output message:

<?xml version="1
<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_rulebase create response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
</ssacx rulebase create response>

</soap:Body>
</soap:Envelope>

the server to use

Web Service Description Parameters Return Code
ssacx_rulebase_delet | Delete an rulebase_name -The name of the rulebase negative for error, 0 for
e existing work directory- The work directory for success

rulebase. o

Input message:

<?xml version="1
<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_rulebase delete
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<rulebase name>value</rulebase name>

<work directory>value</work directory>
</ssacx_rulebase delete>

</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1
<soap:Envelope

0>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_rulebase delete response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
</ssacx_rulebase delete response>

</soap:Body>
</soap:Envelope>

Web Service Description Parameters Return Code
ssacx_server_check Check the address- The URL of the server negative for error, 0 for
status of a success
server

Input message:

<?xml version="1
<soap:Envelope

L0"e>

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server check
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<address>value</address>
</ssacx server check>

</soap:Body>
</soap:Envelope>

Chapter 9: Web Services

Output message:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server check response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
</ssacx_server check response>

</soap:Body>

</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_server_flu
sh

Issue a flush
command to a
server

address- The URL of the server

negative for error, 0 for
success

Input message:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server_flush
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<address>value</address>
</ssacx_server flush>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server flush response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
</ssacx_server flush response>

</soap:Body>

</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_server_sta
rt

Start a server

server -The name of the server (HT =
HTTP, RB = rulebase, SE = search, XM = XML
search, XS = XML synchronizer)

address- The URL of the server

work directory- The work directory for
the server to use

negative for error, 0 for
success

Input message:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server start
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<server>value</server>

<address>value</address>

XML Console Service

143

144

<work directory>value</work directory>
</ssacx_server start>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server start response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>
</ssacx_server start response>

</soap:Body>

</soap:Envelope>

Web Service

Description

Parameters

Return Code

ssacx_server_sto
p

Stop a server

address- The URL of the server

negative for error, 0 for
success

Input message:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server stop
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<address>value</address>
</ssacx_server stop>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_server stop response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc ">
<response>0</response>

</ssacx server stop response>

</soap:Body>

</soap:Envelope>

art

Web Service Description Parameter | Return Code
s
ssacx_servers_st | Start the servers none negative for error, 0 for success

Input message:

<?xml version="1.0"?2>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_servers start
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc"></
ssacx_servers star</soap:Body>
</soap:Envelope>

Chapter 9: Web Services

Output message:

<?xml version="1.0"?2>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_servers start response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<response>0</response>

</ssacx_servers start response>

</soap:Body>

</soap:Envelope>

Web Service Description Parameter | Return Code

s
ssacx_servers_st | Stop the servers none negative for error, 0 for success
op

Input message:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_servers_stop
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc"></
Ssacx_servers_stop>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_servers stop response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<response>0</response>

</ssacx_servers stop response>

</soap:Body>

</soap:Envelope>

Web Service Description Parameters Return Code
ssacx_system_creat | Create a new system rulebase name- The name of the rulebase negative for error,
€ from a System database_name- The name of the database | 0 for success

Definition File (SDF)
system_name- The name of the system

work_directory- The work directory for
the server to use

sdf name- The name of the System
Definition File

Input message:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_system create
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<rulebase name>value</rulebase name>

<database name>value</database name>

XML Console Service 145

146

<system_name>value</system_name>

<work directory>value</work directory>
<sdf name>value</sdf name>
</ssacx_system create>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"7?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_system create response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<response>0</response>

</ssacx_system create response>

</soap:Body>

</soap:Envelope>

Web Service Description Parameters Return Code

e database. system_name- The name of the system

work_directory- The work directory for the
server to use

ssacx_system_delet | Delete an existing rulebase_name- The name of the rulebase negative for error,
0 for success

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_system delete
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<rulebase name>value</rulebase name>

<system name>value</system name>

<work directory>value</work directory>

</ssacx_system delete>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_system delete response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<response>0</response>

</ssacx_system delete response>

</soap:Body>

</soap:Envelope>

Chapter 9: Web Services

Web Service

Description

Parameters

Return Code

ssacx_system_impor
t

Create a system
from an export file

rulebase name- The name of the rulebase

negative for error,
0 for success

database name- The name of the database
system name- The name of the system

work_directory- The work directory for the
server to use

file name- The name of the file

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_system import
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<rulebase name>value</rulebase name>
<database_name>value</database_name>

<system name>value</system name>

<work directory>value</work directory>

<file name>value</file name>

</ssacx_system_ import>

</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ssacx_system import response
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<response>0</response>

</ssacx_system import response>

</soap:Body>

</soap:Envelope>

Web Service

Description Parameters Return Code

ssacx_system_status_g

Get the status of
a system

rulebase name- The name of the rulebase negative for error,

system name- The name of the system 0 for success
work directory- The work directory for the
server to use

system_status- The system status (build,
locked, production, test or prototype)

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_system status get
xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">
<rulebase name>value</rulebase name>

<system name>value</system name>

<work directory>value</work directory>

<system status_size>256</system status_size>
</ssacx_system status get>

XML Console Service 147

148

</soap:Body>
</soap:Envelope>

Output message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_system status get response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">

<response>0</response>

<system status>value</system status>
</ssacxisystemfstatusigetiresponse>
</soap:Body>

</soap:Envelope>

Web Service Description Parameters

Return Code

ssacx_system_status_s | Setthe statusof | rulebase name- The name of the rulebase

et a system system_name- The name of the system

work directory- The work directory for the
server to use

system_status- The system status (build,
locked, production, test or prototype)

negative for error,
0 for success

Input message:

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx system status set

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">

<rulebase name>value</rulebase name>
<system name>value</system name>

<work directory>value</work directory>
<system status>value</system status>
</ssacx system status set>
</soap:Body>

</soap:Envelope>

Output message:

<?xml version="1.0"?2>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ssacx_system status set response

xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/consoleSvc">

<response>0</response>
</ssacx_system status_set response>
</soap:Body>

</soap:Envelope>

Re-generating the WSDL file

The WSDL file can be regenerated by issuing a flush command to the server.
On Unix this would be done by:

$SSABIN/ssashut -h$SSA CXHOST -f

Or on Windows:

$SSABINS\ssashut -h%SSA CXHOST% -f

Chapter 9: Web Services

NSA-Batch Service

This is a web based Service which provides the ability to add records to the NSA Transaction table. The
service is implemented by the Synchronization Server, as part of the ssasrsv executable image.

Enabling the NSA-Batch Service

In order for the NSA-Batch Service to be available the Synchronization Server must be running. In addition, the
NSA-Batch Service must be configured

The Synchronization Server is enabled by allocating the server’'s host name (SSA_xSHOST) and port number
(ssa_xspoRT) in the env\mdmres.bat (Windows) or env/mdmres (UNIX).The default port number of the
Synchronization Serveris 1671.

Configuring

The configuration process consists of creating a simple text file named either xsserv.ini or xsserv.xml.
The two different extensions represent two different formats that the configuration file can take; an INI file
form and an XML form.

The file can be located in $SSAINI, $HOME or $SSABIN, which the server searches in that order.

The content of this file determines which searches and Rulebases are visible to the client. It is read at server
initialization, so changes to the configuration become effective only after the XML Search Server is bounced.

The xsserv.ini form has the same format as the htserv.ini file used by the HTTP Search Server. Refer to
the HTTP Search Client section of the OPERATIONS Guide for instructions on how to use this format.

Since this is a Web Service, the XML format is recommended.
Generic Mode

The simplest possible file contains the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/xsserv">
<mode>generic</mode>

<rulebase>ids:rb</rulebase>

</server>

This simple xsserv.xml will make all searches in the Rulebase ids:rb available.
Unlike the HTTP Search Server, a Rulebase must be supplied to the XML Search server.

Note: Rulebase names are sent from the client to the server in the clear using the HTTP protocol. To avoid
passing database passwords, it is strongly recommended that xsserv.xml files should specify Dictionary
Alias names.

Custom Mode

Custom mode is use to configure the Systems, Searches and Rulebases visible to the Web clients. A custom
xsserv.xml file will look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-1/xsserv">
<mode>custom</mode>

<profile name="search profile">

<rule name="search rule">
<rulebase>ids:rb</rulebase>
<system>ssa00l</system>

<search name="search name">

<sdf search>name-search</sdf search>
</search>

</rule>

</profile>

</server>

NSA-Batch Service 149

The example defines one profile but multiple profiles can be defined. Each may contain one or more rules. In
this case, there is just one rule. Each rule must have a corresponding definition that nominates the Rulebase
name, System name and any number of Searches (name-search in this example) that can be used by a client.

WSDL file

A WSDL file is created in the server work directory for each system defined in the xsserv.xml file when the
server starts or is refreshed.

The WSDL can also be accessed through the server at:
http://<xshost>:<xsport>/?<system>sync.wsdl

For example, the sample system would be found at:
http://localhost:1670/2ssa001lsync.wsdl

Re-generating the WSDL file

The WSDL file can be regenerated by issuing a flush command to the server. The server will re-read the
xsserv.xml file and re-create the WSDL file.

On Unix this would be done by:
$SSABIN/ssashut -h$SSA XSHOST -f
Or on Windows:

%SSABIN%\ssashut -h%SSA XSHOST% -f
Using the NSA-Batch Service

The NSA-Batch Service accepts an XML file containing a set of IDT records to be synchronized.

Real Time Web Service

150

This section provides information on real time Web Service.
Enabling the Real Time Web Service

The Real Time Web Service is provided by the Synchronization Server. Therefore, The Synchronization Server
must be running. This is achieved by allocating the server’s host name (SSA_xSHOST) and port number
(SSa_XSPORT) in env\mdmres.bat (Windows) or env/mdmres (UNIX). The default port number of the
Synchronization Server is 1671.

Configuring

The configuration process consists of creating a simple text file named either xrserv.ini or xrserv.xml.
The file extensions represent the two different formats that the configuration file may take.

The file must be located in either $SSAINI, $SHOME or $SSABIN. These 3 directories are searched in that order. If
the configuration file is not found, then the Real Time Web Service will not be available.

The contents of the configuration file determine which IDTs will be synchronized by the Service.

Note: The configuration file is read at server initialization time, so changes to the configuration become
effective only after the server has been restarted.

The xrserv.ini form has the same format as the htserv.ini file used by the HTTP Search Server. Refer to
the HTTP Search Client section of the OPERATIONS Guide for instructions on how to use this format.

Since this is a Web Service, the XML format is recommended.

Chapter 9: Web Services

Configuration Settings

You can specify the following settings in the xrserv.xml file.
mode

A required global parameter. Possible values are generic or custom. Generic indicates that all the
synchronized IDTs in the specified rulebase must be made available to Real Time clients. Custom
indicates that only the specified IDTs must be made available to Real Time clients.

txn_thread_num

An optional global parameter. Specifies the number of threads that you want to set to process the IDT
updates.

pid_thread_num

An optional global parameter. Specifies the number of threads that you want to set to process the
persistent ID updates.

work_queue_size

An optional global parameter. Specifies the size of the IDT or IDX transaction reader input queue. The
default size is 5000.

txn_commit_rate

An optional global parameter. Select an appropriate commit rate by tuning. In general, a high commit

rate provides better transaction throughput. However, too high a rate might cause the database to run
out of rollback space in a multi-user update environment, and updated records might not be visible to
searches for long periods. The default value is 1.

extra_audit_info

Optional parameter. Controls the amount of audit information to return. Specify this parameter at the
global level or at the rule level. If specified at the rule level, the settings apply to the IDT to which the rule
applies. For more information about auditing, see Informatica MDM Registry Edition Design Guide.

rulebase

Required. Specifies the rulebase to use for Real Time operations. Specify at the global level for the
generic mode or at the rule level for the custom mode.

system

A required rule-level parameter. Specifies the MDM Registry Edition system containing the IDT to be
processed.

idt

A required rule-level parameter. Specifies the name of the IDT to be processed. This IDT must be present
in the specified MDM Registry Edition system.

disable_idt_mutex_locking

An optional rule-level parameter. Disables the IDT mutex lock and improves synchronization
performance. The default value is false.

Note: If you are using a persistent identifier (PID), do not change the default value of the
disable idt mutex locking parameter.

local_flul_cache

This is a Forced link and unlink rule parameter and is optional. By default, the local flul cache valueis
set to true and the Real-Time Synchronization server uses the local Forced Link/Unlink cache. If it needs

Real Time Web Service 151

152

to use the common Forced Link/Unlink cache in search server then the 1ocal flul cache flag should be
set to false.

notification

An optional rule-level parameter. The default value is false. If you set the value to true, the Notification
Service is notified whenever the IDT is updated. The users who subscribed to the Notification Service for
the rule receive notification messages about the updates.

del_not_found_warn_only

Changes the behaviour to return only a warning when the IDT record cannot be found for a delete
transaction.

soft_skip_delete_fail
Skips restarting the Synchronization Server when a record that you try to delete does not exist.
skip_error_and_continue

Skips any errors and continues to process other records.

Generic Mode

The simplest possible file contains the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/xrserv">
<mode>generic</mode>
<rulebase>ids:rb</rulebase>

</server>

Sample xrserv.xml with worker threads configuration:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/xrserv">
<mode>generic</mode>
<txn thread num>nn</txn thread num>
<pid thread num>nn</pid t hread num>
<rulebase>ids:rb</rulebase>
</server>

Note: By default, the number of worker threads (nn) is set to the number of CPUs available on the machine.
You can override this value by setting <txn_thread num>and <pid thread num>.

Sample xrserv.xml with extra audit information:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns= "http://www.identitysystems.com/xmlschema/iss-version-8/xrserv">
<mode>generic</mode>
<txn thread num>nn</txn_thread num>
<pid thread num>nn</pid thread num>
<extra audit info>True</extra audit info>
<rulebase>ids:rb</rulebase>
</server>

Note: By default, the extra audit information is turned off. For more information about auditing, see
Informatica MDM Registry Edition Design Guide.

This simple xrserv.xml can synchronize all system and its IDTs in Rulebase ids:rb. Rulebase name must
be specified.

Note: Rulebase names are sent from the client to the server in the clear using the HTTP protocol. To avoid
passing database passwords, Informatica Corporation recommends that the xsserv.xml files must specify
Dictionary Alias names.

Chapter 9: Web Services

Custom Mode

You can use the Custom mode to restrict the set of IDTs which can be synchronized by using the Real Time
Web Service. A sample custom xrserv.xml file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns= "http://www.identitysystems.com/xmlschema/iss-version-1/xrserv">
<mode>custom</mode>
<txn thread num>nn</txn thread num>
<pid thread num>nn</pid thread num>
<profile name="IDTO01">
<rule name ="RULEIDTO001">
<rulebase>ids:rb</rulebase>
<system>ssa001l</system>
<idt>IDT001</idt>
</rule>
</profile>
</server>

This example defines one profile but multiple profiles can be defined. Each may contain one or more rules. In
this case, there is just one rule. Each rule must have a corresponding definition that nominates the Rulebase
name, System name and any number of IDTs (IDT001 in this example) that can be synchronized.

Custom xrserv.xml with Persistent-ID work queue size:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns= "http://www.identitysystems.com/xmlschema/iss-version-1/xrserv">
<mode>custom</mode>
<txn thread num>n cpu</txn thread num>
<pid thread num>n cpu</pid thread num>
<work queue size>10000</work queue size>
<profile name="IDT001">
<rule name ="RULEIDT001">
<rulebase>ids:rb</rulebase>
<system>ssa00l</system>
<idt>IDT001</idt>
<extra_audit_ info>TRUE</extra audit info>
</rule>
</profile>
</server>

Note: The work queue_size determines the size of the IDT/IDX transaction reader input queue size. By
default work _queue size is set to 5000.

Custom xrserv.xml with notification enabled:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns= "http://www.identitysystems.com/xmlschema/iss-version-1/xrserv">
<mode>custom</mode>
<txn thread num>n_cpu</txn_thread num>
<pid thread num>n cpu</pid thread num>
<work queue size>5000</work queue size>
<profile name="IDTO001">
<rule name ="RULEIDTO001">
<rulebase>ids:rb</rulebase>
<system>ssa001l</system>
<idt>IDT001</idt>
<extra audit info>TRUE</extra audit info>
<notification>TRUE</notification>
</rule>
</profile>
</server>

Note: By default notification is disabled. Setting the notification tag to TRUE enables the server to send
Audit Notifications to the registered subscribers.

Real Time Web Service 153

Custom xrserv.xml with Forced Link and Unlink rule:

<?xml version="1.0" encoding="UTF-8"?>
<server xmlns= "http://www.identitysystems.com/xmlschema/iss-version-1/xrserv">
<mode>custom</mode>
<txn thread num>nn</txn_ thread num>
<pid thread num>nn</pid thread num>
<profile name="IDT001">
<rule name ="RULEIDTO001">
<rulebase>ids:rb</rulebase>
<system>ssa00l</system>
<idt>IDT001</idt>
<local flul cache>false</local flul cache>
</rule>
</profile>
</server>

Note: By default the local flul cache value is true. This option forces real time sync server always to use
local cache.

Sequence Numbers

The Synchronization Server can process updates from many sources at once. To ensure updates to the same
IDT record are performed in the desired order sequence numbers are used. The Synchronization Server
conforms to the same format for sequence numbers as NSA transaction table. That is a 32 byte string. This
means that string comparison are used for ordering purposes. If using numbers they should be right justified,
zero filled. We recommend using a single pool of sequence numbers for every IDT.

Operation Types

You must specify the type of operation that you want to perform in the SOAP request. Use the 1Ds_op
parameter to specify the type of operation.

You can perform the following operations on the records:

e A. Adds the record.

e D. Deletes the record.

e 3. Shuts down the Synchronization Server.

e T. Forces the Synchronization Server to shut down.

e M. Starts the maintenance period during which the Synchronization Server does not process any records.

¢ N. Ends the maintenance period, and the Synchronization Server starts processing the records.

154 Chapter 9: Web Services

Real Time Reject table layout

The Real Time Web Service stores rejected transactions in an SQL-accessible table named
IDS_UPD_SYNC REJ. The layout of the table is as follows:

System Name
The name of the System to which these rejected transactions belong.
IDT Name

The name of the IDT that this record belongs to. This is the fully decorated table name as it appears on the
target database. For example an IDT named IDT-99 in the definition file stored on dbid 01, would be called
IDS 01 IDT 99.

Operation Code

Defines the operation to be applied. Valid values are ‘A’ meaning add this IDT record, and ‘D’ meaning delete
this IDT record.

IDT Record
This is the rejected record.
Rejected Time Stamp
An alphanumeric string containing the date and time the record was rejected. Format is YYYYMMDDHHMMSS.

Note: The FLAT-FILE input will not insert record into reject table if TXN sequence number is old.

Real Time Failure on System Refresh and Delete

It is not possible to refresh or delete a system while an IDT which belongs to that System is available for Real
Time Synchronization. Before these operations can be performed, the active xrserv.xnl file must be deleted
(or moved to another location) and the Synchronization Server must be flushed using the following
command:

For Windows:
$SSABINS\ssashut -h%SSA XSHOST% -f
For Unix

$SSABIN/ssashut -h$SSA XSHOST -f

RELATED ToOPICS:

e “Batch Utilities” on page 205

Deploying a Real-Time Web Service

This section outlines the steps required to establish a Real-Time Web Service in an MDM-RE environment.
Prerequisites

The Synchronization Server must be running and the Real-Time Web Service must be configured. See the
Enabling the Real Time Web Service section for further details.

WSDL

WSDL files are created by the Synchronization Server in the server work directory for each rule and system
defined in the xrserv.xml file when the server starts or is refreshed. The WSDL can also be accessed
through the server at:

Real Time Web Service 155

http://<xshost>:<xsport>/?<system>.wsdl

where <system> is the last-mentioned system in the xrserv.xml file. For example, the ssa003 sample system
will usually be found at:http://localhost:1670/2testx345.wsdl

The WSDL can also be retrieved from :http://<xshost>:<xsport>/2<rule>.wsdl
Re-generating the WSDL file

The WSDL file can be regenerated by issuing a flush command to the server. The server will re-read the
xrserv.xml file and re-create the WSDL file. For example, on Windows:

$SSABINS\ssashut -h%SSA_XSHOST$ -f
Or on Unix:

$SSABIN/ssashut -h$SSA XSHOST -f
Creating a .NET Proxy

One can create a C# .NET proxy with the supplied compile.bat script in the csharp-xml directory. You must
have Microsoft Web Service Extensions (WSE) 3.0 installed. The script accepts an argument that instructs it
to use WSE 3.0. This is required by ws-sample6.cs, so compile with: compile wse3

The first step is to build the proxy:$ProgramFiles%\Microsoft WSE\v3.0\Tools\lselisdl3.exe /
out:ssal003.cs ssa003.wsdl

This can be then be compiled with: csc /target:library /out:ssa003.d1l ssa003.cs
and linked with a client program, csc /target:exe /reference:ssa003.dll ws-sample6.cs

The main part of the ws-sample6.cs is:

ssa003 sync = new ssal003 ();
if (null != xrserv)
sync.Url = xrserv;

int response = sync.IDT003 (AcctNo, Address,
CL_ID, DOB, Name, IDS OP, IDS SEQ,
out status, out messages);

foreach (AuditMSG message in messages) {
Console.WriteLine ("response={0}", response);
Console.WriteLine ("status={0}", status);
Console.WriteLine ("rulebase={0}", message.Rulebase);
Console.WriteLine ("system={0}", message.System);
Console.WriteLine ("IDT={0}", message.IDT);

foreach (ClusterAction cluster action in message.ClusterAction) {
Console.WriteLine ("Type={0}", cluster action.Type);
Console.WriteLine ("ID={0}", cluster action.To.ID);
Console.WriteLine ("No={0}", cluster action.To.No);
}

}

From this, we can see that
e The sync class has the name of the MDM-RE system.

e The method sync.1DT345 takes IDT input fields to be synchronized as parameters.

Extract from the SDF File

Section: User-Source-Tables
*

create 1idt
1dt003

156 Chapter 9: Web Services

sourced_from flat file

(pk) AcctNo c(11),
Name C(50),
DOB c(8),
Address C(40)

SYNC REPLACE DUPLICATE PK
TXN-SOURCE NSA

Layout of the IDT

Column

RECD

IDS_ACCTNO

IDS_NAME

IDS_STREET

IDS_ADDR4

IDS_CITY

IDS_STATE

IDS_ZIP

IDS_GEOALPHA

IDS_LASTNAMECHAR2

IDS_CL_ID

e The response message includes TXN processing status, response, cluster-related information etc.
e Errors are thrown as SOAPException exceptions.

¢ WebException exceptions may be thrown. This will occur if an attempt is made to run the client without
bringing the server up.

Example Soap Messages

Use the real-time web service to perform add, update, and delete operations.

The following examples show the input and output messages when you perform add, update, and delete
operations:

Add Operation: Input Message

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Header xmlns:wsa="http://www.w3.0rg/2005/08/addressing">
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401~-

wss-wssecurity-secext-1.0.xsd" <wsu:Timestamp xmlns:wsu="http://docs.oasis-

open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
<wsu:Created>2011-07-01T07:16:13.938Z</wsu:Created>
<wsu:Expires>2011-07-01T07:17:53.938Z</wsu:Expires>
</wsu:Timestamp>

</wsse:Security>

Real Time Web Service 157

<wsa:To>http://d-xpx86-ross:1670</wsa:To>
<wsa:MessageID>urn:uuid:7E1A0F1206D156B17A1309504573377</wsa:MessageID>
<wsa:Action>http://www.identitysystems.com/xmlschema/iss-version-8/RealTimeSync/Sync/
$5a003/IDT003</wsa:Action>

</soapenv:Header>

<soapenv:Body>

<nsl:IDT003 xmlns:nsl="http://www.identitysystems.com/xmlschema/iss-version-8/
RealTimeSync" IDS OP="A" IDS SEQ="<nsl:AcctNo>144</nsl:AcctNo>

<nsl:Address>9 TORRENS STREET</nsl:Address>

<nsl:CL ID/>

<ns1:DOB>19661017</ns1:DOB>

<nsl:Name>MARSHALL ROBERT</nsl:Name>

</nsl:IDT003>

</soapenv:Body>

</soapenv:Envelope>

Add Operation:Output Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope" xmlns:wsa="http://
www.w3.0rg/2005/08/addressing
<soap:Header>
<wsa:MessageID>urn:uuid:136dflla-eaab-4d3b-89bb-5e0deab55396</wsa:MessageID>
<wsa:Action>http://www.identitysystems.com/xmlschema/iss-version-8/RealTimeSync/Sync/
ssa003/IDT003</wsa:Action>
<wsa:RelatesTo wsa:RelationshipType="http://www.w3.0rg/2005/08/addressing/
reply">urn:uuid:7E1A0F1206D156B17A1309504573377</<wsa:To>http://www.w3.0rg/2005/08/
addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://d-xpx86-ross:1670</wsa:Address>
</wsa:From>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-4ca940fc-b215-4c99-8b45-e6aede5be831">
<wsu:Created>2011-07-01T07:16:147Z</wsu:Created>
<wsu:Expires>2011-07-01T07:21:1472</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<ssa:IDT003 response xmlns:ssa="http://www.identitysystems.com/xmlschema/iss-
version-8/RealTimeSync">
<ssa:response>0</ssa:response>
<ssa:status>1</ssa:status>
<ssa:AuditMSG>
<ssa:System>ssa003</ssa:System>
<ssa:IDT>IDT003</ssa:IDT>
<ssa:Rulebase>ids:rb</ssa:Rulebase>
<ssa:ClusterAction>
<ssa:Type>Delete from Cluster</ssa:Type>
<ssa:To>
<ssa:ID>AA</ssa:ID>
<ssa:No>4683</ssa:No>
</ssa:To>
<ssa:New>false</ssa:New>
<ssa:Automatic>true</ssa:Automatic>
</ssa:ClusterAction>
</ssa:AuditMSG>
<ssa:AuditMSG>
<ssa:System>ssa003</ssa:System>
<ssa:IDT>IDT003</ssa:IDT>
<ssa:Rulebase>ids:rb</ssa:Rulebase>
<ssa:ClusterAction>
<ssa:Type>Add to Cluster</ssa:Type>
<ssa:To>
<ssa:ID>AA</ssa:ID>
<ssa:No>4683</ssa:No>
</ssa:To>
<ssa:New>false</ssa:New>
<ssa:Automatic>true</ssa:Automatic>
</ssa:ClusterAction>

158 Chapter 9: Web Services

</ssa:AuditMSG>
</ssa:IDT003 response>
</soap:Body>
</soap:Envelope>

Update Operation: Input Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope" xmlns:wsa="http://
schemas.xmlsoap.org/ws/2004/08/addressing” xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsd="http://
www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action>http://www.identitysystems.com/xmlschema/iss-version-11/RealTimeSync/
Sync/testx542/IDT542</wsa:Action>
<wsa:MessageID>urn:uuid:fal28£7a-b243-4b83-89£8-c3e90740b4a3</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</
wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://d-xpx86-ross:1670/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-88962cab-bf9f-45a8-bac7-a7440671fale">
<wsu:Created>2015-05-21T03:09:052</wsu:Created>
<wsu:Expires>2015-05-21T03:14:05Z2</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<IDT542 xmlns="http://www.identitysystems.com/xmlschema/iss-version-11/
RealTimeSync" IDS OP="U" IDS SEQ="3001634343501" user="DXXrross">
<AcctNo>5835475</AcctNo>
<Address>5 Torrens</Address>
<CL_ID />
<DOB>19660710</DOB>
<Name>Robert Baratheon</Name>
</IDT542>
</soap:Body>
</soap:Envelope>

Update Operation:Output Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope" xmlns:wsa="http://
www.w3.0rg/2005/08/addressing" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<soap:Header>
<wsa:MessageID>urn:uuid:8ef2ec72-2e27-40b4-92a4-34b084236a10</wsa:MessageID>
<wsa:Action>http://www.identitysystems.com/xmlschema/iss-version-11/RealTimeSync/
Sync/testx542/IDT542</wsa:Action>
<wsa:RelatesTo wsa:RelationshipType="http://www.w3.0rg/2005/08/addressing/
reply">urn:uuid:fal28f7a-b243-4b83-89£8-c3e90740b4a3</wsa:RelatesTo>
<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://D-XPX86-R0SS:1670</wsa:Address>
</wsa:From>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-26d8b1b2-2258-44cc-9bf5-c2£3c8cf9d30">
<wsu:Created>2015-05-21T03:09:05Z</wsu:Created>
<wsu:Expires>2015-05-21T03:14:05Z2</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<ssa:IDT542 response xmlns:ssa="http://www.identitysystems.com/xmlschema/iss-
version-11/RealTimeSync">
<ssa:response>(0</ssa:response>
<ssa:status>1</ssa:status>
<ssa:AuditMSG>

Real Time Web Service 159

<ssa:System>testx542</ssa:System>
<ssa:IDT>IDT542</ssa:IDT>
<ssa:Rulebase>ids:rb</ssa:Rulebase>
</ssa:AuditMSG>
<ssa:AuditMSG>
<ssa:System>testx542</ssa:System>
<ssa:IDT>IDT542</ssa:IDT>
<ssa:Rulebase>ids:rb</ssa:Rulebase>
</ssa:AuditMsSG>
</ssa:IDT542 response>
</soap:Body>
</soap:Envelope>

Delete Operation: Input Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:real="http://www.identitysystems.com/xmlschema/iss-
version-8/RealTimeSync">
<soap:Header/>
<soap:Body>
<nsl:IDT003 xmlns:nsl="http://www.identitysystems.com/xmlschema/iss-version-8/
RealTimeSync" IDS OP="A" IDS SEQ="<nsl:AcctNo>144</nsl:AcctNo>
<nsl:Address>9 TORRENS STREET</nsl:Address>
<nsl:CL_ID/>
<nsl:D0B>19661017</nsl:DOB>
<nsl:Name>MARSHALL ROBERT</nsl:Name>
</nsl:IDT003>
</soap:Body>
</soap:Envelope>

Delete Operation:Output Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope">
<soap:Header/>
<soap:Body>
<ssa:IDT003 response
xmlns:ssa="http://www.identitysystems.com/xmlschema/iss-version-8/RealTimeSync">
<ssa:response>0</ssa:response>
<ssa:status>1</ssa:status>
<ssa:AuditMSG>
<ssa:System>ssa003</ssa:System>
<ssa:IDT>IDT003</ssa:IDT>
<ssa:Rulebase>ids:rb</ssa:Rulebase>
<ssa:ClusterAction>
<ssa:Type>Delete from Cluster</ssa:Type>
<ssa:To>
<ssa:ID>AA</ssa:ID>
<ssa:No>654</ssa:No>
</ssa:To>
<ssa:New>false</ssa:New>
<ssa:Automatic>true</ssa:Automatic>
</ssa:ClusterAction>
</ssa:AuditMSG>
</ssa:IDT003 response>
</soap:Body>
</soap:Envelope>

Creating an Axis2 Java Proxy

Alternatively, you can create an Axis2 Java proxy with the supplied compile.bat script and the Axis2Sample6
in the java-xml directory. You must have WS-Addressing and WS-Security (Rampart) options installed.

160 Chapter 9: Web Services

Custom HTTP Header

You can add one or more custom HTTP headers to a SOAP response. Use the custom HTTP headers to pass
additional information such as authentication details or location of the Platform for Privacy Preferences
(P3P) policy reference file.

To add a custom HTTP header to a SOAP response, perform the following tasks:

1. Create a configuration file in the following directory and name it as ssahttp.xml:
e On Windows: <MDM Registry Edition Installation Directory>\bin
e On UNIX: <MDM Registry Edition Installation Directory>/bin

2. Add the following entries to the ssahttp.xml file:

<httpProtocol>
<customHeaders>
<add name="<Header Name>" value="<Header Value>"/>
</customHeaders>
</httpProtocol>

3. Replace the following entries with appropriate values:
Header Name

Name of the header
Header Value

Information that you want to add to the response.

For example:
<httpProtocol>
<customHeaders>
<add name="X-Custom-Header" value="Passed"/>
</customHeaders>
</httpProtocol>

4. Save the file and close it.

A running server rereads the configuration file by using the following flush command and adds the custom
HTTP header to the response message:

e On Windows: $SSABIN%\ssashut -h%SA XMHOSTS$ -f

e On UNIX: $SSABIN/ssashut -h$SA_XMHOST -f

An example response is as follows:

HTTP/1.1 200 OK

Date: Fri, 31 Jan 2014 03:28:54 GMT
User-Agent: Informatica-IR/9.5.4
X-Custom-Header: Passed
Content-Length: 0

Notification Service

The Notification Service is provided by the Synchronization Server. Therefore, The Synchronization Server
must be running. This is achieved by allocating the server’s host name (SSA_xSHOST) and port number

(SSA_XSPORT) in env\mdmres.bat (Windows) or env/mdmres (UNIX). The default port number of the
Synchronization Server is 1671.

Custom HTTP Header 161

162

Conformance

The Notification Service implements the Oasis Web Services Base Notification 1.3 (WSBaseNotification)
specification.

Enabling the Notification Service
The Notification Service will not start unless the Real Time Web Service has been enabled and configured.

The service is enabled on a per-rule basis in the Real Time Web Service configuration file using a
<notification> card:

<server xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/xrserv">
<mode>custom</mode>
<pid thread num>8</pid thread num>
<txn thread num>8</txn thread num>
<work_queue_size>4000<work_queue_size>
<profile name="profile">
<rule name="rule">
<system>sysname</system>
<idt>IDTFP</idt>
<rulebase>ids:rb</rulebase>
<extra audit info>false</extra audit info>
<notification>true</notification> <!-- turn notification ON -->
</rule>
</profile>
</server>

Notification Service Functions
Notify

Notification messages are sent out to all subscribers in response to a clustering action. A notification
message looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-utility-1.0.xsd">
<soap:Header>
<wsa:MessageID>urn:uuid:e2af275e-6656-438f-ae2f-93a8479%alff</wsa:MessagelD>
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/NotificationConsumer/Notify</
wsa:Action>
<wsa:To>http://www.w3.0rg/2005/08/addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://localhost:1671</wsa:Address>
</wsa:From>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-194320fa-cc2e-46a7-94e8-00d3388el179f">
<wsu:Created>2011-06-16T05:23:447</wsu:Created>
<wsu:Expires>2011-06-16T05:28:4472</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<wsnt:Notify xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2">
<NotificationMessage>
<SubscriptionReference>
<wsa:Address>http://localhost:1671</wsa:Address>
</SubscriptionReference>
<Topic Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple">rule</Topic>
<AuditMessage>
<System>sysname</System>
<IDT>IDTFP</IDT>

Chapter 9: Web Services

2.
3.

<Rulebase>ids:rb</Rulebase>
<ClusterAction>
<Type>Delete from Cluster</Type>
<To>
<ID>AA</ID>
<No>653</No>
</To>
<New>false</New>
<Automatic>true</Automatic>
<RecordActions/>
<RecordActions/>
<Modifier/>
<Comment/>
</ClusterAction>
</AuditMessage>
</NotificationMessage>
</wsnt:Notify>
</soap:Body>
</soap:Envelope>

The header contains WS-Addressing information.
The Topic is the rule from the configuration.

The NotificationMessage contains an AuditMessage

Note: The Notification Service requires WS-Addressing.

Subscribe

In order to receive notification messages, a client must first subscribe to the messages that it wishes to

receive. A subscription message looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-

wssecurity-secext-1.0.xsd"

xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wss~

wssecurity-utility-1.0.xsd">

<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/

SubscribeRequest</wsa:Action>

<wsa:MessageID>urn:uuid:al27a7e6-444e-43f2-85c7-790fd0820098</wsa:MessagelD>

<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/
anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://localhost:1671/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-9159d636-343a-4951-9bd2-802£7b079a52">
<wsu:Created>2011-06-16T05:23:45Z2</wsu:Created>
<wsu:Expires>2011-06-16T05:28:452</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<Subscribe xmlns="http://docs.oasis-open.org/wsn/b-2">
<ConsumerReference>
<Address xmlns="http://www.w3.0rg/2005/08/addressing">
http://localhost:1671/PullPoint/dff98400-1c24-48d9-aab4-a43c84225ble</Address>
</ConsumerReference>

<Filter>
<TopicExpression
xmlns="" Dialect="http://docs.oasis-open.org/wsn/t-1/
TopicExpression/Simple">rule</TopicExpression>
</Filter>

Notification Service

163

164

<InitialTerminationTime xsi:nil="true"/>
</Subscribe>

</soap:Body>

</soap:Envelope>

The header contains WS-Addressing information.
The ConsumerReference contains the address
The TopicExpression limits the subscriber to retrieving messages from a single rule. Only simple topics

(http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple) are supported. If no
TopicExpression is supplied, then the subscriber will be subscribed to all rules.

The InitialTerminationTime here is set to xsi:nil="true", which means that the subscription does not
expire until the server is shut down or restarted. Alternatively, a date or duration could be supplied. A
date must be in the xsd:dateTime format ([-JCCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]) while a duration
needs to be in the xsd:duration form.

The service will send a response like this:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/
0asis-200401l-wss-wssecurity-utility-1.0.xsd"
xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2">
<soap:Header>
<wsa:MessageID>urn:uuid:£58820eb-c25b-4e39-a042-92cb£f095fd54</wsa:MessageID>
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/
SubscribeResponse</wsa:Action>
<wsa:RelatesTo wsa:RelationshipType="http://www.w3.0rg/2005/08/addressing/reply">
urn:uuid:al27a7e6-444e-43£2-85c7-79b£d0820098</wsa:RelatesTo>
<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To>
<wsa:From>
<wsa:Address>http://www.identitysystems.com/xmlschema/2011/notify/
PausableSubscriptionManager</wsa:Address>
</wsa:From>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-8d5be574-3122-4£26-8755-bf6de0142737">
<wsu:Created>2011-06-16T05:23:45Z2</wsu:Created>
<wsu:Expires>2011-06-16T05:28:45%2</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<wsnt:SubscribeResponse>
<wsnt:SubscriptionReference>
<wsa:Address>http://localhost:1670/PullPoint/dff98400-1c24-48d9-aabd-
a43c84225ble</wsa:Address>
<wsa:ReferenceParameters>
<ssa:SubscriptionID xmlns:ssa="http://www.identitysystems.com/xmlschema/2011/
notify">
7863511b-5b67-4£33-8316-e0b81al9395b</ssa:SubscriptionID>
</wsa:ReferenceParameters>
</wsnt:SubscriptionReference>
<wsnt:CurrentTime>2011-06-16T05:23:45Z</wsnt:CurrentTime>
<wsnt:TerminationTime xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:nil="true"/>
</wsnt:SubscribeResponse>
</soap:Body>
</soap:Envelope>

The header contains WS-Addressing information.

The ReferenceParameters contains a subscription ID. This is used by the Unsubscribe request.

Chapter 9: Web Services

3. The InitialTerminationTime here is set to xsi:nil="true", which means that the subscription does not
expire until the server is shut down or restarted. Alternatively, a date or duration could be supplied.

GetCurrentMessage

The latest message for a given topic can be returned with a GetCurrentMessage request:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-utility-1.0.xsd">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/
GetCurrentMessageRequest</wsa:Action>
<wsa:MessageID>urn:uuid:88afbfb3-0d0f-4038-9702-ddbf5663afbl</
wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/
anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://localhost:1671/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-e35188af-0877-4cf4-b977-
d0439d6bee32">
<wsu:Created>2011-06-17T03:24:07Z</wsu:Created>
<wsu:Expires>2011-06-17T03:29:072</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<GetCurrentMessage xmlns="http://docs.oasis-open.org/wsn/b-2">
<Topic Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/
Simple">rule</Topic>
</GetCurrentMessage>
</soap:Body>
</soap:Envelope>

e A TopicExpression must be suppled with this request Only simple topics (http://
docs.oasisopen.org/wsn/t-1/TopicExpression/Simple) are supported.

The response will include the last message that was sent:

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"

xmlns:wsa="http://www.w3.0rg/2005/08/addressing"

xmlns:wsse="http://docs.oasis-open.orqg/wss/2004/01/0asis-200401-wss-wssecurity-

secext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.orqg/wss/2004/01/0asis-200401-wss-wssecurity-

utility-1.0.xsd"

xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2">

<soap:Header>

<wsa:MessageID>urn:uuid:b9770978-4a3d-4fle-9bd2-£f1851df83a9%a</wsa:MessagelD>

<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/
GetCurrentMessageResponse</wsa:Action>

<wsa:RelatesTo wsa:RelationshipType="http://www.w3.0rg/2005/08/addressing/reply">
urn:uuid:88afbfb3-0d0£-4038-9702-ddbf5663afbl</wsa:RelatesTo>

<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To>

<wsa:From>

<wsa:Address>http://www.identitysystems.com/xmlschema/2011/
notify/PausableSubscriptionManager</wsa:Address>

</wsa:From>

<wsse:Security>

<wsu:Timestamp wsu:Id="Timestamp-d79f3cf7-£ffb7-4529-911c-4c93157adc5d">

Notification Service 165

166

<wsu:Created>2011-06-17T03:24:07Z</wsu:Created>
<wsu:Expires>2011-06-17T03:29:072</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soap:Header>
<soap:Body>
<wsnt:GetCurrentMessageResponse>
<NotificationMessage>
<Topic Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/
Simple">rule</Topic>
<AuditMessage>
<System>sysname</System>
<IDT>IDTFP</IDT>
<Rulebase>ids:rb</Rulebase>
<ClusterAction>
<Type>Delete from Cluster</Type>
<To>
<ID>AA</ID>
<No>653</No>
</To>
<New>false</New>
<Automatic>true</Automatic>
<RecordActions/>
<RecordActions/>
<Modifier/>
<Comment/>
</ClusterAction>
</AuditMessage>
</NotificationMessage>
</wsnt:GetCurrentMessageResponse>
</soap:Body>
</soap:Envelope>

Renew

The subscription’s termination time can be changed with a Renew request:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/
RenewRequest</wsa:Action>
<wsa:MessageID>urn:uuid:e9d04d81-de0b-4a79-9173-4dfaefab0cfi</
wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/
role/anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://localhost:1671/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-14399d03-58d1-4769-8£63-1£04d8£78431">
<wsu:Created>2011-06-17T05:33:547Z</wsu:Created>
<wsu:Expires>2011-06-17T05:38:5472</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<Renew xmlns="http://docs.oasis-open.org/wsn/b-2">
<TerminationTime xsi:nil="true"/>
<ssa:SubscriptionID xmlns:ssa="http://www.identitysystems.com/xmlschema/2011/
notify">

Chapter 9: Web Services

1
2.

30e1752¢c-7bf5-4441-b8e9-67ba5f59c1b3</ssa:SubscriptionID>
</Renew>
</soap:Body>
</soap:Envelope>

This requires the subscription ID from the subscription response

It this case, the subscription is being extended indefinitely

Unsubscribe

A subscription can be terminated at any time with an Unsubscribe request:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/
UnsubscribeRequest</wsa:Action>
<wsa:MessageID>urn:uuid:2bb7d56d-85cd-410d-9ba2-2£9d604294fd</wsa:MessagelD>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/
anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://localhost:1671/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-5030ba37-e056-464d-bad4-56£25b83da6c">
<wsu:Created>2011-06-17T03:24:07Z</wsu:Created>
<wsu:Expires>2011-06-17T03:29:07Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<Unsubscribe xmlns="http://docs.ocasis-open.org/wsn/b-2">
<ssa:SubscriptionID xmlns:ssa="http://
www.identitysystems.com/xmlschema/2011/notify">
e3ccfab3-47£7-42cc-b595-e247d£33£7d9</ssa:SubscriptionID>
</Unsubscribe>
</soap:Body>
</soap:Envelope>

This requires the subscription ID from the subscription response.

PauseSubscription

A subscription can be paused at any time with an pauseSubscription request. No notification messages will
be sent until a ResumeSubscription request is received.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-utility-1.0.xsd">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/
PauseSubscriptionRequest</wsa:Action>
<wsa:MessageID>urn:uuid:3ea43a8a-a505-4c1d-8c7£-a307117£0539</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/

Notification Service 167

168

anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://localhost:1671/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-77b937e0-6699-498f-9665-adad34fb1214">
<wsu:Created>2011-06-17T03:24:06Z</wsu:Created>
<wsu:Expires>2011-06-17T03:29:06Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<PauseSubscription xmlns="http://docs.oasis-open.org/wsn/b-2">
<ssa:SubscriptionID xmlns:ssa="http://www.identitysystems.com/
xmlschema/2011/notify">
e3ccfab3-47f7-42cc-b595-e247d£33£7d9</ssa:SubscriptionID>
</PauseSubscription>
</soap:Body>
</soap:Envelope>

This requires the subscription ID from the subscription response.
ResumeSubscription

The ResumeSubscription request tells the Notification service to resume sending notify messages to a
paused subscription.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-utility-1.0.xsd">
<env:Header xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<wsa:Action>http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/
ResumeSubscriptionRequest</wsa:Action>
<wsa:MessageID>urn:uuid:73b2727c-celb-4704-a62e-cf9%0a69b10c</wsa:MessagelD>
<wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/
anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://localhost:1671/</wsa:To>
<wsse:Security>
<wsu:Timestamp wsu:Id="Timestamp-7eb82fd9-eb5ad4-43a3-83a5-5ed9%a3284e3d">
<wsu:Created>2011-06-17T03:24:06%Z</wsu:Created>
<wsu:Expires>2011-06-17T03:29:062</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</env:Header>
<soap:Body>
<ResumeSubscription xmlns="http://docs.oasis-open.org/wsn/b-2">
<ssa:SubscriptionID xmlns:ssa="http://
www.identitysystems.com/xmlschema/2011/notify">
e3ccfab3-47£7-42cc-b595-e247d£33£7d9</ssa:SubscriptionID>
</ResumeSubscription>
</soap:Body>
</soap:Envelope>

This requires the subscription ID from the subscription response.

Chapter 9: Web Services

UDDI

MDM-RE web services can be registered with UDDI.
Enabling UDDI registration

UDDI registration will not be carried out unless it has been enabled. This is done either though setting a
number of environment variables, or with an XML configuration file.

UDDI Environment Variables

You must add these environment variables to env\mdmres.bat (Windows) or env/mdmres (UNIX).
Note: The environment variables are used by the Web Services servers, not the clients.
SSA_UDDI_DICT

The UDDI configuration file. If this is provided, its contents will take priority over the other environment
variables.

SSA_UDDI_BUSINESS_NAME
The UDDI Business Name. The name of the party publishing the service.
SSA_UDDI_UID
The userid to log on to UDDI with.
SSA_UDDI_PWD
The password for logging on to the UDDI publisher.
SSA_UDDI_URL_INQUIRE
The UDDI inquiry URL, which is probably something like, http://uddi/uddipublic/inquire.asmx
SSA_UDDI_URL_PUBLISH

The UDDI publisher URL, which is probably something like, http://uddi/uddipublic/publish.asmx

UDDI Configuration file

The configuration file is identified by the environment variable Ssa_ubppI_DICT. It is an XML file that contains
cards for the UDDI environment. These cards have the same corresponding values as the similarly named
environment variables.

The UDDI configuration file uses the namespace:http://www.identitysystems.com/xmlschema/iss-

version-8/uddi

The configuration file is an XML file which looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<!-- This file was generated by:

Program: uddi.c

Version: $Change: 470146 $

Date : Wed Mar 03 13:45:41 2010

-—>

<uddi xmlns="http://www.identitysystems.com/xmlschema/iss-version-8/uddi">
<business>Informatica</business>
<inquire>http://uddi/uddipublic/inquire.asmx</inquire>
<publish>https://uddi/uddipublic/publish.asmx</publish>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"

Type="http://www.w3.0rg/2001/04/xmlenc#Element">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes256-cbc"/>
<CipherData>

<CipherValue>

uDDI 169

MGjGOmX001Hk9X2j1pHghcEoPg3/+UjRXVngX0gvvx8Afc70mgtXCU2y1x3]/1HcyOb0he8KzpzY
BQIG/xFcqjRefOgOWlz7d3DWQfOBAMWOSCNXA44ginM/rAAZVR2ZztdDP1FARRBkXEOANBk2wXr I P
nAeRDRrqvgbndj7t9v81liyLGTT+12gaxt4GDzibysY4aqg/GlleeTWkS6SQ1ly6TLZr+5jVx2hdGsN
3ys+F80=</CipherValue>

</CipherData>
</EncryptedData>
</uddi>

The values are:
business

The UDDI Business Name. The name of the party publishing the service.
inquire

The UDDI inquiry URL, which is probably something like:http://uddi/uddipublic/inquire.asmx
publish

The UDDI publisher URL, which is probably something like: http://uddi/uddipublic/publish.asmx
user

The UDDI user, which must be in the UDDI publishers group. This item is encrypted.
password

The UDDI user’s password and this item is encrypted.
UDDI configuration tool

Because the UDDI configuration file contains encrypted elements, it is created using the UDDI configuration
tool, which is called %SSABIN%\uddiconf.exe on Windows and $SSABIN/uddiconf on Unix. It prompts for the
required items and creates the file.

uddiconf SSAIO 9.0.0.01 MSVS2005 Mar 3 2010 12:55:08 IDS9.0.01
file (d:\alni\bin\uddi.xml):
user (ssa):
password:
re-enter:
business: Informatica
inquire: http://uddi/uddipublic/inquire.asmx
publish: https://uddi/uddipublic/publish.asmx
UDDI and MDM-RE concepts
MDM-RE concepts are mapped onto UDDI ones.
Business Entity

The UDDI Business entity is that supplied by the user through the Ssa_UDDI BUSINESS NAME environment
variable.

Business Service

This will be "Search”, "XML Console" or "Synchronizer" depending on the service.
tModel

This will be the MDM-RE system name.
Binding

This will contain:

1. The access point, which is the URL of the web service server

2. The search name in the MDM-RE system

170 Chapter 9: Web Services

3. The Rulebase name corresponding to the system

4. The overview document, which | the URL of the WSDL document.

From this, it should be possible to construct a search request.

Using UDDI to discover searches

The uddi.cs sample demonstrates the use of UDDI to discover MDM-RE searches. It requires the .NET UDDI

SDK to compile it.

uDDI

171

CHAPTER 10

ASM Workbench

This chapter includes the following topics:

e Introduction, 172

e Launching the ASM Workbench, 172

o ASM Workbench Input Options, 173

o ASM Workbench and Batch Test utility, 185

Introduction

The ASM Developer’'s Workbench is a Java GUI tool that helps a programmer prototype Address
Standardization API calls. The ASM Workbench is used to parse addresses into their individual component
fields and to validate them against postal reference databases. The ASM Workbench is used for:

e Parsing Unfielded Address Format
o Validating Fielded and Unfielded Address Format

In order to use the ASM Developer’'s Workbench, MDM Registry Edition (MDM-RE) core modules should have
been installed, either locally, or on another computer/server.

Launching the ASM Workbench

ASM Workbench can be launched from MDM Registry Edition $SSABINS directory.
Command line startup for ASM Workbench

To run ASM Workbench, at the command prompt, run $SSABIN%\env\mdmres.bat to establish the
environment and start the servers. After you establish the environment and start the servers, run asmcli in
the MDM Registry Edition client environment.

The following are the main input parameters for launching ASM Workbench:

asmcli -hHostName:PortNumber -1Filel -2File2 [options]

172

where
-hHostName:PortNumber

Search Server Host name and Port Number.
1File1

Specifies the file where log message are redirected.
2File2

Specifies the file where error message are redirected.

Use ASM with AddressDoctor v5.
-cCharacterSet

The Character set to use. The default is WIN1250.
-dDefaultCountry

The Country to use when parsing can not determine a country from the address.
-mValidationMode

The Mode to use for validation purposes valid values are Suggest, Correct, Complete and Certify. The
default value is Suggest.

For example:
$SSABIN%\asmcli -h%SSA SEHOST% -lasmcli.log -2asmcli.err
or

$SSABINS%\asmcli -h%SSA SEHOST$ -lasmcli.log -2asOmcli.err -d""

ASM Workbench Input Options

Country Specific Input

Country specific Input:

~Country Specific Input
Country Mame

!Unite-d states Ll

[~ Force Country

Force Country option
Force country option is used to force the use of default country.

Note: Before selecting a Country Name for validating an address or preloading country database into
memory, appropriate Postal database (.MD) file must be present in $SSATOP%/ssaas/ad/ad/db directory for
ASM using AddressDoctor v4 and in $SSATOP%/ssaas/ad5/ad/db directory for ASM using AddressDoctor v5.

ASM Workbench Input Options 173

Character Set

This is used to define the character set of the input data. The parsed / validated address fields will be
returned to the caller using this character set as well.

Character Set
Character Set

|UII-I125EI "’I

Country Preload Option

Preload option provides greater flexibility in loading the country address database into memory. The preload
option includes partial preload for US CASS (certified) including ZIP move and EWS data. Only one country
database can be preloaded. If database file is not located or insufficient memory, causes preload to fail.

Preload Country Option-
Preload
None b
None Type
Partial
{+ Parlially Fielded [
Unfielded r

Partial Preload

Partial preloading will load the data and indexing structures into memory. The reference data itself will

remain on the hard drive. Partial is an alternative when not enough memory is available to fully load the
desired databases.

Full Preload

Full preloading will move the entire reference database into memory. This may need a significant

amount of memory for countries with large databases such as USA or, but it will increase the processing
speed significantly.

Note: Before preload of country verify selected country name contains corresponding database (.mp) file
located in appropriate postal reference database directory $SSATOP%/ssaas/ad/ad/db for ASM using
AddressDoctor v4 and $SSATOP%/ssaas/ad5/ad/db for ASM using AddressDoctor v5.

Address Input Type

Address Input Type

Fielded ¢ Parlially Fielded [~
Unfielded o

Fielded address Input

Fielded addresses will typically provide the most reliable results when cleansing an address. This
address input provide separate field for each address component input.

174 Chapter 10: ASM Workbench

Partially Fielded Input

In many databases address data has been partially broken out. for example a separate state, or postal
code field. But some of the address is left in generic "address lines". In this case the address data are
input using the fielded data (example: Contact, Province, Locality, Country, Postal Code) by selecting
Fielded address input type, and then use the DeliveryAddressLines to input the ADDRESS LINE *
elements, this is done by selecting Partially Fielded checkbox.

UnFielded Input

UnFielded Address Input has no explicit structure (other than 10 line input) this input is most flexible, but
produce least reliable results.

Options
Options
Batch o
Interactive o~
Batch Mode

Batch Mode is mainly used for importing input file containing unfielded input data and correcting the
input address.

Interactive Mode
Interactive Mode is user driven, user has to use either unfielded (10 line input) or fielded inputs

(individual components address input).

Parsing and Validation Frame

ASM Workbench provides four different operations for parsing, validating, certify input address and reset for
clearing the input fields. For Fielded Address Format type Parse button will be disabled and for certify
validation mode Validation button will be disabled.

Parse Y alidate Certity Resst

Attributes

Attributes -
Preferred Lanoguage

|PDSTAL_ADHIM:I

Walidation Mode

|CERTIF‘1’ v I ¥ Archive Check

ASM Workbench Input Options 175

Preferred Language

This option is used to represent address into appropriate language type.

Option Value Meaning

POSTAL_ADMIN Set preferred language to that which is preferred by the postal service. This is the
default.

LATIN_SCRIPT Return the address using Latin script.

ENGLISH English version of the address.

Validation Mode

Some optional aspects of Address Standardization behavior may be set by selecting the Validation Mode

combo box.

Option Value Meaning

Correct Correct the input address. Do not generate suggestions. Generally used in batch mode.

Suggest Generate suggestions (the default). Generally used by online applications where the
operator can choose between a list of possibilities.

Complete Use an incomplete address (fragment) to quickly generate suggestions. Used for online
“fast completion” style of applications.

Certify Use CASS certified validation rules defined by the USPS. Certify mode is only available for
US addresses and requires additional database files to be installed in the DB directory.

Archive Check

Archive Check option will include vanity names and outdated names (especially for localities) in the
processing. Skipping this option will improve the speed very slightly, but may not correct addresses
containing vanity names or outdate locality names. Two countries where you should definitely use this
option are Germany and the US.

Suggested Address Label Display

-Address Labhel Suggestion

IDENTITY SYSTEMS

1445 E PUTHAM AVE

OLD GREENWICH CT 06870-1379
UNITED STATES

The address shown in the suggested address label display is formatted according to the address formatting
rules in the country

176 Chapter 10: ASM Workbench

Address Result Panel Display

After parsing or validation, individual address fields are available for collection as part of a "suggestion”.
Suggestion 0 always holds the parsed fields. Suggestions numbered 1 and above hold the validated address
fields. Individual fields are viewed in the List box in Output Results Frame. When the users has chosen the
UnFielded and validate option, then Output frame list out the suggestion for the input address, once the user

clicks on each suggestion the output address data from the List is mapped to corresponding fields in Fielded
address display panel.

1 Organization | Eulding | Sirect 1 Strect 2 HouseNurber PoEox | Locolty | Frovinee | Ziptese |
WESTALHSTER GOLDENUZST 5T Lan3 1 [32593 -
T 3 i o

LEGACY DRIVE T 75024
THE GRACE FUTLOTH IVE OF AMERT 1114 TE TORK wr Lon3s
DFFICE OF EESULAT. .. I (EYT) STEE... 1531 VASHINGTON ne 20006-4083
RESEARCH TRIANGLE. .. TEVELOPYENT ... 700L 1.0.B0K 13960
DIVISION GLOBAL B... LEGACY DRITE 5300 TLAND = 75021
ERICSS0N NETQUAL INC I5AAC NEUTON... 1943 FESTON va z0L90-5006
ERICHSON TREAZURY. .. LEGACY DRITE 5300 LaND = 75024
ERICHION WIRELEZS. .. WATERTDGE V1... 3oLz 24m0 DIZGD ca az121
CEEM WA CORPORATION CENTRAL ATEITE Bads EWARE CALTFIRNIA 34360
|sranuate stnooL o. .. UNIVERSITE &... 160 AR
DEPARTHENT OF PSY. .. F.0. BOK A5L563
BLOXON B0 B¢ CARMEL ri 33872
MONTANL STATE UNL. .. WILEON Hall 2260 B OzEm ur 59717-2400
ARIZONA STATE UNL. .. TERPE az 85287
DUVE TEVEREITY LD CHEX 223 1.0. BOX 30251
FOTOERS UNTVERSITY WASHDNGTON 3... 11l FEVAFE u7 07L02-3027
UNIVERSITY OF 30U .. WESTUOOD TLAZA 110 105 MNELES A 30095- 1481
CLARKEON UNTVERIITY PO ODDX ... 1OTZDAN NEW YORE L3593-5705
LT’ 8 MEDICAL CE... RUSH-PRESEYTERIA. . . 1700 WEST Vh... ao
DEID STATE UNIVER. .. IEIL &VE MALL 1627 COLUETS o 33210 5
eSS AR T e siires Tz SR

Validation Status and Database Version Display

Status bar displays Validation postal database version, AddressDoctor version and the status message when
we press the validation button to validate the address.

ersion: S5.0.2.335 DB Version: 5.00 DB Expiry: 28 02 2010

Status: Verified - Input data correct - all elements were checked and input matched perfectly

Where version represents the Validation Database version and the status represent the Validation Status as
mention in the following table for ASM using AddressDoctor v4:

Status Code Meaning

0 Address is correct

1 Address was corrected

2 Needs correction; deliverability high
3 Needs correction; deliverability fair
4 Needs correction; deliverability small
5 Country not recognized

6 No valid country database found

7 Country not unlocked

ASM Workbench Input Options 177

178

Status Code Meaning

8 No validate called yet

9 Insufficient information
10 No suggestions

11 Suggestions incomplete
12 Suggestions

Refer below table for validation status for ASM using AddressDoctor v5:

Status Code Meaning

0 Verified - Input data correct - all elements were checked and input matched perfectly

1 Verified - Input data correct on input but some or all elements were standardised or input contains
outdated names or exonyms

2 Verified - Input data correct but some elements could not be verified because of incomplete
reference data

3 Verified - Input data correct but the user standardisation has deteriorated deliverability

4 Corrected - all elements have been checked

5 Corrected - but some elements could not be checked

6 Corrected - but delivery status unclear

7 Corrected - but delivery status unclear because user standardisation was wrong

8 Data could not be corrected completely, but is very likely to be deliverable - single match

9 Data could not be corrected completely, but is very likely to be deliverable - multiple matches

10 Data could not be corrected, but there is a slim chance that the address is deliverable

11 Data could not be corrected and is pretty unlikely to be delivered

12 FastCompletion Status - Suggestions are available - complete address

13 FastCompletion Status - Suggested address is complete but combined with elements from the input

14 FastCompletion Status - Suggested address is not complete

15 FastCompletion Status - Insufficient information provided to generate suggestions

16 Country recognized from ForceCountrylSO3 Setting

17 Country recognized from DefaultCountrylSO3 Setting

Chapter 10: ASM Workbench

Status Code Meaning

18 Country recognized from name without errors

19 Country recognized from name with errors

20 Country recognized from territory

21 Country recognized from province

22 Country recognized from major town

23 Country recognized from format

24 Country recognized from script

25 Country not recognized - multiple matches

26 Country not recognized

27 Parsed perfectly

28 Parsed with multiple results

29 Parsed with Errors - Elements change position

30 Parse Error - Input Format Mismatch

31 Validation Error: No validation performed because country was not recognized

32 Validation Error: No validation performed because required reference database is not available

33 Validation Error: No validation performed because country could not be unlocked

34 Validation Error: No validation performed because reference database is corrupt or in wrong format

35 Validation Error: No validation performed because reference database is too old - you need to
contact AddressDoctor to obtain updated reference data

Output Result Frame Column Selection Menu

Output Result Frame also provides option to select the list of column that user wants to view on the Output
result panel. When the user right clicks on the list panel then popup menu displays on the screen showing the

list of columns that user wants to enable or disable on the list.

ASM Workbench Input Options 179

180

W Organization

Nobility

TipPlus4

Geocode Lat
Geocode Long
Geocode Unik

Residus

Show details
Display CASS Fields
View CASS Report
Generate CASS Report
Clear CASS Report

Field Status Display

ok | comen |

RS = =
Fiekd Valus ResuliStatus | MalchStatus
Drganization Internstional School of Bemelempty ptma without errors
Departuent SupLy |BHp TY
Mobility enpty lempry
Tidle eupry ‘ssw
Firstiame enpry empry
{MiddleNaue eupty lempry
Lastlane enpty empty
Function EUPTY EWpLY
Building enpty empry
Sub-Bullding eupty empLy
Street 1 Matcenstutz checked and correcred {ch d or inserced} not found
I:Leet 2 eupty empty
louseHumber Enpry eupLy
P0Box enpty eupty =
seality empry eumpry
Localit; HCHENEUCESEE checked and corrected (changed or inserted) |lempiy
Province Rern [checked and corrected (changed or inserced) empoy
ZipCode 3053 |checked and corrected {changed or inserted) matched with errors
Country SUITZERLAND |eupry eupry =|

Chapter 10: ASM Workbench

Match Status

All results share a Match Status that describes how the address elements matched to the postal
reference data. Refer below table for match status for ASM using AddressDoctor v4:

Match Status Meaning

0 Empty

1 Not found

2 Not Checked (no reference data or no chance of success)
3 Matched with errors

4 Matched without errors

Refer below table for match status for ASM using AddressDoctor v5:

val_status Meaning

0 Empty

1 Not found

2 Not checked (no reference data)
3 Wrong - Set by validation only

4 Match with errors in this element
5 Match with changes

6 Match without errors

Result Status

The Result Status indicates for each address component if and how it has been modified during the
address validation process. Refer below table for result status for ASM using AddressDoctor v4:

Result Status Meaning

0 Empty

1 Not checked

2 Not checked but standardized

3 Checked and corrected (changed or inserted)
4 Validated, but changed (synonyms, old names)

ASM Workbench Input Options 181

182

Result Status Meaning

5

Validated, but standardized

Validated and unchanged

Refer below table for result status for ASM using AddressDoctor v5:

val_mo | Meaning

ds

0 Empty

1 Not validated and not changed

2 Not validated bus standardized

3 Validated but not changed due to invalid input

4 Validated but not changed due to lack of reference data

5 Validated but not changed due to multiple matches

6 Validated and changed by eliminating the input value

7 Validated and changed due to correction based on reference data
8 Validated and changed by adding value based on reference data
9 Validated, not changed, but delivery status not clear

12 Validated, verified but changed due to outdated name

13 Validated, verified but changed from exonym to official name

14 Validated, verified but changed due to standardization based on casing or language
15 Validated, verified and not changed due to perfect match

CASS Field Status Display

When validating address using validation mode as Certify, The Result panels shows validated address fields
and when Display CASS Fields is selected will pop up CASS fields dialog as shown below:

Chapter 10: ASM Workbench

'CASS Fields

Zip+d 1379
Delivery Point 99
Barcode (06870137999
Recordtype H
Carrier Route Cona
Special Flag BO
Congressional District Number 04
Delivery Point Check Digit [t
EWS Flag n
Highrise Default ¥
Highrise Exact]
Rural Route default N
Rural Route Exact N
LACS |
DPV Confirmation

DPYV CMRA

DPV False Positive

DFV FootNotel vy
DPV FootNotel

DPV FoorNote3d

Coc] o |

CASS Summary Report Display

USPS Form 3553 CASS certification can be generated by selecting View CASS Report from popup menu

displayed in the address result tab for CASS certified address. Selecting this option displays CASS Summary

report dialog as shown below:

ASM Workbench Input Options

183

184

mialiva Address Standardicstion Module Workboch - CASS Sumwnary Roport

- CASE Syrvanary Report
A Suftvane
1, 0SS Certfied Compary Nane 2. CASS Ceriafied Sofiwares Diane & Yer son 3, Configsain
!.Ml\!a.t:}'boctwll Ikddnt}é&b\.\.t; wa. 1. 14465 [.I.D['
4,20 Cerified Companyblana &, 24 CorkFied Software Name & Varsion & Confiquration
fra fean [arra
7. DrectPY Certitied Copary Name B, DirachIPY Ceastibed Softwere Mams kyersn 9. Conlig.raen
| o won
10, 6LOT Cartified Company ame 1, eL0T Certified Softwiare Nome b Vorsin 12, Configurstion
pra A [prn
1. MASS G i Comaany Narre 2. MASE Cartilied Sottuuse Name & Verdon 3 Cenligatien
LTI ||ru. |d|ﬁ\.
4, MUDTR Serial o,
[wn
B List
1, LiGE S OCecoor T Namre: 2. DAt LT Procedo 3 Cate of Darshas Proceciad Lioed
8. Macter File 4. 21P+ 4 Fle
{4 PYP T — [eosnarz0an fpsrtsrasce
b, 24chage b, 2Hchargs
[rea Jeea
€. DEwctDFY . DrectDEy
iz o
Q. slin 4. &0
[P [
& CHIS . CRIS
|Foa s
. LsLhiane o 1D R, MDer of LELs TOLS Foeconds
[Urmp TRR AR RS | |.
o et et
Snipudt Pty 1. Totel Soded 2, Valllatin Pevicd Dkt Riakieg 1, Tokal Sirched
Fram 15
2 70 + 410 Confirmed I [Fntizcon [zian a0 O 506K Coded B
b ETaNge rTcessed [F [Fx [Fx 5. LR Lo I
. B DY I e (T I el Asshgwed I
12, maner
A Maeve et Loirdrmce oF Madler
L A
indl 1 13
1. Maer's Sgnsturs 2. Dioke S
¥ |UU?II:)ZA1I.II LAz 53z 93
. Qualitathes Statlstical Sunmnary (OS5
ragh Rise Defau ragh Rse Exact RE Do RR Exact LiCs EWS e
I I [| [n I b
Geernie CASS et | hefresd CASS Suvnery | Clowr CASSmneay | G |

Statistics Reports - CASS Certification

ASM also provides options to generate USPS CASS 3553 Summary report which displays total records coded
in each category. The report can be generated in HTML and XML format. CASS 3553 summary report
sections are explained in detail under CASS Summary Report Display.

Generate CASS Report | Refresh CASS Summary Clear CAZES Summary | Close I

File Menu Options

File | Clear Results

Menu option File > Clear Results menu option is used to clear the address result output display
windows.

File | Save Input

Menu option File > Save Input will prompt File Dialog, this options reads the file name from user and
dumps address input and options(including validation mode, preload option, attributes) in the input file,
which can be used as input for ASM Batch Test utility.

Chapter 10: ASM Workbench

File | View CASS Summary
Menu option File > View CASS Summary will display CASS Summary report dialog.
File | Generate CASS Report

Menu option File > Generate CASS Report will prompt File Dialog, this options reads the file name from
user and generate CASS summary for the input address. File format can be either XML or HTML.

File | Clear CASS Summary

Menu option File > Clear CASS Summary is used to clear accumulated CASS summary after multiple
validation using validation mode as certify.

File | Exit

Menu option File > Exit will prompt to close and exit all SSA-NAME3 Workbench sessions.

ASM Workbench and Batch Test utility

Using ASM Workbench, select File > Save Inputoption, the current Fielded or Unfielded Workbench input can
be dumped to flat file, this flat file can be used as input for the ASM Batch Test utility asmiss.

This is a sample dump of UnFielded Address Input created by the ASM Workbench:

Informatica’s ASM input file

-hlocalhost:1666

-dSwitzerland -cWIN1250 -1 -mSuggest -v -yENGLISH -z -S -a -A -th
WOLFTRONIC Disco & Concert Equip.

zur Brunnenstube

Aeugst am Albis

CHE

This is a sample dump of Fielded Address Input created by the ASM Workbench:

Informatica’s ASM input file

-hlocalhost:1666

-dSwitzerland -cWIN1250 -i -1 -mSuggest -v -yENGLISH -z -S -a -A -th
00 International School of Berne

01

02

03

10 Mattenstutz

15 MUENCHENBUCHSEE
16 Bern
17 3053
18 Switzerland
The command to run the ASM Batch Test utility is as follows:

SSABIN%\asmiss [-h<host:port>] <ASM Workbench generated input file>

ASM Workbench and Batch Test utility 185

Note: The -h option must be specified either in the input file or on the command line. The command line
overwrites any value specified in the input file.

186 Chapter 10: ASM Workbench

CHAPTER 11

Cluster Merge Rules

This chapter includes the following topics:
e Overview, 187

e Example SDF, 187
o Master Rules, 189

e Column Rules, 192

Overview

Cluster Merge Rules are those rules which take a cluster as input and produce a record which is a condensed
or single view of that cluster. These rules are defined as part of a system. This section contains some
examples of these rules. All the rule types can be use in combination and are order dependant.

The Rules are processed in the order listed, removing candidates at each step unless all candidates are
removed. Processing stops when a unique record is found, or if the end of the rules is reached. If the end of
the rules is reached, and no unique record is found, the first of the remaining candidate records is selected
and the result is flagged as ambiguous.

It is also possible for the rules to fail to find a result for one or more columns. This occurs if no rule matches
any candidate. One such rule where this can occur is the other column equals rule. When no candidates
matches the value stored in this rule it will fail to generate a result and the result will be flagged as such.

Example SDF

This section provides an example of the SDF file.

Section: System

*
system-definition
*
NAME= testx311
ID= vl
DEFAULT-PATH= "+"

*

idx-definition
*
NAME= 1dx001

ID= vl

IDT-NAME= idt001

187

KEY-LOGIC= SSA, System(default), Population(test),
Controls ("FIELD=Person Name KEY LEVEL=Standard"),
Field("Name")

*

loader-definition

* ———
NAME= "table-1"
JOB-LIST= job loadit

*

job-definition

NAME= job loadit

FILE= input

IDX= 1dx001

OPTIONS= Load-All-Indexes

*

logical-file-definition
*

NAME= input
PHYSICAL-FILE= "idt001"
INPUT-FORMAT= SQL

*

merge-definition
*

NAME= person merge
MASTER-SELECTION= most-data
COLUMN-SELECTION= name-modal
*

search-definition
e — —

NAME= name-search

IDX= i1dx001

SEARCH-LOGIC= SSA, System(default), Population(test),
Controls ("FIELD=Person Name SEARCH_LEVEL=Exhaustive"),
Field (Name)

SCORE-LOGIC= SSA, System(default), Population(test),
Controls ("PURPOSE=Person Name MATCH LEVEL=Loose"),
Matching-Fields ("Name:person name")

*

multi-search-definition
*
NAME= Persist-Merge

IDT-NAME= idt001

SEARCH-LIST= "name-search"
PERSISTENT-ID-PREFIX= AA
PERSISTENT-ID-METHOD= Merge
PERSISTENT-ID-MRULES= person_merge

*

merge-master-definition
*

NAME= most-data
TYPE= most-data

*
*

merge-column-definition
NAME= name-modal
IDTCOLUMN= Name

RULE-SELECTION= modal-exact
*

*

merge-column-rule-definition
*
NAME= modal-exact
TYPE= modal-exact

*

Section: User-Source-Tables
create _idt 1dt001

sourced from #DBNAME#
#SCHEMA# . TESTX001.NAME (PK2) Name,
#SCHEMA# . TESTX001.ADDR Addr,

188 Chapter 11: Cluster Merge Rules

#SCHEMA#.TESTX001.ZIP Zip,
#SCHEMA#.TESTX001.ID (PK1) Id
sync #SSA SYNC LEVEL#
Section: Files

Section: Views
*

Master Rules

This section provides information on the options in the Master Rules.
» modal exact

Selects the records with the greatest number of columns that contain the modal (most common) value.
The modal value is determined by a strict comparison.

sdf snippet

merge-definition
NAME= person-merge-modal

MASTER-SELECTION= modal-exact
*

merge-master-definition
*

NAME= modal-exact
TYPE= modal-exact

*

Input Result

Name Addr updated John Smith 12 Main Street 13072008
John Smith 12 Maine Street 14072008
John Smith 12 Main Street 13072008
Jon Smith 12 Main Street 23082008

most filled

» modal exact
Selects the records with the greatest number of columns filled.

sdf snippet

NAME= person-merge-most-filled
MASTER-SELECTION= most-filled

*

merge-master-definition
*

NAME= most-filled

Master Rules 189

TYPE= most-filled

*

Input Result

Name Addr updated John Smith 12 Main Street 13072008
John Smith 14072008

John Smith 12 Main Street 13072008
Jon Smith 12 Main Street

most data

» most data

Selects the records with the most data (longest sum of string lengths). Column with a NULL value will not
add to the total length

sdf snippet

NAME= person-merge-most-data
MASTER-SELECTION= most-data
*

merge-master-definition
*

NAME= most-data
TYPE= most-data

*

Input Result

Name Addr updated John Smith 12 Maine Street 13072008
John Smith 12 Main Street 14072008
John Smith 12 Maine Street 13072008
John Smythe 12 Maine Street

column max

» column max
Selects the records with the greatest value in a particular column. The COLUMN field must be provided.

sdf snippet

NAME= person-merge-newest
MASTER-SELECTION= newest
*

merge-master-definition
*
NAME= newest
TYPE= column-max
COLUMN= updated
*

merge-column-definition
*

NAME= updated

190 Chapter 11: Cluster Merge Rules

FORMAT= "DMY"

*

Input

Result

Name Addr updated

John Smith 12 Main St 14072009

John Smith 12 Maine Street 13072009
Jon Smith 12 Main Street 14082009
John Smyth 12 Maine Street 13082009

Jon Smith 12 Main Street 14082009

column min

» column min

Selects the records with the lowest value in a particular column. The COLUMN field must be provided.

sdf snippet

NAME= person-merge-oldest
MASTER-SELECTION= oldest

*

merge-master-definition
*
NAME= oldest
TYPE= column-min
COLUMN= updated
*

merge-column-definition
e e —
NAME= updated
FORMAT= "DMY"

*

Input

Result

Name Addr updated

John Smith 12 Main St 14072009

John Smith 12 Maine Street 13072009
Jon Smith 12 Main Street 14082009
John Smyth 12 Maine Street 13082009

John Smith 12 Maine Street 13072009

column equals

» column equals

Selects the records where a particular column equals a given value. The COLUMN and VALUE fields must

be provided.
sdf snippet

NAME= person-merge-verified

MASTER-SELECTION= column-verified-equals

*

merge-master-definition
*

Master Rules

191

NAME= column-verified-equals
TYPE= column-equals
COLUMN= verified

VALUE= Y

*
Input Result
name street verified updated John Smyth 12 Maine Street Y 1308200909
John Smith 12 Main St N 14072009

John Smith 12 Maine Street N 13072009
John Smyth 12 Maine Street Y 13082009

Column Rules

This section provides information on the options of Column Rules.

o from master
Selects the value from the master record.
¢ modal exact

Selects the records that contain the modal (most common) value. The modal value is determined by a
strict comparison.

sdf snippet

NAME= person-merge-modal
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= Name, Addr, Updated

*

merge-master-definition
* ———
NAME= modal-exact
TYPE= modal-exact

*

NAME= Name
IDTCOLUMN= Name

RULE-SELECTION= from-master
*

NAME= Addr
IDTCOLUMN= Addr

RULE-SELECTION= from-master
*

NAME= Updated
IDTCOLUMN= Updated
RULE-SELECTION= from-master

*

merge-column-rule-definition
*

NAME= from-master
TYPE= from-master

192 Chapter 11: Cluster Merge Rules

Input

Result

Name Addr updated

John Smith 12 Maine Street 14072008
John Smith 12 Main Street 13072008
Jon Smith 12 Main Street 23082008

John Smith 12 Main Street 13072008

most-data

» most-data

Selects the records with the most data (longest sum of string lengths).

sdf snippet

NAME=
MASTER-SELECTION=

COLUMN-SELECTION=
*

NAME= name-most-data
IDTCOLUMN= name
RULE-SELECTION= most-data
*

merge-column-rule-definition
*

NAME= most-data
TYPE= most-data

*

modal-exact
name-most-data

person-merge

Input

Result

name

John Smith
John J Smith
John Smyth

John J Smith

min

» min

Selects the records with the lowest value in the current column.

sdf snippet

merge-definition

NAME= person-merge-min-salary
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= salary-min

*

Column Rules

193

NAME= salary-min
IDTCOLUMN= salary
RULE-SELECTION= min
*

merge-column-rule-definition
*

NAME= min
TYPE= min
*
Input Result
0065000
salary
0100000
0065000
0080000
0066000
max
» max
Selects the records with the highest value in the current column.
sdf snippet
merge-definition
A== ——
NAME= person-merge-max-date
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= date-max
*
merge-column-definition
e ——
NAME= date-max
IDTCOLUMN= date
FORMAT= "MDY"
RULE-SELECTION= max
*
merge-column-rule-definition
*
NAME= max
TYPE= max
*
Input Result
01322005
date
01302004
01322005
04301999
01012005
07221997
sum
> sum

Selects a generated record with the sum of all values in the current column.

194 Chapter 11: Cluster Merge Rules

sdf snippet

NAME= person-merge
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= salary-sum

*

NAME= salary-sum
IDTCOLUMN= salary
RULE-SELECTION= sum

*

merge-column-rule-definition
*

NAME= sum
TYPE= sum

*

Input Result

0312149
salary

0100000
0065000
0080150
0066999

mean

» mean
Selects a generated record with the average of all values in the current column.
sdf snippet

merge-definition

NAME= person-merge
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= salary-sum

*

merge-column-definition
NAME= salary-sum
IDTCOLUMN= salary
RULE-SELECTION= sum

*

merge-column-rule-definition
*
NAME= sum

TYPE= sum
* %

Input Result

0079100
salary

0100000
0064000
0080000
0072400

Column Rules

195

other column equals

» other column equals

Selects the records where a different column equals a value. The TARGET-COLUMN and VALUE
parameters must be provided.

sdf snippet

NAME= person-merge
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= salary-where-verified

*

NAME= salary-where-verified
IDTCOLUMN= salary
RULE-SELECTION= verified

*

merge-column-rule-definition
*

NAME= verified

TYPE= other-column-equals
TARGET-COLUMN= verified
VALUE= Y

*

Input Result

0064000 N
salary verified
0100000 N
0064000 Y
0080000 N
0072400 N

Note: verified became N in the result because of the master modal-exact rule.

other column min

» other column min

Selects the records where a different column contains the lowest value. The TARGET-COLUMN parameter
must be provided.

sdf snippet

NAME= person-merge
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= salary-where-oldest

*

merge-column-definition
NAME= salary-where-oldest
IDTCOLUMN= salary
RULE-SELECTION= oldest

*

merge-column-rule-definition
*

NAME= oldest

196 Chapter 11: Cluster Merge Rules

TYPE= other-column-min
TARGET-COLUMN= updated

FORMAT= "MDY"
*

Input

Result

salary updated
0096500 02142001
0098100 05162009
0080000 01132002
0072400 03272001

0096500 02142001

Note: verified became N in the result because of the master modal-exact rule.

other column max

» other column max

Selects the records where a different column contains the greatest value. The TARGET-COLUMN parameter

must be provided.

sdf snippet

merge-definition

NAME= person-merge
MASTER-SELECTION= modal-exact
COLUMN-SELECTION= name-where-newest
*

merge-column-definition
NAME= name-where-newest
IDTCOLUMN= name
RULE-SELECTION= newest

*

merge-column-rule-definition
*
NAME= newest

TYPE= other-column-max
TARGET-COLUMN= updated

FORMAT= "DMY"
*

Input

Result

salary updated
John Smyth 14122009
John Smith 16112003
J Smith 15012001
John Smith 20112009

John Smyth 14122009

Note: verified became N in the result because of the master modal-exact rule.

Column Rules

197

CHAPTER 12

Forced Link and Unlink

This chapter includes the following topics:
e Qverview, 198

o Defining Link and Unlink Rules, 198

e Loading Link and Unlink Rules, 200

e Cluster Adjustments, 202

Overview

The forced link and unlink feature helps users to identify a set of records as being the same or different
entity. Link rules allow users to identify a set of records as the same entity. Unlink rules allow users to
identify a set of records as separate entities.

The link and unlink rules can be supplied during the design of an MDM-RE system. The application of these

rules are controlled by the Persistent-ID options. For more details, see the PERSISTENT-ID-OPTIONS section
under the Multi-search definition in the MDM-RE Design guide.

Defining Link and Unlink Rules

198

You need to define the link and unlink rules that need to be added or deleted in a flat file. The order of the
fields must be as shown below. Each field must be separated by a delimiter (specified by the user).

—_

Rule Type

2. Subject Record PK
3. Relationship

4. Related Record PK

The field definitions are as follows:

Field Definition

Rule Type Use this field to specify the type of the rule. A value of "A" represents that the
rule needs to be added to the system and "D" represents that a rule needs to be
removed from the system.

Subject Record PK Use this field to specify the PK of the subject record. The subject record is the
record to which something should be linked or unlinked.

Relationship Use this field to specify the relationship between the subject record and related
record. A value of "L" represents a Link rule between the subject record and the
related record and a value of "U" represents an Unlink rule between the subject
record and the related record.

Related Record PK Use this field to specify the PK of the record that is either linked or unlinked to
the subject record.

Example
For adding a link rule
"A","000000005","L","000000006"
For deleting a link rule
"R, "000000005", "L","000000006"
For adding an unlink rule
"A","000000005","U", "000000001"
For deleting an unlink rule
"R, "000000005", "U", "000000001"

Multiple PK record

When using multiple PKs, the Subject and Related PK fields must be in the same order as defined in the UST-
Definition section of the SDF file.

For example

For adding a link rule
"A","PK1",”PK2”,"L","PK1", "PK2"
For deleting a link rule
"D","PK1",”PK2”,"L", "PK1", "PK2"
For adding an unlink rule
"A™,"PK1",”PK2”,"U","PKL1", "PK2"
For deleting an unlink rule

"p", "PK1",”PK2","U", "PK1", "PK2"

Note: Link and unlink rules for non-existing records will be ignored. A report is generated showing the ignored
link and unlink rules.

Defining Link and Unlink Rules 199

Loading Link and Unlink Rules

Use one of the following methods to load the link and unlink rules:

e Console client
e User-defined jobs

e APIs

You must specify the name of the identity table or persistent ID to which you want to associate the rules.

Console Client

Use the console client to load the link and unlink rules.

1. Onthe MDM Registry Edition Console Client, click Tools > Load Link/Unlink Rules.

W% Informatica MDM - Registry - Load Link/Unlink Rules

DT |idc317 «
Delimiter |:|

Rules File ||

[[] Restare fram previous export

[ok || cancel

200 Chapter 12: Forced Link and Unlink

2. Enter the following information:
IDT

Identity table in which the persistent ID definition exists.
Persistent-ID

Persistent ID to which you want to associate the specified link and unlink rules.
Delimiter

ASCII decimal value of the delimiter that you use in the input file. The default delimiter is comma (,)
that has an ASCII value of 44.

Rules File

Path of a file that contains the link and unlink rules or the exported data on which you have already
applied the link and unlink rules.

The path of the file can be an absolute path or relative to the current value of the SSAWORKDIR
environment variable.

Restore from previous export

Specifies whether the file that you specify contains the link and unlink rules or the exported data on
which you have already applied the link and unlink rules.

If you do not select Restore from previous export, the file path that you specify points to a file that
has the link and unlink rules.

If you select Restore from previous export, the file path that you specify points to a file that has the
exported data on which you have already applied the link and unlink rules.

User Defined Jobs

Use a batch process to load the link and unlink rules. Create a use-defined job with a step to load the link and
unlink rules, and use idsbatch to run the job.

For more information about user-defined jobs, see the User-Job-Definition and User-Step-Definition sections
in the MDM Registry Edition Design Guide. For more information about the idsbatch utility, see the Batch
Utilities /idsbatch section in this guide.

1. Define a user-defined job user-job-1load-MR.

The following excerpt is a sample user-define-job definition:

user-job-definition
*

NAME= user-job-load-MR

*

user-step-definition
*

JOB= user-job-load-MR
NUMBER= 0

NAME= "Load Link/Unlink Rules"
TYPE= "Load Link/Unlink Rules"
PARAMETERS= (IDT,IDT387),

(Persistent-ID, search-name-multi),
(Delimiter, 44),
("Rules File","+/data/testx387.txt")

2. Create the idsbatch instructions file to run the user-defined job.

Loading Link and Unlink Rules 201

The following excerpt is a sample idsbatch instructions file:

Load Link/Unlink rules
B
action=job-run
job-name=user-job-load-MR
system-name=testx387
rulebase-name=#SSA RBNAME#
work-directory=#SSAWORKDIR#

3. Run the following command to run the user-defined job:

e On Windows: $SSABIN%\idsbatch -h%SSA CSHOST$ -i%SSAWORKDIR%\mr load.txt -1%SSAWORKDIR%
\ mr load.log -2%SSAWORKDIR%\mr load.err

e On UNIX: $SSABIN/idsbatch -h$SSA CSHOST -i$SSAWORKDIR/mr load.txt -1$SSAWORKDIR/
mr load.log -2$SSAWORKDIR/mr load.err

Using API

User can provide the link and unlink rules through APIs. For more information about the APIs, see the MDM
Registry Edition Developer's Guide.

Cluster Adjustments

Cluster adjustments refer to the changes done by the user to a cluster after it is initially formed by MDM-RE
clustering engine. Cluster adjustments can be done using MDM-RE IDD client.

Record Link and Unlink will be preserved in the form of link and unlink rules respectively.

202 Chapter 12: Forced Link and Unlink

CHAPTER 13

System Backup and Restore

This chapter includes the following topics:

e Qverview, 203

e Back Up the System, 203

e Restore the System, 204

Overview

Use the operating system and database backup tools to back up the MDM Registry Edition systems, and the
tools can vary from system to system.

The first step is to ensure that the MDM Registry Edition databases and Rulebase are in a stable state. The
best way to do that is to shut down the MDM Registry Edition Rulebase and connection/search servers. Use
the MDM Registry Edition Console or run the idsdown script to shut down the MDM Registry Edition Rulebase
and connection/search servers. On UNIX, use the $SSABIN/idsdown command.

After you shut down the MDM Registry Edition servers, use the database vendor tools to back up all the MDM
Registry Edition tables and databases. For example, with IBM DB2 UDB, you can use the BACKUP DATABASE
command. Oracle has multiple ways to back up databases. For example, the Oracle Recovery Manager. Save
the user information. IBM DB2 UDB uses system user IDs. A complete system backup is the best way to
ensure that all the information is backed up. If a complete backup is not feasible, document all the scripts
and procedures that you used to set up the MDM Registry Edition system so that a complete restore is
possible.

Back Up the System

1. Shut down the MDM Registry Edition server processes to ensure that all the changes are written to
databases.

2. Use vendor database tools to back up the MDM Registry Edition databases. Also, back up users and user
permissions if they are not backed up by this step. Note that IBM DB2 UDB uses system user IDs.

3. Use the operating system backup tools to back up the MDM Registry Edition directories.

203

Restore the System

1. Restore the MDM Registry Edition directories. Follow the MDM Registry Edition install procedures for
setting the system path, shared library path, and environment variables.

2. Restore user information (re-create user ID and permissions).
3. Restore databases.
4. Start the MDM Registry Edition servers.

It is a good practice to have a standard test or a set of tests to verify the restore.

204 Chapter 13: System Backup and Restore

CHAPTER 14

Batch Utilities

This chapter includes the following topics:

e Batch Utilities, 205

e Common Parameters, 206
e ssachdb Utility, 207

¢ dbinit Utility, 208

e idsinit Utility, 208

e |lockmgr Utility, 208

e version Utility, 210
e idsbatch Utility, 210
e checkiirtable Utility, 210

e iirconfig-tool Utility, 211

e loggrabr Utility, 213

o logfrmat Utility, 214

o db_util Utility, 215
e Command File Syntax, 216

Batch Utilities

Use the batch utilities to run the MDM Registry Edition processes in the command line.

The following table lists the batch utilities that you can run in the command line:

Function Utility Name
Creating a Rulebase idsinit, idsbatch
Creating a database dbinit, idsbatch
Creating a system idshatch
Deleting a system idsbatch
Changing the database connection string ssachdb

205

Function Utility Name

Version signatures version

Running a batch job idsbatch

Stopping a batch job idsbatch (if you use idsbatch to start the job)
Listing or removing locks lockmgr, db_util

Table Loader idshatch

RELATED TOPICS:

e “Real Time Failure on System Refresh and Delete” on page 155

Common Parameters

When you run a batch utility, you must specify the required input parameters in the command line.

Most of the batch utilities use the following parameters:
-pSystem

The System Name.
-rRbName
Rulebase name.
-hRbHost
Rulebase Server connection details. Format is hostname:port.
-dDbName
Database name.
-vVerbosity
Verbosity of job where p=progress, s=statistics, u=usage, i=info.
-1UtilityLog
Utility Log file name.
-2UtilityErr
Utility Error file name.
--1ServerlLog
Server Log file name.
--2ServerErr

Server Error file name.

206 Chapter 14: Batch Utilities

ssachdb Utility

This utility is used to change the source or target database connection string, stored in the Rulebase, for a
given system. The utility may also be used to change the schema name associated with the source database
(defined in the User Source Tables section).

This is useful when the DBMS password has been changed, or when the entire Rulebase has been copied and
moved to another database (example, Test to QA). The syntax is:

%$SSABIN%\ssachdb -o0ldName -nNewName [-z] | -x0ldSchema -yNewSchema CommonParms

where
-00ldName

The old Database connection string
-nNewName

The new Database connection string

Update IDS_2PC table (see Synchronizer Considerations below).
-x0ldSchema

The old source database schema

-yNewSchema
The new source database schema

For example, the following three calls change the name of the source connection string, source schema from
TEST to QA, and target database connection string respectively.

ssachdb -oodb:99:ssa/ssal@srcdb -nodb:99:ssa/ssal@newsrcdb ...
ssachdb -xTEST -yQA ...
ssachdb -oodb:l:ssa/ssa@tgtdb -nodb:l:ssa/ssa@newtgtdb ...

The utility updates the Rulebase by performing a simple text replacement of the old string with the new one.
If it is necessary to change the source and target connection strings independently, it is necessary to use
different names for them in the original system. For example, using a database number of 99 for the source
database distinguishes it from the target database, which by default uses a database number of 1, even if
they share the same connection parameters (uid/pwd@svc).

Synchronization Considerations

In general, synchronization of a cloned target database is not possible without reloading the IDT/IDXs. There
are many problems including:

¢ Triggers on the source database will continue creating transactions for a specific database number
(example, IDS_01). If the new target database’s connection string specifies a different database number, it
will be unable to see those transactions.

e There are now multiple consumers of trigger transactions (databases A and A’), but only one transaction
will be created, which is insufficient to synchronize both databases. In other words, the cloned system
does not have any triggers defined for it, and must not process the transactions created for the original
system.

e The 1Ds_2PcC table contains the name (connection string) of the original target database. This may be
changed to the new target database by using the -z switch in combination with the -0 and -n switches.
That is, ssachdb will connect to the database specified with-n and update the 1Ds_2pc table, replacing the
0ldName with the NewName.

ssachdb Utility 207

dbinit Utility

This utility initializes a database ready for use by MDM Registry Edition.
%$SSABIN%\dbinit [-pSystem] [-rRbName] [-hRbHost] -dDbName [-vpsu] [-f] [-gn]

where
-f

Deletes the database initialization flag but does not delete the database contents (IDTs, IDXs, etc).
-gn
n is the database granularity. This must be a power of two, and may be expressed in k or m (example, -g32k)

All parameters are optional, except for the database name, but if a system is supplied, a Rulebase must also
be supplied, and vice versa.

idsinit Utility

This utility initializes a Rulebase.
$SSABIN%\idsinit -rRbName -hRbHost [-vpsu] [-f]

where
-f

Deletes the Rulebase.

lockmgr Utility

208

This utility performs the following tasks:

e Deletes a lock for a unique identifier.

e Lists all the application locks and the unique identifiers for a system.
e Lists the current entries for the I1DS_LCK_TABLES lock table.

o Retrieve a specific record based on a unique identifier.

The lockmgr utility uses the following syntax:

$SSABIN%\lockmgr [list|getrec <unique identifier>|del <unique identifier>] -rRbName -hRbHost
[-vpsu] [-1]

where:

e 1list. Lists the application locks and their unique identifier values.

e del <unique identifier>. Deletes a lock for the unique identifier that you specify.

e getrec <unique identifier>. Retrieves lock records for the unique identifier that you specify.
¢ -r.Indicates the Rulebase name.

e -h. Indicates the Rulebase Server connection detail. You can use the -g option to specify the Rulebase
Server Group name.

Chapter 14: Batch Utilities

e -1. Lists the Rulebase Server connection details when used in conjunction with the -g option in the
host:port format.

You must specify either the 1ist, getrec ug, or del ug option in the syntax.
List Locks Example
The following example lists all the application locks for a system:

$SSABINS\lockmgr list -rodb:0:userid/password@dbserver -hlocalhost:1668

ug: idtsyncsystem:benchmark:r:ssaupd:1632979627:3173
idt-name: benchl

systen-name: benchmark

process-name: ssaupd:1632979627:3173

host-name: rl100-1x6

process-ID: 17711

Kk kkhkkhkkk Xk khkkk*k

uq: idtsync:benchmark:benchl
idt-name: benchl

systen-name: benchmark

process-name: ssaupd:1632979627:3173
host-name: r100-1x6

process-ID: 17711
kkkkhkkkkkkhkkkkkkx

Retrieve Locks Example
The following example retrieves the lock records for a specific identifier:

$SSABIN%\lockmgr getrec idtsyncsystem:benchmark:r:ssaupd:1632979627:3173 -rodb:0:userid/
password@dbserver -hlocalhost:1668

KKk Kk hkkkkrhkkxk*kkx

idt-system-name: idtsyncsystem:benchmark:r:ssaupd:1632979627:3173
idt-name: benchl

system-name: benchmark

process-name: ssaupd:1632979627:3173

host-name: rl100-1x6

process-ID: 17711

khkkkhkkkkkkkkkkkkx

Delete Locks Example
The following example deletes a lock based on the specified unique identifier:

$SSABINS\lockmgr del idtsyncsystem:benchmark:r:ssaupd:1632979627:3173 -rodb:0:userid/
password@dbserver -hlocalhost:1668

You must use this delete utility with caution. Removing the locks from a running process, such as Update
Synchronizer, that requires exclusive use of certain system resources might lead to data corruption and
errors.

If a process detects a conflicting lock, it tries to find out the status of the job that created the lock. It deletes
the locks and creates its own if the original process has crashed.

In some instances, the new process might not be able find out the status of the original process. For
example, if the original process runs on a different computer or is unresponsive. The lockmgr utility is useful
in such scenarios to remove the lock manually.

lockmgr Utility 209

version Utility

You can use this script to display the version signatures from the programs and objects in MDM Registry
Edition.

$SSABINS\version [product-id]
where

product-id is the name of the sub-system to display. Valid values include al1, ce, db, d1, 1m, io, ut and cs.

idsbatch Utility

This program reads and executes actions defined in a text file. Most commonly performed Console Client
functions are available by running user defined jobs. See the User-Job-Definition section in the DESIGN
GUIDE .

$SSABIN%\idsbatch -h<CShost> -i<commandFile> -1<logFile> [-2<errorFile>] [-3<dbgFile>]

where:
-h<CShost>

Required. Console Server host :port address.
-i<commandFile>
Required. The name of the file that contains the list of actions to be performed.
-1<logFile>
Required. The name of the output (log) file.
-2<errorFile>
Optional. The name of the error output file. This file will contain error messages if one or more steps fail.
-3<dbgFile>

Optional. The name of the debug output file that can contain error messages and additional information about
any failures.

checkiirtable Utility

210

Use the checkiirtable utility to validate the integrity for all identity tables and identity indexes and to
identify any issues. The checkiirtable utility checks the identity indexes with the identity tables to find any
orphaned identity index entries.

checkiirtable -r<Name of the Rulebase> -h<Host name:Port> -p<System name> -i[Identity table
name [, Identity index name]]

Chapter 14: Batch Utilities

where:
-r<RulebaseName>

Required. Name of the Rulebase.
-h<Host name:Port>

Required. Host name of the Rulebase server and port number on which the Rulebase server listens.
-p<System name>

Required. Name of the system that you want the utility to use.
-i[Identity table name|,Identity index name]]

Checks the integrity of all identity tables and identity indexes in this system, or a particular identity table and
identity index. For more information about checking integrity, see “Integrity Checking” on page 100.

By default, the utility checks the integrity of all identity tables and identity indexes when the identity table and
identity index names are not specified.

-k
Optional. Displays erronous records with additional details.
For example, the checkiirtable -rodb:0:ssa/ssaGorcl -h%SSA RBHOST% -pbenchmark -k -
iBenchl, BusName command checks the identity table Bench1 and the identity index BusName and provides
erroneous records with additional information.

-b
Optional. Deletes the bad or orphan identity index entries.

i
Optional. Provides a detailed log information of the utility.

-vpsui

Optional. Enables verbose information, where p indicates progress, s indicates statistics, u indicates usage,
and i indicates information.

iirconfig-tool Utility

Use the iirconfig-tool utility to retrieve or update the configuration metadata of a system. The configuration
metadata includes details about the system, identify table, identity index, identity fields, search configuration,
and other system-related configuration.

The iirconfig-tool utility uses the following format:

$SSABIN/iirconfig-tool -p|--print [<Key>] -u|--update [<Key>=<Value>|<File Name>] -h|--
host <Connection Details of the Rulebase Server> -r|--rulebase <Name of the Rulebase> -
s|--system <Name of the Sysem> [-a|--audit-log [<File Name for Audit Log>]] [-t|--test]
[-e|--escape] [-f|--force] [-g|l--quiet] [-Vv|--verbose]

The iirconfig-tool utility uses the following parameters:

-pl--print [<Key>]

Retrieves the configuration metadata of the specified key or all the keys of the specified system. If you
do not specify any key, the utility retrieves the configuration metadata of all the keys.

iirconfig-tool Utility 211

For example, the following command retrieves the Compress_Method value of the (System)SalesSystem
key:

$SSABIN/iirconfig-tool -h OrgHost:8080 -r odb:0:myuid/mypassw@oraserv -s SalesSystem
-p '(System)SalesSystem:Compress Method'

Note: Retrieve the configuration metadata of all the keys at least once to view the format of the keys and
their values.

-u|--update [<Key>=<Value>|<File Name>]

Updates the value of the specified key or the values of all the keys that you add to the specified input
file. If you want to update multiple key values, add all the keys and their values to an input text file and
specify the input file name as a parameter.

For example, the following command updates the Compress_Method value of the (System)SalesSystem
key to Default:

$SSABIN/iirconfig-tool --host OrgHost:8080 --rulebase odb:0:myuid/mypassw@oraserv --
system SalesSystem --update '(System)SalesSystem:Compress Method=[Default]'

The following command updates the values of all the keys that you add to the update. txt file:

$SSABIN/iirconfig-tool --host OrgHost:8080 --rulebase odb:0:myuid/mypassw@loraserv --
system SalesSystem --update update.txt

Note: Retrieve the configuration metadata of all the keys to view the format of the keys and their values.
In the input file, you can specify the keys and their values in the same format.

-h|--host <Connection Details of the Rulebase Server>
Connection details of the Rulebase server.
Use the following format: <Host Name of Rulebase Server>:<Port Number>
For example, -h OrgHost:8080
-r|--rulebase <Name of the Rulebase>
Name of the Rulebase or the dictionary alias of the Rulebase name.
Use the following format for a Rulebase name: <DB Type>:<Number>:<User>/<Password>@<Service>
For example, -r odb:0:myuid/mypasswloraserv
Use the following format for the dictionary alias of a Rulebase name: ids:<Rulebase Alias>
For example, ids:rb
-s|--system <Name of the System>
Name of the system. The utility retrieves or updates the metadata information of the specified system.
For example, -s SalesSystem
-a|--audit-log [<File Name for Audit Log>]

Optional. Name and directory path for the audit log file. The utility adds entries to the log file when you
update any key values. By default, the utility creates the iirconfig-tool-audit.1log file in the current
working directory.

-t|--test

Optional. Runs the utility in the test mode and validates the keys and the values that you want to update.
If the validation fails, you get a message about the failure. After you successfully validate the keys and
the values, you can update them in the system.

212 Chapter 14: Batch Utilities

For example, the following command validates the format of the
(System)SalesSystem:Compress_Method key and its value:

$SSABIN/iirconfig-tool -h OrgHost:8080 -r odb:0:myuid/mypassw@oraserv -s SalesSystem
-u '(System)SalesSystem:Compress Method=[From IDT]' -t

-e|--escape

Optional. Replaces the special characters with their respective URL-encoded characters when you
retrieve the configuration metadata of the specified key or all the keys of the specified system.

For example, the following command replaces the special characters with their respective URL-encoded
characters in the retrieved metadata:

$SSABIN/iirconfig-tool -h OrgHost:8080 -r odb:0:myuid/mypassw@oraserv -s SalesSystem
-p -e
-f|--force

Optional. Forces the utility to update the values of the specified keys without reloading the system even
though the update requires a system reload.

-q|--quiet

Optional. Does not include the blank and non-editable keys in the output when you retrieve the
configuration metadata of a system.

-v|--verbose
Optional. Displays the values of the updated keys after the utility successfully updates the key values.
For example, the following command updates the Comment parameter of the (System)SalesSystem key:

$SSABIN/iirconfig-tool -h OrgHost:8080 -r odb:0:myuid/mypassw@oraserv -s SalesSystem
-u ' (System)SalesSystem:Comment=New Value' -v

If the utility successfully updates the (System)SalesSystem key, you get the following output:

(System) testx538:Comment old="Outdated Value" new="New Value"

loggrabr Utility

Use the loggrabr utility to retrieve the log entries from log files, error files, environment scripts, and
configuration files and load the entires into a single output file. You can use the output file to troubleshoot
any issues without having to refer multiple files.

The loggrabr utility uses the following format:

$SSABIN/loggrabr <Output File Name> [-f] [<Start Date>] [<Start Time>] [<End Date>]
[<End Time>]

The loggrabr utility uses the following parameters:
Output File Name

Name, extension, and directory path for the output file. By default, the utility creates the output file in the
current working directory.

Optional. Forces the utility to overwrite any existing file that matches the output file name.
Start Date and Start Time

Optional. Date and time from which you want to retrieve the log entries based on the time stamp. Use the
yyyy-mm-dd format to specify the date and the hh:mm format to specify the time.

loggrabr Utility 213

By default, the utility retrieves all the log entries in the current environment.
End Date and End Time

Optional. Date and time up to which you want to retrieve the log entries based on the time stamp. Use
the yyyy-mm-dd format to specify the date and the hh:mm format to specify the time.

By default, the utility retrieves all the log entries in the current environment.

For example, the following command retrieves the log entries from multiple files and loads them into the
output.log file:

$SSABIN/loggrabr output.log -f 2015-04-22 11:20 2015-03-31 21:30

After you run the loggrabr utility, you can use the logfrmat utility to format the log entries in the output file
and improve the readability of the output file.

logfrmat Utility

214

Use the logfrmat utility to format the log entries in an output file of the loggrabr utility and load the formatted
entries into an XML output file. You can use the logfrmat utility to improve the readability of its input file,
which is an output file of the loggrabr utility.

The logfrmat utility groups the log entries of each log file listed in its input file into different sections, such as
error summary, stack trace, and results. An error summary section describes the error, a stack trace section
lists additional information about the error, and a result section lists the completed processes and their
results.

The logfrmat utility also creates separate sections for the log entries retrieved from environment scripts and
configuration files, SQL logs, and process logs in the output file.

The logfrmat utility uses the following format:

$SSABIN/logfrmat <Input File Name> <QOutput XML File Name> [-f] [<Start Date>] [<Start
Time>] [<End Date>] [<End Time>]

The logfrmat utility uses the following parameters:
Input File Name

Name, extension, and directory path of the output file that the loggrabr utility creates. Default directory
path is the current working directory.

Output XML File Name

Name and directory path for the output XML file. By default, the utility creates the output file in the
current working directory.

Optional. Forces the utility to overwrite any existing file that matches the output file name.
Start Date and Start Time

Optional. Date and time from which you want to format the log entries based on the time stamp. Use the
yyyy-mm-dd format to specify the date and the hh:mm format to specify the time.

By default, the utility formats all the log entries in the output file of the loggrabr utility.
End Date and End Time

Optional. Date and time up to which you want to group the log entries based on the time stamp. Use the
yyyy-mm-dd format to specify the date and the hh:mm format to specify the time.

Chapter 14: Batch Utilities

By default, the utility formats all the log entries in the output file of the loggrabr utility.

For example, the following command formats the log entries in the output.log file and loads the formatted
log entires into the output.xml file:

$SSABIN/logfrmat output.log output.xml -f 2015-04-22 11:20 2015-03-31 21:30

db_util Utility

The db_util utility unlocks a Rulebase Server after the server shuts down unexpectedly. When you run the
db_util utility, the utility internally runs an SQL script that deletes the 1Ds_nn_INUSE table and removes the
lock related entry in the IDS_FDT META table.

To run the db_util utility, use the following command format:

db util <Rulebase Name> [Rulebase Number] [-c<Utility Name>] [-s<SQL Script Name>] [-
h<Database Host>] [-d<Database Type>]

The db_util utility uses the following parameters:
Rulebase Name

Name of the Rulebase Server or the dictionary alias of the Rulebase name.
Use the following format for a Rulebase name: <DB Type>:<Number>:<User>/<Password>@<Service>
For example, -r odb:0:myuid/mypassw@oraserv
Use the following format for the dictionary alias of a Rulebase name: ids:<Rulebase Alias>
For example, ids:rb
Rulebase Number

Optional. Rulebase number for the Rulebase Server that you want to unlock. By default, the utility uses
the rulebase number that you specified in the connection string.

Utility Name
Optional. Utility to run the SQL script. Default is sqlplus.
SQL Script Name

Optional. Absolute path and name for the SQL script that the utility internally creates. By default, the
utility creates an SQL script named, myscript.sql, in the current working directory. Use this parameter
when you do not have the write permission to the current working directory.

Database Host
Optional. Host name of the database server.
Database Type

Optional. Type of the database that you use. The type 0 indicates IBM Db2, and the type 1 indicates
Microsoft SQL Server.

Use one of the following values:

e 0. Indicates IBM DB2. For example, the following command indicates that you use IBM DB2 database:
$SSABIN/db util $SSA RBNAME 00 -cdb2 -s/tmp/myscript -hul001x6 -dO

db_util Utility 215

e 1. Indicates Microsoft SQL Server. For example, the following command indicates that you use
Microsoft SQL Server database:

$SSABIN/db _util $SSA RBNAME 00 -csglemd -s/tmp/myscript -dl
¢ If you do not specify this parameter, it indicates that you use Oracle database. For example, the
following command indicates that you use Oracle database:
$SSABIN/db _util $SSA RBNAME 00

The following sample command overrides the rulebase number in the connection string and unlocks the
Rulebase Server:

$SSABIN/db util ids:rb 03 -csglplus -s/tmp/dbscript.sql

Command File Syntax

<comment lines start with the ’'#’ character>
ACTION=<action name>
<parameter>=["]parameter value["]

The keywords, such as ACTION are not case-sensitive. White space after the equal sign is optional as are
quotes around parameter values. Parameter values can contain embedded environment variables that are
evaluated at run-time. Environment variable names must be surrounded by '# characters, for example
#SSAWORKDIR# is a valid environment variable. Any empty lines are ignored.

At the beginning of the input file, a mandatory parameter work-directory= should be initialized with the full
path of the desired MDM Registry Edition Server working directory. For example:

work-directory=c:\InformaticaIR\work

or assuming that the MDM Registry Edition Server has the SSAWORKDIR environment variable set (as it
should):work-directory=#SSAWORKDIR#

The MDM Registry Edition Server working directory can be overridden for each individual action by giving the

work-directory= parameter after the action= statement.

The following actions and parameters are supported.
Rulebase creation

action=rulebase-create
rulebase-name= <dbtype>:<number>:<user>/<password>@<service>

For example:

action=rulebase-create
rulebase-name="odb:0:myuid/mypasswloraserve"

or using dictionary alias

action=rulebase-create
rulebase-name=ids:rulebase

Rulebase deletion

action=rulebase-delete
rulebase-name= <dbtype>:<number>:<user>/<password>Q@<service>

For example:

action=rulebase-delete
rulebase-name="odb:0:myuid/mypasswloraserve"

216 Chapter 14: Batch Utilities

Database creation

action=database-create
database-name=<dbtype>:<number>:<user>/<password>Q@<service>

For example:

action=database-create
database-name="odb:1:myuid/mypasswloraserve"

or using dictionary alias

action=database-create
database-name=ids:database

System creation

action=system-create

system-name=<name of the system to be created>

sdf-name= <name of the system definition file which describes the new system>
rulebase-name=<dbtype>:<number>:<user>/<password>@<service>
database-name=<dbtype>:<number>:<user>/<password>@<service>

For example:

action=system-create

system-name=mysystem
sdf-name="#SSAWORKDIR#/mailinglist.sdf"
rulebase-name="odb:0:myuid/mypasswloraserve"
database-name="odb:1:myuid/mypasswloraserve"

System deletion

action=system-delete
system-name=<name of the system to be deleted>
rulebase-name=<dbtype>:<number>:<user>/<password>@<service>

For example:

action=system-delete
system-name=mysystem
rulebase-name="odb:0:myuid/mypasswloraserve"

Run User-Defined Job (User Job)

action=job-run

job-name=<name of the pre-defined User Job to be run>
system-name=<name of the system to be deleted>
rulebase-name=<dbtype>:<number>:<user>/<password>Q@<service>
work-directory=<working directory of the Console Server>

For example:

action=job-run

job-name="run-name-relates"
system-name=mysystem
rulebase-name="odb:0:myuid/mypasswloraserve"
work-directory=c:\InformaticaIR\work

Delete the Index
You can delete the identity indexes without deleting the identity table.

action=idx-delete

system-name=<name of the system>
rulebase-name=#<name of the rulebase>#
work-directory=#<name of the work directory>#
idx-name=<name of the index to be deleted>
obj-name=<name of the object>

For example:

action=idx-delete
system-name=benchmark

Command File Syntax

rulebase-name=#odb:0:myuid/mypasswloraserve#
work-directory=c:\InformaticaIR\work#
idx-name=busname

obj-name=Benchl

Reload the Index
You can reload the identity indexes after you delete them.

action=idx-reload

job-name=<name of the reload job>
system-name=<name of the system>
rulebase-name=#<name of the rulebase>#
work-directory=#<name of the work directory>#

For example:

action=idx-reload
job-name=load3
system-name=benchmark
rulebase-name=#SSA RBNAME#
work-directory=#SSAWORKDIR#

After the job starts, a detailed message including the run number for each step is written to the output file.
Stop Job

action=job-stop

rulebase-name=<dbtype>:<number>:<user>/<password>@<service>

system-name=<name of the system associated with the job>
run-number=<number of a started job>

For example:
action=job-stop
system-name=mysystem

rulebase-name="odb:0:myuid/mypasswloraserve"
run-number=1

When stopping a job started using idsbatch, check the output from the preceding job-run action to
determine the value of the run-number parameter.

218 Chapter 14: Batch Utilities

INDEX

~WERBOSITY 45
.NET Proxy 155
%SSABIN% 172

A

Actions Set 117

Actions Sets 118

Address Input 173
AddressDoctor 173
Administrator search clients 61
Apache Axis2 124

Application Program Interface 21

Archive Check 173

ASM Batch Test
SSABIN% 185

ASM Workbench 172, 185

B

BACKUP DATABASE 203
batch 205
batch client 110
Batch Mode 173
Batch Search Client 74
Batch Search Clients 59
Batch Searches 110
batch utility

logfrmat 214
Business Component 117
Business Service 114

C

CASS Certification 173
CASS Summary 173
checkpoints 77

CJK characters 104

Clear Messages 48

Client INI 61

Client Selection INI file 61
Client Work Directory 47
Clone 57

Clustering Viewer 55
Command File 205
Command line 172

commit rate 101
Compress-Key-Data 79, 101
Configure Mode 25, 29
Connection Aliases 32
Connection server 67
Connection Server 21, 47, 60
Console client 45

Console Client 23, 45, 66
Console server 45
Console Server 23, 29, 48, 66
Control Objects 17
Control Record 97
Country Preload Option

Partial Preload

Full Preload 173
Country Specific
AddressDoctor 173

Create Rulebase 205
Custom mode 153

D

database character set 105
Database Level 105

Database Management Systems 13

Database Object Names 13
dbinit 205

DBMS load utility 75
DBMS Load utility 80
DBMS loader 111
DEDUP-PROGRESS 73
define_source 71
Dictionary Alias 64, 65, 152
DupFinder 74

DupFinder function 73
DupFinder report 71

E

EAI Siebel Adapter 119
End-of-File marker 107
environment variables 38, 120
error logs 19

F

flat file 97
Flat-File 78, 83,108

G

Generic Mode 149
Global Jobs 57
Global Logs 20

H

HTTP Search Server 64, 65

219

HTTP Server 59

Identity Indexes 75
ids_conv 111
ids_error_get 19
ids_search_dedupe_start 73
idsbatch 205

idsclie.ini 61

IDT layout 72

IDT Name 155

IDX entry 100

IIR Connection Server 29
iirconfig-tool 211

Import System 57

Infile 67

INI file 63

Input Locale 104

Input Queue 78

integrity 100

Interactive Mode 173
Interface 13
ISSErrorHandler 115
ISSLaunchBuildLoadFile 120
ISSSYNC 118

J

Java Applet 60
Jobs menu 56

K

Key Generation 79

L

Launched Jobs 48
License Server 21
Lite client 61
Lite-Indexes 23
Live Progress 47
load process 114
Load-IDT 57
Loader threads 79
Loader- Definition 108
Loader-Definition 75
loadit 75
lockmgr 20
Log Viewer 57
loggrabr

batch utility 213
Logical-File-Definition 67, 120

M

manual restart 32
MDM-RE Utility Service 115
mdmres.bat 38
Menu
Database 50
Rulebase 50

220 Index

Menu (continued)

Servers 50

System 50
Microsoft SQL Server 105
Mode

Configure 47

Custom 64

Generic 64

Normal 47
MSQ 81
Multi-byte 107
Multi-Search Definition 73, 74
multi-threaded mode 71

N

NLS_CHARACTERSET 105
NLS_LANG 105
No Source Access

NSA Transaction Table 83
Notification Service 151, 161

NSA Transaction Table 21, 97, 121

NSA-Batch Service 21, 149

O

Oasis Web Services 161
Object Manager 113
ODBC interface 13
Online Search Clients 59
Online Searches 110
Optimizer’s statistics 101
Optional Switches 86
Oracle Client 105

Outfile 67

P

Parsing 173

Pre Delete Event 118
PreDeleteRecord 119
primary keys 95
Profile Attributes 11

R

RB Server 34
Real Time clients 151

Real Time Synchronization 155

Real Time Web Service 90, 150
Regression Test 25
Reject_Duplicate_PK 95
Rejected Time Stamp 155
relate 66

Relate 66, 67

Relate Client 45

Repository Workflow 115
restart 95

Rulebase 48, 57, 205
RuleBase access 21
RuleBase Objects 17
Rulebase server 32
Rulebase Server 21, 25
Rulebase Server Groups 34

, 153

)

155

Rulebase Server Options 27
Run Tests 25
Run Time Events 119

Run-Time Events 122

Sample Server Start-up 31

Script Coding 42

SDF 120

SDF File 50, 155

Search Client 21, 61

Search Server 19, 66

Search Server Host 172

Search-Definitions 59

Server Shutdown 31

Server-side Search 110

Service Control Manager 42

Siebel Business Component 114

Siebel Connector 21

Siebel CRM 21

Siebel Integration Object 114

Siebel Restrictions 122

SOAP 123

Soap messages
examples 157

SOAP standard 123

Sort utility 78

SQL*Loader 81, 83

SSA Program 45

SSA_DBDICT 13

SSA_HTPORT 64

SSA_SERVER_STATS 33

SSA_XML_SIZE 120

SSA_XSHOST 150

ssashut 31

ssasrsv 23

SSATEMP 38

SSAWORKDIR 61

Start Script 42

Step Logs 20

Subscribe 161

Switches 27

synchronization 121

Synchronization 205

Synchronization Level 95

Synchronization Server 21, 149, 161

Synchronizer 95

Synchronizer Objects
System Loader 17
Update Synchronizer 17

Synchronizer Utilities 83

System Authentication 13

system backup 203

System Editor 57

System Jobs 57

system restore 203

System-Qualifier 17
SystemQualifier 13

T

Table Loader 75, 77,108, 121
Tablespace 95

Target Column Size 108
TCP/IP sockets 21
Transaction Record 97
Transport Layer Security 124
triplet 72

U

UDB database 79

UDDI 169

UDDI Configuration file 169
UDDI Environment Variables 169
Unfielded Address 172

Unicode 123

UNICODE 104, 108

Update Synchronizer 20, 80, 83, 86
updmulti 90

updsync 86

User Source Tables 100, 111
UST 103,114

\Y

Verbosity 31

W

web services 123
Windows Service 31
Windows Services 42
Workflow 114
Workflows 115
working directory 205
WSDL file 134, 149
WSDL files 155

X

XML Console Server 21
XML Console Service 134
XML file 71

XML Search Service 124
XS Server 113,121, 122
XSLT clause 71

XSLT stylesheet 71

Index

221

	Table of Contents
	Preface
	Learning About Informatica MDM Registry
	What Do I Read If. . .

	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction
	Overview
	Conventions
	Rulebase and Database Names
	Database Object Names
	Error Logs
	Utility Locking

	Chapter 2: Servers
	Concepts
	Configuration
	Starting the MDM Registry Edition Servers
	Default Configuration
	Custom Configuration
	Search and Rulebase Servers
	Connection Server
	Console Server

	Stopping
	Restarting
	Server Statistics
	Rulebase Server Groups
	Environment Variables
	Windows Services
	idssvc Utility
	updsvc Utility

	Chapter 3: Console Client
	Overview
	Starting
	Modes
	Window Layout
	Menu Items
	Starting from the Console
	Jobs Menu

	System Editor
	Log Viewer

	Chapter 4: Search Clients
	Overview
	Deployable Search Clients
	Administrator Search Clients
	Default Client
	Lite Client

	HTTP Search Client
	Operation

	Relate
	Starting from the Console
	Starting from the Command Line
	Report Formats
	Threads
	SQL Input
	XML Input
	Delimited Input
	DupFinder Mode
	Output View Layout

	DupFinder

	Chapter 5: Table Loader
	Concepts
	Starting
	Restarting
	Performance
	Sort Buffers

	Fault Tolerance - Data Errors
	Locales

	Chapter 6: Update Synchronizer
	Overview
	updsync utility
	updmulti utility
	Restarting Automatically
	Synchronization Level
	Transaction File / Table
	Integrity Checking
	Performance
	Timing Window

	Chapter 7: Globalization
	Overview
	Character Sets
	Database Support for UNICODE
	Binary Mode Utilities
	Loading IDTs
	MDM-RE Clients
	Relate
	Java Search Client
	Synchronizer
	SSA-NAME3 V2

	Debugging a Search
	Miscellaneous Tips

	Chapter 8: Siebel Connector
	Overview
	Configuring Siebel
	Constructing Load Data
	Synchronization Setup
	Integration Object
	MDM-RE Business Service
	Error Handling
	Workflows
	Load Action Set
	Synchronization Action Sets
	Synchronization Run Time Events
	Profile Attributes

	Configuring MDM-RE
	System Definition
	Environment Variables
	Loading Data
	Synchronization
	XS Server
	Restrictions

	Chapter 9: Web Services
	Introduction
	MDM-RE Web Services
	XML Search Service
	XML Console Service
	NSA-Batch Service
	Real Time Web Service
	Configuration Settings
	Generic Mode
	Custom Mode
	Sequence Numbers
	Operation Types
	Real Time Reject table layout
	Real Time Failure on System Refresh and Delete
	Deploying a Real-Time Web Service
	Example Soap Messages

	Custom HTTP Header
	Notification Service
	UDDI

	Chapter 10: ASM Workbench
	Introduction
	Launching the ASM Workbench
	ASM Workbench Input Options
	Country Specific Input
	Character Set
	Country Preload Option
	Address Input Type
	Options
	Parsing and Validation Frame
	Attributes
	Suggested Address Label Display
	Address Result Panel Display
	Validation Status and Database Version Display
	Output Result Frame Column Selection Menu
	Field Status Display
	CASS Field Status Display
	CASS Summary Report Display
	Statistics Reports - CASS Certification
	File Menu Options

	ASM Workbench and Batch Test utility

	Chapter 11: Cluster Merge Rules
	Overview
	Example SDF
	Master Rules
	most filled
	most data
	column max
	column min
	column equals

	Column Rules
	most-data
	mean
	other column equals
	other column min
	other column max

	Chapter 12: Forced Link and Unlink
	Overview
	Defining Link and Unlink Rules
	Loading Link and Unlink Rules
	Console Client
	Using API

	Cluster Adjustments

	Chapter 13: System Backup and Restore
	Overview
	Back Up the System
	Restore the System

	Chapter 14: Batch Utilities
	Batch Utilities
	Common Parameters
	ssachdb Utility
	Synchronization Considerations

	dbinit Utility
	idsinit Utility
	lockmgr Utility
	version Utility
	idsbatch Utility
	checkiirtable Utility
	iirconfig-tool Utility
	loggrabr Utility
	logfrmat Utility
	db_util Utility
	Command File Syntax

	Index

