4\» Informatica

Informatica® MDM Registry Edition
10.5 HotFix T

Operations Guide

Informatica MDM Registry Edition Operations Guide
10.5 HotFix 1
September 2023

© Copyright Informatica LLC 2010, 2023

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2023-09-28

Table of Contents

Prefaceo e 9
Learning About Informatica MDM Registry. 9
What Dol Read If. 10
Informatica Resources. 10
Informatica Network. 11
Informatica Knowledge Base. 11
Informatica Documentation. 11
Informatica Product Availability Matrices. 11
Informatica Velocity. e 11
Informatica Marketplace. e 11
Informatica Global Customer Support. 12

Chapter 1: Introduction............c.coiiiiiiiiii it it iiiieeenenee... 13

OVEIVIEW. .« . o 13
Conventions. 13
Rulebase and Database Names. 13
Database Object Names. 17
Error LOgS. . . . o 19
Utility Locking. o e 20
(001 F: 1] (=] g YT - 21
COoNCEePES. . . . 21
Configuration. e 23
Starting the MDM Registry Edition Servers. 24
Default Configuration. 25
Custom Configuration. e 26
Search and Rulebase Servers. 27
Connection Server. e 29
CONSOle SEIVEr. o 29
SIOPPING. . . . o e 31
Restarting. 32
Server Statistics. 33
High Availability. 34
Server GroUPS. . . . o o o 35
Starting the Servers in Server Groups. oot i e 35
Environment Variables. 38
WINdOWS ServiCes. 42
idssve Utility. e 43
updsve Utility. . . . o e 44

Table of Contents 3

Chapter 3: Console Client..........cooiiiiiiiiiiiiii ittt iiieeeeeenn 46

OVEIVIEW. . . . o 46
Starting. e 46
Modes. . . . e 48
Window Layout. e 49
Menu ltems. 51
Starting fromthe Console. e 56
Jobs Menu. . . . 57
System Editor. 58
Log VieWeT. 58
Chapter 4: Search Clients...........coiiiiiiiiiiiiiiiiii ittt iieieeeeenn 60
OVEIVIEW. . . . 60
Deployable Search Clients. 61
Administrator Search Clients. 62
Default Client. 64
Lite Client. 64
HTTP Search Client. e e 65
Operation. 66
Relate. 67
Starting fromthe Console. e 67
Starting from the Command Line. 68
Report Formats. e 71
Threads. o 72
SQLINPUL. « . .o 72
XML INpUL. . . . e e 72
Delimited Input. e 73
DupFinder Mode. e 74
Output View Layout. e 74
DUpFINder. e 75
Environment Variables. 75
Chapter 5: Table Loader..........ccoiiiiiiii ittt iiieeeaeanns 76
CoNCEePtS. . . . 76
Starting. e 76
Restarting. e 78
Performance. 79
Sort Buffers. o 80
Fault Tolerance - Data Errors. 81
Locales. 82

4 Table of Contents

Chapter 6: Update Synchronizer............c.coiiiiiiiiiiiiiiiiiiiiienennn. 84

OVEIVIEW. . . . 84
High Availability for Update Synchronizer. 87
updsync utility. e 87
updmulti utility. 92
Restarting Automatically. 97
Synchronization Level. e 98
Transaction File / Table. 100
Integrity Checking. 102
Performance. 103
Timing Window. e 106
Chapter 7: Globalization..............cooiiiiiiiiiiiii i 107
OVEIVIBW. . . . o e 107
Character Sets. 107
Database Support for UNICODE. e e e e 108
Binary Mode Utilities. 110
Loading IDTS. . . . o o o 111
MDM-RE Clients. 112
Relate. . . . 112
JavaSearch Client. 113
Synchronizer. e 113
SSA-NAMES V2. . . 113
DebuggingaSearch. e 113
Miscellaneous TipsS. o e 114
Chapter 8: Siebel Connector..........cccoeiniiiiiiiiii it 116
OVEIVIEW. . . . 116
Configuring Siebel. 116
Constructing Load Data. e 117
Synchronization Setup. 117
Integration Object. 117
MDM-RE Business Service. 118
Error Handling. 118
Workflows. . . . 118
Load Action Set. 120
Synchronization Action Sets. 121
Synchronization Run Time Events. 122
Profile Attributes. 122
Configuring MDM-RE. 123
System Definition. 123
Environment Variables. 123

Table of Contents

5

6

Loading Data. e 124

Synchronization. e 124
XS SerVer. . . 124
Restrictions. 125

Chapter 9: Web Services.........ccciiiiiiiiiiiiiiiiiiiiiiiiiiiienenene... 126

INtroduction. 126
MDM-RE Web Services. 126
XML Search Service. 127
XML Console Service.t 137
Real Time Web Service. e 151
Configuration Settings. 152
Generic Mode. 154
Custom Mode. 154
Sequence NUMbErS. e 155
Operation TYPeS. o i e 156
Real Time Reject table layout. 156
Real Time Failure on System RefreshandDelete. 156
Deploying a Real-Time Web Service. e 157
Example Soap MeSSages. oo 159
Custom HTTP Header. 162
Notification Service. 163
UDDL. o o 170
Web Services Security. 172

Chapter 10: ASM Workbench.............cccoiiiiiiiiiiiiiiiiiiiiieeeene... 175

INtroduCtion. 175
Launching the ASM Workbench. 175
ASM Workbench Input Options. e 176
Country Specific Input. 176
Character Set. 177
Country Preload Option. 177
Address Input Type. o 177
OptiONS. . . . e 178
Parsing and Validation Frame. e 178
Attributes. 178
Suggested Address Label Display. e 179
Address Result Panel Display. e 180
Validation Status and Database VersionDisplay. 180
Output Result Frame Column SelectionMenu. 182
Field Status Display. e 183
CASS Field Status Display. 185
CASS Summary Report Display. 186

Table of Contents

Statistics Reports - CASS Certification. 187

File Menu Options. e 187
ASM Workbench and Batch Testutility. 188
Chapter 11: Cluster Merge Rules.ccoiniiiiiiiiiiiiiiiiiiiiiaenn 190
OVEIVIBW. . . L o e 190
Example SDF. e 190
Master Rules. 192

most filled. 192

mostdata. 193

COIUMN MAX. . . . oot e e e e e e e e 193

columMN MIN. . . 194

columnequals. e 194
Column Rules. 195

most-data. 196

MEAN. o 198

othercolumn equals. e 199

othercolumnmin. 199

other CoOlUMN MaAX.o 200

OVEIVIEW. . . . 201
Defining Link and Unlink Rules. 201
Loading Link and Unlink Rules. e 203
Console Client. 203
UsiNG APL . . o 205
Cluster Adjustments. 205

Chapter 13: System Backup and Restore..............cccoevviiinenann.... 206

OVEIVIBW. . . o o 206
Back Up the System. e 206
Restore the System. 207

Chapter 14: Batch Utilities............ccoiiiiiiiiiiiiiiii i, 208

Batch Utilities. 208
Common Parameters. 209
ssachdb Utility. 210

Synchronization Considerations. 210
dbinit Utility. 211
idsinit Utility. 211
lockmgr Utility.o 211
version Utility. e 213
idsbatch Utility. e 213

Table of Contents

7

ssasvek Utility. oo 214

checkiirtable Utility. e 214
iirconfig-tool Utility. 215
loggrabr Utility. 217
logfrmat Utility. 218
db_util Utility. 219
stopProcess_util Utility. 220
Command File Syntax. e 220
1T T 224

8 Table of Contents

Preface

Read the Informatica MDM Registry Edition Operations Guide to learn about the operation of the run-time
components of MDM Registry Edition, such as servers, search clients and other utilities.

Learning About Informatica MDM Registry

This section provides details of documentation available with the Informatica MDM Registry product.

Introduction Guide

Introduces MDM Registry product and it's related terminology. It may be read by anyone with no prior
knowledge of the product who requires a general overview of MDM Registry.

Installation Guide

This manual is intended to be the first technical material a new user reads before installing the MDM Registry
software, regardless of the platform or environment.

Design Guide

This is a guide that describes the steps needed to design, define and load an MDM Registry "System".

Developer Guide

This manual describes how to develop a custom search client application using the MDM - Registry Edition
API.

Operations Guide

This manual describes the operation of the run-time components of MDM - Registry Edition, such as servers,
search clients and other utilties.

Populations and Controls Guide

This manual describes SSA-Name3 populations and the controls they support. The latter are added to the
Controls statement used within an IDX-Definition or Search-Definition section of the SDF.

Security Framework Guide

This manual describes how to implement security in the MDM-RE product.

Release Notes

The Release Notes contain information about what’s new in this version of MDM - Registry Edition. It is also
summarizes any documentation updates as they are published.

What Do | Read If. . .

lam. ..
... abusiness manager

The INTRODUCTION to MDM- Registry Edition will address questions such as "Why have we got MDM -
Registry Edition?", "What does MDM - Registry Edition do"?

lam. ..
... installing the product?

Before attempting to install MDM-RE, you should read the INSTALLATION GUIDE to learn about the
prerequisites and to help you plan the installation and implementation of the MDM-Registry Edition.

lam. ..
...an Analyst or Application Programmer?

A high-level overview is provided specifically for Application Programmers in the INTRODUCTION to MDM
Registry Edition.

When designing and developing the application programs, refer to the DEVELOPER GUIDE which describes a
typical application process flow and APl parameters. Working example programs that illustrate the calls to
MDM-RE in various languages are available under the <MDM-RE client installation>/samples directory.

lam. ..
...designing and administering Systems?

The process of designing, defining and creating Systems is described in the DESIGN GUIDE. Administering
the servers and utilities is described in the OPERATIONS manual.

Informatica Resources

Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

10 Preface

Informatica Network

The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:
e Search the Knowledge Base for product resources.

e View product availability information.

e Create and review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices

Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Preface 11

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com

12

Informatica Global Customer Support

Preface

You can contact a Global Support Center through the Informatica Network or by telephone.

To find online support resources on the Informatica Network, click Contact Support in the Informatica
Intelligent Cloud Services Help menu to go to the Cloud Support page. The Cloud Support page includes
system status information and community discussions. Log in to Informatica Network and click Need Help to
find additional resources and to contact Informatica Global Customer Support through email.

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site
at https://www.informatica.com/services-and-training/support-services/contact-us.html.

https://www.informatica.com/services-and-training/support-services/contact-us.html

CHAPTER 1

Introduction

This chapter includes the following topics:

Overview, 13

Conventions, 13

Overview

This manual describes the operation of the run-time components of Informatica MDM Registry Edition.

The components covered are as follows:

Console Server and Client

Search Server and Connection Server

Update Synchronizer

Online Rulebase Search Client and Applet

Batch Rulebase Search Client (Relate and DupFinder)
Batch Utilities

Debugging facilities

The Rulebase editor is covered in the Informatica SSA-NAME3 Application and Database Design Guide.

Conventions

MDM Registry Edition uses the following naming conventions to manage the database objects:

Rulebase and Database Names

MDM Registry Edition Rulebase contains the rules that describe Systems. An MDM Registry Edition Database
is the implementation of those rules, and the database contains IDTs and IDXs.

The Rulebase and Database are physically implemented as a set of tables and indexes in a relation database.

MDM Registry Edition supports multiple Database Management Systems, and the Rulebase and Database
names consist of the following components:

Database interface to use

13

14

¢ Interface-specific information
The name uses the following syntax:
Interface:Interface specific

Interface identifies the database interface to access the DBMS. The supported values are as follows:

e odb. Specifies the ODBC interface. Supported target database types are Oracle, UDB/DB2, and Microsoft
SQL Server. You can also use other ODBC data sources for unsynchronized source access.

e ids. Specifies the Dictionary Alias. You can use ssa instead of ids.

The format of the Interface specific information is described in the following sections:

odb: Interface - ODBC

The Interface specific information uses the following syntax:
SystemQualifier:Userid/Password@Service

The Interface specific information uses the following values:
SystemQualifier

A number between 0 and 99, which qualifies the names of any database objects that MDM Registry
Edition creates.

The default SystemQualifiers for the Rulebase and Database are 0 and 1 respectively. They must be
different. For information about the naming conventions, see the Database Object Names section.

Userid
User name to access the database.
Password
Password for the user name.
Service
Name of the service that you specify in the odbc. ini file.

For information about ODBC configuration, see Informatica MDM Registry Edition Installation and
Configuration Guide.

For example, odb:0:scott/tiger@server specifies an ODBC host DBMS. Identity Resolution prefixes the
tables that it creates with 1Ds_00_(where the _00_ component is the SystemQualifier). MDM Registry
Edition connects to the database identified as "server" using the user id "scott" and a password of "tiger."

Oracle Operating System Authentication

MDM Registry Edition supports Oracle’s Operating System Authentication. In this scenario, clients can omit
the Userid, Password, or Service when connecting to the servers. As the MDM Registry Edition processes
initiate all database connections, they connect to Oracle using the operating system account ID of the user
who launched them. Therefore, a user that has been granted access to Oracle must launch the servers.

For example, suppose the MDM Registry Edition Administrator’s userid is SSA. Oracle is configured with the
following parameters:

0S_AUTHENT PREFIX = OPS$

REMOTE OS_AUTHENT = TRUE (only if a Service is specified)

An
An Oracle Userid 0pPs$Ssa is created with the appropriate privileges required by MDM Registry Edition. When a
client specifies a Rulebase name of odb:0:/@server734 and the host/port number of Rulebase Server, the

Chapter 1: Introduction

server connects to Oracle using the Administrator’s userid and password. All database objects created by the
server are in the 0PS$SSA schema.

ids: Interface - Dictionary Alias

You can use alias name for the rulebase, database, or source name, which hides the actual connection string
from the application programs.

Note: On UNIX platforms, only the MDM Registry Edition Administrator must have read and write permission
on this file.

To use the alias feature, perform the following steps:

1. Create a text file that contains the alias names followed by their actual connection string, separated with
tabs or spaces. For example:

rb odb:0:username/password@dbserver
db odb:1l:username/password@dbserver
src odb:99:username/password@dbserver

2. Define an environment variable in the server’s environment to find the dictionary file.
e On Windows: set SSA DBDICT=%SSAWORKDIR%\mydict.dic.

e On UNIX:

SSA DBDICT=$SSAWORKDIR/mydict.dic
export SSA DBDICT

If you do not define this variable, the default dictionary file is $SSABIN/dbdict.dic.

3. Use the alias names instead of the actual connection string. You must set Interface to ids to enable
this alias lookup feature. For example, use ids:rb to refer the rulebase, ids:db to refer the database and
ids:src to refer the source.

ids: Interface - Encrypted Dictionary Alias

MDM Registry Edition can use an encrypted dictionary file to hide the actual connection string from the users
who have access to the file system. The encrypted dictionary file is a text file that you can transfer through
FTP in ASCII mode if needed.

Note: On UNIX platforms, only an MDM Registry Edition administrator must have the read and write
permissions on the file.

Use the iirdict utility to create an encrypted dictionary file. The utility uses the 256-bit Advanced Encryption
Standard (AES) algorithm for encryption.

You can specify the name of a file that you create or update as a command line argument. If you do not
specify the name as a command line argument, the utility uses the file specified in the SSA_DBDICT
environment variable. If you do not set the SSA_DBDICT environment variable, the utility uses the $SSABIN/
dbdict.dic file.

S$SSABIN/iirdict xxx.dic

iirdict <revision>

Enter a password:

Re-enter password:

Operating on ’'xxx.dic’

Command (a=Add d=Delete 1=List t=Test g=Quit)?
If the encrypted dictionary file does not exist, the utility creates the file and prompts you to provide a
password. The password does not echo at the command prompt. If the encrypted dictionary file exists, you
must enter the correct password.

Conventions 15

You can use the following commands:

e a. Adds an entry to the encrypted dictionary.

d. Deletes an entry from the encrypted dictionary.

I. Lists the log of changes made to the encrypted dictionary.

t. Tests a database connection to see if it is working.

q. Exits the iirdict utility.

The following sample session adds an alias:

iirdict <revision>

Enter password:

Operating on ’'xxx.dic’

Command (a=Add d=Delete 1=List t=Test g=Quit)? a
Enter alias: rb

Enter connection details:

Type (odb):

System Qualifier: 1

Userid (ssa):

Password:

Re-enter password:

Service: dbserver

Connection string is ’odb:1l:ssa/@dbserver’
(p=Proceed r=Re-enter d=Discard): p
iirdict> alias 'rb’ tested successfully
iirdict> alias 'rb’ added successfully

Note: If you update the dictionary file, ensure that you restart the MDM Registry Edition servers to reflect the
changes.

You can also use the HTTP authentication mechanism to encrypt the connection string. To use the HTTP
authentication mechanism, specify http in the Type prompt. The following sample session uses the HTTP
authentication mechanism:
iirdict <revision>
Operating on 'D:\builds\a3pi\bin\dbdict.dic'
Enter password:
Command (a=Add d=Delete 1=List t=Test g=Quit)? a
Enter alias: realm
Enter connection details:
Type (odb): http
Realm userid: user2
Realm password:
iirdict> alias 'realm' added successfully
Command (a=Add d=Delete 1l=List t=Test g=Quit)? d
Comment: g

For information about these fields, see the Database Object Names section.
Note: Password does not echo at the command prompt.

When you enter an alias, the iirdict utility tries to validate the connection. The alias is added regardless of
any connection errors, which can be caused by an external problem, such as an incorrect ODBC or database
configuration.

For example, if you want to change the connection to change the password, you must delete the connection
and add it again. The iirdict utility does not allow the file to contain two aliases with the same name.

Use the list command to list the log of changes made to the encrypted dictionary.
Command (a=Add d=Delete 1l=List t=Test g=Quit)? 1
Tue Feb 9 23:22:07 2010 ssa Created
Wed Feb 10 00:09:29 2010 ssa Added alias ’rb’

In this example, ssa is the name of the MDM Registry Edition administrator.

16 Chapter 1: Introduction

You can define the SSA_DBDICT environment variable in the server’s environment, as in the previous section.

It defaults to $SSABIN/dbdict.dic.

Database Object Names

This section describes the way in which names are generated for MDM-RE objects.

Control Objects

The following objects are created on the MDM-RE Database (target database) to provide control information:

Object Object Type
IDS_FDT_META Table
IDS_FDT_META_DBID_I Index
IDS_FDT_META_ID_I Index
IDS_FDT_META_NAME_I Index
IDS_FDT_META_NMIDDB_I Index
IDS_FDT_RECID Table
IDS_FDT_RECID_NO_I Index
IDS_RB_GROUPS Table
IDS_RB_GROUPS_I Index
IDS_2PC Table
IDS_UPD_SYNC_NSA Table
IDS_UPD_SYNC_NSA_I Index

ID Tables and Indexes

The following objects are created in the MDM Registry Edition database when an Identity Table is loaded. The
object names include a prefix, 1DS, and a two-digit system qualifier, nn. System qualifier is the numeral value
in a database connection string. For example, if the database connection string is odb:1:userid/
password@service, the system qualifier is 1.

Object Object Type | Description

IDS_nn_IDTName Table ID Table

IDS_nn_IDLName Table Link Table

IDS_nn_IDTName_I[1..n] Index ID Table Indexes. _I is the Recld index. _I{1..n} are the PK / join indexes.

Conventions

17

Object Object Type | Description

IDSX_nn_IDXName Table IDX Table
IDSX_nn_IDXName_| Index IDX Index
where

nn indicates the system qualifier.

IDTName is the value of the NAME= parameter from the IDT-Definition.

IDLName is the value of the IDL-NAME= parameter from the Multi-Search-Definition.
IDXName is the value of the ID= parameter from the IDx-Definition.

RuleBase Objects

Object Object Type
IDS_nn_INUSE Table - Rulebase Lock
IDS_nn_SSARBN Table - Data
IDS_nn_RECOVERY Table - Restart/Recovery
IDSX_nn_SSARBN Index

where

nn indicates the rulebase qualifier, which is the numeral value in a rulebase connection string. For example, if
the rulebase connection string is odb:0:userid/password@service, the rulebase qualifier is 0.

Synchronizer Objects

The Update Synchronizer is supported by various objects which are created by the SQL scripts updsyncu.sqgl
and updsynci.sql. These objects are created in the source database (containing User Source Tables).

Object Object Type
IDS_UPD_SYNC_TXN Table
IDS_UPD_SYNC_TXN_I Index
IDS_UPDATE_SYNC_SEQ Sequence
IDS_UPDATE_SYNC Package
IDS_UPDATE_SYNC Package Body
IDS nnnnn Triggers

The System Loader will create triggers on the USTs if the SYNC option was specified. All triggers use the
following naming convention:

o 1Ds fixed prefix

18 Chapter 1: Introduction

e nnnnn unique identifier (base 36 number)

Error Logs

MDM-RE error logs may be output by various utilities and/or returned in response to an ids_error_get API call.

This is a sample Error Log created by the Table Loader:

ErrorLog: [1.773 2] loadit > It is now 20020612123407
ErrorLog: [1.773 2] exit code -252010410

ErrorLog: [1.543 2] loadit.c 3013 rc 10 32520104*100
ErrorLog: [1.493 2] thread init failed

ErrorLog: [1.442 2] loadit.c 2494 rc 4 325201*100
ErrorLog: [1.392 2] match rb open returned -325201
ErrorLog: [1.342 2] utils.c 1342 rc 1 3252*100

ErrorLog: [1.292 2] connect to rb server failed -3252
ErrorLog: [1.242 2] sockapi.c 394 rc 2 23*10

ErrorLog: [1.192 2] socket.c 1765 rc 3 2*10

ErrorLog: [1.142 2] socket.c 581 rc 2

ErrorLog: [1.092 2] send(568) failed -1: winsock error 0
ErrorLog: [1.022 2] sockapi.c 627 rc 2 325*10

ErrorLog: [0.972 2] sockapi.c 595 rc 5 32*10

ErrorLog: [0.922 2] socket.c 1860 rc 2 3*10

ErrorLog: [0.872 2] socket.c 1833 rc 3

ErrorLog: [0.822 2] ssasocket recv n: received zero bytes
ErrorLog: [0.581 2] loadit.c 2848 rc 3 3691524*100
ErrorLog: [0.531 2] process input: thread init failed for thread
#1

ErrorLog: [0.481 2] loadit.c 2729 rc 24 36915*100
ErrorLog: [0.431 2] loadit.c 1448 rc 15 369*100

ErrorLog: [0.361 2] ssaxld init failed -369:

ErrorLog: [0.311 2] dbops.c 4815 rc 9 36*10

ErrorLog: [0.201 2] ssaodbc.c 15352 rc 36

ErrorLog: [0.151 2] ssadb6_ssaxld init failed: SSAST Could not

get memory
ErrorLog: [0.101 2] sort.c 1775 rc 13
ErrorLog: [0.050 2] sort.c 1305 rc 6

Interpreting an Error Log

Find the oldest message. It indicates the first error that occurred. It is identified by the smallest relative
timestamp. For example, the last line from the log above is: ErrorLog: [0.050 2] sort.c 1305 rc 6

This line of data has the following format:
e Timestamp - message relative (0.050)
e Thread number (2)

e Module name (sort.c)

e Line number (1305)

e Response code (6)

We can infer that an error occurred in a sort routine. Continue up the stack in order of increasing timestamp
looking for a text message. The messages containing module names and line numbers can be ignored. They
simply give context information (a stack trace) of who called the function that reported the error.

The first text message is as follows:
ErrorLog:[0.151 2] ssadb6 ssaxld init failed: SSAST Could not get memory

This message indicates that the sort routine failed when attempting to allocate some memory. In response to
this you could add some RAM and/or increase the available swap space, or decrease the amount of memory
required by the Table Loader by adjusting its parameters.

Conventions 19

20

You could continue up the stack looking for more information. However, the first message is the important
one. The other messages may report consequential errors, and are of less interest.

Some Error Logs will contain two error stacks. This typically occurs when two communicating processes fail.
For example, when a search client (say relate) calls the Search Server which subsequently reports an error,
both processes will report their Error Logs.

Utility Locking

Some utilities require exclusive use of certain MDM-RE system resources. These include the:
e Table Loader

e Update Synchronizer

o Refresh / Delete utility

When the utility starts it will acquire application level locks within the Rulebase for the appropriate resources.
Other processes that require the same locks will not be allowed to run.

For example, locks are used to prevent two Update Synchronizers from updating the same IDT and IDXs
concurrently.

The lockmgr utility (documented in the Batch Utilities chapter) is used to list and delete locks in the situation
when a utility terminates abnormally while holding locks. In most situations MDM-RE is able to determine that
the utility has crashed to unlock the resources automatically. The lockmgr utility can be used to manually
unlock resources in the rare circumstances when automatic unlock is not possible.

System Name

Select a system from the list of available systems in the current Rulebase, to view the list of job names
belonging to the system.

Job Name
Select a job name from the list of available jobs in the selected system, to view the run information.
System Logs
Check this option to see the System dependant logs.
Global Logs
Check this option to see the System independent logs.
Run-Information

The user is presented with a run information list of the selected system job. The user can at this time
make a selection to view the relative step information.

Step Logs

The user is presented with a list of steps belonging to the selected job. The user can now view the run
logs, error logs, output files (if any) of each step by selecting the desired option.

Chapter 1: Introduction

CHAPTER 2

Servers

This chapter includes the following topics:

e Concepts, 21
e Configuration, 23
e Starting the MDM Registry Edition Servers, 24

e Stopping, 31
e Restarting, 32
e Server Statistics, 33

e High Availability, 34

e Environment Variables, 38

o Windows Services, 42

Concepts

The following sections provide an overview of the concepts that are relevant to MDM Registry Edition.
Search Server

The MDM Registry Edition supports multiuser search and matching facilities by using the data stored in the
MDM-RE Tables. Search clients access the Search Server using an Application Program Interface (API).

The MDM Registry Edition Search Server is a multithreaded application, with one thread allocated to each
client connection. Each Search Server process supports a limited number of connections, which are database
and environment dependent. Multiple Search Server processes can be started to handle as many concurrent
Search Clients as required.

Clients communicate with the server by using TCP/IP sockets. Ideally, the server is started on the same
machine as the DBMS to avoid excessive network overhead when it communicates with the database.

The Search Server by default uses all available CPUs to provide the fastest possible matching. See Switches
to see how to control how many match threads to use.

The Search Server maintains a pool of previously run search requests. The Search Server loads each search
request into memory and initializes it. The Search Server uses the ids_search_start function to initialize a
search request. When an ids_search_start function fails because of an transient error, the Search Server
retries up to five times. The function does not retry when it returns a fatal error. If the function fails after five
times, it returns a fatal error.

21

22

When the search request is complete, the Search Server adds the search request to the pool of search
requests. The Search Server reuses these search requests, instead of reinitializing them whenever a client
switches to another search. This method reduces overhead such as reading metadata and establishing
database connections and improves the search performance.

By default, session pooling is enabled. You can disable it by setting the SSA_SESSION_POOL_MAX
environment variable to 0 on the machine hosting the Search Server.

Rulebase Server

The MDM Registry Edition Rulebase Server supports multiuser access to the rules stored in the Rulebase.
Search clients do not directly access this server. The Search Server, Console Server, and MDM-RE utilities
access the Rulebase Server.

The Rulebase Server caches rules read from the Rulebase to speed up access. One Rulebase server is
permitted for each Rulebase (to maintain cache consistency). A single Rulebase Server can serve multiple
clients and multiple Rulebases.

Connection Server

The MDM Registry Edition Connection Server is an optional server process. It is used to improve the
performance of search clients that continually connect and disconnect from the Search Server.

Stateless transaction based searches, such as Web searches would benefit from using the Connection
Server. For example, a Perl search client launched by a Web CGl-script might start a search, collect the
results and terminate. Each search transaction opens a connection to the Search Server (and database) and
closes it. This is inefficient.

To overcome this problem, use MDM Registry Edition to provide a Connection Server. When a transient
search client connects to the Connection Server, the server allocates a Session-1Id.

The Connection Server passes the request to the Search Server. The Connection Server returns the results to
the search client without closing the connection to the Search Server. When the search client makes a
second or subsequent call identified by the same session-1d, the Connection Server reuses the connection
established on the first call. It avoids the overhead of reconnecting with the Search Server. The connection is
closed when the search client requests to terminate the session, or the session remain unused for the
Connection Server's time-out period.

The client and Connection Server must reside on the same machine. It ensures that opening a (socket)
connection from the client to the Connection Server is inexpensive (relative to connecting to a remote
machine). If the client and Search Server use different character sets (example: EBCDIC/ASCII), the
Connection Server must run on the same machine as the client. It is because the Connection Server does not
perform any character set translations.

Console Server

The MDM Registry Edition Console Client accesses the MDM Registry Edition Console Server. Use the server
to provide support facilities for the Console Client, such as RuleBase access, file access, and launching MDM
Registry Edition utilities.

XML Console Server (CX)

The MDM Registry Edition XML Console Server is an optional server that implements the Console API using
an XML protocol. For information about the XML Console Service, see the Web Services section of this guide.

XML Search Server (XM)

The MDM Registry Edition XML Search Server is an optional search server that implements the search API
using an XML protocol. For information about the search API, see the Developer Guide.

Chapter 2: Servers

Synchronization Server (XS)

The Synchronization Server is an optional server which has a Web Service-style interface to the following
services:

e The Real Time Web Service, which propagates the User Source Tables updates to the IDT in real time.

¢ The Real Time API, which supports the client programs to apply updates to the IDT in real time.
HTTP Search Server

This optional server acts as a HTTP (Web) server to process search requests from a browser. Any browser
can act as a web-based Search Client when pointed to the host:port of HTTP the Search Server . For
information about configuring the HTTP Search Server, see the Search Clients chapter.

License Server

The License Server monitors a directory containing license files. These files define the products and optional
components that might be installed and run in your environment. For information about the License Server,
see the MDM Registry Edition Installation Guide.

Configuration

The following section discusses how to decide which servers are required and how to configure them. Server
configuration and placement is important as it affects performance.

The Search and Rulebase Servers are packaged together in one executable image called ssasrsv. Based on
start up parameters, ssasrsv can function as one of the following servers:

e Search Server
e Rulebase Server
e Search and Rulebase Servers

All clients communicate with the servers using a socket interface over TCP/IP. Communication costs vary
based on where the client and server are placed. In order of most expensive to least expensive, they are:

e remote machines
e same machine
e same executable process

Clients on remote machines incur the cost of network transmission. Clients on the same machine will take a
shortcut through the TCP/IP protocol stack and avoid the transmission costs. A combined Search and
Rulebase server takes this one step further by bypassing TCP/IP altogether. Therefore it is advantageous to
run a combined Search/Rulebase Server. If more Search Servers are required, they can be started as
standalone Search Servers configured to access the Rulebase in the combined server.

Before launching the servers you must decide:

e which servers are required
e how many Search Servers are required
e which machines the servers will run on

The Console Server is required if you want to use the Console Client to administer MDM Registry Edition. A
Connection Server is recommended for stateless search clients. At least, one search Server is required. In
general, one Rulebase Server must be started.

Configuration 23

Session Pooling Parameters

You can configure the session pooling method by setting the following environment variables in the env
\mdmres.bat (Windows) or env/mdmres (UNIX) file:

SSA_SESSION_POOL_MAX

Maximum number of search requests that the Search Server can retain in the pool of search requests.
The configuration does not impact the maximum number of search requests that the Search Server can
run simultaneously. After the Search Server completes the search requests, it retains the maximum
number of search requests that you had set in the pool.

Default is 100. You can disable the session pooling method by setting the SSA_SESSION_POOL_MAX
variable to 0. Disabling the session pooling method results in the creation and destruction of the search-
related resources based on the demand.

SSA_SESSION_POOL_TIMEOUT

Time period for a search request to remain unused in the pool of search requests. After the specified
time period, the Search Server releases the unused searches from the pool, which frees the server
resources and closes the database connections. You can specify the time period in seconds (s), minutes
(m), or hours (h).

Default is 7200 seconds, and the default unit is seconds. For example, if you set the value as
SSA_SESSION_POOL_TIMEOUT=3600 or SSA_SESSION_POOL_TIMEOUT=1h, the Search Server releases
the unused search requests from the pool after one hour.

SSA_SESSION_POOL_LOGGING

Level of logging that you want for a search request. The logging level ranges from 1 to 3, where 1
indicates minimal logging and 3 indicates extensive logging. Default is 0, which turns off the logging
function.

Search Client Limit

The Search Server supports approximately 250 concurrent search clients. The limit is dependent on many
factors, including available memory, free sockets, and the type of searches defined in your System. Multi-
searches require more internal resources than individual searches, and searches that use SSA-NAME3
require more resources than searches using database indexes (such as Lite-Indexes). In the following
discussion, the quoted limit of 250 must be understood as an approximate limit. Your implementation might
support many more users, or in some particularly resource intensive cases, somewhat less than 250.

Will there be more than 250 concurrent search clients? If not, you must start a combined Search/Rulebase
Server. If you expect more than 250 clients, start a combined Search/Rulebase Server, and one or more
standalone Search Servers. It is assumed that your Application Server performs load balancing by
distributing search client connection requests between all Search Servers.

Is your database in a cluster? If so, consider running multiple Search Servers and a Rulebase Server Group.

Starting the MDM Registry Edition Servers

Before you start the MDM Registry Edition Servers, ensure that the License Server is running.

24 Chapter 2: Servers

Default Configuration

This section provides steps on how to start the MDM-RE Servers.

» To start MDM-RE Servers in the default configuration, click the Start Server icon in the Informatica
program group (Win32), or run the shell script $SSABIN/idsup (UNIX platforms).

The default configuration starts a Console, Connection and combined Rulebase/Search Server. This
configuration is suitable for most users. Errors encountered during startup are recorded in the server
installation’s iirlog directory.

Note: For Win32: The Start Server icon runs a script in the server installation’s bin directory called
idsup.bat.

For UNIX: Some platforms require the use of nohup when launching servers. Example, nohup $SSABIN/
idsup &

Custom Configuration

If you wish to run servers in a custom configuration (such a multiple Search Servers or with Rulebase Server
Groups) you will need to write your own scripts to start and stop servers. The following section describes the
parameters required to start individual servers.

Configure Mode (Install tests)

MDM-RE Servers can be started in a special mode known as Configure Mode. This mode is used to start
servers in the default configuration and run the standard installation test. When servers are started in this
mode the first Console Client to connect to the server will automatically run the install test. Once the test has
completed successfully the servers will automatically switch out of Configure Mode and behave as normal
servers.

For Win32: Servers will be started automatically in Configure Mode by the installation process if you check
the Run Tests checkbox. If the option is not selected during the installation phase they may be started later
using the Start Server (Configure Mode) icon in the Informatica program group.

UNIX: Refer to the Post Installation Steps\ Regression Test \ UNIX section of the Installation Guide for
instructions on how to start the Servers in Configure Mode.

Host Names / IP Addresses

MDM-RE Server start-up parameters usually include a host name. Although not explicitly noted in the
following parameter descriptions, an IP address may be substituted for a host name.

Sample Server Start-up and Shutdown Scripts

The Windows MDM-RE Server installation contains two sample scripts, idsseup.bat and idssedn.bat, that can
be used to start Server processes in various configurations.

Note: These scripts do not support Rulebase Server Groups.
To use these scripts, you need to set the following environment variables:
SSA_SESV_RBPORT

Set to the port number that the Rulebase Server will be listening on. Set to 0 (zero) to prevent the
Rulebase Server process from starting/stopping. In this case a separate Rulebase Server process must
be running and the environment variable SSA_SESV_RBHOST must be set to the host:server address of
the Rulebase Server process.

Starting the MDM Registry Edition Servers 25

26

SSA_SESV_SEPORT

Set to the port number that the Search Server will be listening on. Set to 0 (zero) to prevent the Search
Server process from starting/stopping.

SSA_SESV_XMPORT

Set to the port number that the XML Search Server will be listening on. Set to 0 (zero) to prevent the XML
Search Server process from starting/stopping.

SSA_SESV_XSPORT

Set to the port number that the Synchronization Server will be listening on. Set to 0 (zero) to prevent the
Synchronization Server process from starting.

SSA_SESV_HTPORT

Set to the port number that the HTTP Search Server will be listening on. Set to 0 (zero) to prevent the
HTTP Search Server process from starting/stopping.

SSA_SESV_HOST

The host name of the computer on which the various server processes are running. This variable is used
only by the idssedn script.

Custom Configuration

If you wish to run servers in a custom configuration (such multiple Search Servers or with Rulebase Server
Groups), you will need to write your own scripts to start and stop servers. The following section describes the
parameters required to start individual servers.

Configure Mode (Install tests)

MDM Registry Edition Servers can be started in a special mode known as Configure Mode. This mode is used
to start servers in the default configuration and run the standard installation test. When servers are started in
this mode the first Console Client to connect to the server will automatically run the install test. Once the test
has completed successfully the servers will automatically switch out of Configure Mode and behave as
normal servers.

For Win32: Servers will be started automatically in Configure Mode by the installation process if you check
the Run Tests checkbox. If the option is not selected during the installation phase they may be started later
using the Start Server (Configure Mode) icon in the Informatica program group.

For more information about starting the server in the configure mode, see the Informatica MDM Registry
Edition Installation and Configuration Guide.

Host Names / IP Addresses

MDM Registry Edition Server start-up parameters usually include a host name. Although not explicitly noted
in the following parameter descriptions, an IP address may be substituted for a host name.

Sample Server Start-up and Shutdown Scripts

The Windows MDM Registry Edition Server installation contains two sample scripts, idsseup.bat and
idssedn.bat, that can be used to start Server processes in various configurations.

Note: These scripts do not support Rulebase Server Groups.
To use these scripts you need to set the following environment variables:
SSA_SESV_RBPORT

Set to the port number that the Rulebase Server will be listening on. Set to 0 (zero) to prevent the
Rulebase Server process from starting/stopping. In this case a separate Rulebase Server process must

Chapter 2: Servers

be running and the environment variable SSA_SESV_RBHOST must be set to the host:server address of
the Rulebase Server process.

SSA_SESV_SEPORT

Set to the port number that the Search Server will be listening on. Set to 0 (zero) to prevent the Search
Server process from starting/stopping.

SSA_SESV_XMPORT

Set to the port number that the XML Search Server will be listening on. Set to 0 (zero) to prevent the XML
Search Server process from starting/stopping.

SSA_SESV_XSPORT

Set to the port number that the Synchronization Server will be listening on. Set to 0 (zero) to prevent the
Synchronization Server process from starting.

SSA_SESV_HTPORT

Set to the port number that the HTTP Search Server will be listening on. Set to 0 (zero) to prevent the
HTTP Search Server process from starting/stopping.

SSA_SESV_HOST

The host name of the computer on which the various server processes are running. This variable is used
only by the idssedn script.

Search and Rulebase Servers

Specify appropriate switches to start an XML Search Server, Synchronization Search Server, HTTP Search
Server, Rulebase Server, or a combined Search and Rulebase Servers.

Run the following command to start a Search Server or a Rulebase Server:
e On Windows: $SSABIN%\ssasrsv <Switches>
e On UNIX: $SSABIN/ssasrsv <Switches>

If you want to start a Search Server or a Rulebase Server as a background process, run the following
command:

e On Windows: start "<Window Title>" %SSABIN%\ssasrsv <Switches>
e On UNIX: $SSABIN/ssasrsv <Switches> &
Use the following switches when you start a Search Server or a Rulebase Server:
-n<SePort>

Starts a Search Server that listens for client connections on the specified port number.
-x<XmPort>

Starts an XML Search Server that listens for client connections on the specified port number.
-s<XsPort>

Starts a Synchronization Server that listens for client connections on the specified port number.
-disable-idtlock

Removes the lock on the Identity Table. If the Identity Table is not locked, you can run multiple
Synchronization Servers in parallel. When you have multiple transactions for a record, different
Synchronization Servers might process the transactions out of order, which can cause data integrity
errors. Use this switch with caution.

Starting the MDM Registry Edition Servers 27

28

-H<HtPort>

Starts a HTTP Search Server that listens for client connections on the specified port number.
-m<RbPort>

Starts a RuleBase Server that listens for client connections on the specified port number.
-h<Host>:<Port>

Starts a Search Server configured to access a remote Rulebase Server. Specify the host name of the
Search Server and the port number on which the server listens for client connections. Use the -h switch
with the -m switch.

-readonly
Starts the Search Server and the Rulebase Server, and runs the Rulebase Server in the read-only mode.
The following sample command runs the Rulebase Server in the read-only mode:
SSSABIN/ssasrsv -readonly -mlocalhost:1666 -nlocalhost:1667 &
-readonly-no-socket

Starts the Search Server and the Rulebase Server, and runs the Rulebase Server in the read-only mode.
Use this switch when you do not want to specify a port number for the Rulebase Server.

The following sample command runs the Rulebase Server in the read-only mode:
$SSABIN/ssasrsv -n$SSA SEPORT -readonly-no-socket &
-g<Rulebase Server Group>
Specifies the Rulebase Server Group.
-use-abort

Applicable only for UNIX. Performs a forced restart of the Rulebase Server. Use this switch only if the
Rulebase Server does not restart after a database connection failure.

=W<n>
Specifies the polling frequency of a Rulebase Server Group in seconds. Default is 1.
-z<n>

Specifies the number of requested match threads. The default value is 1. Specify this argument if your
typical usage is a small number of long running searches that might require multiple threads.

-y<Max>[,<Wait>]

Specifies the maximum number of times to retry (Max) when a connection to the database fails and the
number of seconds (Wait) that a Search Server or the Rulebase Server waits to retry the connection. For
example, -y5, 3 indicates that the Search Server or the Rulebase Server can try up to five times to
connect to the database for every three seconds. The default value is 0, 0. If Max=0, the Search Server or
the Rulebase Server retries indefinitely until the connection to the database succeeds.

-1<File>

Specifies the file that logs the standard output messages (stdout).
-2<File>

Specifies the file that logs the standard error messages (stderr).
-3<File>

Optional. Specifies the file that logs the error and debug messages.
-u<Rulebase Options>

Controls optional aspects of the Rulebase Server behavior.

Chapter 2: Servers

Use the following Rulebase Server options:

e 0x0001 (14¢). Stores the Rulebase cache in memory when no users are currently connected.
Specifying this option improves the Rulebase Server performance, and omitting this option reduces
the memory utilization.

e 0x0100 (2564¢). Forces the Rulebase Server to restart when a Rulebase read operation fails. This
option is helpful when the database server bounces and disconnects the Rulebase Server's
connections. If you do not set this option, the Rulebase Server might fail a client’s requests that
require database access. However, the clients that access the cached rules function normally.

The value that you specify with the -u switch is treated as a decimal value, unless you prefix the value
with x. You can specify a combination of options by adding the values together. For example, to store the
Rulebase cache in memory and force the server to restart on a read error, specify -ux101 or -u257.

Use the following guidelines when you start a server:

e To start a combined Search and Rulebase Servers, specify the -n and -m switches.
e To start a standalone Search Server, specify the -n and -h switch.

e To start a standalone Rulebase Server, specify the -m switch.

e To start a standalone XML Search Server, specify the -x switch.

e To start a standalone Synchronization Server, specify the -s switch.

e To start a standalone HTTP Search Server, specify the - switch.

Connection Server

The MDM-RE Connection Server can be started from the command line as follows:
For Win32: %SSABIN%\ssacosv Switches

For UNIX: $SSABIN/ssacosv Switches

where Switches are

-hHostname:hostport This is the hostname or IP address of the machine where the MDM-RE Search Server
is running. If not supplied, the MDM-RE Search Server is assumed to be running on the same machine as the
Connection Server. The hostport enables you to specify the port number used by the MDM-RE Search Server.

-nListenPort Specifies the port number to use when listening for client connections. The default port
number is 1667.

-tTimeout Specifies the timeout value for a session in seconds.
-1File Specifies the file where messages written to stdout will be redirected.

-2File Specifies the file where messages written to stderr will be redirected.

Console Server

The MDM-RE Console Server can be started from the command line as follows. Optional servers are not
started if their host :port is not specified (-h).

For Win32: %SSABIN%\ssacssv Switches
For UNIX: $SSABIN/ssacssv Switches

where Switches are

Starting the MDM Registry Edition Servers 29

30

-nPort

Defines the Console Server's port number. If the default port number of 1669 is already used by another
application, use this parameter to request a different value. Any client connecting to this server would
then have to specify the same port number.

-hrbHost:Port

Rulebase Server's Host name and port.
-hseHost:Port

Search Server’'s Host name and port.
-hcoHost:Port

Connection Server’s Host name and port.
-hhtHost:Port

Optional HTTP Server's Host name and port.
-hxmHost:Port

Optional XML Server’s Host name and port.
-hxsHost:Port

Optional XS Server's Host name and port.
-1File

Specifies the file where messages written to stdout will be redirected.
-2File

Specifies the file where messages written to stderr will be redirected.
-3File

Specifies the file where error and debug messages will be written.
-wWorkDir

Specifies the working directory for the Console Server process.
-zn

Passes through as argument to Search Server.

Specify Rulebase Server options to be passed to the spawned RB server. This option uses the same
values as documented in the RB Server Options section but is prefixed by -m instead of -u.

-0
Launch the Console Server without launching the Connection and combined Rulebase/Search Servers.
-tDirectory

Specifies the absolute name of the directory which contains the test files used in Configure Mode. The
install test is in $SSAWORKDIR/systems. On Win32 platforms this parameter is supplied by the Installer.

-iFile
Informs the server to start in Configure Mode. This option is set in order to complete a new installation.
It causes the first console client to start a session to run the install test. File is a file in the directory
specified by the -t switch. It contains a list of system import files. These files are used during the testing

phase of the setup. The name of this file should be tests.dat. On Win32 platforms the server is started
in this mode by the Installer.

Chapter 2: Servers

-uUID -pPWD -sSVC

These specify the User’s Database Userid, Password and Service to be used when communicating with
the Database in Configure Mode. They are passed to the client as default values to be used during the
test. If not supplied, these values default to blanks. If any of these options are supplied in "normal" mode
they are ignored.

Stopping

This section provides information about how to stop the servers.
Default Configuration
Win32

Servers are stopped using the Server Shutdown icon in the Informatica’s Products folder or by running the
script %SSABIN%\idsdown.

UNIX

Server are stopped using the script SSSABIN/idsdown. It must be run from a shell that has the Informatica’s
environment variables set (by sourcing the ssaset script first).

Normal vs Hard Shutdown

Under normal circumstances, a server will shutdown when all active clients disconnect from it. In some cases
it may be desirable to request an immediate shutdown, for example, when the stop request has come from a
Windows Service just prior to 0/S shutdown. In this case, idsdown may be called with the hard parameter,
which forces an immediate shutdown by closing all active client connections.

Custom Configuration

Use the ssashut utility to stop individual servers or close (flush) sessions held by the Connection Server.
For Win32: %SSABIN%\ssashut Switches

For UNIX: $SSABIN/ssashut Switches

where Switches are
-hHost:Port

Host and Port specify the host name and port number of the server to be shut down.

Flush sessions instead of shutting down the server.
-v

Verbosity.
-z

Hard shutdown. This option forces the server to shutdown immediately by closing active connections.
Any active clients will receive socket-related error messages. This option is mutually exclusive with -f.

Note: ssashut may report that a connection could not be established to the nominated server. Some of the
possible reasons include:

e Wrong host or port number or both was specified, or

Stopping 31

e Server is not currently running.

Note: See also the description of the Windows sample script idssedn.bat in the Sample Server Start-up and
Shutdown Scripts sections above.

Restarting

32

All servers (Connection Server, combined Search/Rulebase Servers and Console Server) are launched as a
pair of processes. The first process spawns a second server process that acts as the real server that clients
connect to. If the spawned server crashes, the parent process automatically spawns a new copy of itself.
This provides a degree of fault tolerance.

Rulebase Server

The Rulebase Server has special restart requirements because it uses a locking mechanism to protect itself.
The locking mechanism prevents two Rulebase Servers updating the same Rulebase tables.

When a parent Rulebase server starts, it generates a unique Id and passes it to the child server. When the
child opens the Rulebase it saves the Id in the Rulebase.

If another Rulebase server attempts to open the same Rulebase, its Id will not match the value held in the
Rulebase and an error message similar to this is displayed:

Rulebase is locked

Rulebase In use by ssa.identitysystems.com IP=203.2.203.105 on port=1668,
ID=271259152

IS ANOTHER RULEBASE SERVER RUNNING?

Automatic Restart
If the child server crashes, the parent server spawns a new child with the same Id as the original child.

When the child server starts and finds an Id already present, it compares it to the parent’s. If they are the
same it displays the following message and restarts successfully:

This is an automatic restart
Manual Restart

If the computer crashes (and all processes terminate), the Rulebase remains locked. The next time a new pair
of parent/child Rulebase Servers are started, the parent generates a new unique Id. It will not match the Id
stored in the Rulebase, so the child server will fail to start. In this situation, you can manually override the
lock by setting an environment variable to the same Id that currently locks the Rulebase. For example,

SSA_RB_RESTART ID=271259152

When the Rulebase server is started, it will use the environment variable to unlock the Rulebase (as long as
the two Ids match). It will then use the freshly generated parent Id to re-lock it. Therefore the environment
variable can only be used once to unlock the database. A manual restart generates the following message in
the server log:

This is a manual restart
Automatically Restarting After Common Failures

A manual restart is usually required after a power outage or reboot. When SsA_RB_RESTART IDis setto 0,
MDM-RE will automatically attempt to detect if the original process that locked the Rulebase is still running.
If it is not, the restart will be automatic (with no intervention required).

IS ANOTHER RULEBASE SERVER RUNNING?
Rulebase ’sdb:file:c:\a3i\ids\rule’ In use by

Chapter 2: Servers

ssa.identitysystems.com IP=203.2.203.109 on port=1668, SSA RB_RESTART_ ID=281728582
Other RB information: ip=203.2.203.109 pid=299
host='ssa.identitysystems.com’ ps='2002/11/28 06:29:10.8233"
Other RB server not running
This is an automatic restart
However, if the original job is running, or its status cannot be determined, MDM-RE will not automatically

unlock the Rulebase.

Note: When sSa_RB_RESTART IDis setto O it is possible to inadvertently start multiple Rulebase servers. If
this occurs, Rulebase corruption will result. We strongly recommend that SSA_RB_RESTART ID is not leftin
any start-up script or in the environment after a server restart.

Note: This facility requires that various operating system functions will return consistent results. For
example, the host name of the machine and the output of the ps command must return the same result when
called repeatedly. Any inconsistencies may result in the Server concluding that the previous server is no
longer running and to start a second instance. If the previous server is still running, Rulebase corruption may
result.

Connection Aliases

Users must not connect to the same Rulebase Server using multiple userids or service names that are aliases
for the same physical rulebase.

For example, if the service names Jupiter and Mars are aliases for the same Oracle service, all rulebase
connection strings must specify either Jupiter (or Mars) but must not use a mixture. Similarly, when using
Oracle’s Operating System Authentication feature, a connection string that explicitly provides a userid may be
an alias of one that does not, as they may both be routed to the same physical rulebase. In this case, use one
consistent form for the connection string, or consider using a dictionary alias.

The rulebase name is used to identify a cache containing updated rulebase data. The use of alias names will
create multiple caches, which will be written to the same physical rulebase, causing corruption.

MDM-RE will detect if an alias is used and refuse to open the connection, stating that the rulebase is already
owned by another user.

Server Statistics

Progress information can be retrieved for the servers, which are themselves jobs started by the Console. See
Console Client below for details about progress information. The slider can be used to slow the refresh rate
from once per second (the default) to up to 30 seconds.

Because this has the potential to impact performance, it is not switched on by default. Some environment
variables are required to be set in order for this feature to become available.

In the <MDM Registry Edition Installation Directory>/env/mdmres script, set the SSA_SERVER_STATS
environment variable to YES, and set the SSA_RBNAME environment variable to the rulebase connection
string with the rulebase number that you currently use.

For example:

e On Windows: set SSARB NAME=odb:0:userid/password@service Of set SSARB NAME=iir:rb

e On UNIX: export SSARB NAME="odb:0:userid/password@service" or export SSARB NAME="iir:rb"
Note: To keep your password secure, Informatica recommends that you use a Dictionary Alias.

When you start the servers, issue a refresh. The jobs window displays the search server progress
information.

Server Statistics 33

Note: If the rulebase has only just been created, first use the console client to stop and restart the servers.

There will be two entries. One will be an overview job whose function is to restart the servers if one fails. It
will state how long it has been running and what servers are active. Its logs are often interesting though.

The other will have the progress details of the search servers, if SSA_SERVER STATS=YES. Otherwise it will
merely list the individual servers and their start times.

The progress will look something like this:

ssasrsv: server 0:28:14.000

rulebase server: active

clients 4

rulebases 1

status available

search server: active

== Search clients ====

formerly active clients: 6

currently active clients: 1

maximum concurrent clients: 2

minimum duration: 0.000 seconds

maximum duration: 30 minutes 28.979 seconds
total duration: 37 minutes 21.435 seconds
average duration: 320.205 seconds

==== Searches ====

formerly active clients: 53558

currently active clients: 0

maximum concurrent clients: 1

minimum duration: 0.004 seconds

maximum duration: 1.692 seconds

total duration: 3 minutes 58.877 seconds
average duration: 0.004 seconds

==== Name3 clients ====

formerly active clients: 2

currently active clients: 0

maximum concurrent clients: 2

minimum duration: 6 minutes 37.422 seconds
maximum duration: 6 minutes 37.532 seconds
total duration: 13 minutes 14.954 seconds
average duration: 397.477 seconds

A particular job may run a series of searches, some in parallel. The maximum and minimum duration are
recorded rather than the average. Generally speaking, a large maximum that continues getting larger
indicates a client that has failed to disconnect. It can be seen that a small number of search clients can carry
out a large number of searches. The average can be found by dividing the total duration by the total number
of searches. Here 37m21s = 2241s/7 = 320s

High Availability

34

High availability refers to the continuous availability of resources without any service interruption if a failure
occurs.

To prevent service disruptions when an Identity Resolution server fails, you can set up high availability. To set
up high availability, use server groups in an active-passive configuration. Server groups provide redundancy
by allowing several Identity Resolution servers to run concurrently on different nodes.

When you use server groups to set up high availability, one of the servers in the group becomes the primary
server. The other servers on the other nodes assume the role of secondary servers. If the primary server goes
down, one of the secondary servers becomes the primary server. The primary server that fails becomes a
secondary server after it recovers.

Chapter 2: Servers

Note: You can set up high availability for the Search server through third-party load balancers in an active-
active configuration. You cannot set up high availability for the Console server through server groups or load
balancers.

Server Groups

Server groups consist of different Identity Resolution servers, such as Synchronization server, Console server,
Search server, Rulebase server, and Connection server. Rulebase servers store the rules that define a system.
Server groups must include Rulebase servers to establish connections between clients and Rulebases.

The Rulebase server that responds to requests from clients is the primary server. The other Rulebase servers
are secondary servers. The secondary servers poll the IDS_RB_GROUPS table periodically to verify the status of
the primary server. If the primary server goes down, one of the secondary servers becomes the primary
server.

You can use the server groups in a distributed database environment where multiple database servers run on
different network nodes. All the database servers connect to a shared disk sub-system using a storage area
network and appear as a single unified database. The database remains available even if one node is
operational. You can start or stop additional nodes transparently without affecting the connectivity or data
integrity.

Before you set up high availability using the server groups, you must consider the following aspects of the
Rulebase servers:

e The Rulebase server must access a robust database instance. The database instance must remain
available even if there is one active node in the network.

¢ Only one Rulebase server responds to the Rulebase requests even though the server groups might contain
multiple Rulebase servers.

e You can shut down all the servers in a server group using the idsdown script. You cannot shut down an
individual secondary Rulebase server. You can only kill an individual secondary Rulebase server.

e You must always start the Search and Rulebase servers as separate servers and establish communication
between them through sockets. Don't start the Search and Rulebase servers together.

e You must restart the Rulebase servers only with the -o switch. You must ensure that the Rulebase servers
don't start automatically by the Console server.

e To assign Rulebase servers to the server groups, use the -g switch.

Starting the Servers in Server Groups

You can use the default or custom configuration to start the servers in a server group. A unique identifier
called ssa_RB_RESTART 1D gets assigned to the server groups when they start and remains unchanged until
the life of the group.

For more information about starting the servers, see the Starting the Identity Resolution Servers section.

Parameters Used for Starting the Servers

When you start the servers in a server group, you can specify the server parameters or switches to manage
the way you want the servers to start.

Parameters for the Rulebase and Search Servers

When you start a Rulebase or Search Server, you can specify the following parameters:

High Availability 35

Indicates not to shut down the secondary servers when the primary server shuts down.
-g<Server Group Connection Name>,<Rulebase Connection String>

Adds the server to the server group.

Use one of the following formats for the rulebase connection string:

e odb:0:userid/password@service

e iir:rb
-G<Server Group Connection Name>,<Rulebase Connection String>

Adds the Synchronization server to the server group.
-o<Restart Option>

Indicates how the server must behave when the connection to the database is lost. You can use one of
the following options:

e r.Indicates to restart the server.

e 1.Indicates to check whether the database table is accessible. If the database table is accessible, the
server connects to the database. If the database table is not accessible, the server waits until the
database connection is restored.

¢ 2. Indicates to restore the database connection.
e 0. Indicates to retry until the database connection is restored.
-t<Number of Retries>,<Frequency>

Indicates the maximum number of attempts for the secondary server to establish the database
connection and the time interval between two attempts. Default number of attempts is 500, and default
time interval is 5 seconds.

-w<Frequency>,<Priority>

Indicates the polling frequency in seconds and the priority for the server. When the primary server is
down, the secondary server with the highest priority becomes the primary server. The number 1 indicates
the highest priority. Default polling frequency is 1.

-m<Port Number>

Indicates the port number on which the Rulebase Server listens.
-n<Port Number>

Indicates the port number on which the Search Server listens.
Parameters for the Console Server

When you start a Console Server, you can specify the following parameters:
-g<Rulebase Server Group Connection Name>,<Rulebase Connection String>

Adds the server to the Rulebase Server Group.
Use one of the following formats for the rulebase connection string:
e odb:0:userid/password@service
e iir:rb
-n<Port Number>

Indicates the port number on which the Console Server listens.

36 Chapter 2: Servers

Indicates not to start other servers.
-h<Host Name>

Indicates the server that you want to automatically start.
Parameters for the XML Search Server

When you start an XML Search Server, you can specify the -x<Port Number> parameter that indicates the
port number on which the XML Search Server listens.

rbsgdown Utility

Use the rbsgdown utility to shut down all the primary and secondary Rulebase and Synchronization Servers.
You can specify the command at any node. The rbsgdown utility stops all the clients connected to the
Rulebase and Synchronization servers.

Note: If the Rulebase server includes-e switch in the start-up scripts, the rbsgdown utility shuts down only the
primary servers.

In the following examples, the rbsgdown utility stops the Rulebase and Synchronization servers within the
server group called franky:

rbsgdown -gfranky,<Rulebase Connection String>
rbsgdown -Gfranky,<Rulebase connection string>

Use one of the following formats for the rulebase connection string:
e odb:0:userid/password@service

e iir:rb

Example

The name of the RBSG used in this example is franky.

The environment variable %SSA_GRPDB% contains the connection string to the cluster database. This
database must contain the Rulebase objects and the I1DS_RB_GROUP table. For example, it might be defined as
0db:99:uid/pwd@clusterdb.

Start the first Rulebase Server in the group:

set SSA PRM="MDM-RE rbl Server for group port 9997"

set SSA_LOGS=—l%SSAWORKDIR%\idsrblv.log -2%SSAWORKDIR%\idsrblv.err -3%SSAWORKDIRS
\idsrblv.dbg

set SSA ISSUP CMD=start %SSA PRM% "$SSABIN%\ssasrsv"

$SSA _ISSUP CMD% -m9997 -gfranky,%SSA GRPDB% -wl %SSA LOGS%

UNIX example

SSA LOGS="-1$SSAWORKDIR/idsrblv.log -2$SSAWORKDIR/idsrblv.err -3$SSAWORKDIR/idsrblv.dbg"
export SSA LOGS
$SSABIN/ssasrsv -m9997 -gfranky, $SSA GRPDB -wl $SSA LOGS

Start a second Rulebase Server in the same group:

set SSA PRM="MDM-RE rb2 Server for group port 9999"

set SSA LOGS=-1%SSAWORKDIR%\idsrb2v.log -2%SSAWORKDIR%\idsrb2v.err -3%SSAWORKDIRS
\idsrb2v.dbg

set SSA ISSUP CMD=start %SSA PRM% "$SSABIN%\ssasrsv"

$SSA _ISSUP CMD% -m9999 -gfranky,%SSA GRPDB% -wl %$SSA LOGS%

UNIX example

SSA LOGS="-1$SSAWORKDIR/idsrb2v.log -2$SSAWORKDIR/idsrb2v.err -3$SSAWORKDIR/idsrb2v.dbg"
export SSA LOGS
$SSABIN/ssasrsv -m9999 -gfranky, $SSA GRPDB -wl $SSA LOGS &

High Availability 37

Start the first Synchronization server in the group:

$SSABIN/ssasrsv -s$SSA XSPORT -n
$SSA_SEPORT -Gmygroup, $SSA RBNAME -gmygroup,$SSA_RBNAME $SSA XSY LOGS

If the two servers are started on the same machine they must have different port numbers (9997 and 9999
respectively). If they are started on different machines they could use the same port numbers.

We now have two Rulebase Servers and a Synchronization server running. One will become the Primary
Rulebase for this RBSG and the other will go into Secondary polling mode where it will just monitor the first
Rulebase and take over if it detects that the Primary Rulebase has ceased to work.

We may start as many Rulebase Servers as necessary. All additional servers will become secondary servers.

Start a Search Server:

set SSA PRM="MDM-RE se Server on %SSA SEHOSTS%"

set SSA LOGS=-1%SSAWORKDIR%\idssexx.log -2%SSAWORKDIR%\idssexx.err -3%SSAWORKDIRS%
\idssexx.dbg

set SSA ISSUP CMD=start %SSA PRM% "$SSABIN%\ssasrsv"

%$SSA_ISSUP _CMD% -n%SSA SEPORT% -gfranky,$SSA GRPDB% %SSA LOGS%

UNIX example

SSA LOGS="-1$SSAWORKDIR/idssexx.log -2$SSAWORKDIR/idssexx.err -3$SSAWORKDIR/idssexx.dbg"
export SSA LOGS
$SSABIN/ssasrsv -n$SSA SEPORT -gfranky, $SSA GRPDB $SSA LOGS &

Do not assign a RB Server port to the Search Server, as it will automatically determine the correct one based
on the -g parameter. An error will be generated if a RuleBase Server and the -g switch are both specified.

Start the Console Server:

set SSA PRM="MDM-RE cs Server on %SSA CSHOSTS%"

set SSA LOGS=-1%SSAWORKDIR%\idscsxx.log -2%SSAWORKDIR%\idscsxx.err -3%SSAWORKDIR%
\idscsxx.dbg

set SSA ISSUP CMD=start %SSA PRM% "$SSABIN%\ssacssv"

set SSA ISSUP HOSTS=-hco%SSA COHOST% -hse%SSA SEHOST% -hxm%SSA XMHOSTS -

gfranky,$SSA GRPDB% %SSA ISSUP CMD% -o -n%SSA CSPORT% %SSA ISSUP HOSTS% -w%SSAWORKDIRY
$SSA LOGS%

UNIX example

SSA LOGS="-1$SSAWORKDIR/idscsxx.log -2$SSAWORKDIR/idscsxx.err -3$SSAWORKDIR/idscsxx.dbg"
export SSA LOGS

SSA_ISSUP HOSTS="-hco$SSA COHOST -hse$SSA SEHOST -hxm$SSA XMHOST -gfranky, $SSA GRPDB"
export SSA ISSUP HOSTS

$SSABIN/ssacssv -0 -n$SSA CSPORT $SSA ISSUP_HOSTS -w$SSSAWORKDIR $SSA LOGS &

Do not assign a Rulebase Server port to the Console Server, as it will automatically determine the correct one
based on the -g parameter. Use the -o switch to prevent Search and Rulebase Servers from being spawned
automatically.

Environment Variables

38

The Console Server uses utility programs to perform tasks such as creating a system, loading an IDT, and
running the batch search client. Some of these processes allow environment variables to control or alter their
behavior. The utility programs inherit the server’s environment variables.

Win32

Use the <MDM Registry Edition Installation Directory>\env\mdmres.bat file to set the server's
environment variables.

Chapter 2: Servers

UNIX

Use the <MDM Registry Edition Installation Directory>/env/mdmres script to set the server's
environment variables.

Variable Descriptions
SSADB_QUERY_TIMEOUT

Sets the timeout interval in seconds for a search request to query the database.
SSADB_RECID_INCREMENT

Sets the increment value for the record identifiers. The increment value is applicable only for the
synchronization process. Default is 1.

SSA_IGNORE_ODBC_SQLSTATE

Specifies the types of errors to ignore based on the SQLSTATE value. You can also specify a message
code number to ignore the specific error.

For example: SSA_IGNORE ODBC_SQLSTATE=S1000,29725 ignores the following error:

SQLSTATE='S1000"' NATIVE ERR=29275 Reason: [Oracle] [ODBC] [Ora]ORA-29275: partial multibyte
character

SSA_LITEINDEX_DONOTSEARCHNULLKEY

Skips the null values when you use Lite Indexes to search. To skip the null values, set the environment
variable to any whole number. For example, SSA LITEINDEX DONOTSEARCHNULLKEY=1.

SSA_LISTEN_FAILURES_ABORT

Indicates whether to perform a forced restart of a server after the server exceeds the allowed number of
consecutive connection failures.

Use one of the following values:

e 1. Performs a forced restart.

e 0. Disable this option. Default is 0.
SSA_LISTEN_FAILURES_ALLOWED

Maximum number of consecutive connection failures allowed for a server. Set the environment variable
to any whole number. For example, SSA_LISTEN FAILURES ALLOWED=10.

SSANOSORTIDX

Indicates whether to disable sorting when you run the Table Loader utility. To disable sorting, set the
environment variable to 1.

For example: SSANOSORTIDX=1.
SSAOPTS
Sets various logging and trace options. You can use one or more of the following values:

e +r. Logs all the search records to the idssrsv.dbg file. Use +r to identify a particular search
transaction that causes a server crash.

e +R. Logs database reconnection events to the idssrsv.dbg file in a single line.

e +T. Logs search trace information to the idssrsv.dbg file. You can use the LOGTEST trace file in
addition to the search trace information in the event of a server crash.

e +u. Logs process resource usage, such as the number of threads, sockets, and stack space to the
* . dbg files. The value also logs database resource utilization when users connect or disconnect.

Environment Variables 39

For example, SSAOPTS=+rRTu.
SSAPR

Directory name that contains the SSA-NAME3 population files.
SSA_RB_ERROR_IS_NOT_FATAL

Converts a data integrity error to a warning. To convert errors to warnings, set the environment variable
to any whole number. For example, SSA_ RB_ERROR_IS NOT FATAL=1.

SSA_RESTRICTED_VARS

Specifies a colon-separated list of environment variables which cannot be set by the console client.
SSA_SEARCH_MAX_RETRY

Maximum number of times you want to retry a search request before it fails.
SSASQLLDR

Fully qualified name of the loader utility, which is specific to each database. Use one of the following
values:

e sqlldr for Oracle

e db2 for IBM DB2 UDB

e Dbcp for Microsoft SQL Server
SSA_SOCKET_MAXIMUM_ALLOWED

Maximum number of sockets that listen for connections. Set the environment variable to any whole
number. For example, SSA_SOCKET MAXIMUM ALLOWED=10. By default, you do not have any restriction on
the number of sockets.

SSADB_MAX_DB_CONNECTIONS

Maximum number of database connections that the Identity Resolution servers can use. For example,
SSADB_MAX DB CONNECTIONS=500 limits the database connection to 500. Default is 1024.

SSA_SOCKET_TIMEOUTS

Specifies the timeout periods as a comma-separated list for all the MDM Registry Edition servers. The
SSA_SOCKET_TIMEOQUTS environment variable uses the following format:

SSA SOCKET TIMEOUTS=<Idle>,<Connection>,<Write>,<Read>

Configure the following parameters:
Idle

Time period for a client session to remain idle before the server cancels the session. The default
timeout period is 86400 seconds.

Connection

Time period for a client to wait before an attempt to establish a connection to the server is
terminated. The default timeout period is 15 seconds.

Write

Time period to wait for a write or send operation to complete successfully. The default timeout
period is 7200 seconds.

Read

Time period to wait for a read or receive operation to complete successfully. The default timeout
period is 7200 seconds.

40 Chapter 2: Servers

If you configure the SSA_SOCKET_TIMEOQOUTS variable, you must specify the timeout periods for all the
operations. For example, SSA_SOCKET TIMEOUTS=86400,15,7200,7200

SSA_THREAD_MAXIMUM_ALLOWED

Maximum number of threads that process the data. Set the environment variable to any whole number.
For example, SSA THREAD MAXIMUM ALLOWED=10.By default, you do not have any restriction on the
number of threads.

SSATEMP

Some MDM Registry Edition programs and scripts require output to be written to a temporary directory.
The location of this directory is controlled by the SSATEMP variable. The default location of this directory
is SHOME/tmp in UNIX and $TEMP% in Windows installations. It is recommended that a separate location is
created for each user (each instance or running servers). This directory must have write and execute
permissions.

SSA_TREAT_C_TYPE_AS_LATIN1=1

Converts the Latin-1 character set to the UTF-8 character set.

SSA_USE_SQLDRIVERCONNECT

Indicates whether to use the sQLDriverConnect or SQLConnect function to connect to the target
database. When you use the sQLDriverConnect function, you can specify multiple connection attributes.

To use the sQLDriverConnection function, set the environment variable to 1. By default, MDM Registry
Edition uses the SQLConnect function.

The sQLDriverConnect function uses the following format for the connection string:

DSN=<Data source name>;UID=<User ID>;PWD=<Password>;<Parameter 1>=<Value 1>;<Parameter
2>=<Value 2>.

For example, the following sample connection string sets the minimum and maximum pool size:

DSN=<datasourcename>; UID=<userid>; PWD=<password>;Pooling=true;Pool Size Min=10;Pool Size
Max=50.

SSA_USE_SQLDRIVERCONNECT_ATTRIBUTES

Specifies the additional attributes for the sQLDriverConnect function. Applicable only when you set
SSA_USE_SQLDRIVERCONNECT=1.

For example, when SSA USE SQLDRIVERCONNECT=1 and

SSA USE SQLDRIVERCONNECT ATTRIBUTES=Pooling=true;Pool Size Min=10;Pool Size
Max=50;Connection Lifetime=120;Connection Timeout=60;Incr Pool Size=5;Decr Pool Size=2,
MDM Registry Edition uses the following connection string:

DSN=<datasourcename>; UID=<userid>; PWD=<password>;Pooling=true;Pool Size Min=10;Pool Size

Max=50;Connection Lifetime=120;Connection Timeout=60;Incr Pool Size=5;Decr Pool Size=2.

SSA_USE_SQLDRIVERCONNECT_ATTRIBUTES_ONLY

Indicates whether to use only the connection string keywords specified in the
SSA_USE_SQLDRIVERCONNECT ATTRIBUTES environment variable to create a connection string. You can
set any value. For example, SSA_USE_SQLDRIVERCONNECT ATTRIBUTES ONLY=YES.

If you want to use the specified keywords with other database source definitions, such as database
alias, to create the connection string, do not configure this variable.

Environment Variables 41

The following sample configuration indicates to use only the connection string keywords specified in the
SSA_USE_SQLDRIVERCONNECT ATTRIBUTES environment variable:

SSA USE SQLDRIVERCONNECT ATTRIBUTES=DSN=%S;UID=%U;PWD=%P;
SSA _USE_SQLDRIVERCONNECT ATTRIBUTES ONLY=YES

Note: If you enter variables such as %S, %P, 35U as the values in the

SSA USE_SQLDRIVERCONNECT ATTRIBUTES environment variable, MDM Registry Edition replaces these
variables with the server name, password, and user ID configured in other database source definitions to
generate the connection string.

SSA_WSTIMEOUT

Specifies the timeout periods as a comma-separated list for the XML Search Server. The
SSA_WSTIMEOUT environment variable uses the following format:

SSA WSTIMEOUT=<Idle>,<Connection>,<Write>, <Read>

Configure the following parameters:
Idle

Time period for a client session to remain idle before the server cancels the session. The default
timeout period is 86400 seconds. If you want to use the default timeout period, set the value as 0.

Connection

Time period for a client to wait before an attempt to establish a connection to the server is
terminated. The default timeout period is 15 seconds. If you want to use the default timeout period,
set the value as 0.

Write

Time period to wait for a write or send operation to complete successfully. The default timeout
period is 7200 seconds. If you want to use the default timeout period, set the value as 0.

Read

Time period to wait for a read or receive operation to complete successfully. The default timeout
period is 7200 seconds. If you want to use the default timeout period, set the value as 0.

If you configure the SSA_WSTIMEOUT variable, you must specify the timeout periods for all the
operations. For example, SSA_WSTIMEOUT=1200,0,0,0

Note: If you configure both the SSA_SOCKET_TIMEOUTS and SSA_WSTIMEOUT environment variables,
the SSA_WSTIMEOUT variable takes precedence over the SSA_SOCKET_TIMEQUTS variable for the XML
Search Server.

Windows Services

42

You can create Windows services that run programs or batch scripts to start and stop MDM Registry Edition
servers and other processes.

Use the following utilities to create a Windows service that runs a program or a batch script during a
Windows service startup or shutdown process:

e idssvc for all the servers except the Synchronization Server.

e updsvc for the Synchronization Server.

Note: If you plan to start the MDM Registry Edition servers as Windows services, you must use a database
client installed on a local drive instead of a shared network drive to connect to the database.

Chapter 2: Servers

idssvc Utility

Use the idssvc utility to create or delete a Windows service for all the servers except the Synchronization
Server. The idssvc utility uses the following syntax:

e To create a Windows service:
idssvc install <Service Name> <Start Program Name> <Stop Program Name>
e To delete a Windows service that you create:

idssvc delete <Service Name>

The idssvc utility uses the following parameters:
Service Name

Name of the service that you want to create. The idssvc utility adds the 1Ds_ prefix to the service name
to ensure that the MDM Registry Edition services group together when you view them in the Service
Control Manager.

Start Program Name

Fully qualified name of a program or script to run when you start the service. Enclose the name of the
program or script and its parameters within double quotes ().

Stop Program Name

Fully qualified name of a program or script to run when you stop the service. Include all the parameters
that you specify in the start Program Name parameter, and enclose them within double quotes ().

For example, the following command creates a Windows service, l1icenseserver. When you start the
licenseserver Service, the service starts the License Server, and when you stop the 1icenseserver service,
the service stops the License Server:

idssvc install licenseserver "$SSABIN%\liup.bat" "$SSABIN%\lidown.bat"

Note: Informatica recommends that you use batch scripts instead of programs because a batch script can
establish environment variables that MDM Registry Edition requires to function correctly. For example, when
you set a service startup type to automatic, a batch script can set the environment variables before starting
the MDM Registry Edition servers so that the servers function correctly.

After you create a Windows service, you can manually start or stop in the Service Control Manager or from a
command line. To start or stop a service from a command line, run the following commands:

e To start a service, net start <Service Name>

e To stop a service, net stop <Service Name>

Note: When you specify a Windows service name, ensure that you include the 1Ds_ prefix.
You can use the Service Control Manager to change the service startup type to automatic.

The <service Name>.log file in the following directory logs all the error messages and informational
messages associated with the service: <MDM Registry Edition Installation Directory>\bin. The
service does not log the messages to the Windows Event Log, which requires the provision and registration
of a dependent message DLL file.

Sample Script to Create a Windows Service

You can find a sample script in the following directory: <MDM Registry Edition Installation Directory>
\bin\svcdemo.bat

The following example uses the sample script for both the start and stop calls. However, in the production
environment, you can use different start and stop scripts. Specify the start parameter with the start script
name so that the scripts do not run in the same shell.

idssvc install demo "c:\InformaticaIR\bin\svcdemo start" c:\InformaticaIR\bin\svcdemo

Windows Services 43

44

Use the following guidelines if you create a script that runs when you start or stop a Windows service:

o Call the following file to establish the MDM Registry Edition environment variables:
<MDM Registry Edition>\env\mdmres.bat

e Start all the processes with the start parameter so that the processes do not run in the current shell. For
example, if you start the Update Synchronizer without the start parameter, the service script cannot
return the control until the Update Synchronizer stops.

Note: The idsup.bat file located in the following directory uses the start parameter internally:
<MDM Registry Edition>\bin

e Call other scripts, but ensure that you transfer the control by using a call parameter. Otherwise, the
control never returns when the called script ends, and the service script cannot return the control.

* When you stop the servers by using the idsdown.bat file located in the following directory, you can
specify the hard option to force an immediate shutdown that disconnects the active clients:
<MDM Registry Edition>\bin

For example, you can start the Update Synchronizer with the --rbcheck switch to periodically test the
Rulebase connectivity and to abort the connection when the Rulebase Server is inaccessible. This switch
avoids the need to run the syncstop script.

e Set the response code to indicate success or failure at the end of the script. Use the cmd /c exit /b
%$SSARCS command, which sets sSaRrc to 0 for success and 1 for failure.

updsvc Utility

Use the updsvc utility to create a Windows service for the Synchronization Server. Before you run the utility,
you must update the values of the following environment variables in the <MDM Registry Edition
Installation Directory>\bin\multistart.bat file:

e SSATOP=<MDM Registry Edition Installation Directory>

e SSA_SEHOST=<Search Server Host:Port>

e SSA_RBHOST=<Rulebase Server Host:Port>

e SSA_CSHOST=<Console Server Host:Port>

e SSAWORKDIR=<Absolute Path for the Log Files>

The updsvc utility writes the log messages to the sync.log and sync.err files when a service runs.
Use the following syntax to run the updsvc utility:

updsvc install <Service Name> "$SSABIN%\multistart.bat odb:0:userid/password@service <System>
<IDT>" "%SSABIN%\multistop.exe -p<System> -e<IDT> -h<Console Server Host:Port>"

Configure the following parameters:
Service Name

Name of the service that you want to create. The updsvc utility adds the 1Ds_ prefix to the service name
to ensure that the MDM Registry Edition services group together when you view them in the Service
Control Manager.

odb:0:userid/password@service

Rulebase connection string. A rulebase connection string includes the rulebase number, the service
name that MDM Registry Edition uses to refer to the database service, and the user credentials to access
the database service. For example: odb: 99:ssa/ssalora920

System

Name of the system to synchronize.

Chapter 2: Servers

IDT

Name of the identity table that you want to process. Ensure that the identity table is available in the
specified system.

Console Server Host

Host name of the Console Server.
Port

Port number on which the Console Server listens.
After you create a service, use the command line or the Service Control Manager to start the service.
To start a service from the command line, run the following command:
sc start IDS <Service Name>, where Service Name is the name of the service that you want to start.
To stop a service from the command line, run the following command:

sc stop IDS_<Service Name>, Where Service Name is the name of the service that you want to stop.

Windows Services 45

CHAPTER 3

Console Client

This chapter includes the following topics:
e Overview, 46

e Starting, 46
o Modes, 48

e Window Layout, 49

e Menu ltems, 51

e System Editor, 58
e Log Viewer, 58

Overview

The MDM-RE Console provides the user with centralized control of the various components that make up the
MDM-RE system.

The Console is a client/server application.

The Console server is a non-interactive program, which would normally run on the machine where the
database resides. When it is run, the Console Server will establish its environment and then wait for clients to
connect. Once one or more clients are connected, the server launches and monitors the progress of the
various MDM-RE programs at the request of these clients.

The Console client is a Java GUI program. It can be launched on any machine which is connected through
TCP/IP to the Console Server's machine and which has a Java Runtime Environment.

Starting

46

This section provides information on how to start the Console client.
Starting from Shortcuts

Two (Windows) icons for the Console Client are placed in the SSA Program folder by the Installation process.
Click the Console Clienticon to start the client in read-only mode. This mode is used to run search clients
while restricting access to System maintenance utilities.

Use the Console Client (Admin Mode) icon to allow update activity such as creating, deleting and loading
Systems.

Starting from Command Line
Once the Console Server is running, the Console Client can be started using this command:

For Win32:

$SSABINS\idsconc [-cWORKDIR] [-dX] [-hHOST] [-rhRBHOST]
[-rnRBNAME] [-pPROFILE] [-wWORKDIR] [-VVERBOSITY] [-a]

For Unix:

$SSABIN/idsconc [-cWORKDIR] [-dX] [-hHOST] [-rhRBHOST]
[-rnRBNAME] [-pPROFILE] [-wWORKDIR] [-vVERBOSITY] [-a]

where the optional switches are:

-a
starts the client in Admin mode which permits System maintenance. Omitting this switch will place the
Console Client in a non-administrative mode.

-DX
X is the debug level and determines how much debug information will be logged. It must be in the range
0-3. 0 requests no debug information, while 3 requests that all debug information be logged. 0 is the
default.

-cWORKDIR
This defines the name of the Work Directory to be used by client programs. This parameter is optional. If
specified, it must specify a directory that is accessible to the machine on which the Client is running. At
present, this parameter is used only by the Relate Client. If you are not planning to run the Relate Client,
then there is no need to supply this parameter.

-hHOST
This parameter may be used to determine which Console Server the client will connect to. It should be in
the form host:port, where host is the hostname or IP address of the machine where the Console Server
is running and port is the port number on which the Console Server is listening.
The default value is 1ocalhost:1669.

-pPROFILE
This parameter may be used to define a Profile name. A profile is used to store session state
information in the Rulebase. This allows a client to restart using the same settings as the previous time
that profile was used. Using a profile can cause problems if you are planning to reinitialize the Rulebase
or switch Rulebases mid-session. In such cases, use -p-to disable profiles.

-rhRBHOST
Optional parameter.

-rnRBNAME
These optional parameters may be used to set the initial Rulebase Host and Rulebase Name values for
the client. If present these values will override any default values supplied by the Console Server.

-wWORKDIR

This defines the value for SSAWORKDIR to be used by the Console Server on behalf of this client. This is a
directory on the machine where the Console Server is running.

Starting 47

-vVVERBOSITY
This defines the default verbosity setting to be used.

Note: The case of option letters is significant.

Modes

48

This section provides information on the modes you can connect.
Configure Mode
Configure Mode is used to run the Installation tests.

When the Console Client is run, it interrogates the Server to determine the Server's mode of operation. If the
Server is in Configure mode, the Client initiates the setup process by displaying several dialogs. The user is
prompted to supply the required information such as the user’s database name.

The user should fill in each of the required fields and then click Finish. The console will then go through the
steps involved in completing the installation of MDM-RE.

These include:
e creating and initializing a Rulebase
¢ running the standard tests

This serves to confirm that the MDM-RE installation is working correctly. Upon successful completion, the
Server and Client change to normal mode of operation. The Client can then be used to carry out normal MDM-
RE operations. There is no need to restart either the Client or the Server.

On the other hand, if an error should occur, the Server remains in Configure mode and the install process can
be repeated if required.

Normal Mode

When the Console Client is started it connects to the Console Server determined by the -h parameter, if
supplied, or to the default Console Server. It then determines from the Server the mode of operation.

If the mode of operation is not Configure Mode, the Client presents a dialog to the user that contains a list of
user-settable variables. These variables are described below.

Rulebase Name
The name of the Rulebase to be used.
Work Directory

The name of the directory on the server’'s machine where output files will be placed. This field is
mandatory. Note that this value can be set using the -w command line option.

Client Work Directory

This defines the name of the Work Directory to be used by Client programs. If specified, it must specify a
directory which is accessible to the machine on which the Client is running. At present, this parameter is
used only by the Relate Client. So, if you are not planning to run the Relate Client, then there is no need to
supply this parameter.

Chapter 3: Console Client

Service Group Directory

When a new System is created, MDM-RE will look in this directory for any required SSA-NAME3 v1.8
service groups (in the form of .dat files). This value can be overridden by a parameter in the Create
System dialog. This parameter should be left blank if SSA-NAME3 v1.8 is not used.

Rulebase Server

The name of the host where the Rulebase Server to be used during this session is running.
Port

The port number on which the Rulebase Server is listening.
Connection Server

The name of the host where the Connection Server to be used during this session is running.
Port

The port number on which the Connection Server is listening.
Search Server

The name of the host where the Search Server to be used during this session is running.
Port

The port number on which the Search Server is listening.
Statistics

If selected, the log files will include statistics.
Usage Summary

Select this option to produce database usage statistics.
Server Trace

If selected the Console Server produces verbose output. This is for troubleshooting purposes and should
normally be disabled.

Live Progress
Check this option to see the live progress every time an action is performed.

All the above variables are used by the Console Server to service requests from the Client. Therefore, care
should be taken to see that the values are correct. The user should make any required changes and click OK.
At this point, the Main Console Window is displayed.

Window Layout

The user may now make a selection from the various buttons to perform the desired task. The buttons are
arranged in two groups. The row of buttons along the top of the Console window are associated with the
various objects with which a user might want to work, such as System, Rulebase, etc. Click one of these
buttons causes a second group of buttons to appear down the left-hand side of the Console window. These
buttons are associated with various actions that can be carried out on the object selected from the first
button group. Example, if the user click Rulebase then the possible actions will be Edit and Create and two
buttons will appear in the second button group to allow the user to select the desired action. In addition,
there is a group of four buttons at the bottom of the left hand panel. These buttons are independent of the
top row of buttons and provide quick access to some basic functions.

Window Layout 49

In addition to the buttons there is a menu bar. In general, the options on the menu bar mirror those available
through the buttons mentioned above.

To the right of the second button group is the messages panel. This is a read only area where Console will
display progress and error messages.

Along the bottom of the window is the status bar. This contains the current settings for Work Directory,
Rulebase and System.

Launched Jobs

This is a list of all the jobs launched during the current session. Each user can access more information
about a particular job in the list. Click the Open button.

When reconnecting the client to the console server, the list will display all the currently running jobs for all
console clients using the same Rulebase.

The progress messages for each job are not displayed automatically when a Client reconnects. The user
must select a running job from the list and click Open (or double-click the item). This will open the usual
progress window.

Options
Open
Opens a status window for the selected job.
Delete
Remove the selected job from the list. Note that only completed jobs may be removed from the list.
Refresh
Refreshes the list with the currently running jobs for the same Rulebase.
Server Status Indicators
Work directory

The name of the work directory on the server's machine where temporary and the output files will be
placed.

Rulebase
Name of the Rulebase currently being used.
System Name
The name of the system in use.
Profile Name
The name of the profile in use.
Console Server Status

Indicates, if the Console Server is running or not.
If Console Server is running.

X

If Console Server is not running.

Search Server Status Indicates, if the Search Server is running or not.

If Search Server is running.

50 Chapter 3: Console Client

X

If Search Server is not running.

Connection Server Status Indicates, if the Connection Server is running or not.

If Connection Server is running.

X

If Connection Server is not running.
Common Toolbar Buttons

The following describes the functionality provided by the four buttons Status, Settings, View Logs and Clear
Messages:

Server Status

This button activates the Status dialog, which reports the status of the MDM-RE servers, the Rulebase and the
database associated with the current system.

Settings

This option will display the dialog containing the current environment of the client. This is the same dialog as
the one presented when the Client is first started. The user may make any required changes to the
environment variables.

View Logs

Use this button to activate the Log Viewer. The Log Viewer allows the various output files produced by MDM-
RE to be viewed.

The Log Viewer displays the files in a Tree layout with the file size (rounded to the nearest kB) and indicates
if a file is empty. The Log Viewer also gives the user the ability to delete individual logs as well as all the logs
associated with the run itself.

Clear Messages

Click this button to clear the main message window.

Menu Items

This section describes about the menu items in MDM-RE.
Servers Menu

Many of the following menu items refer to file names. MDM-RE Console does not support spaces in file
names; its behavior is undefined if such file names are used.

Menu item Function

Start Allows the user to start the MDM-RE Servers.

Stop Allows the user to stop the MDM-RE Servers.

Status Allows the user to determine the current status the MDM-RE Servers.

Menu Items 51

Rulebase Menu

Menu item Function
Select Allows the user to switch between different Rulebases.
Edit Invokes the Rulebase Editor to edit the current Rulebase, defined by Rulebase Name and

Rulebase Server.

Create Allows the user to create and initialize a new Rulebase.

Resync Use this option to force the Console Client to resynchronize its connection to the Rulebase.
This may be necessary if a batch script has been run which has altered the state of the
Rulebase in any way.

Note: It should not be necessary to use this option in the majority of cases. Only users who
are running scripts which interact with MDM-RE outside of the Console may need to do so.

Database Menu

Menu item Function

Create Allows the user to create and initialize a new Database.

System Menu

Menu item Function Parameters

New Use this option to create a new
System. A dialog will be presented
allowing the user to indicate the
source of the new System, which can
be "SDF File" or "Clone the Current
System". When a selection has been
made, click OK and a appropriate
dialog appears.

Create System | Allows the user to specify a System Name: The name of the new system to be created
from an SDF system. sdf file. The Console must be specified here. This name must match with the
Server then runs sysload to load the | name specified in the system definition file. (Mandatory
definitions in system. sdf into the parameter.)
Rulebase. This new System will then | pefinition File: Specify the name of the system definition
be added to the list of available file which describes the new system. Mandatory

Systems. The user must also supply parameter.
the database name to be used during

the System Load. Database: The name of the database to be used by the

system.

52 Chapter 3: Console Client

Menu item

Function

Parameters

Import a
System from a
flat file

Creates (restores) a System from a
flat file which was created using the
System > Exportoption. Systems can
only be imported using the same
software version there were exported
with.

Input file: Specify the name of the flat file, which contains
the System to be imported. Mandatory parameter.

System name: Specify the name of the system to be
imported, into the current Rulebase. This name may be
different from the original System which was exported.
Mandatory parameter.

Match System name: Check this option to verify that the
new system name, supplied by the user, matches the
System name stored in the input file.

Import As Template: Import normally restores all system
rules including the status of all objects that have been
implemented. This is analogous to a database "restore”
operation. Specifying Import As Template instructs the
process to remove information about implemented objects
so that the System can be used as a template for a new
System.

Clone the
current System

Make a copy of the currently selected
System. The new system is assigned
a new, user-supplied, name and is
given a status of "build".

New System name: Specify the name to be given to the
new System. Mandatory parameter.

Database: The name of the database to be used by the new
System.

Select The user can select a System from System Name: Select a system from the list of available
the current Rulebase. This System systems in the current Rulebase, to be used as the default
becomes the default System to be system.
used in any subsequent operations,
which require a System.

Delete The user can delete a System from System Name: Select a system from the list of available

the current Rulebase. Before an
already loaded system can be
deleted, its status must be changed
from "Locked".

systems in the current Rulebase, to be deleted from the
Rulebase.

System Status

Displays the status of the current
System and allows the user to
change it.

When performing an operation that is
incompatible with an object’s status
(for example, refreshing a locked
system) the Console will permit the
user to automatically unlock the
object for a single operation or,
optionally, for the entire session.
This makes it easy to prototype
multiple system changes and load
operations without the need to
constantly unlock it.

Build: If the system status is set to "build" then it means
that the system has not been loaded yet.

Locked: Select this option, to lock the current system, and
no changes can be done to it until it is unlocked. By
default, the Table Loader will set the status to "Locked"
after a successful load.

Production: By selecting this option, the current system
status will be set to "Production”. No further changes can
be made to the system.

Test: By selecting this option, the current system status
will be set to "Test". A test system can be modified.

Prototype: This option sets the System status to
"Prototype". No further changes can be made to the
System including changing its status. Prototype Systems
can only be copied to a new System (that is they can be
used as a template). Users can not set Systems to this
status.

Edit

This option allows the user to either
edit a new system or continue editing
of a previously edited system.

Menu Items 53

54

Menu item Function Parameters
Export Export an existing System’s rules. Output file: Specify the name of the file that will contain
This is usually done for backup the exported system. Mandatory parameter.
purposes or to transfer the System
rules to another Rulebase.
The output is written in SDF format,
which is useful when transferring
clear-text rules to another Rulebase.
Use System > New > Create System
from SDF to load a system from an
SDF file.
Load Load the system. Load System: Check this option to load the selected
system in the current Rulebase. Mandatory parameter.
Load SSA-NAME3 SVG's: Check this option to load SSA-
NAME3 v1.8 Service Groups (deprecated).
Export SVG Export an SSA-NAME3 v1.8 Service Service Group: Select the name of the Service Group to be
Group from the current system to a exported.
flat file (deprecated). Output file: Specify the name of the flat file, which will
contain the exported Service Group.
Refresh The user can delete all existing
database objects created for this
system (IDTs, IDXs, PID, Forced Link/
Unlink rules and triggers). Before an
already loaded system can be
refreshed, its status must be
changed from "locked".

Chapter 3: Console Client

Tools Menu

Menu item

Function

Parameters

Search Client

Launches the MDM-RE Search
Client.

The parameters passed to the
Client will be the current
System name, current
Rulebase name and current
Search Server address. Note
that this option can be used to
launch several Search Clients
one after the other. So, by
launching a Search Client,
changing the default System
name and then launching
another Search Client it is
possible to have two Search
Clients running
simultaneously but using
different Systems.

DupFinder

Run the DupFinder utility
(that is relate in DupFinder
mode).

Output File Specify the name of the file to store the matching
records (all records not written to the optional -m0 and -m1
files). Mandatory parameter.

Search Definition Select a Search Definition to be used.
Mandatory parameter.

Search Width Select a predefined search width. Narrow, Typical,
Exhaustive or Extreme to be used.

Match Tolerance Select a predefined match tolerance:
Conservative, Typical or Loose to be used.

Output Format Specify the r