
Informatica® MDM Registry Edition
10.5 HotFix 1

Design Guide 



Informatica MDM Registry Edition Design Guide
10.5 HotFix 1
September 2023

© Copyright Informatica LLC 2010, 2023

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be 
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial 
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, 
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the 
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A 
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade 
names or trademarks of their respective owners.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at 
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE 
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2023-09-28



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Learning About Informatica MDM Registry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

What Do I Read If. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Informatica Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Informatica Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Informatica Knowledge Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Informatica Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Informatica Product Availability Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Informatica Velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Informatica Marketplace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Informatica Global Customer Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 1: Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Requirements Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Create the MDM-RE System Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Select the SSA-NAME3 Population rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Start the MDM-RE Search and Rulebase Servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Create the MDM-RE System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Load the MDM-RE Identity Table and Index(es). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Tune Searches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Chapter 2: Defining a System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Files and Environment Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

System Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

System Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Identity Table Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Identity Index Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Loader Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Job Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Logical File Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Search Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Cluster Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Multi-Search Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

User-Job-Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

User-Step-Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Table of Contents        3



Key-Logic / Search-Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Score-Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Merge Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

Merge Master Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Merge Column Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Merge Column Rule Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

User-Source-Table Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Source Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

Create_IDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Join_By. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

Merged_From. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Define_Source (relate input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

Sourcing from Microsoft Excel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Files and Views Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Chapter 3: Flattening IDTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

Flattening Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

Flattening Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

Tuning / Load Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

Chapter 4: Link Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Chapter 5: Loading a System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

System States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Creating a System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78

Create a System from an SDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78

Clone the current System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Create SDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

Editing a System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

Implementing a System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

To un-implement a System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

System Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

System Backup / Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

Import. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Chapter 6: Persistent-ID (Dynamic Clustering). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Clustering Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Best Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

4        Table of Contents



Merge Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Pre-Clustered Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Seed Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Clustering Review Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Best-Undecided-Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

All-Undecided-Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Pre-Merge-Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Post-Merge-Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Preferred-Record-Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Clustering Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Persistent-ID-Prefix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Persistent-ID-Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Persistent-ID-Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

Auditing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

Creating Persistent ID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

Creating Persistent ID through the Console Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

Creating Persistent ID in the Batch Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

Persistent-ID Report Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94

Maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Membership table layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

API access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

PID Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

Chapter 7: Cluster Governance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

Merge Control Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

Cluster Status Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

Review Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 8: Static Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

Chapter 9:  Simple Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Simple Search Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

Simple Search Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

Generic_Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Generic Match Purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Simple Search Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Simple Search Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

Chapter 10: Search Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Reducing Candidate Set Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

Table of Contents        5



Reducing Scoring Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

Reducing Database I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

Search Statistics and Tracing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

Tracing a Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

Search Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Expensive Searches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Output View Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

relperf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

Chapter 11: Miscellaneous Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Backup and Restore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

User Exits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

Virtual Private Databases (VPD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

Large File Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

Flat File Input from a Named Pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

Chapter 12: Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

Chapter 13: Error Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

6        Table of Contents



Preface
The MDM-RE Designer Guide provides information about the steps needed to design, define and load an MDM 
- Registry Edition "System".

Learning About Informatica MDM Registry
This section provides details of documentation available with the Informatica MDM Registry product.

Introduction Guide
Introduces MDM Registry product and it's related terminology. It may be read by anyone with no prior 
knowledge of the product who requires a general overview of MDM Registry.

Installation Guide
This manual is intended to be the first technical material a new user reads before installing the MDM Registry 
software, regardless of the platform or environment.

Design Guide
This is a guide that describes the steps needed to design, define and load an MDM Registry "System".

Developer Guide
This manual describes how to develop a custom search client application using the MDM - Registry Edition 
API.

Operations Guide
This manual describes the operation of the run-time components of MDM - Registry Edition, such as servers, 
search clients and other utilties.

Populations and Controls Guide
This manual describes SSA-Name3 populations and the controls they support. The latter are added to the 
Controls statement used within an IDX-Definition or Search-Definition section of the SDF.

7



Security Framework Guide
This manual describes how to implement security in the MDM-RE product.

Release Notes
The Release Notes contain information about what’s new in this version of MDM - Registry Edition. It is also 
summarizes any documentation updates as they are published.

What Do I Read If. . .

I am. . .
. . . a business manager

The INTRODUCTION to MDM- Registry Edition will address questions such as "Why have we got MDM - 
Registry Edition?", "What does MDM - Registry Edition do"?

I am. . .
. . . installing the product?

Before attempting to install MDM-RE, you should read the INSTALLATION GUIDE to learn about the 
prerequisites and to help you plan the installation and implementation of the MDM-Registry Edition.

I am. . .
...an Analyst or Application Programmer?

A high-level overview is provided specifically for Application Programmers in the INTRODUCTION to MDM 
Registry Edition.

When designing and developing the application programs, refer to the DEVELOPER GUIDE which describes a 
typical application process flow and API parameters. Working example programs that illustrate the calls to 
MDM-RE in various languages are available under the <MDM-RE_client_installation>/samples directory.

I am. . .
...designing and administering Systems?

The process of designing, defining and creating Systems is described in the DESIGN GUIDE. Administering 
the servers and utilities is described in the OPERATIONS manual.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online 
portals. Use the resources to get the most from your Informatica products and solutions and to learn from 
other Informatica users and subject matter experts.

8        Preface



Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and 
Informatica Global Customer Support. To enter the Informatica Network, visit 
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video 
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or 
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at 
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and 
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica 
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of 
data sources and targets that a product release supports. You can browse the Informatica PAMs at 
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services 
and based on real-world experiences from hundreds of data management projects. Informatica Velocity 
represents the collective knowledge of Informatica consultants who work with organizations around the 
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions, 
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at 
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your 
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and 
partners on the Marketplace to improve your productivity and speed up time to implementation on your 
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Preface        9

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com


Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at 
the following link: 
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and 
select the eSupport option.

10        Preface

https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com


C h a p t e r  1

Introduction
This chapter includes the following topics:

• Overview, 11

• Requirements Analysis, 11

• Data Analysis, 12

• Create the MDM-RE System Definition, 12

• Select the SSA-NAME3 Population rules, 13

• Start the MDM-RE Search and Rulebase Servers, 13

• Create the MDM-RE System, 13

• Load the MDM-RE Identity Table and Index(es), 13

• Tune Searches, 14

Overview
The process of setting up a MDM-RE System is summarized below. It is assumed that the Installation 
process has already been performed so that an initialized MDM-RE Rulebase already exists in the user’s 
database.

The detail associated with these steps can be found in the following chapters.

Requirements Analysis
The first step is to define the search and matching requirements for the system. To begin, list the types of 
searches that will be required.

One MDM-RE system can include multiple search types ("search definitions"). For example, a Customer 
Search system may require,

• Front-office Customer lookup

• Customer take-on duplicate checking

• An address search

11



Data Analysis
For each search type, decide what user data is needed for searching, matching and display and map the 
database tables and relationships that hold that data.

For example, the Customer Search system needs to search on customer name or address, requires name, 
address, date of birth and sex for matching, and in addition to the matching fields, requires Customer- ID, 
Customer-Type (individual or organization) and Name-Status (current, former or alias) for display.

This data is stored in User Source Tables as follows:

Create the MDM-RE System Definition
Create the System Definition File (SDF) using either

• the GUI SDF Wizard, which is a quick and intuitive method for building simple SDFs, or

• the GUI System Editor, which is a full-featured, but low-level editor. You may start by cloning an existing 
system (a sample System is loaded during the Installation process), or

• a simple text editor, like Wordpad or vi.

The SDF describes the fields used for searching, matching and display and where that data is acquired from. 
It also nominates the SSA-NAME3 Population to be used for the search and matching rules.

For example, the SDF User-Source-Table section for the Name search requirements in the Customer Search 
example might look like this,

Section: User-Source-Tables
create_idt
                        name_idt
sourced_from
                        user.CUSTOMER.CUSTID,
                        user.CUSTOMER.TYPE,
                        user.CUSTOMER.BIRTHDATE,
                        user.NAME.NAME                                             
$surname,
                        user.NAME.GIVENNMES                                         
$given_names,
                        user.NAME.STATUS,
                        user.ADDRESS.BUILDING $building,
                        user.ADDRESS.STREET$street,
                        user.ADDRESS.SUBURB,
                        user.ADDRESS.STATE,
                        user.ADDRESS.POSTALCODE
transform

12       Chapter 1: Introduction



                        concat ($given_names, $surname) NAME C(100) order 1
                  concat ($building, $street) ADDRESS C(100) order 2
join_by
                  user.CUSTOMER.CUSTID = user.NAME.CUSTID,
                  user.CUSTOMER.CUSTID = user.ADDRESS.CUSTID

Select the SSA-NAME3 Population rules
Install a SSA-NAME3 Standard Population for use by MDM-RE and select an appropriate population to provide 
the rules that define how the Key Building, Search Strategies and Matching Purposes operate on a particular 
population of data.

There is one Standard Population set for each country that Informatica Corporation supports. For more 
information on selecting the right population for your data, please see the SSA-NAME3 online documentation, 
or talk to Informatica’s technical support.

Start the MDM-RE Search and Rulebase Servers
From the MDM-RE Console, start the Search Server and use the Online or Batch Search Clients to test the 
System’s Search Definitions.

Create the MDM-RE System
Use the MDM-RE Console to create the new System. This will parse and load the SDF to the MDM-RE 
Rulebase.

Load the MDM-RE Identity Table and Index(es)
Use the MDM-RE Console to load the MDM-RE Identity Table "IDT" and Index(es) "IDX" for the System. This 
will extract data from the User Source Tables, denormalize, transform, compress and key it into the MDM-RE 
Tables.

The following diagram illustrates on how to load the MDM-RE table:

Select the SSA-NAME3 Population rules       13



Tune Searches
Adjust the Search Definitions as necessary to achieve optimal results. This can be done with the Console’s 
System Editor.

For more information on tuning searches, see the Tuning a Search section of this guide.

14       Chapter 1: Introduction



C h a p t e r  2

Defining a System
This chapter includes the following topics:

• Overview, 15

• Syntax, 16

• Restrictions, 16

• Files and Environment Variables, 17

• System Section, 17

• User-Source-Table Section, 43

• Files and Views Sections, 58

Overview
A System Definition File is created using a GUI tool or text editor as described in Editing a System. After the 
initial load, the definitions may be maintained with the System Editor.

Alternatively, you may clone an existing System using the Console and then tailor it to your requirements 
using the System Editor. This chapter details the System Definition from the context of coding an SDF file, 
but the same keywords and parameters are equally applicable to the System Editor.

The System Definition File (SDF) contains four sections:

• System

• User Source Tables

• Files

• Views

Each section is identified by a Section: keyword. Some sections may be empty if they are not required. For 
example, the Files section is not used when input data is read from database tables, known as User Source 
Tables (USTs).

The System section is used to define the System, ID-Tables, Loader-Definitions, Loader Jobs, Logical Files 
and Search-Definitions. The User-Source-Table section is used to define how to extract data from User 
tables to create the MDM-RE Identity Table.

The Files and Views sections are used to define the layout of flat-input files, which are only used when data 
is not being read from the User’s database tables. The Views section may also contain input and output views 
used by Relate and other utilities.

15



Syntax
This section describes the common syntax that can be used. Any variations will be detailed in the appropriate 
section:

• Each line is terminated by a newline;

• Each line has a maximum length of 255 bytes;

• Lines starting with an asterisk are treated as comments;

• All characters following two asterisks (**) on a line are treated as comments.

Quoted strings can be continued onto the next line by coding two adjacent string tokens. For example, the 
COMMENT= keyword is another way of defining a comment inside the definition files. If a COMMENT field is very 
long, it could be specified like this:

COMMENT="This is a very long comment that"
" continues on the next line. "

Some definitions will require the specification of a character such as a filler character. It will be denoted as 
<char> in the following text. The Definition Language permits a <char> to be specified in a number of ways:

c a printable character

"c" the character embedded in double quotes (")

numeric(dd) the decimal value dd of the character in the collating sequence

numeric(x’hh’) the hexadecimal value (hh) of the character in the collating sequence

Numeric data in the System section be suffixed by an optional modifier to help specify large numbers.

k units of 1000 (one thousand)

m units of 1000000 (one million)

g units of 1000000000 (one billion)

k2 units of 1024 (base 2 numbers)

m2 units of 1048576

g2 units of 1073741824

The System Definition File contains multiple definitions, each identified by a heading. The statements that 
follow each definition heading take the form, <field> = <value>

Restrictions
This section provides information on the restrictions of Name Length and Embedded Spaces.

Name Length

System-Name is restricted to 31 bytes. All other Rulebase object names are limited to 32 bytes. The 
maximum length of Database object names such as tables and indexes are constrained by the host DBMS.

Embedded Spaces

Embedded spaces are not permitted in Rulebase object names or file names.

16       Chapter 2: Defining a System



Files and Environment Variables
The Console Server interprets all files names specified in the SDF. Therefore they must be valid file names 
which are accessible from the machine where the Console Server is running.

MDM-RE does not allow spaces within file names or paths.

Similarly, any environment variables used in the SDF are interpreted in the environment defined for the 
Console Server. The environment variables that are private to each client are defined when starting a Console 
Client and are passed to the Server where they override the variables in the Console’s startup environment.

System Section
The major components of the System section are as follows:

• System-Definition. Defines global parameters and is specified only once.

• IDT-Definition. Defines how to build an Identity Table (IDT), including the columns selected from the 
source table.

• IDX-Definition. Defines rules for constructing an Identity Index (IDX). An IDX is used to create a fuzzy (or 
exact) index on column(s) in the IDT. An IDT may be indexed by many IDXs.

• Loader-Definition. Controls the MDM-RE Table Loader.

• Job-Definition. Provides additional details required by the Table Loader.

• Logical-File-Definition. Provides additional details required by the Table Loader.

• Search-Definition. Defines a search strategy, including the selection of candidates (using an IDX) ,and the 
matching parameters.

• Multi-Search-Definition. Combines the results of several searches into one search. It also defines rules for 
the creation of Persistent-IDs.

System Definition
This object begins with the SYSTEM-DEFINITION keyword. It supports the following parameters:
NAME=

A character string that defines the name of the System and is a mandatory parameter. The System name 
is limited to a maximum of 31 bytes. Embedded spaces in the name are not permitted.

ID=

This is one or two digit alpha-numeric to be assigned to the System. Every System in a Rulebase must 
have a unique ID. This is a mandatory parameter.

COMMENT=

This is a text field that is used to describe the System’s purpose.

DEFAULT-PATH=

MDM-RE will create various files while processing some jobs. The PATH parameters can be used to 
specify where those files will be placed. MDM-RE will use the path specified in the DEFAULT-PATH 
parameter. If DEFAULT-PATH has not been specified, the current directory will be used. It is valid to 
specify a value of "+" for the path.

Files and Environment Variables       17



This represents the value associated with the environment variable SSAWORKDIR. This is especially 
recommended when running an API program and/or system remotely , that is from a directory other than 
the SSAWORKDIR directory.

OPTIONS=

This is used to specify System wide defaults.

COMPRESS-METHOD(n) the compression method to use when storing Compressed-Key-Data. Method 0 
(the default) will store records longer than 255 bytes as multiple adjacent IDX records. This improves 
performance as it takes advantage of the locality of reference in the DBMS’ cache. Method 1 will 
truncate the IDX records if their size exceeds 255 bytes and fetch them from the IDT instead. This 
causes additional I/O when truncated IDX records are referenced.

VPD-SECURE marks the System as secure. MDM-RE will insist that all search users provide VPD context 
information prior to starting a search. Refer to the Virtual Private Databases section in this guide for 
details.

DATABASE-OPTIONS=

This parameter is used to customize the behavior of MDM-RE when loading tables and indexes.

These options give fine control over table size, placement and sorting and are particularly important 
when loading large amounts of data. The syntax is:

Type (Name, Database_Type, Text1 [, Text2]), ...

where

Type is one of the following: IDT, IDX, IDTBAD, IDTCP, IDTERR, IDTFD, IDTLOAD , IDTTMP, IDXTMP, IDXSORT, 
SEQUENCE, or IDTPART. A detailed description for each one appears below.

Name is the name of the IDT or IDX. A value of "default" may be specified to define defaults for all 
IDTs and IDXs. A specific name will override the default for a particular Type.

Database_Type] is either ORA for Oracle, UDB (for IBM UDB/DB2), or MSQ for Microsoft SQL Server. This 
allows the specification of options for all target database types, permitting the same SDF to be used for 
multiple target databases.

Text1 and Text2 a list of values whose format and content is Type dependent. All types require at least 
Text1 to be provided, and some types require Text2.

Type IDT / IDX

MDM-RE creates database tables and indexes using CREATE TABLE and CREATE INDEX SQL statements.

This Type is used to specify where those tables and indexes will be placed and/or what attributes they 
will have.

This gives the local Database Administrator control over the extent sizes and location (Tablespace) of 
MDM-RE tables and indexes.

Text1 is used to specify options for Table creation, while Text2 is used for Index creation options. They 
must start with table= and index= respectively.

The strings that follow these tokens are DBMS specific text which is appended to the CREATE TABLE and 
CREATE INDEX SQL statements. Text is appended immediately after the specification of the columns in 
the table (for CREATE TABLE) and immediately after the list of columns in the index (for CREATE INDEX). 
The text must be syntactically correct for the target DBMS, otherwise a run-time error will result when the 
table or index is created.

Oracle: The IDX is implemented as an Index Organized Table (IOT). The storage for an IOT is defined 
using the table= parameter. The index= parameter is ignored in this case.

18       Chapter 2: Defining a System



Example 1:

DATABASE-OPTIONS=
IDT (default, ora, "table=storage(initial 10M next 1M)",
"index=storage(initial 10M next 1M)"),
IDX (default, ora, "table=storage(initial 10M next 1M)",
"index=storage(initial 10M next 1M)"

This example defines default extent sizes for both IDTs and IDXs stored on an Oracle database.

UDB: In this example, tables and indexes created for the IDT called idt-39 are placed in TABLESPACE 
USERSPACE1 and indexes on those tables have a PCTFREE value of zero. All IDX indexes have a PCTFREE of 
zero.

DATABASE-OPTIONS=
IDT (idt-39, udb, "table=IN USERSPACE1 INDEX IN USERSPACE1", "index=PCTFREE 0",
IDX (default, udb, "", "index=PCTFREE 0")

Type IDTBAD

This Type is used to specify the path for the file created by the DBMS load utility that contains rejected 
records.

Oracle: The default path is the current work directory.

UDB: The default is /tmp on the server machine. When using a UDB LOAD utility, this path is relative to the 
machine where the DBMS server is running.

DATABASE-OPTIONS=
           IDTBAD (IDT55, udb, "/tmp/rejects/"),

Type IDTCP

This Type is used to specify the Code Page of the data to be loaded. It is only used by MS SQL. Oracle 
and UDB ignore it. The parameter is passed to the bcp mass load utility with the -C switch. The Code 
Page effects the translation of CHAR and VARCHAR columns to the Server’s code page and should only be 
specified if the SQL Server’s code page is not the same as the client’s code page.

The "client" in this situation is the machine where the MDM-RE Table Loader runs on (which is normally 
the machine where the Console Server is running).

DATABASE-OPTIONS=
           IDTCP (default, msq, "437")

Type IDTERR

This Type is used to set the number of data errors that will be tolerated while loading the IDT. Text1 
specifies the maximum number of data errors that are allowed. The default is zero. The Table Loader will 
terminate abnormally if more than Text1 data errors are encountered. Rejected records are written to a 
file with an extension of .err in the IDTBAD directory.

DATABASE-OPTIONS=
         IDTERR (IDT96, ora, "100"),

This allows up to 100 data errors when loading IDT96. If more than 100 errors occur, the Table Load will 
terminate with an error.

Type IDTFD

This Type is used to set the field delimiter character(s). This character is used to delimit fields in the IDT 
loader file. The default value is 0x01. The specified value must be in the range 1 to 255 and no field may 
contain the delimiter character.

DATABASE-OPTIONS=
          IDTFD (IDT96, ora, "255")

System Section       19



If it is not possible to select a field delimiter character that is not contained in any field value, use a 
fixed-format IDT load file (Loader-Definition, OPTIONS=Fixed).

Oracle: Two delimiter characters may be defined by specifying a value in the range 1 to 65535. The first 
delimiter character is defined as value%256 and the second delimiter is value/256. A delimiter character 
value of 0x00 is not permitted. For example,DATABASE-OPTIONS= IDTFD (IDT96, ora, "258")

defines the first and second delimiter as 0x02 and 0x01 respectively.

Type IDTLOAD

This Type is used to specify the name and path of the database mass load utility. If this parameter has 
not been defined, MDM-RE uses the utility specified by the SSASQLLDR environment variable. For example:

DATABASE-OPTIONS=
IDTLOAD (default, ora, "/opt/ora8i/product/8.1.6/bin/sqlldr"),
IDTLOAD (default, udb, "s:\sqllib\bin\db2")

Type IDTTMP / IDXTMP

This Type is used to control the placement of temporary loader files. By default, files are created in the 
DEFAULT-PATH. When large amounts of data are to be loaded, it is advantageous to place the files on 
different disks to avoid I/O contention problems.

Text1 specifies the name of the directory where the file will be placed. For example:

DATABASE-OPTIONS=
        IDTTMP (IDT96, ora, "c:/tmp"),
        IDXTMP (nameidx, ora, "d:/tmp")

This places the data file for IDT96 in c:/tmp and the data file for the IDX named nameidx in d:/tmp.

Type IDXSORT

This Type is used to control the sorting of the identity index data file. Text1 has the following 
format:MEM=nnn[M|k|G],THREADS=t,PATH1=path1,PATH2=path2

where

nnn is the size of the sort buffer in megabytes (or kilobytes/gigabytes if k/G is specified). The default 
size is 512 MB. Do not make the memory buffer so large as to cause swapping, as this will negate the 
benefit of a fast memory based sort.

t is the number of threads to use for the sort process. It defaults to the number of CPUs on the machine 
where the Table Loader runs.

path1 is the directory where any temporary sort work-files will be created. Very large loads may require 
two sort work-files. These should be placed on different disks if possible.

path2 is the directory where the second sort work-file will be created (if necessary).

The sort path used is a hierarchy, depending on which parameters have been specified. The parameters 
in order of highest to lowest precedence are IDXSORT, SORT-WORK-PATH and DEFAULT-PATH.

For example:

DATABASE-OPTIONS=
         IDXSORT (default, ora, "mem=256M,threads=2"),
         IDXSORT (nameidx, ora, "mem=512M,path1=/dev1,path2=/dev2")

Type IDTPART

This Type is used to specify storage parameters for partitioned UDB databases. This is necessary 
because each unique index of a table in a partitioned tablespace must contain all distribution columns of 
the table.

20       Chapter 2: Defining a System



We can specify a partitioning key for the IDT with an IDT database option:

DATABASE-OPTIONS=
          IDT(IDT-00, udb, "table=in TESTSPACE partitioning key(EmpNum) using 
hashing"),

Now each unique index will require the partitioning key as an additional key. This can be implemented 
with an IDTPART, which provides a list of the partitioning keys.

For example:

DATABASE-OPTIONS= IDTPART(IDT-00, udb, "EmpNum")
Type SEQUENCE

Use the SEQUENCE type to generate record IDs in a database sequence for a single identity table or all 
identity tables.

Use the following format:

DATABASE-OPTIONS=SEQUENCE(default|<IDT name>, <Database type>, 
["start=<N>","increment=<N>"])

The format uses the following attributes:

Default or IDT name

Specifies whether to enable database sequence in all identity tables or in the specified identity 
table. The value default enables database sequence in all identity tables.

Database type

Indicates the type of database you use. Use one of the following values:

• ora for Oracle.

• udb for IBM Db2.

• msq for Microsoft SQL Server.

N

Optional. Indicates the starting number and the incremental value for the database sequence. 
Default is 1.

The following example sets the database sequence for a specific identity table in Oracle database:

DATABASE-OPTIONS= SEQUENCE(IDT38, ora, " ", "increment=3")

Identity Table Definition
This begins with the IDT-DEFINITION keyword and defines an MDM-RE Identity Table. The fields are as 
follows:

Field Descriptions

NAME= A character string that specifies the name of the IDT. This is a mandatory parameter

DENORMALIZED-VIEW= A character string that specifies the name of the View-Definition that defines the 
layout of the denormalized data for Flattening. Refer to Flattening IDTs section in this 
guide for details. This is an optional parameter.

System Section       21



Field Descriptions

FLATTEN-KEYS= A character string that defines the IDT columns used to group denormalized rows 
during the Flattening process. A maximum of 36 columns may be specified. Refer to 
Flattening IDTs section in this guide for details. This is an optional parameter.

OPTIONS= This is used to specify various options to control the data stored in the IDT:
FLAT-KEEP-BLANKS a flattening option that maintains positionality of columns in 
the flattened record. Refer to the Flattening IDTs section for details.
FLAT-REMOVE-IDENTICAL a flattening option that removes identical values from a 
flattened row. Refer to the Flattening IDTs section for details.

Identity Index Definition
This begins with the IDX-DEFINITION keyword and defines an MDM-RE Identity Index. The fields are as 
follows:

Field Description

NAME= A character string that specifies the name of the IDX. The maximum 
length is 32 bytes. This is a mandatory parameter.

COMMENT= A free-form description of this IDX

ID= A two-letter character string used to generate the names of the actual 
database table that represents the IDX. Each IDX must have a unique 
table name (generated from the target database’s userid (schema), 
System Qualifier, and ID). Refer to the OPERATIONS guide, Database 
Object Names section for details. This is a mandatory parameter.

IDT-NAME= The name of the IDT Table that this IDX belongs to (as defined in the 
File-Definitionor User-Source-Table sections). This is a 
mandatory parameter.
If you intend to use the AnswerSet feature with this IDT, then this name 
may need to be kept short so that the name of the AnswerSet table does 
not exceed maximum length supported by the host DBMS. Refer to the 
DEVELOPER GUIDE, AnswerSet section for details.

AUTO-ID-FIELD= This field is not required if loading data from a User Source Table.
The name of a field defined in the Files section that contains a unique 
record label referred to as the Record Source If no such field exists in 
the IDT, MDM-RE can generate one (see AUTO-ID and AUTO-ID-NAME 
parameters). If MDM-RE is being asked to generate an Id, the user can 
choose the name of the AUTO-ID-FIELD, however that name must be 
defined as a field in the Files section (if using a transform clause, this 
happens automatically).

KEY-LOGIC= This parameter describes the key-logic to be used to generate keys 
for the IDX. It may differ from the Search-Logic used to search the IDX. 
Refer to the Key Logic section for details. This is a mandatory 
parameter.

22       Chapter 2: Defining a System



Field Description

PARTITION=(field [, length , offset [, null-
partition-value]]),. . .

This option instructs MDM Registry Edition to build a concatenated key 
from the Key-Field, which is defined by KEY-LOGIC= and up to five fields 
or sub-fields taken from the record. For large files, the key might not be 
selective enough because it retrieves too many records.
The field, length, and offset represent the field name, number of bytes to 
concatenate to the key and offset into the field (starting from 0) 
respectively. The length and offset are optional. If omitted, the entire 
field is used.
Use null-partition-value, which defaults to spaces, to specify a 
value for an empty field. If you specify the NO-NULL-PARTITION option, 
it can ignore the records that contain a null partition value. For the NO-
NULL-PARTITION option to work, all the values of the specified fields 
must be null.
Note: Partition values are case sensitive. Data might be mono-cased 
using a transform when loading the data. Be sure to use the correct case 
when entering search data.
For non-displayable data, the value might be specified in hexadecimal 
notation in the form: hex(hexadecimal value).

OPTIONS= Specifies options to control the keys and data stored in the IDX. The 
supported options are as follows:
- ALT. Stores alternate keys in the IDX. This option is on by default. 

When disabled (--Alt) only the first key from the key-stack is stored 
in the IDX.

- FULL-KEY-DATA. Stores all IDT fields in the IDX. This is the default. 
The data is stored in uncompressed form unless you specify the 
Compress-Key-Data option.

- FULL-KEY-DATA. Stores all IDT fields in the IDX. This is the default. 
The data is stored in uncompressed form unless you specify the 
Compress-Key-Data option.

- COMPRESS-KEY-DATA(n). Stores all IDT fields in compressed form 
using a fixed record length of n bytes. n can not exceed (m - 
PartitionLength - KeyLength - 4) where m=255 for Oracle and m=250 
for UDB. Selecting the appropriate value for n is discussed in the 
Compressed Key Data section.

- COMPRESS-METHOD(n). Overrides the default set by the System 
Options that specify the compression method to use when storing 
Compressed-Key-Data. Method 0 (the default) will store records 
longer than 255 bytes as multiple adjacent IDX records. This improves 
performance as it takes advantage of the locality of reference in the 
DBMS’ cache.

- Method 1. Truncates the IDX records if their size exceeds 255 bytes 
and fetch them from the IDT instead. This causes additional I/O when 
truncated IDX records are referenced.

- LITE. Creates a Lite Index. See the Key Logic section for more 
information.

- NO-NULL-FIELD. Does not store IDX entries for rows that contain a 
Null-Field. A Null-Field is defined in the Key-Logic section.

- NO-NULL-KEY . Does not store Null-Keys in the IDX. A Null-Key is 
defined in the Key-Logic section.

- NO-NULL-PARTITION. Does not store keys in the IDX that contains 
null-partition-value, as defined by the PARTITION=keyword.

System Section       23



Loader Definition
This begins with the LOADER-DEFINITION keyword. The fields are as follows:

Field Description

NAME= A character string that identifies a Loader-Definition. It is used when scheduling a Table 
Loader job. This is a mandatory parameter. The name must not match any Search-
Definitions nor Multi-Search- Definition names in the same System.

COMMENT= Free-form description of this Loader-Definition.

JOB-LIST= A list of Job-Definition names that are to be executed when this Loader-Definition is 
scheduled to run. Up to 32 jobs may be listed. This is a mandatory parameter.

DEFAULT-PATH= MDM-RE will create various files while processing some jobs. The PATH parameters can 
be used to specify where those files will be placed. This parameter overrides the value in 
the System Definition. MDM-RE will use the path specified in the DEFAULT-PATH 
parameter.
If DEFAULT-PATH has not been specified, the current directory will be used. It is valid to 
specify a value of "+" for the path. This represents the value associated with the 
environment variable SSAWORKDIR . This is especially recommended when running an API 
program and/or system remotely, that is from a directory other than the SSAWORKDIR 
directory.

SORT-WORK1-PATH= MDM-RE will create sort work files during the Load. This parameter controls the 
placement of these files, and overrides the DEFAULT-PATH parameter in the Loader-
Definition.

24       Chapter 2: Defining a System



Field Description

SORT-WORK2-PATH= MDM-RE will create sort work files during the load. This parameter controls the placement 
of these files and overrides the DEFAULT-PATH parameter in the Loader-Definition.

OPTIONS= This is used to nominate various options for the Loader.
APPEND append records to the IDT and IDXs. If omitted, the loader will assume this is an 
initial load and create the IDT and IDXs. APPEND must not be used with synchronized 
source input, as IDTs created from synchronized data sources must be loaded with a 
single execution of the Table Loader.
KEEP-TEMP keep temporary files. If omitted, temporary files are deleted when no longer 
necessary.
KEEP-LOG keep Loader log files. If omitted, log files are deleted when the Loader 
completes successfully. Loader log files are copied to the Table Loader’s log file before 
being deleted.
FIXED Create the IDT load file using fixed-length records instead of variable length 
delimited records. This option is necessary if the data contains any columns with binary 
values that are not permitted in a delimited file, that is, CR/LF, Ctrl-Z and/or the field 
delimiter character. Unicode data should always be loaded using fixed-length records.
Note: The MS SQL Server interface always generates fixed length records, so this 
parameter does not need to be specified.
CONVENTIONAL-PATH Oracle: instructs the Loader to invoke Oracle’s SQL*Loader without 
the DIRECT-PATH option. This degrades performance but enables SQL*Loader to load 
tables over a network when the version of SQL*Loader does not match the version of the 
database instance.
Note: DIRECT-PATH loads will specify the UNRECOVERABLE option. This means that all 
IDTs and IDXs should be backed up after being loaded as they can not be restored during 
media recovery.
UDB/DB2: Conventional-Path performs an Import operation. If not specified, the 
Loader runs the UDB Load utility.
MS-SQL Server: has no effect.
GENERIC-LOAD instructs the Loader to load records using the DBMS’ native insert and 
commit statements. This is provided as a "catch all" solution for those DBMSs that do not 
have a high-speed massload utility.

Job Definition
This begins with the JOB-DEFINITION keyword. The fields are as follows:

Field Description

NAME= This is a character string that specifies the name of the job. It is a 
mandatory parameter.

COMMENT= This is a text field that is used to describe the Job’s purpose.

IDX= This is a character string that specifies the name of an IDX to be 
loaded by this job. The IDX name indirectly implies the name of the 
IDT to be loaded (as an IDX can only belong to one IDT). If the Load- 
All-Indexes option has been specified, all IDXs defined for the IDT 
will be loaded. Either this parameter or IDT= must be specified, but 
not both.

System Section       25



Field Description

IDX-LIST= This is a comma-separated list of IDX names used in conjunction 
with the Load-All-Indexes option to limit the number of IDXs to 
be loaded. Normally Load-All-Indexes means that all IDXs that 
have been defined are to be loaded. The list must be enclosed in 
double quotes. For example, IDX-LIST= "zip,addr"

IDT= This is a character string that specifies the name of the IDT to be 
loaded by this job. This parameter automatically enables the IDT-
Only option. It is used for the situation when an IDT has no IDXs 
defined, or when you wish to load the IDT only. This parameter is 
mutually exclusive with IDX=.

FILE= A mandatory parameter used to define the name of the Logical-File 
entity that describes the source of input data for the loader job.

INPUT-SELECT=n
INPUT-SELECT=Count(n)|Skip(n)|Sample(n)

This parameter is used to define input processing options. When 
specified in the first form above, the number n is treated as the 
number of records to be read from the input. An equivalent method 
of specifying this is Count(n). The value n must be a positive non-
zero number. You may skip some records before processing begins 
by specifying Skip(n). You may also process every nth record by 
specifying Sample(n).

INPUT-HEADER= Describes the number of bytes to ignore at the start of an input file. 
This is useful for some types of files that contain a fixed length 
header before the actual data records. This is only relevant when 
reading input from a flat file.

OPTIONS= This is used to nominate various options for the Job.
AUTO-ID generate a unique Record Source Id in the AUTO-ID-
FIELD.
LOAD-ALL-INDEXES instructs the loader to create all IDXs defined 
for the IDT in one execution of the Loader. This is the most efficient 
way to build the IDXs.
RE-INDEX is used to create a new IDX for an existing IDT (created 
by a previous Loader job). Re-Index instructs the loader to read 
records from the IDT instead of from the normal input source such 
as User Source Tables or flat files.
Note: The Update Synchronizer must not update the IDT while the 
Loader builds the new index.
IDT-ONLY load IDT only (no IDXs). This is useful for loading 
"intermediate IDTs" that do not have any IDXs defined.
NO-IDT load IDXs only (no IDT). This is useful when the IDT has 
already been loaded with the IDT-ONLY option.

26       Chapter 2: Defining a System



Logical File Definition
This begins with the LOGICAL-FILE-DEFINITION keyword. The fields are as follows:

Field Description

NAME= This is a character string that identifies the Logical-File. A Job 
object refers to a logical-file with its FILE= parameter. This is a 
mandatory parameter.

COMMENT= This is a text field that is used to describe the Logical File’s 
purpose.

PHYSICAL-FILE= A character string that specifies the file name containing the input 
data. When reading input from a flat file, this will specify the full 
filename including the path. When reading input from User Source 
Tables it specifies the name of the IDT defined in the CREATE_IDT 
or DEFINE_SOURCE clause of the User-Source-Table section. 
The name should be enclosed in double-quotes. This is a 
mandatory parameter.
See the Reading Flat File Input from a Named Pipe section for 
information on reading file input from a Named Pipe.

FORMAT={SQL|Text|Binary|XML|Delimited} Describes the format of the input file. When reading from a User 
Source Table, specify a format of SQL. Otherwise, when reading 
from a flat-file, the following options may be used:
Text files contain records terminated by a newline.
Binary files do not contain line terminators. Records must be 
fixed in length and match the size (and layout) of the input View.
XML files contain XML messages. This format is used when 
loading a flat-file created by the Siebel Connector.
Delimited files contain variable length records and fields which 
are delimited. By default, records are separated by a newline, 
fields are separated by a comma (,) and the field delimiter is a 
double-quote ("). You may change the defaults by defining

FORMAT=    Delimited,
           Record-Separator(<char>),
           Field-Separator(<char>),
           Field-Delimiter(<char>)
All three values are always used when the Delimited format is 
processed. There is no way of specifying that a particular delimiter 
should not be used. However, you may specify a value that does 
not appear in your data such as a non-ASCII value. For example, if 
a field delimiter is not used, the following could be specified:

          Field-Delimiter(Numeric(255))
          Record-Separator=<char>
          Field-Separator=<char>
          Field-Delimiter=<char>
These parameters are usually specified as sub-fields on the 
FORMAT definition. However, for convenience, they may be defined 
as separate fields.

System Section       27



Field Description

VIEW=View The name of the Database View Definition to be used when reading 
the flat input file. It must not be specified if data will be read from 
User Source Tables. The View is used to translate the contents of 
the input file into the layout to be stored in the IDT (specified by 
the IDT-NAME= parameter of the IDX-Definition).

XSLT= In the case of an XML format input file, an XSLT stylesheet may be 
specified. The stylesheet will be used to transform an XML format 
input file into one that matches the IDT.

AUTO-ID-NAME= This parameter is used when MDM-RE has been requested to 
generate a Record Source ID field (see the AUTO-ID-FIELD= and 
Auto-Id parameters). The generated ID is composed of a text 
string concatenated to a base-36 sequence number. The value for 
the text string portion is specified by using the AUTO-ID-NAME= 
parameter. It is limited to 32 bytes. The sequence number is 
generated by MDM-RE. The resulting ID field is stored on the IDT in 
the field defined by the AUTO-ID-FIELD parameter. This field 
must be defined in the Files section.
We recommend defining an ID field with attributes F,10. This 
leaves ample room for an Auto-Id-Name and several characters 
for the sequence number. Since the latter is a base 36 number, it 
allows for 1.6 million records in 4 characters, 60 million using 5 
characters, or up to 3.6 Gig with a 6 character sequence number.
The length attribute of the ID field is not limited to 10 bytes. It may 
be increased when you have a large number of records and/or a 
long Auto-Id-Name prefix.

Search Definition
A SEARCH-DEFINITION is used to define parameters for a search executed by the MDM Registry Edition. It 
begins with the SEARCH-DEFINITION keyword.

Field Description

NAME= This is a character string that identifies the Search-Definition. This is a mandatory 
parameter. The name must not match any Loader-Definition nor Multi-Search 
Definition names in the same System.

IDX= This is a character string that identifies the IDT to be searched. This is a 
mandatory parameter.

COMMENT= This is a text field that is used to describe the Search’s purpose.

SORT-WORK1-PATH= MDM-RE may create sort work files when sorting a large result set. This 
parameter controls the placement of these files and overrides the value in the 
System-Definition.

SORT-WORK2-PATH= MDM-RE may create sort work files when sorting a large result set. This 
parameter controls the placement of these files and overrides the value in the 
System-Definition.

28       Chapter 2: Defining a System



Field Description

FILTER= An optional string containing an SQL expression used to remove some candidates 
from the Candidate Set. Refer to the SQL Filters section in this guide for 
information about when and how to use filters.

SEARCH-LOGIC= This parameter describes the Search-Logic to be used to generate search ranges 
to find candidate records from the IDT. It may differ from the Key-Logic used to 
generate keys for the IDT (as defined in the IDXDefinition). Refer to the Key Logic 
section for details. This is a mandatory parameter.

SCORE-LOGIC= This parameter describes the normal matching logic used to refine the set of 
candidate records found by the Search-Logic. Refer to the Score-Logic section for 
details. This is a mandatory parameter.

PRE-SCORE-LOGIC= This optional parameter describes the lightweight matching logic used to refine 
the set of candidate records found by the Search-Logic. Refer to the Score-Logic 
section for details.

SORT= A comma-separated list of keywords used to control the sort order of records 
returned by the search. Multiple sort keys are permitted. The keys will be used in 
the order of definition. If not specified, the records will be sorted using a primary 
descending sort on Score, and a secondary ascending sort using the whole 
record.
Memory(recs) The maximum number of records to sort in memory. If the set 
contains more than recs records, the sort will use temporary work files on disk. 
The default is 1000 records.
Field(fieldname) The name of the field to be used as the sort key. In addition 
to IDT field names, you may specify the following values:
sort_on_score will sort on the Score
sort_on_record will sort on the whole record.
Type(type) The type of the sort for the previously defined key. Valid types are:
1. A Ascending
2. D Descending
Format(format) The format of the sort key. Valid formats are:
FORMAT_TEXT text data
FORMAT_SHORT native signed short
FORMAT_USHORT native unsigned short
FORMAT_LONG native long
FORMAT_ULONG native unsigned long
FORMAT_FLOAT native float
FORMAT_DOUBLE native long float
FORMAT_NN_SHORT non-native short
FORMAT_NN_USHORT non-native unsigned short
FORMAT_NN_LONGnon-native long
FORMAT_NN_ULONGnon-native unsigned long

System Section       29



Field Description

CANDIDATE-SET-SIZE-LIMIT=n Informs the MDM Registry Edition to optimize the matching process by 
eliminating any duplicate candidates that have already been processed. n 
specifies the maximum number of unique entries in the list.
The default limit is 10000 records. A value of 0 disables this processing. If there 
are more than n unique candidates, only the first n duplicates are removed. Any 
candidates that do not fit into the list may be processed several times, and if 
accepted by matching, added to the final set several times.
The TRUNCATE-SET option will terminate the search for candidates once the list 
becomes full. It is used to prevent very wide searches. However, if a search is 
terminated prematurely there is no guarantee that any of the candidates will be 
accepted or the best candidates have been found.

OPTIONS= A comma-separated list of keywords used to control various search options:
UNIQUE-KEYS specifies that no duplicate sort keys will be returned. Sort keys are 
defined with the
SORT= keyword.
SEARCH-NULL-PARTITIONany search for a record containing a Null-Partition 
value will search all other partitions. Any search for a record with a non-null 
partition value will search the null-partition as well.
Note: The entire partition value must be null for this to work
SEQUENCES specifies that detailed matching information is to be saved for each 
record in the search set. This information can be retrieved using 
ids_search_get_complete.
TRUNCATE-SET modifies the behavior of CANDIDATE-SET-SIZE-LIMIT. 
Searches normally continue until all candidates have been considered. Truncate-
Set will terminate the selection of candidates once the candidate set is full, 
thereby limiting the number of candidates that will be considered.
Response code 1 is returned to the caller of ids_search_start or 
ids_search_dedupe_startwhen the set is truncated.
HIDDEN prevents this search from being listed by the Search Clients if the search 
is not designed to be used independently (that is it should only be used as part of 
a Multi-Search)
IGNORE-NOTCH-OVERRIDE Ignore any adjustments made to the match levels on 
an API call which requests a particular Match-Tolerance. The tolerance is honored 
but the adjustments are ignored.
FIRST stop on first accepted match. Used for specialized applications where any 
acceptable match should terminate the search process.
FILTER-APPEND Append dynamic filter to static filter defined in this Search-
Definition. Refer to the SQL Filters section of this guide for details.
FILTER-REPLACE Allow dynamic filters to replace the static filter defined in this 
Search-Definition. Refer to the SQL Filters section in this guide for details.
UNMATCHED-STATS Deprecated. Exists only for backward compatibility.

Simple Search is a type of search where multiple entities of varying types can be searched using a single 
consolidated index. The index and search definitions must use a population that supports the 
Generic_Field. Simple search uses all columns in the index as possible search and match fields. Search 
definition of a Simple Search requires that the columns be combined in the SEARCH/SCORE logic using 
COMBINE=<field name>:DELIM-NONE. See the Populations and Controls Guide for further details on COMBINE 
option.

30       Chapter 2: Defining a System



Cluster Definition
A CLUSTER-DEFINITION is used to define parameters for a clustering process. Refer to the Static Clustering 
section in this guide for details.

Field Description

NAME= This is a character string that identifies the Cluster-Definition. This is a mandatory parameter.

COMMENT= This is a text field that is used to describe the Clustering’s purpose.

SEARCH= This is a character string that identifies the "host" Search that this Cluster-Definition belongs to. 
The clustering process will use the Search-Logic defined in the referred Search-Definition. Each 
Cluster- Definition can belong to a single Search and each Search can contain only one Cluster-
Definition.

Multi-Search Definition
Use the MULTI-SEARCH-DEFINITION section to define parameters for a cascade of searches that MDM 
Registry Edition runs.

The following excerpt is a sample multi-search definition:

multi-search-definition
*======================
NAME=                           multi_svoc_person
IDT-NAME=                       idt_svoc3
SEARCH-LIST=                    "search_svoc_person,search_svoc_ssn"
OPTIONS=                        Full-Search
PERSISTENT-ID-PREFIX=           pe
PERSISTENT-ID-METHOD=           Merge
PERSISTENT-ID-OPTIONS=          Pre-Merge-Review,
                                Audit-Cluster,
                                Audit-Record,
                                Apply-FLUL
PERSISTENT-ID-MRULES=           merge_svoc

Begin the definition with the MULTI-SEARCH-DEFINITION keyword, and use the following parameters:
NAME=

Required. Unique identifier for the multi-search definition. The name must not match any loader 
definition or search definition names in a system.

COMMENT=

Brief description about the multi-search.

SEARCH-LIST=

List of searches to run. Separate the searches by commas, and enclose the whole string in double 
quotes. Run all the searches against the same identity table. You can specify a maximum of 16 
searches.

When you use the statistical output view field IDS-MS-SEARCH-NUM, the returned result refers to the 
search names in the list. For example, the value 1 refers to the first search in the list and value 2 refers 
to the second search in the list.

IDT-NAME=

Required. Identifier for the identity table against which you want to perform the multi-search.

System Section       31



IDL-NAME=

Optional. Identifier for the link table that stores the search results.

SOURCE-DEDUP-MAX=

Optional. Number of records to cache. A multi-search caches the records that a search processes and 
uses the results when another search in the search list retrieves them as candidates. This option helps 
only if all the searches use the same Score-Logic. The default value of 0 disables this option.

DEDUP-PROGRESS=

Optional. Maximum number of identity table records to process to find duplicate records before 
returning the control to a client process. The DupFinder process treats each identity record as a search 
record instead of reading search records provided by a client. The search process does not return 
control to the client until it finds a duplicate record. The process might take a long time if you have few 
duplicate records in the identity table. The client uses the time interval to write progress messages. The 
default value of 0 disables this option.

OPTIONS=

A comma-separated list of keywords that control the multi-search. Use the following options:

• FULL-SEARCH. Processes all the searches in the list.

• LINK-PK. Specifies that the link table contains primary key columns in addition to the normal data.

• LINK-HARD-LIMIT. Specifies that the link table does not contain links for the rejected candidates.

• LINK-SELF. Specifies that the link table contains links for the rows that found themselves.

• CONVENTIONAL-PATH. Specifies that the link table uses the Conventional-Path option to load.

PERSISTENT-ID-PREFIX=

Two-character identifier for the clustering strategy. Use a different identifier for each clustering strategy 
that searches the same identity table. However, if you want to maintain the initial clusters that you 
create, use the same identifier for the best or merge method.

For example, use the pre-clustered method to create initial clusters with AA as the identifier. To maintain 
the clusters, use the best or merge method with AA as the identifier because the best or merge method 
must operate on the same clusters that the pre-clustered method creates.

PERSISTENT-ID-METHOD=

Name of the clustering method. Use the following methods:

• best

• merge

• seed

• pre-clustered (<Column Name>)

PERSISTENT-ID-OPTIONS=

Additional clustering options that you want to specify. You can use multiple options separated by 
commas. Use the following options:

• Initial

• NoNew

• Pre-Merge-Review

• Post-Merge-Review

32       Chapter 2: Defining a System



• Best-Undecided-Review

• Preferred-Record-Review

• Apply-FLUL

• Audit-Cluster

• Audit-Record

PERSISTENT-ID-MRULES=

Name of the merge definition that maintains the preferred records of the clusters. Specify this option to 
use Informatica Data Director to view the preferred records.

Related Topics:
• “Link Tables” on page 75

• “Clustering Options” on page 88

• “Clustering Methods” on page 85

• “Cluster Governance” on page 99

User-Job-Definition
A User-Job-Definition is the SDF equivalent of a Console Job. Prior to version 2.6, Jobs could only be defined 
using the Console’s Jobs > Edit > New Job dialog. It is envisioned that customers will continue to use the GUI 
to define Jobs. However, in order to facilitate the transfer of pre-defined jobs between Dev, Test, QA and Prod 
environments a new mechanism was needed to export the definition from the Rulebase into an SDF, and the 
SDF was enhanced by adding syntax for defining User-Jobs.

Jobs are exported from the Rulebase into SDF format using System > Export > SDF. The parameters 
associated with a Job Step mirror the parameter names in the equivalent GUI dialog used to create it. The 
easiest way to get started is to define a Job using the Console and export it to an SDF.

A User-Job-Definition contains two parameters:

Field Description

NAME= Defines the name of the User-Job. All subordinate User-Step-Definitions quote this name to 
associate themselves with the User-Job-Definition.

COMMENT= This is an optional text field that is used to describe User-Job’s purpose.

User-Step-Definition
Each User-Job-Definition is associated with one or more User-Step-Definitions. They are equivalent to Job 
Steps added with the Add Step button in the Console and contain the following parameters:

Field Description

COMMENT= This is a text field that is used to describe step’s purpose.

JOB= This is the name of the User-Job-Definition that this step belongs to.

System Section       33



Field Description

NUMBER= This field is used to order steps within a User-Job-Definition. NUMBER is a printable numeric value 
starting from 0. That is, the first step has NUMBER = 0. There must be no gaps in the numbering of 
steps.

NAME= This is the type of Job step. A list of valid types is visible in the Console dialog when you click New 
Step. Names containing spaces should be enclosed in quotes (").

TYPE= This is the type of step. A list of valid job types and their associated parameters can be generated 
by running, %SSABIN%\pdf -dmdm-re reportFileNameor $SSABIN/pdf -dmdm-re 
reportFileName

PARAMETERS
=

This is a list of parameters and values required by the step. A list of valid job types and their 
associated parameters can be generated by running, %SSABIN%\pdf -dmdm-re reportFileName 
or $SSABIN/pdf -dmdm-re reportFileName
For example:

User-Job-Definition
*==================
COMMENT=                "Load data and run a relate"
NAME=                   Job01
*
User-Step-Definition
*===================
COMMENT=               "Load IDT/IDX"
JOB=                   Job01
NUMBER=                0
NAME=                  "Load ID Table"
TYPE=                  "Load ID Table"
PARAMETERS=            ("Loader Definition","Table-1")
*
User-Step-Definition
*===================
COMMENT=              "Run Relate (SEARCH-1)"
JOB=                  Job01
NUMBER=               1
NAME=                 Relate
TYPE=                 Relate
PARAMETERS=          ("Input File","data/relx03.in"),
                     ("Output File","relx03.out"),
                     ("Search Definition","SEARCH-1"),
                     ("Output Format",4),
                     ("Input View",dATAIN21),
                     ("Append New Line",true),
                     ("Trim Trailing Blanks",true),
                     ("Binary Input",false),
                     ("Output View","(none)")

Key-Logic / Search-Logic
KEY-LOGIC is defined in the IDX-Definition to describe how to build keys to be stored in the IDX. Search-Logic 
is defined in the Search-Definition to specify how to build search ranges to read the IDX.

An IDX normally contains multiple fuzzy keys for each IDT record. Each IDX contains compressed display and 
matching data. This is known as a heavy index. MDM-RE can also create a Lite Index . This is a native DBMS 
index containing exact values from a single field in the IDT record. A Lite index does not contain any 
redundant display or matching data. Searches utilizing a Lite Index will acquire display and matching data by 
reading the IDT record.

34       Chapter 2: Defining a System



Syntax

Key-logic facilities are provided by a SSA-NAME3 Standard or Custom Population. The syntax is as follows:

KEY|SEARCH-LOGIC = SSA,
                         System (system),
                         Population (population),
                         Controls (controls),
                         Field(field_list),
                         Null-Field(null-field-value),
                         Null-Key(null-key-value)

where

system is the System Name of the Population Rules DLL. The system is a sub-directory of the population 
rules directory. It has a maximum length of 32 bytes. The location of the population rules directory is defined 
by the environment variable SSAPR . The System Name is case sensitive and it should be same as the sub-
directory name.

population defines the name of the population DLL in the System directory (maximum length of 32 bytes).

Note: Population Name is case sensitive and it should be exactly similar to the one defined in the licence file.

controls defines the Controls to be used. Refer to the STANDARD POPULATIONS guide for a detailed 
description of these fields.

field_list is a comma-separated list of IDT fields to be used to generate keys or ranges. If more than one 
field is provided, the field_list must be enclosed in quotes (").

null_field_value An optional parameter that defines the null value for the Field. Records with a null value in 
their key field can be ignored by using the NO-NULL-FIELD option to prevent them from being indexed in the 
IDX. The default value is spaces (blanks).

null_key_value An optional parameter that defines the value of a null key. Records containing fields that 
generate a null key can be ignored by using the NO-NULL-KEY option to prevent the key from being stored in 
the IDX. The default value is K$$$$$$$.

Controls

A Key-Logic in an IDX-Definition controls the generation of keys. Therefore the Controls should specify the 
KEY_LEVEL. For example,

KEY-LOGIC=SSA,
          System(default), Population(test),
          Controls("FIELD=Person_Name KEY_LEVEL=Standard"),
          Field(LastName)

A Search-Logic in a Search-Definition controls the generation of search ranges. Therefore the Controls should 
specify a SEARCH_LEVEL. For example,

SEARCH-LOGIC=SSA,
                 System(default), Population(test),
                 Controls("FIELD=Person_Name SEARCH_LEVEL=Typical"),
                 Field(LastName)

Repeating Key Fields

The Field parameter of the Key- or Search-Logic can be used to generate keys or ranges for multiple fields (of 
the same type). This is accomplished by specifying a list of fields. For example:

KEY-LOGIC=SSA,
             System(default), Population(test),

System Section       35



             Controls("FIELD=Person_Name KEY_LEVEL=Standard"),
             Field("InsuredName,ClaimantName,PayeeName")

will generate keys for all three name fields and store them in the IDX.

When indexing a Group of repeating fields (or flattened fields), you must list each individual field name. For 
example, the following source definition, test.person.name Name [5] C(20)

generates a Group in the File-Definition of this IDT, which is subsequently expanded to the following list of 
field names:

FIELD=Name, C, 20
FIELD=Name_2, C, 20
FIELD=Name_3, C, 20
FIELD=Name_4, C, 20
FIELD=Name_5, C, 20

A Key-Logic that indexes all occurrences must list each individual field:

KEY-LOGIC=SSA,
          System(default), Population(test),
          Controls("FIELD=Person_Name KEY_LEVEL=Standard"),
          Field("Name,Name_2,Name_3,Name_4,Name_5")

A shorthand method of specifying repeating fields exists and takes the form of:field [ * | {x | y-
z }, ... ]

Some examples of this notation are (assuming a maximum of 5 occurrences):

Name[1-5] = Name,Name_2,Name_3,Name_4,Name_5
Name[2,3] = Name[2-3] = Name_2,Name_3
Name[1,4-5]= Name,Name_4,Name_5
Name[5] = Name_5
Name[*] = Name,Name_2,Name_3,Name_4,Name_5

Therefore some of the ways the above Key-Logic example could also be written are:

KEY-LOGIC=SSA,
            System(default), Population(test),
             Controls("FIELD=Person_Name KEY_LEVEL=Standard"),
             Field("Name[*]")
KEY-LOGIC=SSA,
             System(default), Population(test),
             Controls("FIELD=Person_Name KEY_LEVEL=Standard"),
             Field("Name[1-5]")
KEY-LOGIC=SSA,
             System(default), Population(test),
             Controls("FIELD=Person_Name KEY_LEVEL=Standard"),
             Field("Name[1,2,3,4,5]")

Specifying Null Values

You can specify the optional null-field-value and null-key-value parameters in one of the following 
formats:

Simple text string. For example, abc or "abc".

A hexadecimal value. For example, Hex(8000000000).

A filled string. For example, Fill(" ", 5) for five blank spaces.

A single character. For example, Numeric(0) for 0 byte.

A sequence of values in parentheses. For example, ("ab", numeric(10), cd, Fill (numeric(0), 15)).

36       Chapter 2: Defining a System



Lite Index

Lite Indexes have lower storage costs than heavy indexes, but they require additional I/O when you use them 
in a search.

Use the following syntax to create keys and ranges for a Lite Index:

KEY-LOGIC=User, Field(field), where field is the name of the column in the IDT that you want to index.

The Key-Logic parameter for the IDX-Definition must specify OPTIONS=Lite.

The Key-Logic=User parameter does not support the NO-NULL-FIELD and NO-NULL-KEY options because the 
database that you use controls the user-type index.

Note: A Lite Index does not support the KEY-SCORE-LOGIC and KEY-PRE-SCORE-LOGIC keywords. 

SSA-NAME3 v1

Parameters supporting SSA-NAME3 v1 are no longer documented in this manual, as SSA-NAME3 v2 (or later) 
is the recommended version to use with MDM-RE. Refer to a previous version of this guide if you require 
information about deprecated parameters.

Score-Logic
Score Logic is defined in the Search-Definition. It specifies how the Search Server will select records to be 
returned from the set of candidates. Score-Logic facilities are provided by a SSA-Name3 Standard or Custom 
Population.

PRE-SCORE-LOGIC is used to define an optional "light weight" scoring scheme that is processed before the 
normal SCORE-LOGIC. Its purpose is to make a fast, inexpensive decision to accept or reject the current record 
to avoid passing it to the more costly SCORE-LOGIC. Refer to the Reducing Scoring Costs section for details.

Syntax

[PRE-]SCORE-LOGIC=SSA,
                        System (system),
                        Population (population),
                        Controls (controls),
                        Matching-Fields (field-list)

where

system is the System Name of the Population Rules DLL.

population defines the population name from the DLL.

controls defines the controls to be used for this Score-Logic. Refer to the STANDARD POPULATIONS guide 
for a detailed description of these fields. Controls should specify the desired PURPOSE and MATCH_LEVEL.

field-list is a comma-separated list of the formfield_name:data_type where field_name is the name of a 
field in the IDT and the data_type is the data type that this field represents, as defined in the Population 
Rules.

Repeating Fields

The field_list defines which IDT fields will be used for matching and the type of data they represent 
(data_type). Matching will use repeat logic when two or more fields of the same data_type are specified. A 
run-time error will occur if a data_type defined as mandatory for the PURPOSE has not been specified in the 
field_list. Optional data_types may be omitted.

System Section       37



For example,

SCORE-LOGIC=SSA,
                System(default), Population(test),
                Controls("PURPOSE=Person_Name MATCH_LEVEL=Loose"),
                Matching-Fields("LastName:Person_Name,Alias:Person_Name")

When using a Group of repeating fields (or flattened fields) for matching, you must list each individual field 
name. For example, the following source definition,

test.person.nameName [5] C(20)

generates a Group in the File-Definition of this IDT, which is subsequently expanded to the following list of 
field names:

FIELD=Name, C, 20
FIELD=Name_2, C, 20
FIELD=Name_3, C, 20
FIELD=Name_4, C, 20
FIELD=Name_5, C, 20

The Matching-Fields parameter must list the fields Name, Name_2, Name_3, Name_4 and Name_5.

It is also possible to use the shorthand method of describing repeating fields. For details refer to the Key 
Logic section. For Example:

SCORE-LOGIC=SSA,
                System(default), Population(test),
                Controls("PURPOSE=Person_Name MATCH_LEVEL=Loose"),
                Matching-Fields("Name[1-3]:Person_Name")

is equivalent to:

SCORE-LOGIC=SSA,
                System(default),
                Population(test),
                Controls("PURPOSE=Person_Name MATCH_LEVEL=Loose"),
                Matching-Fields("Name:Person_Name,"
                "Name_2:Person_Name,"
                "Name_3:Person_Name")

Decision Processing

The Population module returns a Score and a Decision. The Score is a number between 0 and 100, with 100 
representing a perfect match. The score is used to sort records prior to returning them to the user. The 
Decision specifies whether the match was:

• good (Accepted), or

• bad (Rejected), or

• somewhere in between (Undecided).

It is set by the Population DLL depending on the MATCH_LEVEL requested in the Controls (or specified as an 
override in the Search API).

The Search Server will return both Accepted and Undecided records in response to a search request.

SSA-NAME3 v1

Parameters supporting SSA-NAME3 v1 are no longer documented in this guide, as SSA-NAME3 v2 (or later) is 
the recommended version to use with MDM-RE. Please refer to a previous version of this guide if you require 
information on deprecated parameters.

External Scoring Routines

MDM-RE does not support external scoring routines at this time.

38       Chapter 2: Defining a System



Merge Definition
This section provides information on the Merge Definition rule and fields that can be used with this operation.

Merge Definition rule

The merge engine creates a preferred (aka “master”, aka “golden”) record based on a cluster of records.

To create a preferred record, use the following steps:

1. Identify a default record

2. Construct the output record

Step 1: Identify a default record

A default record is created from the merge operation.

The following rules are applied to find a default record:

• The candidate list starts with all records in the cluster.

• Each master selection rule is applied in turn, to eliminate candidates.

• If a single candidate record is left after all the rules are processed, then this record is considered the 
default record.

• If all records are removed by a rule, then that rule has no effect.

• If multiple candidates remain after all the rules are processed, the first candidate that remains is chosen 
as the default record.

Step 2: Construct the output record

An output record is a record that is an outcome of Step 1 and Step 2.

After a default record is found as per Step 1, an output record will be generated. In this process, the merge 
engine will go through each column and process rules applied to each column of the output record. If no 
rules are specified, then this defaults to taking the value of that column in the default record.

Values for each column in the output record are chosen by applying rules to the candidate set. Some rules 
select a single pre-existing value (such as most-data), while others aggregate information (such as sum).

The following rules are applied when constructing the output record:

• If a rule returns a single candidate, processing stops and the value is used for the output.

• If a rule returns multiple candidates, processing continues to the next rule (for example, multiple records 
match for most-data ).

• If multiple candidates remain at the end of processing all the rules, the first candidate in the list is chosen 
for the output.

• If no rules are specified, the column is taken from the master record.

Merge Definition

The Merge Definition begins with the MERGE-DEFINITION keyword. The fields are as follows:

Field Description

NAME= A character string that defines the name of the Merge Definition. It is a mandatory 
parameter. A Merge name is limited to a maximum of 31 bytes.

COMMENT= This is a text field that is used to describe the Merge Definition’s purpose.

System Section       39



Field Description

OPTIONS= This parameter is a comma-separated list of keywords that define various options 
for the behaviour of this merge definition.
Member-is-Preferred 

changes the behavior of preferred record generation so that preferred 
records are not stored as new records in the IDT. Instead this option will 
flag an existing cluster member record as the preferred record for the 
related cluster. This will reduce the size of the IDT and related IDX’s. 
Only master rules will determine the preferred record. Column Selection 
from rules and overrides in the GUI are invalid with this option.
Member-Quick-Select 

can be used in conjunction with the Member-is-Preferred option to 
select the first member record in the cluster as the preferred record. 
This option does not call the rule engine at any time. This options 
provides the least amount of flexibility with preferred record 
generation/ selection but has performance advantages.

Audit-Preferred 

enables auditing of the preferred records.

MASTER-SELECTION= A list of the rules used to select the master record. Each rule must have a 
corresponding MERGE-MASTER-DEFINITION with a matching name.
They are processed in the order listed, removing candidates at each step unless 
all candidates are removed.
Processing stops when a unique record is found, or if the end of the rules is 
reached. If the end of the rules is reached, and no unique record is found, the first 
of the remaining candidate records is selected.

COLUMN-SELECTION= A list of the columns whose default behavior is to be overridden. Each column 
must have a corresponding MERGE-COLUMN-DEFINITION with a matching name. 
This name is not the name of the column, but the name of the list of rules.
If a column exists in the IDT, but is not specified here, it will be treated as if it had 
a format equivalent to what is in the IDT (Character, Wide, Numeric), with a single 
rule of type from-master.

Merge Master Definition
The Merge Master Definition section begins with the MERGE-MASTER-DEFINITION keyword. The fields are as 
follows:

Field Description

NAME= A character string that defines the name of the Merge Master Definition. It is a mandatory 
parameter. A Merge name is limited to a maximum of 32 bytes.

COMMENT= This is an optional text field that is used to describe the Merge Master Definition’s purpose.

40       Chapter 2: Defining a System



Field Description

TYPE= The type of Merge Master Rule. It is a mandatory parameter. Valid values are:
modal-exact 

Selects the records with the greatest number of columns that contain the modal (most 
common) value. The modal value is determined by a strict comparison.
most-filled 

Selects the records with the greatest number of columns filled.

column-max 

Selects the records with the greatest value in a particular column. The COLUMN field 
must be provided.

column-min 

Selects the records with the lowest value in a particular column. The COLUMN field 
must be provided.

column-equals 

Selects the records where a particular column equals a given value. The COLUMN and 
VALUE fields must be provided.

most-data 

Selects the records with the most data (longest sum of string lengths).

COLUMN= For rules that refer to a column, this optional parameter specifies the name of the column in the 
IDT to use.

VALUE= For rules that require a value, this optional parameter specifies the value.

Merge Column Definition
The Merge Column Definition section begins with the MERGE-COLUMN-DEFINITION keyword. The fields are 
as follows:

Field Description

NAME= A character string that defines the name of the Merge Column Definition. It is a 
mandatory parameter. A Merge name is limited to a maximum of 32 bytes.

COMMENT= This is an optional text field that is used to describe the Merge Column’s purpose.

IDTCOLUMN= This optional parameter specifies the name of the column in the IDT that this 
column definition refers to. If it is not set, it is defaulted to the name of the Merge 
Column Definition.

RULE-SELECTION= A list of the rules used to select the value for this column. Each rule must have a 
corresponding MERGE-COLUMN-RULE-DEFINITION with a matching name.
They are processed in the order listed, removing candidates at each step unless all 
candidates are removed.
Processing stops when a unique record is found, or if the end of the rules is 
reached. If the end of the rules is reached, and no unique record is found, the first of 
the remaining candidate records is selected.

System Section       41



Field Description

FORMAT= This optional parameter specifies the format of the column. If it is not set, it will 
default to the format specified in the IDT. Valid values are:
- C - Character field
- W - Wide character field, encoded as UTF-16.
- N - An integer numeric field, with a minimum value of 0, and a maximum value of 

264.
- Y,M,D,H,m,s - Used for date parsing. These specify respectively:
- Y - Year, 4 digits
- M - Month, 2 digits
- D - Day, 2 digits
- H - Hour, 2 digits
- m - Minute, 2 digits
- s - Second, 2 digits
A space is used to indicate that a character should be ignored.

NULL= This optional parameter specifies the value used to represent a NULL in the IDT.

Merge Column Rule Definition
The Merge Column Rule Definition section begins with the MERGE-COLUMN-RULE-DEFINITION keyword. You 
can use the following fields:

Field Description

NAME= A character string that defines the name of the Merge Column Rule Definition. It is a 
required parameter. A Merge name is limited to a maximum of 32 bytes.

COMMENT= This is an optional text field that is used to describe the Merge Column Rule Definition’s 
purpose.

42       Chapter 2: Defining a System



Field Description

TYPE= Type of Merge Column Rule. It is a required parameter. Use the following values:
from-master 

Selects the value from the master record. If the selected record has a null value, 
the value from the next record is selected. If the selected record is the last record 
and has a null value, the null value is retained.

modal-exact 

Selects the records that contain the modal (most common) value. The modal 
value is determined by a strict comparison.

most-data 

Selects the records with the most data (longest sum of string lengths).

min 

Selects the records with the lowest value in the current column.

max 

Selects the records with the highest value in the current column.

sum 

Selects a generated record with the sum of all values in the current column.

mean 

Selects a generated record with the sum of all values in the current column.

other-column-equals 

Selects the records where a different column equals a value. You must use the 
TARGET-COLUMN and VALUE parameters.

other-column-min 

Selects the records where a different column contains the lowest value. You must 
use the TARGET-COLUMN parameter.

other-column-max 

Selects the records where a different column contains the greatest value. You 
must use the TARGET-COLUMN parameter.

TARGET-COLUMN= For rules that refer another column, this optional parameter specifies the IDT column.

VALUE= For rules that require a value, this optional parameter specifies the value.

User-Source-Table Section
The User-Source-Table (UST) section specifies how to build IDTs from User Source Tables or flat files. It is 
also used to define an SQL source as input data for relate.

An IDT can be built from:

• a single UST

User-Source-Table Section       43



• multiple USTs with a join operation

• multiple USTs with a merge (union) operation

• a (sequential) flat file

The MDM-RE Table Loader can transform fields while extracting them from the data source. It can 
concatenate fields, insert text and change the case of the source fields, as described below.

The UST parser will automatically generate File and View definitions. There is no need to add anything to the 
Files or Views sections.

The User Source Tables must be accessible to the userid (referred to as the SSA userid) used by the MDM-RE 
Table Loader. You must GRANT SELECT privileges to the SSA userid on the USTs.

For example, to grant select authority to the user SSA on the table EMP in SCOTT’s schema on the database 
named server8.17, you must

CONNECT scott/tiger@server8.17;
GRANT SELECT ON emp TO SSA;

General Syntax

The UST section uses an SQL-like syntax. The following general points should be noted:

• lines beginning with two dashes "--" are treated as comments.

• tokens can be substituted with the value of an environment variable by specifying the environment 
variable name surrounded by #s. eg the Source Schema could be specified as #myschema#. When parsed it 
would be substituted with the value of the environment variable myschema.

• all definitions include either the SYNC or NOSYNC clause. SYNC specifies that the IDT must be synchronized 
with any changes to the UST(s). Specifying SYNC means that triggers will be created on the source table to 
enable the Update Synchronizer to reapply updates to the ID-Tables. Triggers are not created if the IDT is 
created from a flat file and/or the Source database does not support triggers.

• NOSYNC means that the IDT will not be synchronized with any changes made to the Source Tables.

• each table definition is terminated by a semicolon.

• multiple table definitions are permitted in this section.

Primary Keys

Primary Keys (PK) are used to establish a relationship between records in the USTs and IDT. When 
synchronized USTs are updated, the PK value(s) are passed to the Update Synchronizer to tell it which rows 
were changed. The PK values are provided by either

• transactions created by triggers defined on the USTs, or

• user created transactions stored in a "flat file".

Columns selected as Primary Keys must not contain any binary zero (NUL) characters in their value. 
Therefore binary columns, date / timestamp and/or character columns containing binary should not be used 
(e.g. W columns containing UTF-16 / UCS-2 data).

Furthermore, columns that have been converted to C(64), as listed in the following Source Data Types section, 
can not be used as primary keys. These include the REAL, FLOAT, DOUBLE and NUMBER (with scale > 0) data 
types. In general, PK fields should be selected from CHAR, VARCHAR and/or NUMBER (scale = 0) columns.

Columns selected as Primary Keys must not contain any zero length data that are not NULL. Only DB2/UDB 
supports columns with this type of semantics.

Unique Primary Keys

Synchronization works most efficiently when PKs are unique. They are defined to be unique by specifying the 
(default) synchronization level of reject_duplicate_pk.

44       Chapter 2: Defining a System



The nominated PK fields serve two purposes:

• to define a unique PK for the IDT, and

• to define a unique PK for the primary UST (defined below).

This is so that a delete from the primary UST can tell the Synchronizer which IDT record to delete. If the is not 
unique, the Synchronizer will delete multiple IDT records. If a UST record is added with a non-unique PK, the 
Synchronizer will report a " constraint violation".

Non-Unique Primary Keys

PKs do not need to be unique and are defined as such using the synchronization level of 
allow_duplicate_pk. However non-unique PKs are more expensive to synchronize, as more records will be 
processed.

Non-Synchronized USTs

IDTs created from UST that are not synchronized must still define a PK field, even though there is no link 
maintained between the USTs and IDT.

Rules

In the following paragraphs the term "must/may" is used and should be read as "must" when using unique 
PKs, and "may" when using non-unique PKs.

The primary UST is the table that is used to source the first primary key column for the IDT. The primary UST 
must/may contain a unique primary key. It may be a compound primary key.

Each IDT record must/may contain a unique primary key. The sourced_from clause is used to nominate the 
source column(s) which form the PK. The first m keys fields (PK1..PKm) specify the primary keys for the 
primary UST.

If the IDT is created by joining the primary to a secondary table and there is a one to many (1:M) relationship 
between them, there will be multiple rows in the IDT for each unique value. In this case, you should define 
additional columns (PKm+1..PKn) which when concatenated to PK1..m will form a unique key for each IDT 
record.

When merging tables, the primary key must be unique within a given User Source Table but does not need to be 
unique within the IDT because MDM-RE automatically adds an additional qualifier to each IDT record.

In general, MDM-RE allows the PK to be composed of up to 36 columns. However, the number of columns 
permitted in a composite index may be further limited by the host DBMS. For example on UDB the limit is 10 
columns.

All IDT’s will have a generated two byte field call CL_ID. This field is used in Cluster governance. For normal 
IDT records this field will be left unpopulated.

Source Data Types
The following tables list the supported source data types and what they are converted to for storage in the 
IDT and IDX.

The first column shows the native data types that can be read from User Source Tables.

The second column shows the equivalent MDM-RE data type documented in the Files & Views chapter, 
Format & Data Types section of this manual). Data read from USTs are converted to a common data type to 
enable combining source data from heterogeneous source database types. For example, an IDT stored on 
Oracle can be merged from source data read from UDB and MS-SQL Server.

User-Source-Table Section       45



When loading data from flat files instead of USTs, the File and View definitions are specified using these 
MDM-RE data types. When loading from a UST, files and views representing the UST and IDT are generated 
automatically.

The third column shows the mapping from MDM-RE data types back to native host DBMS data types. The IDT 
is stored as a native table on the target DBMS so that it may be queried using SQL. The IDX holds 
compressed keys and data (MDM-RE data types) and is not user accessible.

Oracle

UST Data Type Data Type (IDX) IDT Data Type

 F VARCHAR2

CHAR
VARCHAR2
CLOB
NUMBER (scale > 0)
DATE 2
TIMESTAMP

C VARCHAR2 /VARCHAR2
CLOB 1

 V VARCHAR2

RAW
BLOB

B RAW / BLOB3

 I NUMBER(10) / RAW 4

 G NUMBER / RAW 5

NUMBER (scale = 0)
INT
SMALLINT

N NUMBER

 R NUMBER

NCHAR
NVARCHAR2
NCLOB

W NVARCHAR2 /NCLOB 6

 X CHAR

 Z CHAR

1VARCHAR2 for column lengths <= 4000, otherwise CLOB.

2 DATEs and TIMESTAMPs are converted to C(64) fields by default. The length may be overridden. The 
default installation date mask determines the date format. This is specified either explicitly with the 
initialization parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRITORY. It can 
also be set for a session with the ALTER SESSION command via a logon trigger defined for the SSA user.

3 RAW for column lengths <= 2000, otherwise BLOB.

4 NUMBER(10) if the length is 2 or 4, otherwise RAW.

5 NUMBER if the length is 2 or 4, otherwise RAW.

6 NVARCHAR2 for column lengths <= 4000, otherwise NCLOB.

46       Chapter 2: Defining a System



UDB

UST Data Type Data Type (IDX) IDT Data Type

 F VARCHAR

CHAR
VARCHAR
DATE8

TIMESTAMP 8
NUMBER (scale > 0)

C VARCHAR / CLOB7 

 V VARCHAR

 B VARCHAR FOR BIT
DATA / BLOB 9

 I INTEGER

 G INTEGER

NUMBER (scale=0)
DECIMAL
INTEGER
SMALLINT
BIGINT 10

N NUM

 R NUM

 W VARCHAR / DBCLOB 11

 X CHAR

 Z CHAR

7VARCHAR for column lengths <= 32000, otherwise CLOB.

8DATEs and TIMESTAMPs are converted to C(64) fields by default.

9VARCHAR FOR BIT DATA for column lengths <= 32000, otherwise BLOB.

10Negative BIGINTs are not supported for use as a PK and/or join column.

11VARCHAR for column lengths <= 32000, otherwise DBCLOB.

Microsoft SQL Server

UST Data Type Data Type (IDX) IDT Data Type

SQL_CHAR F VARCHAR / TEXT 12

User-Source-Table Section       47



SQL_VARCHAR
SQL_DATE
SQL_TIME
SQL_TIMESTAMP
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_TYPE_TIMESTAMP
SQL_NUMERIC 13

SQL_DECIMAL13

SQL_FLOAT
SQL_REAL
SQL_DOUBLE
SQL_GUID

C VARCHAR / TEXT 12

SQL_BINARY
SQL_VARBINARY
SQL_BIT

B VARBINARY / IMAGE14 

SQL_NUMERIC 15

SQL_DECIMAL 15

SQL_INTEGER
SQL_SMALLINT
SQL_TINYINT
SQL_BIGINT

N DECIMAL

SQL_WCHAR W NVARCHAR / NTEXT 16

SQL_WVARCHAR   

12VARCHAR when column length <= 8000, otherwise TEXT.

13scale > 0 (floating point numbers).

14VARBINARY when column length <= 8000, otherwise IMAGE.

15scale = 0 (whole numbers).

16NVARCHAR when column length <= 4000, otherwise NTEXT.

Create_IDT
The simplest form of IDT is created from column values extracted from a single User Source Table. The 
general form of the syntax is:

CREATE_IDT IDT-Name
SOURCED_FROM [connection_string] source_clause
[TRANSFORM transform_clause]
[SELECT_BY select_clause]
sync_clause
;

where

IDT-Name is the name of the IDT Table to be created. This must be the same as defined by the IDT-NAME 
parameter in the IDX-Definition section and the PHYSICAL-FILE-NAME in the Logical-File-Definition.

48       Chapter 2: Defining a System



Connection String

The connection_string is used to specify connection information for access to the UST on the source 
database. When using flat file input connection_string must be set to flat_file.

The format of the connection_string is documented in the OPERATIONS guide, Rulebase/Database Names 
section.

When connecting to a source database, the connection_string’s SystemQualifier has no meaning, and 
should be set to an unused number such as 99 to highlight that fact. For example, when connecting to an 
Oracle source database the connection_string is as follows:

odb:99:scott/tiger@oracle920

If a connection_string is not supplied, it defaults to the connection details of the database used when 
initializing the Rulebase, i.e. the value of SSA_DBNAME environment variable.

If the source tables are to be synchronized, you must specify the userid associated with the UST database. 
This is the same userid that was created and used to install the Update Synchronizer components. Further 
more, the (default) SSA userid on the UST database must have SELECT privileges on the source tables to be 
referenced. See the Installation Guide for details.

If the source tables do not require synchronization , any valid userid with SELECT privileges on the source 
tables may be used.

Source Clause

This section is used to specify the source of the data.

The source_clause is used to nominate the UST columns that are to be extracted when creating the IDT. 
Source fields can be either added directly into the IDT or used in a transformation process, the result of 
which is added to the IDT.

The source_clause syntax is:

[src_schema.]table.column [(PKn)] [tgt_col [r] [fmt(len)]] [,...]

where

src_schema is the name of the schema that the table.column belongs to. The default value is your userid.

table the source table name which contains the column.

Oracle: Synonyms (private, public, recursive) may be used but are converted to the real schema.table name 
during parsing.

column the name of the source column to be extracted.

(PKn) nominates column as the nth component of the primary key.

tgt_col the name of the column when stored in the IDT. If omitted, it defaults to the value of column. If tgt_col 
is prefixed with ’$’, it is treated as a virtual field . Virtual fields are not stored in the IDT. They can only be 
referenced in a transform_clause . If tgt_col is prefixed with ’$$’, it is treated as a special type of virtual field 
that is read from the source database during Table Loading. Tgt_col names prefixed by an underscore (’_’) 
are reserved for internal use.

[r] the number of times that tgt_col will repeat in the IDT. This parameter is used to declare a repeating field 
for the flattening process (see the Flattening IDTs). The default value is 1. Column names are generated 
using the same semantics as the GROUP= clause (described in the Files and Views section). Note that the 
braces are required.

fmt (len) the format and length of the tgt_col in the IDT. When omitted, they default to the format and length 
of the source column. Valid formats are defined in the File Definition section of this guide.

User-Source-Table Section       49



Note that the default length may be insufficient when the source and target databases use different 
character sets. Refer to the Globalization section of the OPERATIONS manual for details.
When the source is a flat file src_schema.table.column must be omitted (as there are no USTs), and tgt_col , 
fmt and len must be provided to describe the layout of the IDT.

Transform Clause

A transform_clause is really an optional part of a source_clause or merge_clause. It is used to specify how 
virtual fields are to be combined/transformed and characteristics of the resulting field stored in the IDT.

The transform_clause syntax is:

transform_rule tgt_col [r] fmt(len) [order n] [,...]

where

transform_rule nominates the transformation process which will convert virtual fields into a value to be 
stored in tgt_col. Details appear in the next section.

tgt_col is the name of the column to be stored in the IDT.

fmt (len) is the format and length of the tgt_col.

[r] an optional number of times that tgt_col will repeat in the IDT. This parameter is used to declare a 
repeating field for the flattening process. See the Flattening IDTs section for details.

The default value is 1. Column names are generated using the same semantics as the GROUP= clause 
(described in the Files & Views section). Note that the braces are required.

order n is used to override the default order of fields in the IDT. Normally fields are placed in the IDT in the 
order of definition in the source_clause and transform_clause. You may override this order by nominating 
an integer value for n, starting from 1.

Transform Rules

Transform rules fall into three categories:

• rules that use no virtual fields (Source-Id, Insert-Constant)

• rules that operate on a single virtual field (Upper, Lower, Convert-Field, Clean-Field)

• rules that operate on many fields(Append, Concat, Insert-Field)
Each virtual field can only be referenced once in the transform_clause. In the unlikely event that the same 
source column is to be used in more than one transform clause, add an extra source_clause for that column 
but give it a different virtual field name.

The transform rules use the following format:

Source-Id
Insert-Constant ("text")
Upper (vf)
Lower (vf)
utf8clean (vf)
Insert-Field (vf, offset, ...)
Convert-Field(<Source Field>, <Date Format>) <Target Field> C(<Length in Bytes>)
Convert-Field(<Source Field>, <Encoding Format>) <Target Field> C(<Length in Bytes>)
Clean-Field($name, <option>)
Append ( vf | lower (vf) | upper (vf) | utf8clean (vf) | "text" , ... )
Concat ( vf | lower (vf) | upper (vf) | utf8clean (vf) | "text" , ... )

You can use one of the following transform rules:
Source_Id

Generates a unique ID into tgt_col. It should only be used in conjunction with the AUTO-ID parameter. 
The name of the tgt_col must match that defined in AUTO-ID-FIELD in the IDX-Definition section.

50       Chapter 2: Defining a System



Insert-Constant
Injects a string of text into tgt_col.

Upper
Converts the virtual field vf defined in the source_clause to uppercase.

Lower
Converts the virtual field vf defined in the source_clause to lowercase.

utf8clean
Replaces the invalid UTF-8 characters in the virtual field vf defined in the source_clause with the 
question mark (?) symbol. Use this rule where the Lower and Upper rules are valid.

For example:

TRANSFORM
concat(utf8clean($fname),lower($mname),$lname)     PERSON_NAME_FML     C(46) order 2

Insert-Field
Combines a number of virtual fields into tgt_col. Each field is stored at the specified offset in tgt_col. 
Offsets start from 0.

Convert-Field for Date

Converts the date format of the source field to the specified date format for the target field. The rule can 
also truncate the date based on the length that you specify in bytes. The date format of the source field 
must be YYYY-MM-DD.

The Convert-Field rule uses the following parameters:

• Source Field. Specifies the field whose date format you want to use.

• Date Format. Specifies the date format for the target field.
Use one of the following values:

- 0. Retains the same date format as that of the source field.

- 1. Converts the date format of the source field to DD-MM-YYYY format.

- 2. Converts the date format of the source field to DD-MON-YYYY format.

- 3. Converts the date format of the source field to DD-MON-YY format.

- 4. Converts the date format of the source field to MM-DD-YYYY format.

- 5. Converts the date format of the source field to MM/DD/YYYY format.

Note: MON indicates the complete name of a month.

• Target Field. Field that uses the converted date format.

• Length in Bytes. Length of the converted date to use. When you use the date format 2, ensure that 
the length is at least 11 bytes.

The following Convert-Field rule converts the date format of the $date field for the DOB field:

convert-field($date, 2) DOB C(10)
Convert-Field for Encoding Format

Converts the encoding format for fields from UTF-8 to UTF-16 and from UTF-16 to UTF-8.

The Convert-Field rule uses the following parameters for the encoding format conversion:

• Source Field. Specifies the field that you want to use for conversion.

User-Source-Table Section       51



• Encoding Format. Specifies the encoding format for the target field.
Use one of the following formats:

- convert-field(8). Converts from UTF-16 to UTF-8.

- convert-field(6). Converts from UTF-8 to UTF-16. Converting to UTF-16 might double the size. 
The transforms truncate the output if it is not large enough for the converted text.

• Target Field. Field that uses the converted encoding format.

• Length in Bytes. Length of the converted encoding format to use.

Consider the following sample user table:

create_idt IDT547
sourced_from #SSA_DBNAME#
#SSA_SCHEMA#.table.PolicyHolderName $field1,
#SSA_SCHEMA#.table.Gender $field2,
#SSA_SCHEMA#.table.Address $field3,
#SSA_SCHEMA#.table.PolicyID (PK1),
#SSA_SCHEMA#.table.PINCODE $field4

Use the following format to convert from UTF-16 to UTF-8:

TRANSFORM
convert-field($field1, 8) PolicyHolderName C(20),
convert-field($field2, 8) Gender C(6),
convert-field($field3, 8) Address C(50),
convert-field($field4, 8) PINCODE C(10)

Clean-Field
Replaces the invalid UTF-8 characters with the question mark (?) symbol.

For example:

TRANSFORM
clean-field($lname1, 8)     NM_NAME_LAST     C(22)

Append
Combines the virtual fields and text by stripping trailing spaces from all fields and joining them together 
into tgt_col.

Concat
Functions same as Append but adds a single space between the fields when joining them.

Select Clause

Is any valid SQL expression (for a WHERE clause) that can be used to select a from the UST. That is, the 
select_by clause acts a final filter to remove records after selecting / joining rows from the UST. MDM-RE 
does not parse this expression. It is simply appended to the WHERE clause generated by MDM-RE using an 
AND logical condition.

SELECT ... WHERE <MDM-RE_expression> AND (<select_clause>)

It is important to ensure that the select_clause is syntactically correct. Failure to do so will result in run-
time SQL errors in the Table Loader and/or Update Synchronizer.

Note: All columns referenced in the select_clause must also appear in the sourced_from list (for SYNC 
systems only). This ensures that they are replicated in the IDT and that correct synchronization will occur.

Do not try to limit the number of rows loaded from the UST using a physical limit. For example,

select_by ROWNUM <= 1000

52       Chapter 2: Defining a System



This approach instructs the SQL Optimizer to return the first 1000 rows but has the disadvantage that the 
"first 1000 rows" may not be the same ones when the system is loaded a second time. It will produce 
inconsistent results.

Use a logical limit when selecting a subset of records from the UST. For example,

select_by EmpId >= 50000 AND EmpId <= 51000

This ensures a repeatable set of records.

Sync Clause

The sync clause determines whether or not this IDT will be synchronized with updates to the UST. If it is 
synchronized an optional Synchronization Level can be specified. The syntax is:

NOSYNC | SYNC [sync_level [txn_source_clause]]

where sync_level is either:

REJECT_DUPLICATE_PK Rejects all duplicates (the default).

REPLACE_DUPLICATE_PK Replaces duplicates when synchronizing from an NSA Txn-Source (see Txn-Source 
Clause below).

WARN_DUPLICATE_PK Produces a warning when a duplicate is added.

ALLOW_DUPLICATE_PK Allows non-unique PKs.

Refer to the OPERATIONS guide, Update Synchronizer chapter for more details about the Synchronization 
Level.

Txn-Source Clause

Use txn_source_clause to specify the method to provide synchronizer transactions. If you do not specify, an 
identity table created from the user source tables uses trigger-generated transactions and an identity table 
created from a flat-file uses flat-file transactions. Use the following syntax for txn_source_clause:

TXN-SOURCE { TRIGGER | MANUAL | FLAT_FILE | NSA }

where

TRIGGER indicates that the triggers are automatically created on the user source tables to generate 
transactions in the Synchronizer’s Transaction Table.

MANUAL indicates that the triggers are not created on the user source tables. You have to manually insert 
transactions in the Synchronizer’s Transaction Table when a user source table is updated.

FLAT-FILE indicates that the synchronizer transactions are provided in a flat-file. Use this option only when 
you source data from a flat-file.

NSA indicates that the synchronizer transactions are provided in a NSA Transaction Table. You can use this 
option when you source data from a flat-file.

For example:

CREATE_IDT test-idt
SOURCED_FROM odb:99:scott/tiger@oracle8.17
           SCOTT.EMP.EMPNO (PK)   EmpNo,
           SCOTT.EMP.ENAME        EmployeeName
SELECT_BY
          (scott.emp.empno > 7800)
SYNC
;

The example creates the test-idt identity table. The data is extracted from an Oracle service named 
oracle8.17 by using the userid scott whose password is tiger. The identity table contains two fields, EmpNo 

User-Source-Table Section       53



and EmployeeName. The fields have formats and lengths similar to their corresponding source fields, EMPNO 
and ENAME, in the SCOTT.EMP table. Only employees with employee numbers greater than 7800 are extracted 
and loaded into the IDT.

Any updates made to SCOTT.EMP are applied to test-idt by the Update Synchronizer by using the default 
synchronization level of REJECT_DUPLICATE_PK. Synchronizer transactions are generated by using triggers on 
the source table.

Flat_File Input

The syntax for flat_file source is similar to the database source, but differs in the following aspects:

• DB source column names are omitted

• the layout of the file is specified using the target fields

• each field must have an explicit format and length definition

• PKn definitions appear before field names

• virtual fields (used for transforms) must provide format and length information

For example:

CREATE_IDT
        IDT264
SOURCED_FROM flat_file
         (pk)     RowId               W(16),
                    $FirstName           W(50),
                    $MiddleName       W(50),
                    $LastName           W(50)
TRANSFORM
    concat (upper ($LastName), $MiddleName, $FirstName)     Name W(150),
SYNC REPLACE_DUPLICATE_PK
TXN-SOURCE NSA
;

Join_By
You can create an IDT by joining two or more USTs from a single source database. This is normally done 
when the source tables are normalized into multiple tables and the IDT needs to support search and 
matching strategies by using data from all source tables.

The syntax is identical to the syntax of a single UST with the addition of join_expression.

CREATE_IDT IDT-Name
SOURCED_FROM connection_string source_clause
[TRANSFORM   transform_clause]
JOIN_BY      join_expression
[SELECT_BY   select_expression]
SYNC | NOSYNC
;

Note: You cannot join columns that are of binary data types.

Source Clause

For more information about the source clause, see the Create_IDT section.

Transform Clause

For more information about the transform clause, see the Create_IDT section.

Join Expression

The primary table is a UST that you mention in the sourced_from clause. A secondary table is another UST 
that you join to the primary table by using a foreign key stored in the primary.

54       Chapter 2: Defining a System



Perform an outer join on the primary table by adding all the rows in the primary table to the IDT even if any 
row fails to join to any secondary table. In this case, the columns extracted from the secondary table are set 
to NULL.

Use join_expression to specify how to join the primary table to one of the secondary tables or more. 
Generally, it specifies how to join a parent table to a child. Specify join_expression for each pair of tables that 
you plan to join. The expression defines the relationship between the tables, where the parent contains the 
foreign key of the child.

Use the following format for join_expression:

parent_table_column = child_table_column [AND p_col = c_col], . . .

where,

parent_table_column is a fully qualified column name in the parent table.

child_table_column is a fully qualified column name in the child table.

p_col is an unqualified column name in the parent table (for compound keys).

c_col is an unqualified column name in the child table(for compound keys).

All parent_table_columns specified in a join_expression must be included in the IDT as non-virtual fields. For 
performance reasons, it is recommended that parent_table_columns are indexed. If SYNC is also specified, all 
join fields must be indexed.

Example

The IDT idt_xform is to be created. Columns are extracted from two tables, TESTX50A and TEXTX50B. These 
tables belong to schema #SSA_UID# which is evaluated at parse time using the environment variable SSA_UID.

The tables are joined using the EMPNO column in TESTX50A and the SSN column in table TESTX50B.

Various transformations are used. Columns given and family are concatenated to form a field called NAME. 
The order parameter is used to change the default ordering of fields in the IDT to: myid, NAME, EMPNO, SSN, 
TITLE, Addr, and Phone.

CREATE_IDT
          idt_xform
SOURCED_FROM odb:99:scott/tiger@server8.17
#SSA_UID#.TESTX50A.EMPNO     (PK)             EmpNo N(25),
     #SSA_UID#.TESTX50A.given                     $given,
     #SSA_UID#.TESTX50A.family                 $family,
     #SSA_UID#.TESTX50A.ADDR                         $addr,
     #SSA_UID#.TESTX50B.SSN,
     #SSA_UID#.TESTX50B.PHONE                     $phone
TRANSFORM
     source-id                           myid     f(10) order 1,
      insert-constant("hello there")        title    c(15),
     upper($addr)                        Addr     c(30),
     lower($phone)                       Phone    c(12),
     concat($given,$family)              NAME     c(50) order 2
JOIN_BY
     #SSA_UID#.TESTX50A.EMPNO = #SSA_UID#.TESTX50B.SSN
NOSYNC
;

User-Source-Table Section       55



Merged_From
An IDT can be created by merging the contents of two or more User Source Tables. Multiple heterogeneous 
source databases are permitted. The columns extracted from the tables are mapped into a common format 
using multiple merge_clause and transform_clause pairs (one pair per UST).

CREATE_IDT IDT-Name
MERGED_FROM [connection_string] merge_clause
[TRANSFORM transform_clause] ...
SYNC | NOSYNC
;

Primary Key

The (PK) column must contain unique values within a given User Source Table. However it does not need to 
be unique within the merged IDT because MDM-RE automatically qualifies the (PK) column so that it can 
identify which source table the record came from. To do this, MDM-RE automatically adds a column called 
IDS_PARSE_BLOCK_NO to the IDT and populates it with the merge_clause occurrence number (starting from 1) 
used to create each IDT record. This column name is reserved and can not be specified as a tgt_col name.

Source Clause

Refer to the Source Clause description in the Create_IDT section.

Transform Clause

Refer to the Transform Clause description in the Create_IDT section.

Merge Clause

The merge_clause is identical to the source_clause in syntax but its semantics differ:

• The first merge_clause/transform_clause pair is used to define the IDT column names, formats, lengths 
and order. It also nominates the primary-key field (PK).

• The second and subsequent pairs define the mapping from source columns in other USTs to the tgt_cols 
defined in the first pair. They cannot specify format, length, PK nor order. tgt_col names must match 
those defined by the first pair.

• All columns in a merged_from clause must come from the same source table.

Example

The IDT idt_xform_merge is to be created from data extracted from tables TEXTX51A and TESTX51B. These 
tables are found on different databases (mars and jupiter respectively).

The common layout of the IDT is defined by the first merge_clause/transform_clause pair as:

MyIdC(10)

NAMEC(50)

AddrC(50)

SSNformat/length same as TESTX51A.SSN

Columns ADDR_L1, ADDR_L2, ZIP from table TESTX51A will be concatenated to form a value for Addr.

Columns GIVEN and FAMILY from table TESTX51B will be concatenated to form a value for NAME. The field 
EMPNO in TESTX51B maps to SSN.

CREATE_IDT
       idt_xform_merge
MERGED_FROM odb:99:scott/tiger@mars
       #SSA_UID#.TESTX51A.FULL_NAME           NAME C(50),

56       Chapter 2: Defining a System



       #SSA_UID#.TESTX51A.SSN        (PK)     SSN,
       #SSA_UID#.TESTX51A.ADDR_L1             $a1,
       #SSA_UID#.TESTX51A.ADDR_L2             $a2,
       #SSA_UID#.TESTX51A.ZIP                 $zipcode
TRANSFORM
       source-id                              MyId c(10) order 1,
       concat($a1,$a2,$zipcode)               ADDR c(50) order 3

MERGED_FROM odb:99:buzz/lightyear@jupiter
       #SSA_UID#.TESTX51B.EMPNO    SSN,
       #SSA_UID#.TESTX51B.GIVEN    $given,
       #SSA_UID#.TESTX51B.FAMILY   $family,
       #SSA_UID#.TESTX51B.ADDR     ADDR
TRANSFORM
       concat($given,$family) NAME
SYNC
;

Define_Source (relate input)
The UST Section is also used to define database source tables to be used to supply input records to a relate 
batch search process. The syntax is similar to the CREATE_IDT clause, with a few minor differences:

• DEFINE_SOURCE replaces CREATE_IDT,
• PKn is not permitted,

• SYNC is not permitted,

• NOSYNC is optional (and implied).

The syntax is:

DEFINE_SOURCE SrcName
SOURCED_FROM [connection_string] source_clause
[TRANSFORM   transform_clause]
[JOIN_BY     join_expression]
[SELECT_BY   select_clause]
[NOSYNC]
;

where

SrcName is the name of the data source.

When the System is loaded, a File and View named SrcName is created.

The View is used as an input view for relate (-iSrcName)to describe the input records. The target field names 
in the source_clause (and therefore View) must match the field names in the IDT in order for these fields to 
be mapped to IDT fields.

Example

define_source SRC05
sourced_from odb:99:uid/pwd@svc
        #SSA_UID#.TESTX05A.RECNUM       RecNum C(5),
        #SSA_UID#.TESTX05A.LASTNAME     $last,
        #SSA_UID#.TESTX05A.FIRSTNAME    $first,
        #SSA_UID#.TESTX05A.MIDDLENAME   $middle,
        #SSA_UID#.TESTX05A.ADDR1        $a1,
        #SSA_UID#.TESTX05A.ADDR2        $a2
transform
        concat ($last,$first,$middle)   Name C(50),
        concat ($a1, $a2)               Addr C(40)
;

User-Source-Table Section       57



The following View-Definition is generated automatically to define the record layout for relate:

VIEW-DEFINITION
NAME=src05
FIELD=RecNum,C,5
FIELD=Name,C,50
FIELD=Addr,C,40

Sourcing from Microsoft Excel
A Microsoft Excel spreadsheet may be used as a data source using an appropriate ODBC driver. It is treated 
as an unsynchronized source database. We present a few tips to make the process easier:

The DSN should be configured appropriately, listing all necessary parameters including the name of the file 
containing the spreadsheet.

The source table name is usually the sheet name followed by a dollar sign. For example, Sheet1$. However, 
as this is a non-standard table name, ODBC requires it to be surrounded by back quotes: ‘Sheet1$‘. 
Unfortunately, back quotes are not permitted by the SDF syntax. This may be overcome by creating a Named 
Range in Excel.

Select the entire sheet, or the portion to be made visible to MDM-RE, followed by the menu options

Insert > Name > Define... and specify a name for the range using alphanumeric characters only (e.g. 
test_named_range). This name is then specified as the table name in the SDF definition.

create_IDT xltest
sourced_from odb:99:ssa/ssa@myExcel
        test_named_range.id (PK),
        test_named_range.name NAME C(50),
        test_named_range.address ADDRESS C(50),
        test_named_range.city CITY C(50),
        test_named_range.state STATE C(2),
        test_named_range.zip ZIP C(10)
NOSYNC
;

Files and Views Sections
These sections are used to define files and views. Files describe the layout of MDM-RE Tables created from 
flat-file input. Views are used to:

• describe the layout of flat-file input data

• transform flat-file input data

• format the output from the Search Server

Data Source

When loading MDM-RE Tables from User Source Tables, the Files Definition and View Definition files are 
created automatically from the User Source Table Definition.

The name of the generated Files definition is the same as the IDT name in the CREATE_IDT clause. The View 
name(s) are created by concatenating the IDT name with a sequence number starting from 1.

When loading MDM-RE Tables from flat (external) files, the File and View definitions must be hand-coded. 
The File definition describes the layout of the IDT, while the View Definition describes the layout of the input 
file.

58       Chapter 2: Defining a System



File Definition

A File Definition begins with the FILE-DEFINITION keyword. It is used to describe the layout of the MDM-RE 
Tables. Although it is possible to specify more than one File Definition, only one definition can be in effect for 
each IDT.

A File Definition contains one parameter which is unique to File Definitions. This is the ID= parameter. It is 
mandatory and is used to allocate a unique number to the IDT (for internal use). Specify a positive, non-zero 
number that is less than 2000. File numbers greater than 1999 are reserved for internal use. File numbers 
must be unique within the scope of the target database.

View Definition

A View Definition begins with the VIEW-DEFINITION keyword. As many views as necessary may be defined. A 
view normally consists of a subset of fields taken from a File Definition. It may contain additional fields that 
are added by user-defined Transformations (see below).

Syntax

The definition starts with a name as described above. It is followed by:

NAME=

This character string names the file or view. It may be up to 32 bytes long.

ID=

This parameter is only specified for File Definitions; see the File Definition section above.

FIELD=name,format,length[,PKn][,Xform]

The parameter is used to define the fields that comprise the File or View. The maximum number of fields is 
platform specific. The order of FIELD definition statements determines the physical ordering of fields on the 
database record and/or view.

Name A character string that names a field. It may be up to 32 bytes in length.

Format The format of the field. This may be defined using a pre-defined format, or as a customized format. 
See the section below.

Length The length of the field in bytes. The maximum length is platform specific.

PKn defines this field as a Primary Key. This is useful when creating an IDT from a flat-file, which will 
subsequently be used to create a Link Table with the Link-PK option.

Xform A transform definition. Refer to Transformations section for details.

GROUP=name, number of members

The parameter is used to define a group of repeating fields within a file or view. A GROUP= specifies that the 
fields defined within the group definition should be defined as multiple adjacent fields of equal length. The 
group definition must be terminated by END_GROUP The field names defined by the group will be of the format 
FIELD=fieldname_xwhere x = 2..n and n is the number of members in the group.

Name A character string that names the group. It may be up to 32 bytes in length.

number of members The number of members in this repeating group.

File & View Data Types

The format of a field may be specified in one of two ways:

• a pre-defined format

• a customized format definition

Files and Views Sections       59



A pre-defined format is a shorthand way of selecting a pre-defined group of field attributes. It is selected by 
specifying the pre-defined name for the <format> value.

A customized format definition is used when no pre-defined format exists for the combination of attributes 
that you desire. You may combine various field attributes to your liking (as long as they do not conflict).

Pre-defined Formats

The following table lists the pre-defined formats and their attributes:

Format Compression Data Base Conv Just Filler

F Fixed Text N/A No Right ’ ’

C Variable Text N/A No Left ’ ’

V 17 V-type Text N/A No Left ’ ’

B 18 Variable Binary N/A No Left 0x00

I 19 Variable Integer 0 Yes Right 0x00

G Fixed Integer 0 Yes Right 0x00

N 20 Variable Numeric 10 Yes Right ’0’

X 20 Variable Numeric 16 Yes Right ’0’

Z 20 Variable Numeric 36 Yes Right ’0’

R 20,21 Variable Numeric 10 Yes Right ’ ’

W 22 Variable Binary N/A No Left 0x0020

17 V-type will compress multiple embedded blanks from the input view into one blank in the target field. 
Therefore it should only be defined in a File-Definition. It has no effect in a View-Definition.

18The Binary data type can hold any unstructured data. It is not necessarily a base 2 number.

19Valid integer lengths are 1, 2, 3 or 4 bytes.

20The Numeric data type is the printed representation of an unsigned (positive) number.

21R format is equivalent to N, but with leading spaces instead of zeroes.

22 W format represents a "wide" UNICODE character encoded as UTF-16. Note that the byte order for filler 
value is platform specific. The length of the field in the File-Definition / View-Definition is defined in bytes. A 
field definition of W(n) bytes creates an associated database column of type NVARCHAR(n/2) characters.

Compression

The compression attribute determines how a field is compressed/decompressed when writing to/reading 
from the database. Fixed compression is effectively no compression at all; the field is stored/retrieved 
without any compression or decompression. Variable compression means that the data will be compressed 
when written to the database and decompressed (to match the view definition) when read from the database. 
The filler character and justification determine which character is stripped /added from the record and from 
which end.

60       Chapter 2: Defining a System



V-type compression will compress multiple adjacent blanks into a single blank. This can occur anywhere 
within the field. Note that this process is irreversible. Decompression will only add blanks at one end of the 
field.

Filler Character/Justification

The decompression will add the filler character to the field to pad it to the necessary length

The compression logic will remove the filler character from either the left or right end of the field (depending 
on justification), until no more filler characters are left or the field is empty. The decompression will add the 
filler character to the field to pad it to the necessary length (as specified in the view). If the field is left 
justified, the truncation/padding occurs on the right and vice-versa.

Data Type

The Data type of the data. The following data types are supported:

• Text character data

• Binary binary (unstructured) data

• Integer 1, 2, 3 or 4 byte unsigned integers

• Numeric fields containing printable numeric digits ’0’ to ’9’ and ’a’ to ’z’ (when using base 36).

Base / Base Conversion

The Integer and Numeric data types support base conversion, that is the view may request a base which 
differs from the base of the stored data. Base conversion is only possible for bases 2 through 36.

Customized Format Definition Syntax

A customized format definition consists of a pre-defined format plus overrides for some of its default 
attributes. The syntax is as follows:

predefined_format ( format_ specifier, ... )

where format_specifier is one of the following:

• Fixed fixed compression

• Text text data

• Ljust left justification

• Rjust right justification

• Filler(<char>) filler character

• Base(nn) base nn

Examples

This is an example of a pre-defined format definition that creates a twenty-four byte character field named 
EmployeeName.

FIELD=EmployeeName,C,24

This is an example of a field definition with a customized format.

FIELD=MyBitFlags,X (Base(2),Filler(0)),16

It represents a numeric field of 16 bytes of base 2 (binary base). Each position will be either ’zero’ or ’one’ 
and leading zeroes (the filler) will extend the value on the left if it is shorter than 16 characters. If we want the 
value as four hexadecimal digits instead then we could use this format:

FIELD=MyBitFlags,X (Base(16),Filler(0)), 4

It happens to be equivalent to the predefined format X, so it could also be written as:

Files and Views Sections       61



FIELD=MyBitFlags, X, 4

This is an example of a field definition with a customized format that is based upon the pre-defined format C 
but overrides the justification attribute:

FIELD=Address, C(Rjust), 50

Transformations

Fields within a View Definition may specify an optional transformation. A transformation definition follows 
the field’s length attribute and has the following format:

Xform(transform [, parameter-list])

where transform is one of the following:

insert-constant inserts a character string into the current source field. The parameter-list contains the 
character string.

uppercase converts a source character field to upper case.

lowercase converts a source character field to lower case.

insert-field inserts the current source field into the target field at an offset specified in the parameter list.

concat concatenates the current source field to the target field, leaving a space between the two fields.

append appends the current source field to the last non blank character in the target field.

append-string appends a character string to the last non blank character in the source field. The parameter-
list contains the character string.

filler a no operation transformation

fill fill the source file with the string specified in the parameter-list.

The example below shows a generalized transform as part of an element in a View Definition.

Transform either manipulates the src field of the view (see example below) or a target field specified in the 
parameter-list(and corresponding to a field in the File Definition). insert-constant, uppercase, 
lowercase, append-string and fill work on the src field while insert-field, concatenate and append 
put src data into the specified target field.

FIELD=src, format, size, XFORM(transform [, parameter-list])

Multiple transformations can be defined on a single target field. They are processed in the order specified in 
the parameter-list for concatenate and append, while multiple insert-string transforms will occurs in the 
order they are specified. Multiple transforms should not specify the same order as in:

FIELD=Name1, C, 15, XFORM(concatenate, "target name,1")
FIELD=Name2, C, 5, XFORM(concatenate, "target name,1")

The behavior in such cases is undefined.

Append

The append transform has the following syntax:

Xform (append, "target field-name, order")

field-name specifies the field to which the current field will be appended. order specifies the order in which to 
append multiple fields to field-name. Specify a number, starting from 1.

62       Chapter 2: Defining a System



Concatenate

The concatenate transform has the following syntax:

Xform (concatenate, "target field-name, order")
or
Xform (concat, "target field-name, order")

field-name specifies the field to which the current field will be concatenated. order specifies the order in 
which to concatenate multiple fields to field-name. Specify a number, starting from 1.

Insert-Field

The insert-field transform has the following syntax:

Xform (insert-field, "target field-name [,offset]")

field-name specifies the field to which the current field will be appended at offset offset. The default value 
of offset is 0.

Insert-Constant

The insert-constant transform has the following syntax:

Xform (insert-constant , "Constant String")

This transform inserts a constant string into the source field.

A special expression "Numeric(NUM)" can be used instead of a literal string. This means that the first posit 
"Numeric(NUM)"ion of the target field will contain the character value of the decimal number NUM using the 
computer’s native character set. If the target fields is longer than one byte, the remaining bytes are filled with 
spaces.

UpperCase

The uppercase transform has the following syntax:

Xform (uppercase)

It will upper case the contents of the source field.

LowerCase

The lowercase transform has the following syntax:

Xform (lowercase)

It will lower case the contents of the source field.

AppendString

The append-string transform has the following syntax:

Xform (append-string, "Constant String")

The Constant String is appended after the last non blank space in the source field. If the Constant String 
is larger than the space left in the source field it will over write characters in the source field. For example in 
the transform below if the field inserted into LABEL from the input record is 3 characters (no trailing spaces) 
the @ symbol will overwrite the last character in LABEL.

FIELD=LABEL, C, 3, Xform(append-string, @),

Fill

The fill transform has the following syntax:

Xform (fill, "Fill string")

Files and Views Sections       63



A special expression "Numeric(NUM)" can be used instead of a literal string. This means that the target field 
will be filled with the character value of the decimal number NUM using the computer’s native character set.

Example 1

VIEW-DEFINITION
*==============
NAME=DATAIN
* Insert "hello" into Title
FIELD=Title, C, 10, Xform(insert-constant, "hello")
* Upper case the contents of Surname
FIELD=Surname, C, 15, Xform(uppercase)
* Lower case the contents of First
FIELD=First, C, 45, Xform(lowercase)
* Insert Addr1 in ADDR at offset 0
FIELD=Addr1, C, 45, Xform(insert-field, "target ADDR")
* Insert Addr1 in ADDR at offset 45
FIELD=Addr2, C, 45, Xform(insert-field, "target ADDR,45")
* Concatenate Name1 to the contents of NAME in sub field 1
FIELD=Name1, C, 45, Xform(concatenate, "target NAME,1")
* Concatenate Name2 to the contents of NAME in sub field 2
FIELD=Name2, C, 45, Xform(concatenate, "target NAME,2")

Example 2

The view definition in this example expects a 5 field input record where the fields are Name1 (15 chars), 
Name2 (5 chars), Category (4 chars), Status (2 chars) and Reference (4 chars). All of these fields are stored 
in a single output field name (50 chars). The order of the input fields is swapped around in the output and a 
number of labels are inserted.

VIEW-DEFINITION
*==============
NAME=DATAIN
* Read all the input fields and store them in
* the order needed
FIELD=Name1, C, 15, Xform(concatenate, "target name,8")
FIELD=Name2, C, 5, Xform(concatenate, "target name,6")
FIELD=CAT, C, 4, Xform(concatenate, "target name,4")
FIELD=STAT, C, 2, Xform (append, "target name,2")
FIELD=REF, C, 4, Xform (append, "target name,10")
* Set up the first label
FIELD=LABEL1, C, 3, Xform (append-string, LB1),
        Xform(append, "target name,1"),
        Xform(concatenate, "target name,9")
* Set up the second label
FIELD=LABEL2, C, 3, XFORM(insert-constant, LB2),
        Xform(concatenate, "target name,3"),
        Xform(concatenate, "target name,7")
* Fill Filler with the symbol |
FIELD=Filler, C ,2, Xform(fill, "|"),
        Xform(append, "target name,5")

For this view an input record of:

La Perouse JamesEXPLDD4778

Would produce an output name field of:

LB1DD LB2 EXPL|| James LB2 La Perouse LB14778

Where the transforms occurred in the following order:

1. append LABEL1 (LB1),

2. append STAT (DD),

3. concatenate LABEL2 (LB2),

4. concatenate CAT (EXPL),

64       Chapter 2: Defining a System



5. concatenate Filler (||),

6. concatenate Name2 (James),

7. concatenate LABEL2 (LB2),

8. concatenate Name1 (La Perouse),

9. concatenate LABEL1 (LB1) and

10. append REF (4778).

Output Views

Output views are used to format search results returned by the Search Server. Rows are returned in IDT 
format when no output view has been specified or in a different format when an output view has been 
defined.

Output Views are also used to inject search statistics into the output.

Statistical Fields

When the following field names are specified in the output view, the Search Server will provide statistics 
gathered during the search process.

Note that some data in the output of a search is specific to each row. For example, the score is a property 
that changes for each row. Other statistics are relevant to the search set as a whole. For example, the 
number of candidates selected is the same for each row returned because it is a property of the set.

Also note that it is not possible to retrieve search statistics if the search does not return any rows. In this 
case, a dummy IDT row (filled with asterisks) can be returned, solely as a vehicle to return the statistics. In 
this situation, the count from an ids_search_start will return 0 but ids_search_get can be called to return 
the dummy row.

Note: If the Search-Definition specifies a Score-Logic without a Key-Score-Logic and an IDX with full key data 
is available, MDM-RE will upgrade the Score-Logic to Key-Score-Logic as the latter is more efficient. In this 
case one should request KSL-* statistics instead of SL-* statistics.

Field Name Description

IDS-SCORE Score from matching

IDS-IDX-IO Number of IDX rows retrieved

IDS-IDT-IO Number of IDT rows retrieved

IDS-MS-SEARCH-NUM Ordinal number of the successful search within a Multi-Search starting from 1. 0 is 
returned for unsuccessful searches. See the SEARCH-LIST Multi- Search parameter 
for more details.

IDS-XXX-ACCEPTED-COUNT Number of records accepted by scoring

IDS-XXX-UNDECIDED-COUNT Number of undecided records

IDS-XXX-REJECTED-COUNT Number of rejected records

IDS-XXX-TOTAL-COUNT Total number of records scored

where

XXX is KPSL (Key-Pre-Score-Logic), KSL (Key-Score-Logic), PSL (Pre-Score-Logic) or SL (Score-Logic).

Files and Views Sections       65



C h a p t e r  3

Flattening IDTs
This chapter includes the following topics:

• Concepts, 66

• Syntax, 69

• Flattening Process, 70

• Flattening Options, 71

• Tuning / Load Statistics, 72

• Design Considerations, 73

Concepts
Flattening is the process of packing denormalized data created by joining tables in a "one to many" (1:M) 
relationship, into repeating groups in the IDT. It can significantly increase search performance.

The problem

A typical database design consists of multiple tables that have been normalized to some degree. While full 
normalization is logically elegant and efficient to update, it performs poorly for read access when the tables 
need to be joined to satisfy a query.

MDM-RE provides very fast search performance by storing all search, matching and display data together in 
the same table, thereby avoiding the need for costly joins at search time. The MDM-RE Table Loader 
denormalizes data while creating the IDT.

A disadvantage of denormalization is the explosion in the number of rows that occurs when joining tables 
that have a 1:M relationship, since the SQL engine produces one row for every possible combination. As a 
result, storage, retrieval and matching costs increase.

To overcome this problem, MDM-RE can collapse (flatten) related denormalized rows into one IDT row that 
contains repeating groups. This means:

• significantly faster search performance, and

• reduced database storage costs for the IDT and IDXs

The most significant performance benefits occur when the Key-Field for the IDX is sourced from the 1 table in 
the 1:M relationship. This is due to the fact that the use of repeating groups for the M data reduces the 
number of rows containing the same Key-Field value, which in turn produces less keys to index (at load time) 
and less candidates to retrieve and match at search time.

66



Logical Design

Consider the following logical design where the tables have been fully normalized. Each employee of a 
contracting business can work for many clients. Each client’s business premises may have many phone lines.

Suppose there is only one employee currently:

Emp_Id Name

E001 Joe Programmer

Joe contracts his services to three companies located around the state:

Company_Id Address FK_Emp_Id

C001 3 Lonsdale St E001

C002 19 Torrens St E001

C003 4 Rudd St E001

Each company has the following phone numbers:

Company_Id Phone

C001 62575400

C001 62575401

C002 98940000

C003 52985500

C003 52985501

C003 52985502

Concepts       67



Denormalized Data

A simple SQL query to denormalize this information will generate six rows of data because Joe Programmer 
works at three offices, each having multiple phone numbers.

Emp_Id Name Company_Id Address Phone

E001 Joe Programmer C001 3 Lonsdale St 62575400

E001 Joe Programmer C001 3 Lonsdale St 62575401

E001 Joe Programmer C002 19 Torrens St 98940000

E001 Joe Programmer C003 4 Rudd St 52985500

E001 Joe Programmer C003 4 Rudd St 52985501

E001 Joe Programmer C003 4 Rudd St 52985502

If the search application needs to search on Name, MDM-RE will create fuzzy keys on the Name column.

As there are many rows with the same value, duplicate keys will be created and maintained. At search time, 
multiple rows will be retrieved and matched.

Flattened Data

To reduce the number of rows, MDM-RE can flatten the six rows into one.

This is achieved by declaring some columns in the IDT as repeating fields. If data sourced from the M tables 
(Company_Id, Address and Phone) were defined to repeat up to six times, all of the data could be flattened 
into one row.

Note: The table below has been turned on its side due to space limitations. It represents a single row of data 
with column names on the left and data values on the right. Note how the data from the "1" Table no longer 
repeats.

Column Value

Emp_Id E001

Name Joe Programmer

Company_Id [1] C001

Company_Id [2] C002

Company_Id [3] C003

Address [1] 3 Lonsdale St

Address [2] 3 Lonsdale St

Address [3] 19 Torrens St

Address [4] 4 Rudd St

68       Chapter 3: Flattening IDTs



Column Value

Address [5] 4 Rudd St

Address [6] 4 Rudd St

Phone [1] 62575400

Phone [2] 62575401

Phone [3] 98940000

Phone [4] 52985500

Phone [5] 52985501

Phone [6] 52985502

An IDT with this structure would have only one row and the IDX would contain six times fewer Name keys. The 
number of candidates selected during a search on the Name IDX would also decrease by a factor of six.

Note: This structure does not improve the performance of an IDX created on the Address fields, as they 
contain duplicate values. However, Flattening-Options (discussed later) can be defined to remove duplicate 
entries from the repeating fields in order to provide some benefit as well.

Syntax
Flattening is enabled by defining:

• the layout of the denormalized (joined) data,

• the layout of the flattened IDT, including the maximum number of occurrences for repeating fields,

• the columns used to determine how to group denormalized data (Flattening-Keys), and

• Flattening-Options.

IDT-Definition

The Denormalized-View keyword is used to define the name of the View-Definition that provides the layout 
of the denormalized data. The denormalized data can be read from either a flat-file or UST. If read from a flat-
file, you must provide a View-Definition. The view’s name must be the IDT name, suffixed with "-DENORM". If 
the data is sourced from USTs, a View-Definition is generated automatically from the User-Source-Tables 
section.

Note: A denormalized view is only generated when the UST Definition contains repeating fields defined with 
the [ ] notation.

The Flatten-Keys keyword is used to define the IDT columns used to group (sort) denormalized rows. If 
more than one column is specified, use a comma-separated list surrounded by quotes ("). The denormalized 
data are sorted by the Flatten-Keys and all rows with the same key value are packed into the same flattened 
row. Refer to the Flattening Process section for details.

The Options keyword in the IDT-Definition is used to specify various flattening options that affect how data is 
packed into the repeating groups. Refer to the Flattening Options section for details.

Syntax       69



For example,

IDT-Definition
*==================
NAME= IDT112
DENORMALIZED-VIEW= IDT112-DENORM
FLATTEN-KEYS= "EmpId,EmpName"
OPTIONS= Flat-Remove-Identical

IDT Layout

The IDT layout can be provided as a File-Definition (when sourcing from a flat-file) or from the User-
Source-Table section when sourcing from USTs. The IDT layout must be identical to the Denormalized-View 
(same column names, types, and order) with the exception that some columns are defined to repeat.

Repeating fields are defined by immediately following the target-field name with [n] where n represents the 
maximum number of occurrences for a repeating field.

Note: All columns extracted from non-primary (M) tables should use [n] notation.

For example,

Section: User-Source-Tables

create_idt IDT112
sourced_from   odb:99:ssa/ssa@ora817
        Employee.EmpId (PK1)       EmpId,
        Employee.Name              EmpName,
        Address.CompanyId          CompanyId [6],
        Address.Address            Address   [6],
        Phone.Num                  Phone     [6]
join_by
        Employee.EmpId = Address.EmpFK,
        Address.CompanyId = Phone.CompanyId
sync

Flattening Process
Denormalized rows are read using the Denormalized-View and then sorted by the flattening keys.

The sorted data is used to build IDT rows. Data is moved from denormalized rows into an IDT row. An IDT 
row is written out either

• at the break (change) of a flattening key value, or

• when the IDT row is full

The latter will occur when a repeating field is full. If more data arrives with the same key value, additional IDT 
rows are built with the same key value.

The construction phase also verifies that non-repeating fields have the same value in all denormalized rows 
because it is not possible to store more than one value. An incorrect design or selection of the flattening keys 
can result in this situation. If this occurs the load will issue warnings similar to this:

Warning: Illegal break in denormalized record n, field f: ’xxx’

Flattening process uses the default values for threads and memory that are built into sorting routine. User 
can set the environment variables with appropriate values, in order to get better load/sort performance.

70       Chapter 3: Flattening IDTs



For example, to set 16 threads and a 1 GB sort buffer

SSASORTOPTS=:sortnthreads+16
SSASORTMEM=1g

Environment Variables

SSASORTOPTS

The above variable is to define the sorting options that can be used.

SSASORTMEM

This is used to define the maximum amount of memory to be used by MDM-RE-SORT. It accepts the 
sizes in bytes/KB/MB/GB.

SSASORTMEM=n[k|m|g]

n represents the number of allocation units

k Kilo-bytes (KB)

m Mega-bytes (MB)

g Giga-bytes (GB)

Note that the actual size of each extent is actually one less that the size nominated by this parameter.

Flattening Options
Options for controlling how data is packed into repeating fields can be specified with the IDT-Definition’s 
OPTION= parameter:

Flat-Keep-Blanks

By default, blank fields are not moved into a repeating group. This option keeps blank fields, thereby 
maintaining positionality between the groups, allowing one to infer that, for example, the nth Company_ Id is 
related to the nth Address. This option requires the same number of repeats to be defined for all repeating 
groups.

Flat-Remove-Identical

By default, identical values in a repeating field are kept, maintaining positionality. With this option enabled, 
duplicate values are removed, so that each repeating field can be sized according to the number of unique 
values it is expected to hold. This option does not maintain positionality.

Removal of identical values only applies to the current IDT row under construction. If a repeating field 
overflows causing another IDT row to be created with the same key values, the values stored in the previous 
row are not considered when searching for duplicates.

Flattening Options       71



Tuning / Load Statistics
The Table Loader produces statistics that can be used to select appropriate values for repeat counts. For 
example:

Flatten:................................  Denormalized-In  4196
Flatten:                                  Unique-Keys      2094
Flatten:                                  IDT Out          2894
Flatten:                                  alt_ent_num      [ 2]
Flatten:................................                   [ 0]   1585  75.69%
Flatten:                                                               [ 1]   363     
93.03%
Flatten:                                                               [ 2]       71     
96.42%
Flatten:                                                               [ 3]      24     
97.56%
Flatten:................................                   [ 4]      14     98.23%
Flatten:                                                               [ 5]     9     
98.66%
Flatten:                                                               [ 6]     9     
99.09%
Flatten:                                                               [ 7]     3      
99.24%
Flatten:................................                   [ 8]     2   99.33%
Flatten:                                                               [ 9]     7     
99.67%
Flatten:                                                                 [ 10]    3     
99.81%
Flatten:                                                               [ 11]    0    
99.81%
Flatten:................................                   [ 12]    0    99.81%
Flatten:                                                              [ 13]      0   
99.81%
Flatten:                                                               [ 14]      0    
99.81%
Flatten:                                                              [ 15]    2   99.90%
Flatten:................................                   [ 16]    0     99.90%
Flatten:                                                               [ 17]    0      
99.90%
Flatten:                                                               [ 18]      1    
99.95%
Flatten:                                                                 [ 19]      0   
99.95%
Flatten:................................                   [ 20]    0    99.95%
Flatten:                                                               [ 21]      0    
99.95%
Flatten:                                                               [ 22]      0    
99.95%
Flatten:                                                                [ 23]      0    
99.95%
Flatten:................................                   [ 24]    0     99.95%
Flatten:                                                               [ 25]    0     
99.95%
Flatten:                                                   [ 26]    0     99.95%
Flatten:                                                   [ 27]    1    100.00%

This report shows that 4196 rows were created as a result of the denormalization (SQL join) process, while 
2094 of those rows contained unique keys (FLATTEN_KEYS=). After flattening, 2894 rows were loaded to the 
IDT. This means that 800 rows overflowed to secondary rows because the number of repeats was 
insufficient to hold all occurrences.

The next part of the report shows a histogram for each repeating field. The field alt_ent_num was defined to 
have two repeats ([2]) for this load test. The histogram tabulates the actual number of repeats in each 
normalized row prior to flattening and a cumulative percentage of rows. For example, the line

Flatten: [ 1] 363 93.03%

72       Chapter 3: Flattening IDTs



states that 363 rows have only one occurrence, and this accounts for 93% of the total rows. The table also 
tells us that the maximum number of occurrences was 27 and that 1585 rows had no value for this field.

The cumulative percentage can be used to select an appropriate value for the number of repeats. For 
example, if alt_ent_num were defined to have six repeats, over 99% of values would fit into one IDT row (no 
overflows).

Design Considerations
Synchronization

Flattening effects the selection of PK field(s). An unflattened IDT created from a 1:M relationship normally 
has a compound primary key constructed from a key field from the 1 table concatenated with a key field from 
the M table to ensure a unique PK. For example,

Assume the following rows were created by denormalization:

Emp1 Addr1

Emp1 Addr2

Emp1 Addr3

If these rows are flattened into a single row, Emp could serve as a unique primary key:

Emp1 Addr1 Addr2 Addr3

If the number of address field repeats in the flattened table was set to [2], the flattening would produce two 
rows (due to the overflow), rendering Emp unsuitable to be a unique PK.

Emp1 Addr1 Addr2

Emp1 Addr3

Unless you can guarantee that the number of repeating fields are adequate to hold all occurrences of the 
repeating data, you should define the PK with a Sync Level of Allow_Duplicate_PK. Flattening will improve 
synchronization performance (even when duplicates are allowed) by reducing the number of rows processed 
for a particular key value.

Matching on Multiple Repeats

Matching on multiple repeating fields can be problematic if there are overflow records. For example, suppose 
we have one Identity (ID= I1). This identity has three alias names (N1, N2 and N3) and three addresses (A1, 
A2 and A3).

Full denormalization (without flattening) will produce 9 rows:

I1 N1 A1
I1 N1 A2
I1 N1 A3
I1 N2 A1
I1 N2 A2

Design Considerations       73



I1 N2 A3
I1 N3 A1
I1 N3 A2
I1 N3 A3

If you define the IDT layout as Name [3] and Addr [3] , you will get one flattened row:

I1 N1 N2 N3 A1 A2 A3

If you define the IDT as Name [2] and Addr [2] you will get two rows due to the overflow:

I1 N1 N2 A1 A2
I1 N3 A3

The above layout is a problem if you search on N3 and match on N3 + A1 because those values are in 
different rows. The solution is an IDT layout with ID , Name , Addr [3] which provides:

I1 N1 A1 A2 A3
I1 N2 A1 A2 A3
I1 N3 A1 A2 A3

This is still an improvement over 9 rows. When only one matching field repeats, it is also valid to use 
overflows: ID , Name , Addr [2] which provides:

I1 N1 A1 A2
I1 N1 A3
I1 N2 A1 A2
I1 N2 A3
I1 N3 A1 A2
I1 N3 A3

So the bottom line is that you have to design your IDT carefully. Do not attempt to match two repeating fields 
unless you can guarantee that all occurrences will be in one flattened row.

74       Chapter 3: Flattening IDTs



C h a p t e r  4

Link Tables
This section describes about Link Tables.

Concepts

An Identity Link Table (IDL) is an SQL accessible table that contains information about the relationship (links) 
between rows of an IDT. A link has directionality. That is, a parent row is linked to a child row. The strength of 
the link is defined by a score (0 to 100).

Defining

Links are established by a search and matching process. A Multi-Search-Definition is used to define the

• name of the Link Table (IDL-NAME=),

• search(es) that are used to establish the relationships,

• options to control the content of the Link Table.

For example,

Multi-Search-Definition
*========================
NAME=                     search-link
IDL-NAME=                 IDL05
IDT-NAME=                 IDT05
SEARCH-LIST=             search-1,search-addr
OPTIONS=                 Full-Search, Link-PK
*

Creation Options

Link-PK adds the PK field values from the parent and child records to the Link Table. Refer to section Layout 
for details.

Link-Hard-Limit prevents adding rejected candidates to the Link Table. The default is to add all candidates to 
the table.

Link-Self adds links for rows that can find themselves. By default, links are not stored for these rows.

Layout

A standard Link Table contains the following columns:

Column Name Meaning

RECID A unique record ID for this Link Record

IDS_PARENT The RECID of the parent IDT row

75



Column Name Meaning

IDS_CHILD The RECID of the child IDT row

IDS_SCORE Result of scoring parent with child (0-100)

The default table only stores the RECIDs of IDT rows because they are guaranteed to be unique.

The Multi-Search Option Link-PK instructs MDM-RE to inject the PK columns of the parent and child rows 
into the IDL as well. The parent and child column names are prefixed by IDS_P_and IDS_C_ respectively.

Creating

A Link Table is created from the Console with Tools > Link Table, or by running relate with the -xl switch.

Multiple-threads are supported, so you can create the IDL with -n3 for example. The Synchronizer does not 
maintain the relationships in Link Tables.

76       Chapter 4: Link Tables



C h a p t e r  5

Loading a System
This chapter includes the following topics:

• Overview, 77

• System States, 77

• Creating a System, 78

• Editing a System, 79

• Implementing a System, 81

• System Status, 81

• System Backup / Transfer, 82

Overview
This section describes the steps necessary to create and maintain a new System. These steps are carried out 
through the MDM-RE Console.

To use the Console Client, the Console Server must be running, see the OPERATIONS guide, Starting the 
Console Server section.

System States
A system has three main states:

• Documented

• Loaded

• Implemented

A Documented System is stored in the Rulebase in unparsed form. It holds a copy of the definitions read 
from an SDF file or cloned from an existing system. It has not been parsed yet, so the System rules can be 
incomplete or may contain syntax errors.

A Documented System is converted into a Loaded System by parsing it (System > Load button). The parsing 
process will check the syntax and semantics of the rules and convert them to an executable form.

The executable rules are stored in the Rulebase ready for use by other MDM-RE processes such as the Table 
Loader, Search Server and Update Synchronizer.

77



An Implemented System is one that has been physically implemented on the target database. This means 
that the rules stored in the Rulebase have been executed by the Table Loader to create IDTs, IDXs and IDLs. 
To achieve this, click System Load IDT button. An Implemented System is available for searching and 
synchronization.

Creating a System
You can create a system from an SDF or clone a system that you currently loaded. You can also launch the 
SDF Wizard and create a system in the SDF Wizard.

To create a system, in the MDM Registry Edition Console, click System > New, and select one of the following 
options:

Create a System from an SDF
This option reads an SDF and loads it as a document. This option parses the SDF to create executable rules. 
Provide the following values:

• Name and path of the SDF. Store the SDF on a file system that is accessible from the computer where the 
Console Server runs. If you do not specify the path, the default directory for the SDF is SSAWORKDIR.

• System Name. The value must be the same as the name defined in the SDF.

• MDM Registry Edition Database connection information. The information defines the physical database 
that implements the system.

78       Chapter 5: Loading a System



Clone the current System
You can clone a system that you currently loaded and create a system. This option copies the parsed rules 
and changes the system name to a user-specified value. This option does not make any modifications to the 
rules. Use the System Editor to customize the system before parsing and loading it.

Create SDF
This option launches the SDF Wizard. Use the SDF Wizard to create a system from scratch. For more 
information about the SDF Wizard, see the SDF Wizard section.

Editing a System
MDM-RE provides several mechanisms to edit your System.

SDF Wizard

The SDF Wizard provides a simple user interface designed to help new users create a System Definition File 
(SDF) with a minimum of effort and knowledge. The aim of the utility is to make the definition of commonly 
used features as simple as possible, by hiding complexity. Thus, some advanced features of an SDF cannot 
be defined using the wizard.

A System may be created using a data-driven or search-driven approach. A data-driven approach starts by 
defining the underlying table that will be searched, followed by search-strategies. Conversely, a search-driven 
approach defines the search requirements first, followed by the tables and indexes containing the search 
data. Naturally, all necessary search parameters cannot be fully defined without reference to the underlying 
data, so a search-driven approach requires the Search object to be revisited once the data objects have been 
defined. We recommend using a data-driven approach due to its elegance and simplicity.

To assist new users that are unfamiliar with Systems, the wizard contains cheat-sheets that provide step-by-
step instructions for creating the necessary objects to support your search requirements. Cheatsheets are 
accessible through the Help menu.

Note: An SDF cannot be edited with the SDF Wizard if it has been modified by anything other than the SDF 
Wizard. A checksum in the generated SDF is used to detect changes made by an external editor.

GUI System Editor

The System Edit or provides an easy to use interface to change the rules that define a System. It is sensitive 
to the state of objects and prevents editing an object’s definition when it has already been implemented. For 
example the layout of an IDT cannot be changed if it has been loaded. Similarly, you cannot change key 
building rules for an IDX if it is already loaded, nor can you change the Search- Definition(s) used to load a 
Link Table.

Note: The System Editor can only be used to edit systems created using the Console. A System loaded using 
low-level batch utilities cannot be edited.

System Template

The GUI System Editor uses a system template to add new components (IDTs, IDXs, Searches, etc). A system 
template is provided in the Server Installation in ids/systems/system_template.sys. A new template is 
shipped with every Fix CD. The console performs verification of the template when the console is started or 
when a new Rulebase is created. If the current template is not up to date then the template will be imported 
from the new template file. The template must not be edited.

Editing a System       79



Starting

The System Editor is invoked from the Console Client’s System > Edit button. The Editor works on a copy of 
the rules for a given System. If you have ended a previous editing session without Loading the rules, or the 
Load failed, the Editor will prompt you to either:

• Keep previous changes and continue editing, or

• Discard previous changes and restart editing

Editing

A tree structure is used to navigate to the object you wish to edit. Objects that belong in a logical hierarchy 
will appear in the tree structure in two places:

• as an individual node attached to the root of the tree, and

• as part of a hierarchy.

For example, IDXs are attached to their parent IDT and also to the root of the tree. The individual nodes 
attached to the root may be edited, cloned, etc. The nodes in the hierarchical tree structure are present nly to 
highlight the relationship between objects and can not be modified.

If you make any changes to an object, you must either "Save Changes" or "Discard Changes" before moving to 
another object. Saving and discarding only effects the copy of the rules.

The copy of the rules is not parsed until you click the Load button. A successful Load process will replace the 
existing rules with the copy and deletes the copy of the rules. If the Load process fails, the original system 
remains in effect and the copy of the rules you have been editing is available for correction by restarting the 
Editor.

The Close button will exit the editor without saving the most recent changes you have made.

Cloning and Adding

An existing object can be cloned to create a new object of the same type. You will be prompted to name the 
new object after which you can edit it.

If you wish to add a new object that does not already exist, you will need to use the Add button. Click the 
System name in the tree structure and then click the Add button. Select the type of object you wish to add 
and enter a name for it.

Help

Help is available as tool tips. Hover the mouse pointer over the item that you want help for and a tool tip 
appears.

Advanced Options

By default, the Editor display only the most common options that the average user will want to see. If you 
wish to use some of the more advanced options, click the Show Advanced button will enable access to all 
options for a given object.

Rulebase Editor

The Rulebase Editor provides a low-level interface for the maintenance of rules stored in the Rulebase.

To start from the Console Client, click Rulebase > Edit.

Note: The Rulebase Editor is intended only for use by an Informatica Corporation Consultant. Incorrect use 
may damage your Rulebase.

80       Chapter 5: Loading a System



Implementing a System
This step implements the parsed rules by running the MDM-RE Table Loader to:

• extract and denormalize data from the User Source Tables

• create triggers on the User Source Tables (for synchronized systems)

• apply transform rules

• generate keys

• mass load the IDT and its associated IDXs.

u To implement a System, select System > Load IDT. You will be prompted for the name of the Table 
Loader Definition to execute. 
Refer to the OPERATIONS guide, MDM-RE Table Loader chapter for detailed information about the Table 
Loader.

To un-implement a System
A System can be unimplemented if required. This process deletes the database objects that were created 
when the system was implemented. It will delete the following:

• IDTs

• IDXs

• Persistent-IDs

• Forced Link/Unlink rules

• IDLs

• triggers

• transactions stored in the Synchronizer’s Transaction Table

• To un-implement a System, select System > Refresh. 

• To un-implement/refresh only Persistent-ID clusters, select System > Refresh > Select the specific object. 

For more information on Persistent-IDs, refer to the Persistent-ID chapter in this guide.

• To un-implement/refresh only Forced Link/Unlink rules, select System > Refresh > Select the specific 
object. 

The existing rules are moved to a flat file before the system deletes them. These rules can be re-used at a 
later stage. If you want to load these rules again, specify the PID definition to which the Forced Link/
Unlink rules should be associated and the file containing the rules. The Delimiter field should be left 
empty.

For more information on how to load the Forced Link/Unlink rules, refer to the MDM-RE Operations guide.

System Status
Setting a System’s Status attribute controls access rights to its rules. This mechanism can be used to 
prevent accidental changes to the rules. A successful Load of the ID-Tables will automatically change the 
System status to Locked to prevent accidental changes to an implemented System.

To change the status, using the MDM-RE Console, select System > Status button.

Implementing a System       81



The status values in order of increasing restrictiveness are:

• Build (least restrictive)

• Test

• Production

• Locked

• Prototype (most restrictive)

The following table describes the restrictions imposed by these values in terms of the ability to read, update, 
delete or run a System with a given status.

Status Description Read Upd Del Run

Build Under construction 
- unusable

yes yes yes no

Test Uncontrolled - any 
use

yes yes yes yes

Production Relaxed Production yes yes no yes

Locked Frozen production yes no no yes

Prototype Secured prototype - 
read-only use

yes no no no

The System Loader cannot remove a System from the MDM-RE Rulebase unless the System has a status that 
allows "deletion" (that is build or test).

If a status does not have "run" privilege the Search Server will not get access to the Rulebase and therefore 
searches cannot be performed.

Without the "update" privilege (that is prototype or locked), utilities such as the Table Loader cannot be run.

Prototype systems cannot be changed in any way apart from being copied. Informatica Corporation may ship 
sample systems with this status. Customers should not set their systems to prototype status, as they can not 
be altered in any way, including changing the status.

The status of a System only applies protection to the System’s rules stored in the MDM-RE Rulebase. It does 
not apply protection to the MDM-RE Identity Table and Indexes, which can still be affected by MDM-REutilities 
such as dbinit.

System Backup / Transfer
A System’s rules can be written to an operating system file. This file can be used as a backup, or as a 
mechanism to transfer the System to another Rulebase.

Exporting a System will write the parsed rules to a file. Therefore only a Loaded System should be exported. 
Exporting a Documented System will result in an incomplete set of rules.

Export

• To export the system definition, select System > Export.

82       Chapter 5: Loading a System



This will prompt for the name of a file to contain the exported system. The exported system contains all of 
the System rules.

Import
1. To import a System, select System > New. This will prompt for the name of a file that contains the 

system to be imported. 

2. Select the Import System radio button. 

This will prompt for the name of a file that contains the system to be imported.

The file must have been created using the System > Export function using a Rulebase Server of the same 
version that will be used to import it.

Before the import system option is used, it must be Loaded. Use either System > Load

or, System > Edit and then Save & Load.

Once this step is completed, it is possible to Load the ID-Tables.

System Backup / Transfer       83



C h a p t e r  6

Persistent-ID (Dynamic 
Clustering)

This chapter includes the following topics:

• Overview, 84

• Clustering Methods, 85

• Clustering Review Options, 86

• Clustering Options, 88

• Auditing, 90

• Creating Persistent ID, 92

• Persistent-ID Report Format, 94

• Maintenance, 96

• Membership table layout, 96

• API access, 97

• PID Refresh, 97

Overview
The Persistent-ID (PID) feature of MDM-RE facilitates the dynamic creation and maintenance of clusters 
(groups of related records) within an IDT. The clusters persist, since they are stored in an SQL-accessible 
table on the target database, and are dynamic, in the sense that they are maintained by the Synchronizer as 
updates to the IDT are processed.

The clustering relationships, known as memberships, are stored in a table named IDT_Name_MB, which is 
created when the first membership records need to be stored. Multiple clusterings may be stored in the same 
table, since each membership record is qualified by a two-character prefix known as the ClusterId, which 
uniquely identifies the clustering it belongs to.

Records within one cluster have the same Cluster_Number assigned to them. Note that cluster numbers may 
change when, for example, two clusters are merged or split. Thus, cluster numbers themselves do not 
persist. Instead, the relationships between rows will persist, and will be maintained as updates to the IDT 
occur.

Since cluster numbers may change, it is not advisable to propagate them to your source systems. If this is 
unavoidable, the copies must be maintained. As an aid, we provide an audit trail that records all changes 
made to cluster numbers. It is the user’s responsibility to use this information to maintain their copies. 

84



Alternatively, you can avoid the problem by accessing clusters using source Primary Keys, which are 
presumably stable. An API is provided to return all Source PKs in the same cluster, given one of the PK 
values.

In addition to building and maintaining relationships between rows of an IDT, each cluster may optionally 
have a master record, which represents the most accurate version of the data within a cluster.You need to 
refer to the Merge Rules section of this manual for details.

Once merge rules have been defined, the master records are created automatically by the Synchronizer. In 
some cases, it may be desirable to manually check the clustering result, and/or the master records that have 
been created. This process is performed with the Informatica Data Director, which has a graphical user 
interface. Master records are stored in the IDT and are identified by their non-NULL ClusterId. In fact, the 
value in the ClusterId column of the IDT is identical to the ClusterId stored in the Membership table, to link 
both of them to a particular clustering strategy.

Clustering Methods
When you create initial clusters, MDM Registry Edition clusters each record of the identity table. During 
synchronization, MDM Registry Edition reclusters each modified record of the identity table.

Note: MDM Registry Edition considers the record that you want to cluster as a search record and passes it to 
the Search Server to perform a multi-search, and then the clustering process uses the search results.

MDM Registry Edition uses the following clustering methods:

• Best Method

• Merge Method

• Pre-clustered Method

• Seed Method

Best Method
The Best method uses the best match of a search record to cluster it. If the best match with the highest 
score is an accepted match, the Best method adds the search record to the existing cluster of its best match. 
If the search does not return any accepted matches, the Best method creates a cluster for the search record.

Note: If the search returns more than one best match from different clusters, the Best method adds the 
search record to the first cluster.

Merge Method
The Merge method uses all the accepted match records of a search record unlike the Best method, which 
uses only the best match. The Merge method adds the search record to the existing cluster of its best match. 
Additionally, this method merges all other clusters that contain accepted match records to the same cluster. 
If the search record does not match any existing records, the Merge method creates a cluster for the search 
record.

The Merge method can result in a large number of records in the merged cluster, so avoid using the loose 
matching criteria when you use the Merge method.

Use the Merge method when aliasing issues might lead to an incomplete result. For example, to identify a 
family that lives in the same address, define a multi-search that searches names and addresses. The Merge 
method can cluster everyone together even if the spouses have different surnames.

Clustering Methods       85



Note: When two or more existing clusters merge into a single cluster, it is a merge operation. A new record 
joining an existing cluster is an add operation.

Pre-Clustered Method
The Pre-clustered method uses a specific column of an identity table to create initial clusters. For example, if 
the source data includes an identifier, use the Pre-clustered method to add all the records that contain 
identical identifiers in the same cluster. Use the Pre-clustered method only to build initial clusters. To 
maintain the clusters, use the Best or Merge clustering method.

Seed Method
The Seed method creates a cluster for each record of an identity table. The Seed method does not perform 
any search. Use the Seed method only to build initial clusters. To maintain the clusters, use the Best or Merge 
clustering method.

Clustering Review Options
You can use the clustering review options to flag the clusters for manual review after you perform clustering 
with the Best or Merge method.

You can use the following clustering review options:

• Best-Undecided-Review. Applicable only to the Best clustering method.

• All-Undecided-Review. Applicable only to the Best clustering method.

• Pre-Merge-Review. Applicable only to the Merge clustering method.

• Post-Merge-Review. Applicable only to the Merge clustering method.

• Preferred-Review-Record. Applicable to both the Best and Merge clustering methods.

Best-Undecided-Review
You can use the best-undecided-review option with the Best clustering method. If a search returns undecided 
match records, the Best clustering method creates a cluster for the search record. The best-undecided-review 
option flags the cluster created for the search record and the existing cluster of the best matched record with 
undecided decision. Use Informatica Data Director to manually review the details of the flagged clusters. You 
can merge the clusters or retain them in separate clusters.

For example, you have a record that has John Smith as the name in cluster 1. Add a record with Jay Smith as 
the name to the source table.

During synchronization, the record of John Smith matches the record of Jay Smith with an undecided 
decision. The Best method creates cluster 2 for the record of Jay Smith, and the best-undecided-review 
option flags cluster 1 and cluster 2. Use Informatica Data Director to manually review the details of cluster 1 
and cluster 2.

All-Undecided-Review
You can use the all-undecided-review option with the Best clustering method. If a search returns undecided 
match records, the Best clustering method creates a cluster for the search record. The all-undecided-review 

86       Chapter 6: Persistent-ID (Dynamic Clustering)



option flags the cluster created for the search record and all the existing clusters of the undecided match 
records. Use Informatica Data Director to manually review the details of all the flagged clusters. You can 
merge some or all of the clusters or retain them in separate clusters.

For example, you have records with names, Emma Frost in cluster 1 and Em Feast in cluster 2. Add a record 
with E. Frost as the name to the source table.

During synchronization, the records of Emma Frost and Em Feast match the record of E. Frost with undecided 
decision. The Best method creates cluster 3 for the record of E. Frost. The all-undecided-review option flags 
clusters 1, 2, and 3. Use Informatica Data Director to manually review the details of clusters 1, 2, and 3.

Pre-Merge-Review
You can use the pre-merge-review option with the Merge clustering method. If a search returns any accepted 
match records, the pre-merge-review option flags all the clusters that have accepted match records but does 
not merge the clusters. Use Informatica Data Director to manually review the details of all the flagged 
clusters. You can merge some or all of the clusters or retain them in separate clusters.

For example, you have a record with John as the name in cluster 1 and another record with Samuel as the 
name in cluster 2. Add a record with John Samuel as the name to the source table.

During synchronization, the record of John in cluster 1 matches the record of John Samuel and the records 
have an accepted score between them. The Merge method adds the record of John Samuel to cluster 1. The 
record of John Samuel in cluster 1 matches the record of Samuel in cluster 2, and the records have an 
accepted score between them. The pre-merge-review option flags cluster 1 and cluster 2. Use Informatica 
Data Director to manually review the details of cluster 1 and cluster 2.

Post-Merge-Review
You can use the post-merge-review option with the Merge clustering method. If a search returns any 
accepted match records, the post-merge-review option merges all the clusters that have accepted match 
records and flags the merged cluster. Use Informatica Data Director to manually review the details of the 
flagged cluster. You can split the merged cluster or retain it as a single cluster.

For example, you have a record with John as the name in cluster 1 and another record with Samuel as the 
name in cluster 2. Add a record with John Samuel as the name to the source table.

During synchronization, the record of John in cluster 1 matches the record of John Samuel and the records 
have an accepted score between them. The Merge method adds the record of John Samuel to cluster 1. The 
record of John Samuel in cluster 1 matches the record of Samuel in cluster 2 and the records have an 
accepted score between them. The Merge method merges cluster 2 with cluster 1, and the post-merge-review 
option flags cluster 1. Use Informatica Data Director to manually review the details of cluster 1.

Preferred-Record-Review
You can use the preferred-record-review option with the Best and Merge clustering methods. If the status of 
any cluster is undecided or manual, the preferred-record-review option flags those clusters. Use Informatica 
Data Director to manually review the preferred record of each flagged cluster. You can accept the suggested 
preferred record or create a different preferred record. You can use this option in conjunction with the pre-
merge-review, post-merge-review, or best-undecided-review option.

For example, you have a record that has Jonathan as the name in cluster 1. Add a record with Jonathan 
Richards as the name to the source table.

During synchronization, the record of Jonathan Richards matches the record of Jonathan and the records 
have an accepted score between them. The Merge method adds the record of Jonathan Richards to cluster 1. 
The status of cluster 1 becomes undecided because the merge rules do not return a result for at least one 

Clustering Review Options       87



field. The preferred-record-review option flags cluster 1. Use Informatica Data Director to manually review the 
details of cluster 1.

Clustering Options
You can use the clustering options to define the clustering strategy. A clustering strategy specifies an 
identifier for the strategy, the clustering method, and other options that can enable review or audit feature.

You can use the following parameters to define the clustering strategy:

• Persistent-ID-Prefix

• Persistent-ID-Method

• Persistent-ID-Options

Persistent-ID-Prefix
Use this parameter to specify a two-character identifier for the clustering strategy. Use a different identifier 
for each clustering strategy that searches the same identity table. However, if you want to maintain the initial 
clusters that you create, use the same identifier for the Best or Merge method.

For example, use the Pre-clustered method to create initial clusters with AA as the identifier. To maintain the 
clusters, use the Best or Merge method with AA as the identifier because the Best or Merge method must 
operate on the same clusters that the Pre-clustered method creates.

Persistent-ID-Method
Use this parameter to specify the clustering method.

Choose one of the following clustering methods:
Best Method

The Best method uses the best match of a search record to cluster records and adds the search record 
to the cluster of its best match.

Merge Method

The Merge method uses all the accepted match records of a search record unlike the Best method, 
which uses only the best match. The Merge method adds all the accepted match records to the same 
cluster after merging all the existing clusters of the matched records.

Pre-clustered Method

The Pre-clustered method uses a specific column of an identity table to create initial clusters.

Seed Method

The Seed method creates a cluster for each record of an identity table.

88       Chapter 6: Persistent-ID (Dynamic Clustering)



Related Topics:
• “Clustering Methods” on page 85

Persistent-ID-Options
Use this parameter to specify additional options for the clustering strategy. You can specify multiple 
clustering options separated by commas.

You can use the following clustering options:
Initial

Establishes only initial clustering. During synchronization, this option does not have any effect.

NoNew

If a search record does not match any records, this option discards the search record and does not 
create a cluster for it. Use this option to establish initial clustering when you use multiple intermediate 
clustering strategies.

For example, use the Best clustering method on names to establish initial clustering. When you use the 
Merge clustering method on addresses with the NoNew option, the clustering strategy does not create 
clusters for the names that do not have a matching address.

Pre-Merge-Review

If a search returns any accepted match records, the pre-merge-review option flags all the clusters that 
have accepted match records but does not merge the clusters. Use Informatica Data Director to 
manually review the details of all the flagged clusters.

Post-Merge-Review

If a search returns any accepted match records, the post-merge-review option merges all the clusters 
that have accepted match records and flags the merged cluster. Use Informatica Data Director to 
manually review the details of the flagged cluster.

Best-Undecided-Review

If a search returns undecided match records, the Best clustering method creates a cluster for the search 
record. The best-undecided-review option flags the cluster created for the search record and the existing 
cluster of the best matched record with undecided decision. Use Informatica Data Director to manually 
review the details of the flagged clusters.

All-Undecided-Review

If a search returns undecided match records, the Best clustering method creates a cluster for the search 
record. The all-undecided-review option flags the cluster created for the search record and all the 
existing clusters of the undecided match records. Use Informatica Data Director to manually review the 
details of all the flagged clusters.

Preferred-Record-Review

If the status of any cluster is undecided or manual, the preferred-record-review option flags those 
clusters. Use Informatica Data Director to manually review the preferred record of each flagged cluster. 
You can accept the suggested preferred record or create a different preferred record.

Apply-FLUL

Applies the forced link and unlink rules on the clusters during initial clustering or synchronization.

Audit-Cluster

Audits the maintenance operations that you perform on a cluster. The maintenance operations include 
add, delete, link, unlink, and update task that you perform on the preferred records and comments.

Clustering Options       89



Audit-Record

Audits the maintenance operations that you perform on the members of a cluster. The maintenance 
operations include tracking the members of a cluster and logging the details about the operations that 
you perform on the members of the cluster.

Related Topics:
• “Clustering Review Options” on page 86

Auditing
The auditing of the Persistent-IDs can be enabled at multiple levels. These levels include tracking of changes 
to a cluster, cluster members and preferred records. A further fine grained level auditing can be performed by 
auditing the IDT records to main previous versions.

The auditing of a cluster involves logging of all changes done to a cluster. This level of auditing limits to 
tracking the changes to a cluster level.

The auditing of member records on a cluster involves logging the changes to the member records of a 
cluster. This level of auditing tracks individual members of a cluster based on the operations done on the 
cluster.

The auditing of preferred records on a cluster involves logging of the maintenance operations of the cluster 
and its impact on the preferred record. This level of auditing track the changes done in respect to selection or 
changes done to the preferred record for a specific cluster

For example: When two clusters (say 1 and 2) merge, the cluster level audit would record details to indicate 
cluster 1 merged into cluster 2. The record level audit would record details of each of the records of cluster 1 
that moved to cluster 2. In case the merge resulted in a change in the preferred record the change would be 
captured by the preferred record audit.

The IDT option Audit-PID enables the auditing of Persistent-IDs maintenance operations (add, delete) by 
logging all changes to a database table named <decorated IDT name>_MH. The layout of the Audit Table is 
described in the IDT-Definition section of this manual. This option is now obsoleta.

The Persistent ID options Audit-Cluster, Audit-Record can be used to enable the auditing of Persistent-IDs 
for cluster and member records respectively.

To enable auditing of preferred records (Audit-Preferred) and auditing of member records (Audit-Record) 
on a cluster, it is mandatory to enable the cluster level auditing (Audit-Cluster).

The audit records are stored in an SQL-accessible table named IDT_Name_CA, IDT_Name_RA and IDT_Name_PA 
where IDT_Name is the fully qualified name (database table name) of the IDT being clustered.

Audit table layout

The Cluster audit table contains the following columns:

• RECID is reserved for internal use.

• IDS_TS contains the timestamp in format YYYYMMDDHHMISS

• IDS_CL_ID contains the ClusterId (defined by Persistent-ID-Prefix).

• IDS_CL_NUM contains the ClusterNumber.

• IDS_CL_NUM_TO contains the ClusterNumber of the destination cluster during merge or split operations

90       Chapter 6: Persistent-ID (Dynamic Clustering)



• IDS_OPERATION contains the operation performed. It contains the following values: 1 = add, 2 = delete, 3 = 
link, 4 = unlink, 5 = update, 6 = update of PREFERRED, 7 = update of COMMENT, 8 = update of STATUS, 9 = 
add due to update, and 10 = delete due to update.

• IDS_MODIFIER is reserved for future use

• IDS_FLAG contains flags used to indicate the state of the cluster. It is a bit-field containing the following 
values: 0x0001 = created by automated process, 0x0002 = Manually modified, 0x0004 = new cluster, and 
0x0004 = undecided.

• IDS_IDT_RECID contains the RecID of the corresponding IDT row.

• IDS_IDT_RECID_TO contains the RecID of the matched IDT row.

• IDS_SCORE is the score achieved by the record when it joined the cluster. The first member always has a 
score of 0. Note that scores are not recalculated when additional members join the cluster, so the scores 
do not reflect the state of a cluster at a specific point in time.

• IDS_COMMENT contains the comments

The member record audit table contains the following columns:

• RECID is reserved for internal use.

• IDS_TS contains the timestamp in format YYYYMMDDHHMISS

• IDS_CL_ID contains the ClusterId (defined by Persistent-ID-Prefix).

• IDS_CL_NUM contains the ClusterNumber.

• IDS_CL_NUM_TO contains the ClusterNumber of the destination cluster during merge or split operations.

• IDS_OPERATION contains the operation performed. It contains the following values: 1 = add, 2 = delete, 3 = 
move, and 4 = update.

• IDS_MODIFIER is reserved for future use

• IDS_FLAG contains flags used to indicate the state of the cluster. It is a bit-field containing the following 
values: 0x0001 = created by automated process, 0x0002 = Manually modified, 0x0004 = new cluster and 
0x0004 = undecided

• IDS_IDT_RECID contains the RecID of the corresponding IDT row.

• IDS_CLACT_RECID contains the RecID of the related cluster audit record.

• Source Primary Key 1
• ...

• Source Primary Key n

A maximum of 36 primary keys is permitted. See the Persistent-ID section for details.

The preferred record audit table contains the following columns:

• RECID is reserved for internal use.

• IDS_TS contains the timestamp in format YYYYMMDDHHMISS

• IDS_CL_ID contains the ClusterId (defined by Persistent-ID-Prefix).

• IDS_CL_NUM contains the ClusterNumber.

• IDS_OPERATION contains the operation performed. It contains the following values: 5 = generate, 6 = 
regenerate, 7 = select, 8 = deselect, 9 = delete, and 10 = modify. The values 7, 8, and 10 are applicable only 
for the Member-is-Preferred option.

• IDS_MODIFIER is reserved for future use.

Auditing       91



• IDS_FLAG contains flags used to indicate the state of the cluster. It is a bit-field containing the following 
values: 0x0001 = created by automated process, 0x0002 = Manually modified, 0x0004 = new cluster, and 
0x0004 = undecided.

• IDS_IDT_RECID contains the RecID of the corresponding IDT row.

• IDS_CLACT_RECID contains the RecID of the related cluster audit record.

• Source Primary Key 1
• ...
• Source Primary Key n

A maximum of 36 primary keys is permitted. Refer to the Persistent-ID section for details.

Creating Persistent ID
You can create a persistent ID in the MDM Registry Edition Console Client or in the batch mode.

When you create a persistent ID, you can also create initial clusters. For the best performance of MDM 
Registry Edition, create initial clusters when you create persistent ID. You can also use updsync or updmulti 
tool to create initial clusters.

Creating Persistent ID through the Console Client
You can create initial clusters through MDM Registry Edition Console Client.

1. Click Tools > Create PID in the MDM Registry Edition Console Client. By default, MDM Registry Edition 
creates clusters and loads clusters into the system. The Create PID dialog box appears. 

2. Select the multi-search definition to create the Persistent-IDs. 

3. Select Create PID report only to create the report. If you select the Create PID report only option, MDM 
Registry Edition creates a Persistent-ID report in the work directory. 

4. Select Use consistent order to use the same order for the data as in the identity table. 

MDM Registry Edition creates the report in the same order as the identity table.

Creating Persistent ID in the Batch Mode
To create persistent ID and perform initial clustering in batch mode, use the idsbatch utility to run the user-
defined jobs.

1. Ensure that the multi-search definition is included in the system definition file. 

2. Create the user-job definition in the system definition file. 

3. Create the user-step definition with the following parameters: 

• Search. The name of the multi-search definition.

• Use consistent order. Specifies whether data that is loaded is consistent with the order of data in the 
source system. Set to true or false.

• Create PID report only. Specifies whether to create persistent ID report and load data. Enter true to 
create the persistent ID report. Enter false to load the data along with persistent ID report.

4. Create a batch input file with the multi-search definition parameters to create the persistent IDs. 

92       Chapter 6: Persistent-ID (Dynamic Clustering)



5. Run the following command to create persistent IDs: 

In Windows

%SSABIN%\idsbatch -h%SSA_CSHOST% -i%SSAWORKDIR%\<batch input file name> -1%SSAWORKDIR
%\<log file name> -2%SSAWORKDIR%\<error log file name>

In UNIX

$SSABIN/idsbatch -h$SSA_CSHOST -i$SSAWORKDIR\<batch input file name> -1$SSAWORKDIR/
<log file name> -2$SSAWORKDIR/<error log file name>

Creating Persistent-ID In Batch Mode - A Scenario
Consider a scenario to perform initial clustering for a multi-search-definition that searches both name and 
address from a data set. The data set contains the information on households in a particular area.

1. Use the following multi-search definition from the system definition file:

multi-search-definition
*======================
NAME=                   Household-Best
IDT-NAME=               IDT_HOUSEHLD
SEARCH-LIST=            "name-search,address-search"
PERSISTENT-ID-PREFIX=   HH
PERSISTENT-ID-METHOD=   Best
PERSISTENT-ID-OPTIONS=  Best-Undecided-Review
OPTIONS= FULL-SEARCH
*

2. Define the following user job definition with the user step definition that passes the multi-search 
definition:

user-job-definition
*==================
NAME=        createAndLoad_Household
COMMENT=     "Create and load PID for Household"
*user-step-definition
*===================
JOB=        createAndLoad_Household
NUMBER=     0
NAME=       "Create PID"
TYPE=       "Create PID"
PARAMETERS= (Search, Household-Best),
("Create PID report only",false)
*

3. Create the batch input file, household_pidinitial.txt, that calls the following user job definition:

# Create and Load PID
# -------------------
action=         job-run
job-name=       createAndLoad_Household
system-name=    householdsys
rulebase-name=  #SSA_RBNAME#
work-directory= #SSAWORKDIR#

4. Start the idsbatch utility and run the following command:
For Windows:

%SSABIN%\idsbatch -h%SSA_CSHOST% -i%SSAWORKDIR%\household_pidinitial.txt
-1%SSAWORKDIR%\hhpidinit.log -2%SSAWORKDIR%\hhpidinit.err
For UNIX:

%SSABIN%/idsbatch -h%SSA_CSHOST -i%SSAWORKDIR%\household_pidinitial.txt
-1%SSAWORKDIR%/hhpidinit.log -2%SSAWORKDIR%/hhpidinit.err

Creating Persistent ID       93



Persistent-ID Report Format
Persistent-ID report has a fixed format with the length defined for each element. Ensure that third-party 
Persistent-ID reports follow the same format.

Use the ToolsLoad PID Report menu in the MDM Registry Edition Console Client to load all Persistent-ID 
reports.

A Persistent-ID report includes the following sections:

• Persistent-ID Report header

• Persistent-ID Report

• End of metadata marker

• Actual data

Persistent-ID Report Header

The Persistent-ID report header contains the following information:

• Database. Name of the database. Internal.

• ViewName. Name of the view. Internal.

Persistent-ID Report

The Persistent-ID report contains the following information:

• RECID. Record ID of the corresponding Identity Table row.

• CLUSTERING-ID. Cluster ID defined by Persistent-ID-Prefix.

• SCORE-COUNT. Internal. Reserved for future use.

• SCORE-ACCEPTED. Internal. Reserved for future use.

• CLUSTER. Number of the cluster.

• MAX-SCORE. The score achieved by the record when it joins the cluster.

• IDT Fields. Identity Table field layout as defined and in the same order of IDT.

• The report layout information follows the report details.

The report layout informations contains the following information:

• Title. Header for field metadata that contains the information about the Field metadata that 
follows.

• Field. Information for each field that includes the offset, length, and format.

End of metadata marker

End of metadata marker includes a marker that indicates the end of metadata immediately followed by 
header for field metadata. End of metadata also contains the information about the Field metadata that 
follows.

Actual Data

Actual data section contains the actual clustering results arranged in the format specified in the 
metadata.

Report Sample

The following sample report explains the structure of a Persistent-ID report.

 Section: User-Source-Tables
 create table 

94       Chapter 6: Persistent-ID (Dynamic Clustering)



                        Idemo ,1
 Sourced_from odb:1:uid/pwd@svc
         #SSA_SRC_UID#.IDS_01_IDEMO.RECID RECID,
         #SSA_SRC_UID#.IDS_01_IDEMO.ids_SourceId SourceId,
         #SSA_SRC_UID#.IDS_01_IDEMO.ids_Name Name ,
         #SSA_SRC_UID#.IDS_01_IDEMO.ids_Addr Address ,
 select_by IDS_CL_ID IS NULL OR IDS_CL_ID =    
''
;
*

Section: Views 
view-definition
*==============
NAME=post-view
FIELD=RECID , N, 10
FIELD=CLUSTERING-ID , C,2
FIELD=CLUSTER-SRC , N,10
FIELD=SCORE-COUNT, R, 6
FIELD=SCORE-ACCEPTED, R, 4
FIELD=ATTRIBUTES, N, 3
FIELD=Cluster, N, 10
FIELD=Max-Score, N, 3
FIELD=SourceId, F, 10
FIELD=Name , C, 50
FIELD=Address , C, 75
FIELD=CL_ID, C,2
*
*

The following table describes the fields in the Persistent-ID report with the offset and length for each 
element:

Offset Length Description

0 1034 Reserved for database file name ( Persistent-ID Report Header )

1035 1034 ViewName (Persistent-ID Report Header )

2069 1034 Persistent-ID Report Header

3103 1034 Persistent-ID Report Field definition - Field (RECID )

4137 1034 Persistent-ID Report Field definition - Field (CLUSTERING-ID )

5171 1034 Persistent-ID Report Field definition - Field (CLUSTER-SRC )

6205 1034 Persistent-ID Report Field definition - Field (SCORE-COUNT)

7239 1034 Persistent-ID Report Field definition - Field (SCORE-ACCEPTED)

8273 1034 Persistent-ID Report Field definition - Field (ATTRIBUTES)

9307 1034 Persistent-ID Report Field definition - Field (Cluster)

10341 1034 Persistent-ID Report Field definition - Field (Max-Score)

11375 1034 Persistent-ID Report Field definition - Field (SourceId)

12409 1034 Persistent-ID Report Field definition - Field (Name)

Persistent-ID Report Format       95



Offset Length Description

13443 1034 Persistent-ID Report Field definition - Field (Address)

14477 1034 Persistent-ID Report Field definition - Field (CL_ID

15511 1034 End of Meta Data marker

16545 VARIABLE (Size of View Layout) IDT Record 1

16545 +
VARIABLE

VARIABLE (Size of View Layout) IDT Record 2

A sample Persistent-ID report is as follows:

DataBase: sdb:file:C:\InformaticaMDMRE910\ids\dpnin6g.pr\ids
ViewName: post-view
Title:     #     FieldName     Off   Len   Fmt
Field:     00000 RECID         00000 00010 N
Field:     00001 CLUSTERING-ID 00010 00002 C
Field:     00002 CLUSTER-SRC   00012 00010 N
...
Field:     00022 CL_ID         00398 00002 C
EndOfMeta: #     FieldName     Off   Len   Fmt

0000000001M20000000000...
0000000005  0000000000...                           
0000000002M20000000000...
...

In the sample report, 0000000001M20000000000 indicates RECID as 0000000001, CLUSTERING-ID as M2, 
and CLUSTER-SRC as 0000000000.

Maintenance
To maintain clusters, simply start the Synchronizer with the normal parameters used for synchronization, and 
add the --se=host:port parameter where host and port refer to the host name and port number of the Search 
Server. In response, the Synchronizer will automatically maintain all clusterings associated with the IDTs 
being synchronized, except those defined as PreClustered, Seed or Initial.

If the clusters are to be reviewed and/or modified by the Informatica Data Director, it is advisable to use a 
reasonably small commit_rate so that synchronized clusters are not locked for a prolonged period 
(determined by the duration of the Synchronizer’s duty cycle).

Membership table layout
Clusters are stored in an SQL-accessible table named IDT_Name_MB, where IDT_Name is the fully qualified 
name (database table name) of the IDT being clustered. Every IDT row (except Master Records) will have a 
corresponding membership record for each clustering strategy that it belongs to.

96       Chapter 6: Persistent-ID (Dynamic Clustering)



The table may be queried, given appropriate privileges, to join membership records with IDT records to 
produce a report of the clusters. Alternatively, APIs (described in the next section) may be used for this 
purpose.

The Membership table contains the following columns:

• RECID is reserved for internal use.

• IDS_CL_ID contains the ClusterId (defined by Persistent-ID-Prefix).

• IDS_CL_NUM contains the ClusterNumber.

• IDS_IDT_RECID contains the RecID of the corresponding IDT row.

• IDS_ATTRIB contains flags used to control the clustering process. It is a bit-field containing the following 
values: 0x0001 = Voting member, 0x0100 = Undecided match.

• IDS_MAX_SCORE is the score achieved by this record when it joined the cluster. The first member always 
has a score of 0. Note that scores are not recalculated as additional members join the cluster and, 
therefore, reflect the state of the cluster at a specific point in time.

• IDS_SCORE_COUNT is reserved for future use.

• IDS_SCORE_ACCEPTED is reserved for future use.

• copies of the IDT Primary Key fields.

API access
Clusters can be retrieved through the API using their source primary keys. An ids_system_open call must first 
be made to specify the rulebase and system containing the clusters. An ids_pid_src_pk_startcall then 
specifies the Multi-Search and the values of the primary keys of a record in the source. The primary keys are 
passed as a block array which must be sized sufficiently large to hold values for every primary key in the 
record. They must be specified in the order defined in the User Source Table.

Successive calls to ids_pid_src_pk_get will retrieve the primary keys of all the records in the cluster, one per 
call, including those of the record originally specified on the ids_pid_src_pk_start call. The response code will 
be set to one instead of zero when the primary keys of all the records in the cluster have been retrieved.

Refer to the MDM-RE DEVELOPER 's GUIDE for more details about the various language bindings.

PID Refresh
You can refresh Persistent ID with its clusters, members and preferred records.

• To refresh a PID, select System > Refresh. This is an option available from the System menu.

When you perform a PID refresh, it deletes all cluster and related records, including audit records for the 
selected PID in the system.

During a PID refresh process, note the following:

• Synchronization cannot run during this period.

• The search and match operations on the system will encounter delays.

• In case more than one multi-search definitions share the same PID-PREFIX field, refreshing one would 
cause the refresh of the PID clusters of the other definitions as well.

API access       97



After the PID refresh process, you need to perform initial clustering on the PID.

98       Chapter 6: Persistent-ID (Dynamic Clustering)



C h a p t e r  7

Cluster Governance
This chapter includes the following topics:

• Overview, 99

• Merge Control Table, 99

• Cluster Status Types, 101

• Review Table, 101

Overview
Cluster Governance is the process of maintaining cluster memberships and cluster Preferred/Result Records. 
It includes both automatic cluster updates through the Synchronizer, as well as manual changes made with 
the Informatica Data Director.

Cluster Membership can be changed through two basic operations, these being Merging and Splitting. A 
cluster merge involves combing the records of two clusters into one. The second cluster is effectively 
deleted by transferring all of its records into the first cluster. Splitting a cluster means that a single cluster is 
broken into two or more clusters.

A cluster Preferred/Result Record can be a record composed of a combination of data taken from the 
individual cluster members, or it can be a selected cluster member record. It is sometimes called a Golden 
Record. Cluster governance provides tools for creating and modifying these records.

Merge Control Table
The Merge Control Table (MCT) is a database table containing information relating to the merge process. 
Each record in the MCT relates to a single cluster. The table can be read to retrieve results of the merging 
process such as the record-id of the merged result row (stored in the IDT). The name of the MCT is 
constructed from the corresponding IDT name suffixed by ’_MC’. The columns of the MCT are described 
below.

• RECID is reserved for internal use.

• IDS_CL_ID contains the ClusterId (defined by Persistent-ID-Prefix in the Persistent-ID definition). 
See the Persistent-ID-Prefix section

• IDS_CL_NUM contains the ClusterNumber.

99



• IDS_RESULT_ID The record in the IDT which is the preferred/result record for the cluster.

• IDS_STATUS The current status of the cluster (see Cluster Status Types below).

• IDS_SELECTED A Binary field 512 bytes long where each 2 bytes relates to a column in the IDT. It specifies 
which record of the cluster was used in the preferred /result record for this column, with the first record 
being 0, the second 1 and so forth. A Value of 0xFFFF indicates that no record was selected for the result 
in the column.

• IDS_FLAGS This is a Binary field of length 256 bytes where each byte represents a column in the IDT. Each 
value signals information about the result for this column. There are at present 4 possible values:

1. 0x0000 = Unique A single unique result was found.

2. 0x0001 = Multiple The result for this column matches multiple records, each containing the same 
value.

3. 0x0002 = Generated The result for this column is a generated value, such as an average or 
summation.

4. 0x0004 = No Result The rules failed to find a result for this column.

5. 0x0008 = NULL Result The result for this column is a NULL value.

• IDS_COMMENT This contains a comment about the cluster. Its length is 255 characters.

• IDS_REVISION Contains the revision count for the cluster.

• IDS_CL_FLAGS Contains a flag field for the cluster.

0x0001 = Inserted Indicated the preferred record is a generated record that has been inserted into the IDT.

Outline for using a MCT

You need to do the following:

• Define your system with an appropriate search strategy for your clustering needs. Ensuring the multi-
search has all the required fields for Persistent-ID work.

• Create a corresponding Merge-Definition with Master and Column rules as desired. Ensure that you 
associate the multi-search with this definition by setting the option in the multi-search.

• Create the system and load the IDT.

• Run Synchronizer with the --persist to perform initial clustering, as well as create and populate the MCT.

• Define an IDT in your System with a layout matching your clustered data. Specify the IDT-ONLY option 
since an IDX is not required.

• Create a corresponding Merge-Definition with Master and Column rules as desired.

• Load the system and the IDT. The Table-Loader will load rows into the IDT and create a corresponding 
MCT.

• Use GUI Informatica Data Director to review the clusters. In some cases merge rules can return 
ambiguous results due to insufficient or conflicting rules. The Informatica Data Director may be used to 
manually construct the merge result in these cases. While reviewing clusters the user can also change the 
cluster memberships via either the merge or split functionality.

• Once satisfied with the merge results, you may use SQL to select the merge results from the IDT (Using 
the CL_ID column in the IDT or the Result Id column in the MCT). Generally this will occur after a manual 
review using the Informatica Data Director when all clusters have been marked as Accepted.

100       Chapter 7: Cluster Governance



Cluster Status Types
This section provides information about the Cluster Status Types.

1 = Default

A multi record Cluster with this status have had rules run against them. The result record was found to 
be sound, with no fields having an ambiguous result.

2 = Single

This cluster only contains one record. Its result record will be identical to this record.

3 = Undecided

Clusters with this status have been processed using the Merge rules. However the rules returned no 
result for at least one field.

4 = Manual

Clusters with a manual status have been modified by the Informatica Data Director and saved (To save, 
click next or previous) but not accepted. This is generally considered as a temporary state and indicates 
that the cluster requires further review before it is accepted.

5 = Accepted

Clusters with this status have been marked as Accepted with the GUI Informatica Data Director.

Review Table
During initial clustering or synchronization, if any cluster has records that require a manual review, the review 
table displays the details of these clusters. Use Informatica Data Directory to review the records, and you can 
link records, create clusters, or accept the review records.

Based on the Persistent-ID-Options parameter, the review table displays the clusters for review. The following 
options add clusters to the review table:

Post-Merge-Review

If a search returns any accepted match records, this option merges all the clusters that have accepted match 
records and flags the merged cluster. The review table displays the merged cluster for a manual review.

You can perform the following tasks on the flagged clusters:
Accept Post-Link Review

Retains the merged records in the same cluster.

Link Records

Moves records from a source cluster to a target cluster. The cluster from which you click Link Records is 
the source cluster.

Create New Cluster

Creates a cluster, and you can move records from other clusters.

Reset

Resets the preferred record to the original values if you change the values of the preferred record.

Cluster Status Types       101



Pre-Merge-Review

If a search returns any accepted match records, this option flags all the clusters that have accepted match 
records and does not merge the clusters. The review table displays all the flagged clusters for a manual 
review.

You can perform the following tasks on the flagged clusters:
Accept

Merges the selected records to the cluster from which you select Accept.

Mark as Different

Retains the record in the same cluster.

Link Records

Moves records from a source cluster to a target cluster. The cluster from which you click Link Records is 
the source cluster.

Create New Cluster

Creates a cluster, and you can move records from other clusters.

Reset

Resets the preferred record to the original values if you change the values of the preferred record.

Best-Undecided-Review

If you perform a best clustering method, this option creates a cluster for the best matching record. If the best 
matching record is marked as Undecided, this option flags the cluster created for the search record and the 
existing cluster of the matched record. The review table displays the flagged clusters for a manual review.

You can perform the following tasks on the flagged clusters:
Link Records

Moves records from a source cluster to a target cluster. The cluster from which you click Link Records is 
the source cluster.

Create New Cluster

Creates a cluster, and you can move records from other clusters.

Reset

Resets the preferred record to the original values if you change the values of the preferred record.

Preferred-Record-Review

If any clusters have the Undecided or Manual status, this option flags those clusters. The review table 
displays all the flagged clusters. You can manually review the preferred record of each flagged cluster. You 
can accept the suggested preferred record or create a different preferred record.

To change the values in a preferred record, click the values that you want to set as preferred record. The 
review table displays the preferred record of the cluster accordingly.

102       Chapter 7: Cluster Governance



C h a p t e r  8

Static Clustering
This chapter includes the following topics:

• Overview, 103

• Process, 103

Overview
Once data have been loaded into an IDT, it may be clustered . This is the process of grouping like rows from a 
static copy of the IDT. For example, you may cluster by name in order to identify duplicates, or you may wish 
to cluster by name and address to identify "households". The data are extracted from the IDT at the start of 
the clustering process, grouped, and a report is produced. The clusters are then discarded.

The columns to cluster on, and the search and match strategies used, are all user-definable. However, only 
columns containing character data (C , F ,V , N , R and W ) can be used for searching and matching. All 
columns in the IDT are available to be displayed in the final cluster report.

Process
This section describes about the process that are supported.

Define a Search

Use the Console’s GUI System Editor to define a Search-Definition. The search and match strategy used in the 
clustering process is defined by selecting the appropriate search options.

Load IDT

The IDT cannot be clustered unless data has been loaded into it. To start the Table Loader utility, select the 
System > Load IDT button.

Run Clustering

Click the Tools > Run Clustering button. Select the search to use and specify names for the output report(s) 
to be generated. An "all clusters" report contains single-member clusters (Singles ), as well as multi-member 
clusters (Plurals ). You may want to generate reports containing only Singles or only Plurals. Specifying a 
report file name for a particular option enables report creation for that option. A report is not created if the 
file name is left blank.

103



Maximum DB Size Select the maximum database size for this static clustering. The default is 32 GB. Note 
that the created database will not allocate the chosen amount of disk space but the size will grow as 
required.

Maximum Sort Memory Select the maximum amount of memory to be used by SSA-SORT. The default is 1 
GB.

Maximum Cache Size Select size of the memory cache established by SSA-DB. The default size is 1 GB.

Finalize Clustering Step

The clustering process can only be stopped in between the steps or during the cluster phase itself, not during 
other steps such as loading keys, sorting, etc.

This can be useful if you want to stop the clustering process before it finishes. Hence, you can view the 
intermediate results and assess its performance.

The Finalize Step button will be enabled once the clustering process starts. Click the Finalize Step button 
causes clustering process to finalize and execute next step which is post job process, so that you may view 
the intermediate results of clustering.

View Reports

Once the clustering has completed, you may view the cluster report using the Tools > Report Viewer, or right-
click the report file name in the list of Job output files in the log viewer.

104       Chapter 8: Static Clustering



C h a p t e r  9

Simple Search
This chapter includes the following topics:

• Simple Search Overview, 105

• Simple Search Requirements, 105

• Simple Search Definition, 106

• Simple Search Scenario, 107

Simple Search Overview
Simple search refers to a type of search that you can perform across multiple field types, such as people, 
organizations, or addresses. You can search on one or more fields at a time.

You may not know the type of search information or want to search for information across multiple field 
types in some systems. In such situations, applications can generate a generic index for all Person Names, 
Organization Names, and Address that make up the searchable data domain. You can use the index to 
process search across entities.

Simple Search Requirements
Data that forms the domain of the search can contain multiple types of fields. Simple search uses SSA-
NAME3 for operations. SSA-NAME3 engine indexes data from each field type and stores for subsequent use 
by search processes. Using Standard Populations, you can set up an application to index and search on the 
following three field types:

• Person Names

• Organization Names

• Addresses

For Simple Search, a population that supports Generic_Field for keys and search strategies, and Generic 
match purpose is required.

105



Generic_Field
The Generic_Field is used to index Person Names, Organization Names, Addresses, or combination of 
these, while the Generic match purpose can score records match.

The SSA-NAME3 algorithm that builds the keys and the search ranges for Generic Data is invoked by calling 
SSA-NAME3 and by passing FIELD=Generic_Field in the Controls parameter of get_keys.

The Generic_Field algorithm is designed to overcome some of the errors and variation that are common 
across entities such as Person Names, Organization Names, Addresses, and Addresses.

Generic Match Purpose
Use Generic Match Purpose to match candidates to the search information. Generic Match Purpose 
matches general non-specific data. The required field to match candidates to the search information is 
Generic_Field.

Simple Search Definition
You can define a simple search with a regular search definition in a system definition file.

Use the SDF Wizard to create a simple search definition. However, you can also create a definition outside 
the SDF Wizard subject to the rules for each of the components in the system definition file.

Index Definition

You can use any index that uses the indexing algorithm Generic_Field as Generic index. Normally, 
generic indexes include all columns that need to be searchable using simple search. A column in a 
Generic index must share a common IDT datatype.

Search Definition

Any search based on a generic index can potentially behave as a simple search. The limit on number of 
characters that make up a search name is reduced by three for simple searches.

Search Logic

Search fields that make up the simple search must contain all fields used by the associated generic 
index. Only the Generic_Field algorithm may be used in search logic of a simple search. The 
CONTROLS must specify a combine option for all search fields with no delimiters between them.

For example, Controls ("FIELD=Generic_Field SEARCH_LEVEL=Typical 
COMBINE=Generic_Field:DELIM-NONE")

Score Logic

Score fields that make up the simple search must contain all fields that the associated generic index 
uses. You can use only the Generic purpose in score logic of a simple search. The CONTROLS must 
specify a combine option for all search fields with no delimiters between them.

For example, Controls ("FIELD=Generic_Field SEARCH_LEVEL=Typical 
COMBINE=Generic_Field:DELIM-NONE")

The match fields must be of type Generic_Field.

For example, Matching-Fields 
("FNAME:Generic_Field,LNAME:Generic_Field,ORG:Generic_Field,ADDR:Generic_Field")

106       Chapter 9:  Simple Search



Processing View

Simple search requires a special view definition that is used for search input processing. The processing 
view must have a name that contains the search name and the suffix -GP.

For example, if the search name is my_search1, the view name must be my_searcg1-GP

The processing view must contain all fields required to assemble the simple search.

Display View

Simple search requires a special view definition that is used for search fields display. The display view 
must have a name with the characters -GD as a suffix to search name.

For example, if the search name is my_search1, the view name must be my_searcg1-GD.

The display view must contain a single field of size that is the total size of fields used in the processing 
view. The name of the field must not be an existing IDT column. The field name chosen for display view 
appears as a field when viewed through search clients. When using API search_search_layout, the 
name of field appears as a search column in the search layout.

Note: To construct search input, it may be necessary to get attributes such as lengths and offsets of search 
columns. Such details should be obtained using search_search_layout. In case of simple search, the search 
fields will not be a part of the IDT and therefore IDT layout should not be used to determine lengths and 
offsets.

Simple Search Scenario
You can create a search definition based on the requirements.

For example, you have the CUSTOMER database table with the following columns:

Name Datatype Length

CUSTOMER_ID NUMBER 10

CUSTOMER _NAME VARCHAR 32

CUSTOMER _ADDRESS VARCHAR 32

CUSTOMER _ORG VARCHAR 32

To provide search capability on Customer Name, Customer Address and Customer Company, you can create 
a search definition with the Generic_Field in KEY LOGIC and with the Generic purpose in the SCORE LOGIC.

You can create the following search-definition:

 search-definition
 NAME= simple_search
 IDX= my_idx
 SEARCH-LOGIC= SSA, 
               System (my_system), 
               Population (usa), 
               Controls ("FIELD=Generic_Field SEARCH_LEVEL=Typical 
COMBINE=Generic_Field:DELIM-NONE"),
               Field ("CUST_NAME, CUST_ADDRESS,CUST_ORG")
 SCORE-LOGIC=  SSA, 

Simple Search Scenario       107



               System (my_system), 
               Population (usa), 
               Controls ("PURPOSE=Generic MATCH_LEVEL=Typical 
COMBINE=Generic_Field:DELIM-NONE"), 
               Matching-Fields ("CUST_NAME:Generic_Field, CUST_ADDRESS:Generic_Field, 
CUST_ORG:Generic_Field")
*

108       Chapter 9:  Simple Search



C h a p t e r  1 0

Search Performance
A search client calls the MDM-Registry Edition with a search record. The Server retrieves a set of similar 
records from the database (known as the candidate-set).

Each candidate is scored against the search record to determine the degree of similarity. Records that score 
above the score-threshold defined in the Search-Definition are returned to the search client.

The process may be optimized by:

• reducing the size of the candidate-set, thereby reducing the amount of scoring required, and/or

• reducing the cost of scoring two records, and/or

• reducing the size of the IDX to improve database cache efficiency

The following sections discuss ways in which to achieve these goals.

Reducing Candidate Set Size
Flattening

This feature is used to reduce the size of the candidate set and the size of the IDX. Refer to the Flattening 
IDTs section in this guide.

Partitions

This feature is used to reduce the size of the candidate set.

For very large files, the key generated from the KEY-FIELD may have a high selectivity due to the sheer 
volume of data present on the file. Therefore searching for candidates using the key will create very large 
candidate sets.

If the nature of the data is well understood, it may be possible to qualify the key with additional data from the 
record so that the "qualified key" becomes more selective.

The PARTITION option instructs MDM-RE to build a concatenated key from the Key-Logic FIELD and up to five 
fields/sub-fields taken from the IDT record. The partition information forms a high-order qualifier for the key 
(it is prefixed to the key).

For example, an application may wish to search all names in a telephone directory. If we are willing to only 
examine candidates from a particular region, we could partition the data using a post-code or some other 
information that can group the candidates into regions. Performance is improved by reducing the size of 
candidate sets. The disadvantage is that candidates will only be selected from within regions; not outside. If 
this makes sense from the perspective of the "business problem" being solved then partitioning can be used.

109



SQL Filters

SQL Filters may be used to reduce the size of the candidate set. They are evaluated by the DBMS as 
candidates are selected. By removing candidates within the DBMS engine, we reduce network overheads and 
matching costs within the Search Server.

An SQL Filter is a DBMS-specific SQL expression that is appended to the query that selects candidate rows 
from the IDX/IDT. It can only be used to remove candidates.

For example, a particular Search-Definition may perform a fuzzy search using a Name. Without filters, all 
candidates are returned to the Search Server to be matched against the search record. If a filter was 
specified requesting STATE = ’NY’, only candidates living in New York would be returned for matching. 
Although the same effect can be achieved using a partition, SQL filters provide more flexibility.

The SQL may be provided statically using the FILTER= parameter in the Search-Definition or at run-time 
with the ids_search_filter API. The Search-Definition options Filter-Appendand Filter-Replace are used 
to control whether, and how dynamic filters will operate.

The DBMS needs access to native columns in the IDT in order to evaluate the expression in the filter. 
Therefore the columns mentioned in a filter must only refer to the columns available in the IDT. Note that 
source column names are prefixed with "IDS_" in the IDT.

A search that uses a filter will access both the IDX and IDT, performing significantly more database I/O than 
a standard search that only accesses the IDX. Therefore a filter-based search may be less efficient (slower), 
especially if it selects a large percentage of the IDX (which may result in full-index and/or full-table-scans of 
the IDX and IDT respectively). There is a balance point, beyond which the extra I/O is more expensive than 
performing a standard search and scoring all candidates. Customers should evaluate where this point lies 
based on their particular data and search requirements.

Note: Lite Index cannot support a search filter.

Performance Tips

If an IDX will always be used in conjunction with a filter, and will never be used without one, specify --Full-
Key-Data when creating the IDX. This will reduce its size and improve database cache efficiency. If full-index 
scans and the IDX are performed (due to wide searches), consider creating a dedicated IDX specifying --
Full-Key-Data to reduce its size.

If the filter clause is of the form "column = value", consider creating a partition instead of using an SQL filter.

Consider creating a database index on the column(s) specified in the filter clause. Remember to collect 
optimizer statistics for the new index, and consider creating a frequency histogram (on Oracle), if the index 
values are not evenly distributed.

Static Filters

A static filter is defined in a Search-Definition with the FILTER= parameter. It can be overridden at run-time 
only if the Search Option Filter-Replace has been specified.

Dynamic Filters

Dynamic filters are provided with the ids_search_filter API. If the Search-Definition specifies the 
Filter-Replace option, the dynamic filter will replace the filter specified in the Search- Definition (if one was 
defined).

If the Search-Definition specifies the Filter-Append option, the dynamic filter will be appended to the filter 
specified in the Search-Definition (if one was defined).

110       Chapter 10: Search Performance



Skeletal Filters

Skeletal filters are a combination of static and dynamic filters. If the SQL defined in the FILTER= parameter 
contains any substitution variables, a dynamic filter is used to provide values to be substituted into the SQL 
at run-time. Substitution variables are of the form $n, where n= 1, 2,. . .

For example: FILTER= "IDS_STATE = ’$1’"

defines a skeletal filter containing one substitution variable ($1).

The API function ids_search_filter must be called before the search is started in order to provide values to 
be substituted into the skeletal SQL. Values remain in effect until the caller provides new values or switches 
to a new search.

The API call must provide a delimited string that contains enough values to satisfy the skeletal SQL’s 
requirements. The first character in the string defines the delimiter character used to separate values in the 
string.

For example: |NY|

defines | as the delimiter and NY as the first value. Note that the string must be terminated with the delimiter 
character. The effective filter (after substitution) is changed to, IDS_STATE = ’NY’

Multi-Search

Dynamic and skeletal filters defined with ids_search_filter have an order of precedence when used in a 
Multi-Search.

MDM-RE will use a filter defined for a sub-search (if present) before using a filter defined for the Multi-
Search.

Using PL/SQL and User-Defined Functions

As noted earlier, a search that uses an SQL Filter will read both the IDX and IDT. The latter is necessary to 
access values of columns that appear in the WHERE predicate. Normally, the redundant data held in the IDX 
are stored in a proprietary compressed format and are inaccessible to the DBMS engine. However, if the 
redundant data were uncompressed, improved performance would result since IDX rows alone are sufficient 
to evaluate the predicate, removing the need to read IDT rows.

An alternative SQL Filter mechanism is available for just such a case. It requires that:

• redundant data stored in the IDX are uncompressed. This is achieved by specifying the --Full-Key-
Dataoption to remove the redundant (compressed) IDT data from the IDX row, and by specifying the Key-
Data=parameter to store up to 5 uncompressed IDT columns in the IDX row (immediately following the 8-
byte fuzzy key).

• the creation of a PL/SQL or User-Defined Function that, given an IDX row, can examine the Key-Data to 
decide whether the particular row should be returned as a candidate for further matching,

• an SQL Filter clause that calls the function (passing the IDX row) and interprets the result appropriately.

For example:

The following IDX Definition disables Full-Key-Data (which stores all IDT columns in the IDX) and specifies a 
list of IDT columns to be appended after the 8-byte fuzzy key (Name and State). Up to 5 columns (or part 
thereof) may be specified with the Key-Data parameter, as long as the total key length does not exceed the 
maximum key size permitted by the particular DBMS (~ 250 bytes).

idx-definition
*==================
NAME=               namev2
ID=                 u5
IDT-NAME=         IDT305

Reducing Candidate Set Size       111



KEY-LOGIC=         SSA, System(default), Population(test),
                    Controls ("FIELD=Person_Name KEY_LEVEL=Standard"),
                    Field("name")
KEY-DATA=         Name,State
OPTIONS=         --Full-Key-Data

The full syntax for specifying Key-Data is: KEY-DATA = field[,length,offset], ...

where field is the field name, length is an optional number of bytes to include (the entire field is included by 
default), and offset is an optional starting offset (base 0).

The Search-Definition includes a filter clause that calls a user-written function. The function call must include 
a field named SSAKEY to provide the function with access to the Key-Data. The response code returned by the 
function determines whether the row is kept or discarded. For example:

search-definition
*====================
NAME=                 search-filter-ny
IDX=                    namev2
KEY-LOGIC=            SSA, System(default), Population(test),
                        Controls ("FIELD=Person_Name SEARCH_LEVEL=typical"),
                        Field("name")
KEY-SCORE-LOGIC=    SSA, System(default), Population(test),
                        Controls("PURPOSE=Person_Name MATCH_LEVEL=Typical"),
                        Matching-Fields("Name:person_name")
FILTER=                 "#ids_sql_filter.demo(SSAKEY)=1"
OPTIONS=             Filter-Replace

Note that the filter statement:

• begins with ’#’. This character informs the search engine to use the new semantics, otherwisethe original 
filter mechanism is used.

• passes the entire IDX record (SSAKEY) to the function named ids_sql_filter.demo. The function 
examines the Key-Data and returns a decision to either keep or discard the row. The response-code is 
arbitrary. In this example, a value of 1 will keep the candidate row.

The corresponding function, written in PL/SQL, is as follows.

CREATE OR REPLACE PACKAGE BODY ids_sql_filter AS
         FUNCTION demo (
                     ssakey     IN RAW)
                     RETURN     NUMBER
         IS
                     rec             VARCHAR (255);
                     state         VARCHAR (2);
         BEGIN
                     rec := utl_raw.cast_to_varchar2 (ssakey);
                     state := SUBSTR(rec,33,2);
                     IF (state = ’NY’) THEN
                                RETURN 1;
                     END IF;
                     RETURN 0;
        END demo;
END ids_sql_filter;

The sample function performs the following actions:

• converts the input parameter ssakey from raw to char, which allows the Key-Data to be extracted using a 
substring function.

• extracts the value of State from the Key-Data. In this case, the Key-Data contains an 8-byte fuzzy-key, 
followed by a Name (for a length of 24 bytes), followed by State (2 bytes). Thus, the State field begins at 
offset 32 (base 0). The Oracle substring function assumes offsets start from 1. Therefore the substring 
command refers to position 33 for a length of 2 bytes to exact the value of State.

112       Chapter 10: Search Performance



• The extracted State value is compared to a value of ’NY’. When the candidate value is identical, the 
function returns 1, meaning that the candidate row should be kept. Otherwise, it returns 0, which 
effectively discards the candidate row.

Note that the value of NY does not need to be hard-coded. It could have been passed in as the second 
parameter to the function by hardcoding it in the filter statement, or even set dynamically by using a 
substitution variable. For example,

FILTER= "#ids_sql_filter.demo(SSAKEY,$1)=1"

Note: When using this alternative SQL Filter method, only the Key-Data fields will be available for matching, 
display, and return as part of the search results.

Reducing Scoring Costs
This section describes about Pre-Scoring.

Pre-Scoring

This feature is used to reduce the cost of scoring two records.

The most expensive part of the matching process is the scoring. Once a set of candidate records is selected 
each candidate is scored against the search record. In practice, the scoring is often complex in nature and 
involves several methods scoring several fields on the search and file records.

If it is possible to quickly reject a candidate record by scoring it with a "light weight" (inexpensive) scoring 
scheme we can avoid the need to call a more complex scheme.

The Search-Definition’s PRE-SCORE-LOGIC is used to define an optional "light weight" scoring scheme which is 
processed before the normal SCORE-LOGIC. If it returns a "reject" condition, the more expensive SCORE-LOGIC 
phase is not called.

Scoring Phases

Scoring happens in two distinct phases known as Pre Scoring and Scoring. There are three possible 
outcomes as a result of the score in each phase. A record may be:

• rejected, or

• accepted, or

• passed to the next scoring phase.

Rejection occurs when the score is less than the Reject limit for that phase (limits are built into your SSA-
NAME3 population but can be adjusted using the CONTROLS parameter in the System definition). A rejected 
record is not passed to any other phases. It is simply discarded.

A record is accepted when its score is greater than or equal to the Accept limit for that phase. It does not 
participate in any further scoring phases; it is simply added to the search’s result set.

A record that has a score which is greater than or equal to the Reject limit and less than the Accept limit is 
deemed to be "undecided" and is passed to the next scoring phase. If no more phases exist the record is 
returned as part of the search result set.

Adjusting the Accept and Reject limits

Accept and Reject limits are defined by SSA-NAME3 V2 Population Rules. The standard Populations usually 
define an Accept limit to be less than or equal to 100. If a record reaches a score that is greater than or equal 
to the Accept limit for that phase, the record is accepted and the record does not take part any further 

Reducing Scoring Costs       113



scoring phases as explained above. However, if the reason for using multiple scoring phases is only to reject 
early and never to accept until the final scoring phase, then the default Accept limit is not useful. In order to 
never accept records in a scoring phase, one should specify a scoring phase with the Accept limit of 101, 
which can be never reached. This can be done using the following syntax in the CONTROLS parameter in the 
Scoring phase definition:

Where AdjA is the Accept level adjustment and AdjR is the Reject level adjustment. To force the Accept limit 
to become 101 the exact value of +101 must be used as in the following example:

Controls("Purpose=Address MATCH_LEVEL=Typical+101+0")
where the special value +101 is forcing the Accept level to become exactly 101. The Reject adjustment 
should also be specified. Omitting the Reject limit adjustment means that the Reject level is adjusted by the 
same amount as the Accept level and the value 101 would cause all records to be rejected, which is clearly 
not useful. By specifying the value +0 the Reject limit is not changed from the original value specified in the 
Population Rules.

See the SSA-NAME3 POPULATIONS and CONTROLS manual for further details.

Reducing Database I/O
This section describes about the IDX size and Compressed Key Data.

IDX Size

The physical size of the IDX will determine how efficiently the database cache will operate. Reducing the size 
of the IDXs will improve performance. This is achieved by selecting the most appropriate Compressed-Key-
Data value (as described in the Compressed Key Data section) and using flattening (as described in the 
Flattening IDTs section) to reduce the number of rows.

Compressed Key Data

The IDX stores fuzzy keys and identity data for matching. The identity data is compressed and stored using 
an algorithm selected with the Identity-Table-Definition’s Compress-Method parameter. All methods will 
compress the Identity data and store it in the IDX together with its fuzzy key.

If the length of the IDX record exceeds the DBMS’s limit for an indexable column MDM-RE can either,

• Method 0 split the IDX record into multiple adjacent segments (which are all shorter than the length limit).

• Method 1 truncate the IDX record at the length limit and only store one segment. This forces additional 
I/O at run time if the IDX record is selected for matching, as the matching data must be read from the IDT 
record.

IDX segments are fixed in length and have the following layout:

Partitions Fuzzy SSA-NAME3 Key Compressed Identity Data

The segment length is the sum of

• partition length (optional, user defined)

• SSA-NAME3 key length (5 or 8 bytes)

• Compress-Key-Data(n) parameter

114       Chapter 10: Search Performance



• 4 bytes of additional overhead

The maximum segment length depends on the host DBMS:

• Oracle 255 bytes

• UDB 250 bytes

Since the segment length is fixed, choosing an appropriate value for n is important because it affects the 
total amount of space used and the I/O performance of the index. Determining an optimal value for n requires 
knowledge of the characteristics of the source data and how well it can be compressed.

If n is set too high, all segments will use more space than necessary. If n is too low, records will be split into 
multiple segments, incurring extra overhead for the duplication of the Partition and Fuzzy Key in each 
segment.

Measuring Compression

The MDM-RE Table Loader can be used sample the source data and produce a histogram of the Compressed 
Identity Data lengths.

A sample table appears below:

KeyLen is the length of the Identity Data after compression

Count is the number of records with that length

Percent is the cumulative percentage of the number of records having lengths less than or equal to the 
current KeyLen

Segment Lengths

The histogram can be converted into more useful data by running

%SSABIN%\histkg ReportFile

Reducing Database I/O       115



where ReportFile is the name of the log file containing the MDM-RE Table Loader output. It will produce a 
report similar to the one below:

116       Chapter 10: Search Performance



The first section of the report summarizes the histogram.

Value Description

IndexName the name of the IDX

KeyData the sum of the length of the IDT columns (the Identity Data, uncompressed)

CompLen Compress-Key-Data(n) value

Key Len the length of the Identity Data after compression

Count the number of records with this KeyLen

Bytes KeyLen * Count

Comp-1 total bytes to store Count records with KeyLen using Method 1 (1 segment only)

Comp-2 total bytes to store Count records with KeyLen using Method 0 (multiple segments)

Segs the number of segments required to store Count records of KeyLen

The second part of the report gives space estimates for various values of Compress-Key-Data(n)

Value Description

KeyDataOffset length of the Fuzzy Key including any partition

KeyOverhead the overhead associated with storing the segment on the host DBMS (assumed)

Blocksize DBMS block size (assumed)

Reducing Database I/O       117



Value Description

BlockOverhead DBMS overhead when storing records within a block including control structures and padding 
(assumed)

compLen n from Compress-Key-Data(n)

Bytes the number of bytes required to store segments of this size

Segs the number of segments used

Segs/Key the average number of segments per IDX record.

DB-Bytes the number of bytes for segment of this size (scaled up by KeyOverhead)

DB-Blocks the number of blocks for segments of this size (based on the Blocksize and 
BlockOverhead)

To optimize performance, select the largest compLen value that minimizes DB-blocks and set Compress-Key-
Data to this value (35 in the example above).

Note: You may need to customize the histkg script (%SSABIN%\histkg.awk) if the block size and block 
overhead values are not correct for your DBMS.

Search Statistics and Tracing
This section contains tips on diagnosing on tuning your search strategies.

Tracing a Search
The Search Server can create a detailed trace file showing:

• the search record (in IDT format)

• all candidate records selected using the defined Search-Logic

• the results of matching the search record with each candidate record

API

This can be enabled from an API program by specifying LOGTEST= in the options parameter of the 
ids_system_open call:

LOGTEST="<full_path_of_log_file>"

relate

The batch search utility relate will create a trace file when the --3 switch in used to nominate the name of the 
trace file. For example,

%SSABIN%\relate --3%SSAWORKDIR%\mysearch.trc

Java Search Client

The Java Search Client can create a trace file. This is enabled / disabled with the menu item Options > Create 
Trace File which toggles tracing on and off.

118       Chapter 10: Search Performance



The default trace filename is %SSAWORKDIR%\SystemName.trc

A different filename may be specified with Options > Set Trace Filename .

Note: The trace file is written with buffered I/O. It is not completely flushed to disk until the user closes the 
current search. The Search Client will do this automatically when

• tracing is turned off, or

• you switch to a different Search, or

• the application is closed.

Sample Output

An annotated trace output file is provided to demonstrate how to interpret the information found in the trace. 
The file is located in the Server’s bin directory and is named %SSABIN%\srchtrc.txt

Search Statistics
If no records are found, either no candidates were found or scoring rejected all candidates. To determine 
which, stop the servers, delete all log files, and restart. Run a relate with -vs (statistics) and an input file with 
just one record. Stop the servers to flush the logs. Check the Server log file for the following:

apic>                 Hstogram:                             FS FindSet - unique     recs 
countnt
apic>                 Histogram-FS:                                             
1               2
apic>                 Histogram-FS:                                             
2                183
apic>                 Histogram-FS:............3                 57
apic>                 Histogram-FS:                                             
4                42
apic>                 Histogram-FS:                                             
5                16
apic>                 Histogram-FS:                                             
6                13
apic>                 Histogram-FS:............8                 17
apic>                 Histogram-FS:                                             
11               24

This histogram shows the number of searches that found n candidates (n is the left hand column, number of 
searches on the right).

If you see the log as follows:

apic>          Histogram-FS:                0           1
then it means there are no candidates found. The possible causes are:

• Key-Logic for IDX does not match key-logic for search (different fields/algorithms perhaps?)

If it actually found some candidates, check for:

apic>                         Matches-Total:....................KSL         1265
apic>                          Matches-Accepted:                                     
KSL       915
apic>                         Matches-Rejected:                                      
KSL        28
apic>                          Matches-Undecided:                                 
KSL              32

This provides information on what happened during scoring. If all candidates were rejected, some possible 
causes are:

• score threshold too high

Search Statistics and Tracing       119



• bad method options

Try setting the score limit very low so that everything is accepted. Then use relate’s -u and -l switches to set 
upper (or lower) score limits until you figure out what the real limit should be.

Expensive Searches
Relate can be used to identify expensive searches. When started with the -s switch, it will produce two 
histograms showing:

• search transaction duration (in 50 millisecond groups)

• result set size (groups of 20 records)

For example,

relate> Search Duration Histogram
relate> 0.050 sec 999 99.90%
relate> 0.100 sec 0 99.90%
relate> 0.150 sec 1 100.00%
relate> Total elapsed time: 5.547 sec
relate> Result Set Histogram
relate> 20 recs 1000 100.00%
relate> Reads 1000
relate> Writes 1386

This histogram shows that 999 searches were executed in less than 50 milliseconds and one search 
completed in less than 150ms. All searches returned less than 20 records.

The first search of the session usually incurs extra "set up" overhead, including connecting to the database, 
and is usually slower when compared to the other searches. This can be verified by running relate with the -ss 
switch which produces individual transaction timings:

relate> Txn                         1 0.109 sec
relate> Txn                         2 0.016 sec
relate> Txn                         3 0.000 sec
relate> Txn                         4 0.000 sec
relate> Txn                         5 0.000 sec
relate> Txn                         6 0.015 sec
relate> Txn                         7 0.000 sec
relate> Txn                         8 0.016 sec
relate> Txn                         9 0.000 sec
relate> Txn                        10 0.015 sec

The Search Transaction Histogram can be used to get a general feel for the cost of the search strategy.

In general, the cost is proportional to the number of candidates selected by the Search-Logic.

Individual transaction timings are useful for locating expensive searches. Once the expensive search record 
is found, use the methods documented under "Tracing a Search" to locate the cause.

The Result Set Histogram can be used to determine the optimal size of the sort memory (SORT= parameter 
of the Search-Definition).

Output View Statistics
An output view may be defined to include various statistical fields, including the number of candidates 
selected and matched. Refer to the Output Views section in this guide for details.

120       Chapter 10: Search Performance



relperf
The relperf utility is used to generate comparative performance statistics for a specified Search using a 
range of search strategies (search widths and match tolerances). By comparing the number of candidates 
selected with the number of accepted matches, relperf helps to determine the most appropriate strategy for 
a particular search problem.

Given a representative set of search data, relperf runs multiple search processes using all available search 
widths and match tolerances and then collates and summarizes the results.

The user specifies the search statistics to be reported by defining an output view that includes special 
statistical fields generated by the Search Server. Refer to the Output Views section in this guide for a list of 
statistical fields that are available.

Although statistical fields may be written in any numeric format to an output view, the report file will only 
summarize the statistics for fields that have a field type of ’R’. Therefore the statistical fields to be 
summarized in the report must have a format of R. Specify a length for the field that is large enough to 
handle the number of rows processed. R,10 is adequate for most situations.

By default the report produced is tab delimited, which is suitable for importing into a spreadsheet. Use the -t 
switch to generate a report file that uses spaces instead of tabs.

Starting from the Command Line

relperf can be started from the command line as follows:

For Win32, type the following:

%SSABIN%\relperf Search Infile Outfile OutputView-rRulebase-pSystem -hHost:Port -
wWorkDir[Optional Switches]

For Unix, type the following:

$SSABIN/relperf Search Infile Outfile OutputView-rRulebase -pSystem -hHost:Port[Optional 
Switches]

The values passed in the command line are described in the following table:

Parameter Description Mandatory

Search Nominates the Search Definition to use. If multiple searches are to be run, 
separate them with a comma. For 
example,searchname1,searchname2,searchname3

Yes

Infile Name of the file containing input records Yes

Outfile Name of the report file to generate Yes

OutputView Name of the output view to use.  

-rRulebase Name of the Rulebase Yes

-pSystem Name of the System Yes

-hHost:Port Name of the host and port number (may be Search or Connection server). Yes

-iInputViewName Nominates the view that describes the input records. If not specified, the IDT 
layout is assumed.

 

Search Statistics and Tracing       121



Parameter Description Mandatory

-nx[:y[:z]] Use x search threads with an input queue. of y records and an output queue of z 
records per thread.

 

-wWorkDir Work Directory Yes

-t Change report format to not use tabs.  

-bTempfile To specify a temporary file for relperf to use. By default relperf will 
use ’relperf.out’ in the Work Directory.

 

-s Create a second report for each search ordered by match tolerances. An example 
of which can be seen in the Example reports section below.

 

-a Create an alternate style report with a histogram of accepted count. An example 
of which can be seen in the Example reports section below.

 

-c Creates a default statistical view for use during the relperf run. This view will 
contain the following fields:

ksl-total-count
ksl-accepted-count
ksl-rejected-count
ksl-undecided-count
idx-io
idt-io
An Output view does not need to be specified when using this option. However if 
an output view is specified a view will be created for the run that will consist of all 
the fields in the specified output view plus any of the default statistical fields not 
already present.

 

-dDatabase Name of the Database. Must be specified when using the -c option.  

-eRulebaseHost Name of the Rulebase Host. Must be specified when using the -c option.  

Example reports

Here is an example of a relperf report created using a simple output view and a Search-Definition named 
search-namev2. It shows that as the search width increases from Narrow to Typical to Exhaustive, the 
number of candidates selected also increases. For a given set of candidates (with the same search width), 
the number of accepted matches increases as the match tolerance becomes looser.

Search                 Match                                 
Candidates                         Accepted
Widths                 Tolerances             --------------------- 
---------------------------
                                                              Average     Std 
Dev           Average         Std Dev         % of Cand
search-namev2

Narrow                 Conservative         1.05            0.94                
0.82             0.61                  78.10
Narrow                 Typical                    1.05            0.94                
0.82             0.61                  78.10
Narrow                 Loose                      1.05            0.94                
1.01             0.89                  96.19
Typical             Conservative         2.47            3.92                
1.22             0.54                  49.39

122       Chapter 10: Search Performance



Typical             Typical                 2.47            3.92                
1.26             0.58                  51.01
Typical             Loose                   2.47         3.92                
2.25             3.63               91.09
Exhaustive Conservative         4.59            6.38                   1.22             
0.54                  26.58
Exhaustive Typical                    4.59            6.38                
1.37             0.72                  29.85
Exhaustive Loose                      4.59            6.38                   
2.89             3.69                  62.96

This is the output view definition used for this report:

VIEW-DEFINITION
*==============
NAME=relx98stat
FIELD=Name,              C, 8
FIELD=ksl-total-count,R, 4
FIELD=ksl-accepted-count,R, 4

This is an example of a report created using the "-s" switch:

Search                 Match                                 Candidates                
Accepted
Widths                 Tolerances             ---------------  
------------------------------   
                         Average Std Dev  Average  Std Dev    % of Cand

search-namev2

Narrow     Conservative   1.05    0.94     0.82     0.61         78.10
Narrow     Typical        1.05    0.94     0.82     0.61         78.10
Narrow     Loose          1.05    0.94     1.01     0.89         96.19
Typical    Conservative   2.47    3.92     1.22     0.54         49.39
Typical    Typical        2.47    3.92     1.26     0.58         51.01
Typical    Loose          2.47    3.92     2.25     3.63         91.09
Exhaustive Conservative   4.59    6.38     1.22     0.54         26.58
Exhaustive Typical        4.59    6.38     1.37     0.72         29.85
Exhaustive Loose          4.59    6.38     2.89     3.69         62.96
Extreme    Conservative   4.59    6.38     1.22     0.54         26.58
Extreme    Typical        4.59    6.38     1.37     0.72         29.85
Extreme    Loose          4.59    6.38     2.89     3.69         62.96
Narrow     Conservative   1.05    0.94     0.82     0.61         78.10
Typical    Conservative   2.47    3.92     1.22     0.54         49.39
Exhaustive Conservative   4.59    6.38     1.22     0.54         26.58
Extreme    Conservative   4.59    6.38     1.22     0.54         26.58
Narrow     Typical        1.05    0.94     0.82     0.61         78.10
Typical    Typical        2.47    3.92     1.26     0.58         51.01
Exhaustive Typical        4.59    6.38     1.37     0.72         29.85
Extreme    Typical        4.59    6.38     1.37     0.72         29.85
Narrow     Loose          1.05    0.94     1.01     0.89         96.19
Typical    Loose          2.47    3.92     2.25     3.63         91.09
Exhaustive Loose          4.59    6.38     2.89     3.69         62.96
Extreme    Loose          4.59    6.38     2.89     3.69         62.96

This is an example showing the additional columns in a report created using the "-a" switch:

Note: A report generated with the "-a" switch does not output columns representing standard deviations.

Number of Accepted within Range
------------------------------------------------------------------------
0                 1             2 - 10             11 - 100             101-1000         
1001-10000                 > 10000
26             69           5                         0                             
0                            0                                   0
26             69                 5                         
0                             0                            

Search Statistics and Tracing       123



0                                0
26             58                16                      0                             
0                            0                                0
0                 84                16                      
0                             0                            
0                                   0
0                 81                19                      
0                             0                            
0                                   0
0                 65                33                      
2                             0                         0                                
0
0                 84                16                      
0                             0                            
0                                0
0                 74                26                      
0                             0                            
0                                   0
0                 45                53                         
2                          0                            
0                                   0

Performance Tips
• The search performance is directly proportional to the number of candidates selected.

• Use the results to assess how many additional matches will be found by using a wider search and/or 
looser match strategy. Is it worth processing twice as many candidates when only a few more records 
were accepted? The answer depends on the search problem, but at least you can assess the cost and the 
benefit.

• Use the average number of accepted matches (plus n times the standard deviation) to set the 
SORT=Memory() parameter to ensure that all sorts are performed in-core. Setting n=3 ensures that 99% of 
sets will fit into memory.

• Use the average number of candidates (plus n times the standard deviation) to ensure that the 
Candidate-Set-Size-Limit is large enough to record candidates that have already been processed.

124       Chapter 10: Search Performance



C h a p t e r  1 1

Miscellaneous Issues
This chapter includes the following topics:

• Backup and Restore, 125

• User Exits, 125

• Virtual Private Databases (VPD), 126

• Large File Support, 127

• Flat File Input from a Named Pipe, 129

Backup and Restore
MDM-RE relies on the standard facilities of the host DBMS to maintain integrity of its tables and indexes.

The Rulebase tables and indexes must be stored on the same database as the MDM-RE Tables so that the 
rules are kept in synch with the data in case the database is restored and/or repaired using a DBMS utility.

System rules within a Rulebase may be backed up and restored using the MDM-RE Console Export and Import 
functions.

These functions transfer the rules to/from an operating system file. The file can then be saved (for off-site 
backup purposes) or used to transfer the rules to another Rulebase.

Note: System rules may only be imported with the same version of the software used to export them.

User Exits
User Exits (UE) provide a way to extend the capabilities of MDM-RE at specific points in its processing logic. 
MDM-RE supports two types of User Exits:

• User Source Exit

• Transform Exit

User Exits must conform to a specific protocol in order to communicate with MDM-RE. They are written in C 
and compiled and linked as a DLL/shared library. MDM-RE will load the UE and call a predefined entry point 
when a "service" is required from the exit.

The syntax, parameters, details of operations and response codes for User Exits are only available on 
request.

125



User Source Exit

A User Source Exit (USE) is used to provide access to User Source Tables. It may use any valid SQL 
supported by the host DBMS.

USEs should only be used when MDM-RE does not support the type of SQL access required. For example, if 
you wish to join and merge several tables in one operation.

USEs can also be used to access heterogeneous database architectures. For example, to load an IDT on an 
Oracle database using source data read from UDB.

USEs can only be defined for NoSync systems.

USEs must be coded in a multi-threaded manner because they will be called from a thread in the Table 
Loader. For example, a USE that connects to Oracle must allocate and use a thread context.

Note: By coding a USE, the user accepts responsibility for providing all services for User Source Table access 
that MDM-RE requires. If the protocol is not strictly adhered to, a loss of MDM-RE data integrity will result. An 
erroneous user exit may cause the Table Loader or Update Synchronizer to terminate abnormally.

Transform Exit

A Transform Exit (TE) is used to alter a record read from the source database prior to insertion into the IDT.

The TE exit is called after reading a record from the source database and before any field level transforms 
have been performed. The exit is a "record level" exit, meaning that it has access to the entire record.

Upon return from the exit, MDM-RE will perform field-level transforms while converting the view record into 
IDT layout.

The normal use for a TE is to insert data into a new field. A new field can be created with the Filler transform 
by specifying a name, format and length. The field can then be referenced in the TE.

The user-exit is enabled by adding a user-exit transform definition. For example,

transform
                    filler                                             credit C(10),
                    user-exit     ("myexit.dll myep")

defines a field called "credit" which can be populated by the user-exit.

Virtual Private Databases (VPD)
Virtual Private Databases (VPD) is an Oracle specific feature available as a standard part of Enterprise 
Edition. VPD provides fine-grained access control that is data-driven, context-dependent and rowbased.

A security administrator defines database contexts for individual users or groups of users. These contexts 
are used to limit the data that a user can see when they execute SQL statements.

Contexts are usually set (enabled) using a login trigger so that a user has no control over the context they 
use. Once enabled, the context name is used by Oracle to find predefined rules that are used to dynamically 
modify SQL statements executed by the user.

The security administrator defines contexts and their associated rules. For example, user U1 logs on, a login 
trigger fires to set a context C1. When the user executes the following SQL:

SELECT * FROM EMP

126       Chapter 11: Miscellaneous Issues



Oracle adds WHERE DEPT = 10 to the query so that user U1 can only see rows from his/her own department. 
Another user U2 using context C2 might have the predicate WHERE DEPT = 20 added to their otherwise 
identical SQL. In this way, each user only sees data that is relevant to them.

MDM-RE Implementation

The SSA userid is used to extract source data from the UST and create an IDT and IDXs. In order to see all 
rows in the UST, the SSA userid must be exempted from VPD based restrictions. This is done with the 
following SQL:

GRANT EXEMPT ACCESS POLICY TO SSA;

Once all the data is loaded into the IDT and IDXs, ordinary database access controls secure this data, since it 
is private to the SSA user. A dictionary-alias is normally used to hide the SSA userid and password from 
search clients.

MDM-RE provides access to the IDT/IDX data through the Search Server. To guard against unauthorized 
access the System administrator defines the System-Definition optionVPD-Secure and/or defines the 
environment variable SSASECUREENV .

When either is defined, MDM-RE insists that each user provide a context using ids_set_vpd_user API prior to 
starting a search. In response to a search request, the Search Server will build a result set and for each 
record in that set, issue SQL queries using the user’s context to screen out any record that the user is not 
permitted to see.

Environment Variables

A VPD System requires an additional environment variable to be defined. SSASECURECONNECT specifies a 
database connection string for a "proxy user" that will be used to screen records from the result set.

The connection string is a normal MDM-RE connection string such as

odb:99:ssaproxy/ssaproxy@oracle920

or may be the special keyword SSAUSER, in which case MDM-RE uses the current Rulebase connection string 
to create a proxy user connection to the UST database.

Proxy User Context

MDM-RE establishes a context for the proxy user by calling a PL/SQL package provided by the security 
administrator.

Each search user must call the API function ids_set_vpd_user to nominate the name of the package and the 
parameter to be passed to it.

Restrictions

IDTs may not be created by merging (merged_from clause)

IDTs may not be flattened.

LOGTEST tracing is disabled in a VPD environment.

The only MDM-RE Search Client that supports VPD is relate. Use the -V switch to specify the name of the 
context setting package and its parameter.

Large File Support
MDM-RE contains support for working with "flat files" larger than 2GB.

Large File Support       127



Some operating systems limit the maximum file size to 2GB. We will refer to these as "small systems". Other 
systems have native support for files larger than 2GB. We will refer to these as "large systems".

To overcome the size limitation, MDM-RE can combine the free space on a number of file-systems into one 
large logical file. A logical file larger than 2GB is composed of a number of small files known as "extents". 
Each extent must be less than 2GB in size.

Although this feature is not necessary on "large systems", it can be used to distribute the data over multiple 
file systems thereby making use of fragmented space.

Large File Support is designed for binary files. Restrictions apply to its use for text files, as described later.

Directory File

The management of extents can default to internal rules or can be user-supplied. A file known as the 
"directory file" can be defined to specify the number of extents as well as their names and sizes.

Each large file’s directory file is named using operating-system specific rules. Currently the file, if present, is 
the name of the large file with .dir appended. For example, the directory file for db.dat would be called 
db.dat.dir.

Directory files contain multiple lines of text. Each line contains two blank separated fields used to define an 
extent. The size of the extent (in bytes) is followed by the name of the extent. The maximum extent size is 
limited to 2GB - 1. An asterisk (*) may be used as a shorthand notation for the maximum extent size.

For example, these definitions define two extents. The first is limited to 1Mb and the second extent defaults 
to 2GB - 1.

1048576                 db.dat.ext1
*                         db.dat.ext2

If all extents are to be of equal size, you can define a template for the base name of the extents. For example,

1048575                 db.dat.ext
*

will allocate extents of size 1048575 and name them using the rules documented in section Default Extent 
Names below. Note that the second line containing the asterisk enables this type of processing.

Also, this mode of processing requires the extent size (1048575 in this example) to be a power of 2 (1048576 
in this example) minus 1. To allow all extents to have the maximum size of 2GB-1 use:

*                                     db.dat.ext
*

To allow all large files to have maximum size extents, create a file called extents.dir with the following text:

*       %f*
Note: It is possible to set the maximum extent size using the environment variable SSAEXTENTSIZE . 
Example, SSAEXTENTSIZE =256kwill limit the size of all extent to 256K (minus 1).

Default Extent Names

If a directory file does not exist when a large file is opened, default rules are used to name the extents.

Each extent size defaults to 2GB - 1.

The first extent has the same name as the large file. Second and subsequent extents are created by 
appending two characters to the file name. The extensions are named aa, ab, ac,... az, ba,. . . zz. The means 
that (1+26*26) extents are possible giving a maximum logical file size of 1.3Tb

128       Chapter 11: Miscellaneous Issues



Using the example above, the extents would be named:

db.dat
db.dat.extaa
db.dat.extab...

Small System Rules

Small systems support large files using the rules above. Extents are defined using a directory file. If a 
directory file does not exist default sizes and names are used.

Large System Rules

Large systems have native support for files larger than 2GB. Operating systems such as Windows NT 4.0, 
HPUX and Digital/Unix are in this category.

Large files do not use extents on these systems unless a directory file is defined. In the latter case, extents 
are still limited to 2GB - 1.

Restrictions

Large file support was designed for binary files. In general, text files are not supported by the extent 
mechanism.

Text files do not default to use extents when a directory file is not present. Even if a directory file is defined 
and extents are used, correct results can not be guaranteed on every platform.

If you wish to use large text files, you should use an operating system that supports them natively.

Flat File Input from a Named Pipe
The MDM-RE Table Loader can read input data from a named pipe. Relate cannot read Win32 pipes at this 
stage.

UNIX Platforms

On UNIX platforms the MDM-RE input processor can read input from a Named Pipe. This means that it is 
possible to read data from another database without the need to create large intermediate files.

The concept is identical on all UNIX platforms, although the command used to create a named pipe may vary 
between implementations. The following example in applicable to LINUX.

mkfifo $SSAWORKDIR/inpipe

To use the pipe, specify its name as the Physical-File parameter in the Logical-File-Definition of the input file:

logical-file-definition
*======================
NAME=                                                 lf-input
PHYSICAL-FILE=                                     "+/inpipe"
COMMENT=                                             "named pipe for the loader"
VIEW=                                                 DATAIN
INPUT-FORMAT=                                         TEXT
AUTO-ID-NAME=                                         Job1

Windows Platforms

To use a named pipe on Windows environments, you need to specify the name of the pipe in the Microsoft 
format:

\\server\pipe\pipe_name

Flat File Input from a Named Pipe       129



where

• server is the server name or dot (.) for the current machine

• pipe the word "pipe"

• pipe_name the pathname of the named pipe file

To use the pipe, specify its name as the Physical-File parameter in the Logical-File-Definition of the input file:

logical-file-definition
*======================
NAME=                                                 lf-input
COMMENT=                                             "input file"
PHYSICAL-FILE=                                     "\\.\pipe\pipe_name"
VIEW=                                                 DATAIN
FORMAT=                                                 TEXT
AUTO-ID-NAME=                                         JobN

logical-file-definition
*======================
NAME=                                                 lf-input
COMMENT=                                             "input file"
PHYSICAL-FILE=                                     "\\.\pipe\pipe_name"
VIEW=                                                 DATAIN
FORMAT=                                                 TEXT
AUTO-ID-NAME=                                         JobN

130       Chapter 11: Miscellaneous Issues



C h a p t e r  1 2

Limitations
MDM-RE design and host DBMS impose some limits:

Database
• Only one field per file with a format B(inary) can exceed 255 bytes in length.

• C(haracter) fields can not exceed 2000 bytes.

• There is a maximum of 255 fields per file.

• File-name length is limited to 23 bytes.

• Index-name length is limited to 22 bytes.

• IDX Key is limited to 255 bytes.

• A maximum of 4G - 1 rows per IDT.

• LOB columns are limited to 16 MB.

Object Names

Object names (tables, indexes, columns, functions) follow the rules of the host DBMS, with the following 
additional restrictions:

• identifiers must not exceed 32 bytes in length

• MS-SQL: Only regular identifiers are supported (up to 32 bytes in length)

IDENTITY functions (MS-SQL Server)

MS-SQL Server provides a function named @@IDENTITY that returns the identity value generated by the last 
performed INSERT, SELECT INTO or bulk copy statement.

For a synchronized system, if any source data tables contain identity columns, the @@IDENTITY function is 
not safe to use for the purpose of returning the last updated row from any of these source data tables. This is 
due to MDM-RE using an identity column in the IDS_UPD_SYNC_TXN table.

Whenever a source table row is updated, a trigger will fire and insert a row into IDS_UPD_SYNC_TXN. Therefore 
the @@IDENTITY function will return the identity of the last row inserted into IDS_UPD_SYNC_TXN, not the 
identity of the last updated source table row.

MS SQL 2000 provides two new functions for handling this:

• SCOPE_IDENTITY() will return the last IDENTITY value inserted into an IDENTITY column in the same 
scope. Two statements are in the same scope if they are in the same stored procedure, function, or batch. 
Since it returns values inserted only within the current scope, it will not report on the IDS_UPD_SYNC_TXN 
table.

• IDENT_CURRENT(’Table name’) will return the last IDENTITY value generated for the specified table in any 
session and any scope. Since it returns values inserted only in the specified table, it will not report on the 
IDS_UPD_SYNC_TXN table.

131



Note: We recommend that one of these functions be used instead of the @@IDENTITY function.

Synchronizer
• Maximum of 36 PK fields per IDT.

• Each PK field value must be less than 1000 bytes in length

• The combined length of PK field names and PK field values can not exceed 2000 bytes.

Servers
• Maximum of 1024 TCP/IP connections per Server

• Maximum of 4096 database connections per Database Module (ssadbm.dll).

132       Chapter 12: Limitations



C h a p t e r  1 3

Error Messages
This section describes about the error messages that you need to troubleshoot.

Oracle

When the MDM-RE Table Loader spawns SQL*Loader to load files, a performance option (Direct-Path) is used 
which bypasses the database nucleus and directly writes data blocks to the database files. When running a 
Direct-Path load across a network to an Oracle server having a different architecture (byte order, etc), an error 
message as follows will be returned:

ORA-02352: Direct path connection must be homogeneous

The solution is to either

1. run the load on the same machine, or

2. run a Conventional-Path load by specifying the Loader-Definition Options=Conventional-Path. This is 
slow compared to the first option.

133



I n d e x

1 
M relationship 73

A
API 97
auditing 88

B
Batch Search Clients 13

C
Clone Current System 78
Cluster Membership 99
Cluster Status Types 101
clustered 103
clustering 85
Clusters 88
Compressed Key Data 114
Console Client 17
Console Export 125
Console Server 17
create persistent ID 92
create PID 92
Create PID 92
Customer Search 12

D
Data Source 58
Definition Language 16
Denormalized 70
Denormalized Data 66
Direct-Path 133
Directory File 127

E
Embedded spaces 16
Environment Variables 

SSASORTMEM 70
SSASORTOPTS 70

F
File Definitions 58
Filters 

Dynamic 109

Filters (continued)
Skeletal 109
Static 109

Flattening 66, 109

G
Golden Record 99

H
histogram 114, 119

I
IDT Layout 69
IDT-Definition 69
IDX Size 114

J
Java Search Client 118

L
Large File Support 127
Load IDT 103
Load PID 92
logical design 66
Logical-File-Definition 129

M
MDM-RE Console 13
MDM-RE Identity Table 13
Membership table 96
Merge Control Table 99
Merge-Definition 99

N
Name Length 16

O
Object names 131
Options 

Flat-Keep-Blanks 71

134



Options (continued)
Flat-Remove-Identical 71

output view 120

P
parsed rules 82
Partitions 109
persistent ID 92
Persistent-ID 84, 88
Persistent-ID report 94
Persistent-ID Report Header 94
PID 84
Pre-clustered 85
Pre-Scoring 113
Preferred-Record-Review 101

R
relperf 121
Rulebase 16, 125
Rulebase Editor 79
Run Clustering 103

S
Scoring 113
SDF 78
SDF Wizard 79
search client 109
Search Definitions 14
Search Server 81, 96, 118
Search Strategies 13
search transaction 120

Search-Definition 109
Seed 85
SQL Filters 109
Standard Population 13
static copy 103
Statistical Fields 58
Synchronization 73
Synchronizer 99, 131
system 

Documented 77
Implemented 77
Loaded 77

System 
un-implement 81

System Definition File 12, 15
System Editor 15, 79
System status 81
System-Definition 17

T
Table Loader 129
Transform Exit 125

U
User Source Exit 125
User Source Tables 12, 15, 81

V
View Definition 58
Virtual Private Databases 126

Index        135


	Table of Contents
	Preface 
	Learning About Informatica MDM Registry
	What Do I Read If. . .

	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support


	Chapter 1: Introduction
	Overview
	Requirements Analysis
	Data Analysis
	Create the MDM-RE System Definition
	Select the SSA-NAME3 Population rules
	Start the MDM-RE Search and Rulebase Servers
	Create the MDM-RE System
	Load the MDM-RE Identity Table and Index(es)
	Tune Searches

	Chapter 2: Defining a System
	Overview
	Syntax
	Restrictions
	Files and Environment Variables
	System Section
	System Definition
	Identity Table Definition
	Identity Index Definition
	Loader Definition
	Job Definition
	Logical File Definition
	Search Definition
	Cluster Definition
	Multi-Search Definition
	User-Job-Definition
	User-Step-Definition
	Key-Logic / Search-Logic
	Score-Logic
	Merge Definition
	Merge Master Definition
	Merge Column Definition
	Merge Column Rule Definition

	User-Source-Table Section
	Source Data Types
	Create_IDT
	Join_By
	Merged_From
	Define_Source (relate input)
	Sourcing from Microsoft Excel

	Files and Views Sections

	Chapter 3: Flattening IDTs
	Concepts
	Syntax
	Flattening Process
	Flattening Options
	Tuning / Load Statistics
	Design Considerations

	Chapter 4: Link Tables
	Chapter 5: Loading a System
	Overview
	System States
	Creating a System
	Create a System from an SDF
	Clone the current System
	Create SDF

	Editing a System
	Implementing a System
	To un-implement a System

	System Status
	System Backup / Transfer
	Import


	Chapter 6: Persistent-ID (Dynamic Clustering)
	Overview
	Clustering Methods
	Best Method
	Merge Method
	Pre-Clustered Method
	Seed Method

	Clustering Review Options
	Best-Undecided-Review
	All-Undecided-Review
	Pre-Merge-Review
	Post-Merge-Review
	Preferred-Record-Review

	Clustering Options
	Persistent-ID-Prefix
	Persistent-ID-Method
	Persistent-ID-Options

	Auditing
	Creating Persistent ID
	Creating Persistent ID through the Console Client
	Creating Persistent ID in the Batch Mode

	Persistent-ID Report Format
	Maintenance
	Membership table layout
	API access
	PID Refresh

	Chapter 7: Cluster Governance
	Overview
	Merge Control Table
	Cluster Status Types
	Review Table

	Chapter 8: Static Clustering
	Overview
	Process

	Chapter 9: Simple Search
	Simple Search Overview
	Simple Search Requirements
	Generic_Field
	Generic Match Purpose

	Simple Search Definition
	Simple Search Scenario

	Chapter 10: Search Performance
	Reducing Candidate Set Size
	Reducing Scoring Costs
	Reducing Database I/O
	Search Statistics and Tracing
	Tracing a Search
	Search Statistics
	Expensive Searches
	Output View Statistics
	relperf


	Chapter 11: Miscellaneous Issues
	Backup and Restore
	User Exits
	Virtual Private Databases (VPD)
	Large File Support
	Flat File Input from a Named Pipe

	Chapter 12: Limitations
	Chapter 13: Error Messages
	Index

