
Informatica® MDM - Relate 360
10.0 HotFix 8

User Guide

Informatica MDM - Relate 360 User Guide
10.0 HotFix 8
November 2018

© Copyright Informatica LLC 2014, 2018

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, and Vibe are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the
world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be
trade names or trademarks of their respective owners.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2018-11-30

Table of Contents

Preface . 7
Informatica Resources. 7

Informatica Network. 7

Informatica Knowledge Base. 7

Informatica Documentation. 7

Informatica Product Availability Matrixes. 8

Informatica Velocity. 8

Informatica Marketplace. 8

Informatica Global Customer Support. 8

Chapter 1: Introduction to Informatica MDM - Relate 360. 9
Informatica MDM - Relate 360 Overview. 9

Relate 360 Components. 9

Linking Process. 10

Linking Batch Data. 11

Linking Streaming Data. 12

Use Case for the Linking Process. 12

Tokenization Process. 13

Tokenizing Batch Data. 13

Tokenizing Streaming Data. 13

Use Case for the Tokenization Process. 14

Relationship Graph. 14

Use Case for the Relationship Graph. 15

Chapter 2: Linking Batch Data. 16
Linking Batch Data Overview. 16

Linking Data and Persisting the Linked Data in a Repository. 16

Initial Clustering Job. 18

Post-Clustering Job. 22

Region Splitter Job. 27

Load Clustering Job. 28

Consolidation Job. 33

Repository Data Deletion Job. 38

Linking Data and Persisting the Linked Data in HDFS. 39

Initial Clustering Job. 41

Post-Clustering Job. 45

Consolidation Job. 50

HDFS Data Deletion Job. 52

Table of Contents 3

Chapter 3: Tokenizing Batch Data. 54
Tokenizing Batch Data Overview. 54

Tokenizing Data and Persisting the Tokenized Data in a Repository. 54

Repository Tokenization Job. 55

HDFS Tokenization Job. 57

Region Splitter Job. 61

Load Clustering Job. 63

Repository Update Job. 65

Repository Data Deletion Job. 67

Repository Batch Search Job. 69

Tokenizing Data and Persisting the Tokenized Data in HDFS. 71

HDFS Tokenization Job. 71

HDFS Data Deletion Job. 75

HDFS Batch Search Job. 77

Chapter 4: Processing Streaming Data. 80
Processing Streaming Data Overview. 80

Prerequisites. 80

Creating the Required Tables in the Repository. 81

Streaming Data by Using the RESTful Web Services. 82

Authenticate Web Service. 82

GETINGESTLAYOUT Web Service. 83

INGEST Web Service. 84

GETRECORDLAYOUT Web Service. 86

GETRECORD Web Service. 87

DELETERECORD Web Service. 88

GETMANAGECLUSTERLAYOUT Web Service. 90

MANAGECLUSTER Web Service. 91

Streaming Data by Using the Command-Line Command. 92

GETINGESTLAYOUT Operation. 93

INGEST Operation. 94

GETRECORDLAYOUT Operation. 95

GETRECORD Operation. 96

DELETERECORD Operation. 97

GETMANAGECLUSTERLAYOUT Operation. 99

MANAGECLUSTER Operation. 100

Viewing the Output Messages. 101

Chapter 5: Creating Relationship Graph. 102
Relationship Graph Overview. 102

Creating Relationship Graph. 102

Load Match Pairs Job. 104

4 Table of Contents

Create Relationship Job. 106

Retrieving the Relationship Details. 107

Get Graph Metadata Web Service. 108

Get Entity Metadata Web Service. 110

Get Entity Relationship Web Service. 113

Get All Relationships Web Service. 116

Get Entity Details Web Service. 119

Managing the Relationships. 120

Create Relationship Web Service. 121

Remove Relationship Web Service. 122

Viewing the Relationship Graph. 124

Relationship Graph User Interface. 125

Filtering the Records. 126

Aggregating the Records. 127

Setting the Visualization Options. 128

Modifying the Graph View. 128

Chapter 6: Loading Linked and Consolidated Data into Hive. 130
Loading Linked and Consolidated Data into Hive Overview. 130

Loading Linked Data from the Repository. 130

Running the Hive Enabler Job. 131

Loading Linked Data from HDFS. 134

Running the Hive Enabler Job. 135

Loading Consolidated Data from the Repository. 138

Running the Hive Enabler Job. 139

Loading Consolidated Data from HDFS. 140

Running the Hive Enabler Job. 141

Chapter 7: Searching Data. 144
Searching Data Overview. 144

Prerequisites. 144

Searching Data by Using the RESTful Web Services. 144

Authenticate Web Service. 145

Get Multisearch Layout Web Service. 146

Multisearch Web Service. 148

Get Cluster Layout Web Service. 151

Get Cluster Web Service. 152

Get Preferred Record Layout Web Service. 154

Get Preferred Record Web Service. 156

Preferred Record Search Web Service. 158

Get Strategies Web Service. 160

Searching Data by Using the Command-Line Commands. 161

Get Multisearch Layout Operation. 162

Table of Contents 5

Multisearch Operation. 164

Get Cluster Layout Operation. 169

Get Cluster Operation. 170

Get Preferred Record Layout Operation. 171

Get Preferred Record Operation. 174

Preferred Record Search Operation. 176

Get Strategies Operation. 177

Chapter 8: Monitoring the Batch Jobs. 179
Monitoring Overview. 179

Starting the Hadoop ResourceManager. 179

Running the Mapred Command. 179

Chapter 9: Troubleshooting. 181
Troubleshooting Batch Jobs. 181

Troubleshooting Spark. 182

Troubleshooting Search Requests. 183

Troubleshooting Relationship Graph. 183

Appendix A: Glossary. 184

Index. 185

6 Table of Contents

Preface
The Informatica MDM - Relate 360 User Guide provides information about how to install and configure Relate
360 for system administrators and data stewards. This guide assumes that you are familiar with the interface
requirements for the Hadoop environment.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

7

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

8 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Introduction to Informatica MDM -
Relate 360

This chapter includes the following topics:

• Informatica MDM - Relate 360 Overview, 9

• Relate 360 Components, 9

• Linking Process, 10

• Tokenization Process, 13

• Relationship Graph, 14

Informatica MDM - Relate 360 Overview
Use Informatica MDM - Relate 360 to link or tokenize the input data in a Hadoop environment. You can
consolidate the linked data to get preferred records. You can also create relationships between the records
and view the relationships in a relationship graph.

Linking is a process of grouping related records into clusters based on the matching rules. Tokenization is a
process of adding a fuzzy token, which is an encoded key, to each input record. Consolidation is a process of
merging data from different records in a cluster to create a preferred or golden record based on the
consolidation rules. A relationship graph connects all the related records of a record through relationships.

You can use the linked and consolidated data to perform business analytics and reporting by using a third-
party tool. You can use the tokenized data to perform search operations.

The input data can be batch data or streaming data. You can persist the linked or tokenized data in HDFS or
in a repository.

Relate 360 Components
Relate 360 contains the following components:
SSA-NAME3

Builds keys, defines match criteria to link the records, and identifies the matching records based on the
keys. SSA-NAME3 uses algorithms that can handle initials, aliases, common variations, prefixes,
suffixes, transpositions, and word order.

9

Batch Jobs

Link or tokenize the input data, load the linked or tokenized data into a repository, consolidate the linked
data, and search for matching records in the indexed or tokenized data.

Enabler

Loads the linked or consolidated data from HDFS or repository into Hive.

RESTful Web Services and Command-Line Commands

Perform fuzzy searches that can return relevant matching records or exact searches that can return
exact matching records.

Linking Process
You can link batch data or streaming data. To link batch data, store the input data in HDFS. Relate 360 reads
the input data from HDFS and links the input data. You can then persist the linked data in a repository or data
warehouse. You can also consolidate the linked data that you persist in HDFS or repository.

To link streaming data, stream the data in the JSON format. Relate 360 links the input data and persists the
linked data in a repository. You can also consolidate the streaming data.

10 Chapter 1: Introduction to Informatica MDM - Relate 360

Linking Batch Data
The following image shows how Relate 360 links the batch data and persists the linked data in HDFS or in a
repository:

To link the input batch data, perform the following tasks:

1. Run the Relate 360 batch jobs to read the input data from HDFS and link the input data.

2. Optionally, load the linked data into the repository.

3. Optionally, consolidate the linked data.

4. If you want to perform search operation on the linked or consolidated data, use the RESTful web services
or the command-line commands.

5. Optionally, if you want to perform analytics, load the linked data into a data warehouse.

Linking Process 11

Linking Streaming Data
The following image shows how Relate 360 links the streaming data and persists the linked data in a
repository:

To link and consolidate the input streaming data, perform the following tasks:

1. Stream the input data in the JSON format.

2. Use the Relate 360 RESTful web services or the command-line commands to read the input data, link and
consolidate the input data, and load the linked and consolidated data into the repository.

3. Optionally, if you want to search for matching records in the repository, use the RESTful web services or
the command-line commands.

4. Optionally, if you want to perform analytics, load the linked and consolidated data into a data warehouse
and use third-party tools to perform business analytics on the linked and consolidated data.

Use Case for the Linking Process
You work for a large insurance organization that wants to enrich the existing customer database with data
from third-party data provider services in a Hadoop environment. The organization wants to compare the
existing data with the third-party data to identify potential business prospects. The organization wants a 360-
degree view of the customers to understand the relationship between them and come up with targeted
marketing programs.

To identify potential business prospects and develop targeted marketing programs, perform the following
tasks:

1. Use a data integration tool to read data from different data sources and write the data to HDFS in the
fixed-width format.

2. Use Relate 360 to link the input records.

3. Load the linked data into HBase.

4. To identify potential business prospects, identify the group of records that do not have records from the
existing customer database.

5. View the details of the potential business prospects to understand the relationship between them.

6. Based on the relationship between the potential business prospects, develop targeted marketing
programs.

12 Chapter 1: Introduction to Informatica MDM - Relate 360

Tokenization Process
You can tokenize batch data or streaming data. To tokenize batch data, store the input data in HDFS. Relate
360 reads the input data from HDFS and tokenizes the input data. You can then persist the tokenized data in
a repository. To tokenize streaming data, stream the input data in the JSON format. Relate 360 tokenizes the
input data and persists the tokenized data in a repository.

The tokenized data contains input data and encoded tokens for the input data. You can perform searches on
the tokenized data.

Tokenizing Batch Data
The following image shows how you can tokenize data in HDFS and persist the tokenized data in HDFS or in a
repository:

To tokenize the input data, perform the following tasks:

1. Run the Relate 360 batch jobs to read the input data in HDFS, add tokens to the input data, and persist
the tokenized data in HDFS or in a repository.

2. To search the tokenized data for matching records, use the RESTful web services, and the batch job.

Tokenizing Streaming Data
The following image shows how Relate 360 tokenizes the streaming data and persists the tokenized data in a
repository:

Tokenization Process 13

To tokenize the input streaming data, perform the following tasks:

1. Stream the input data in the JSON format.

2. Use the Relate 360 RESTful web services or the command-line command to read the input data, link the
input data, and persist the tokenized data in a repository.

3. To perform search operation on the tokenized data, use the RESTful web services to search the
tokenized data for matching records.

Use Case for the Tokenization Process
You work for a law enforcement agency that has a large data set. The agency uses the data to identify people
or organization for fraud detection, intelligence, and screening purposes. The agency requires a product that
is scalable to screen a large data set with the capability to manage all the variations and errors in the data.

For example, if you search for an address, the product must return all the records that contain the address
irrespective of all the variations in the address. Based on the search results, you can identify the person who
can be a potential threat to the national security.

You can use Relate 360 to tokenize a large data set and search for matching records.

Relationship Graph
You can create relationships between the processed records. The processed records can be customer data,
transaction data, product data, and other types of data. You can consider each type of data as a business
entity type. When you create relationships between two or more business entity types, the relationships result
in a relationship graph. A relationship graph displays all the related records of a record and its relationships
with the related records.

The following image shows a representational relationship graph:

In the representational relationship graph, Customer, Product, Transaction, and Service Request are business
entity types, and owns, transaction, and complaint are relationships that connect the business entity types.
The representational graph can display all the products a customer owns. The graph can also display the
service requests and the transaction details of each product the customer owns.

14 Chapter 1: Introduction to Informatica MDM - Relate 360

Use Case for the Relationship Graph
You work for a large insurance organization that uses different data sources to store its data, such as
customer data, product data, and transaction data. The organization wants to relate the product and
transaction data to the customer data to have a 360-degree view of the customers. The organization wants to
understand their customers better and come up with targeted marketing programs.

To relate the customer data with the product and transaction data, perform the following tasks:

1. Use a data integration tool to read data from different data sources and write the data to HDFS in the
fixed-width format.

2. Link the customer data to identify the household members.

3. Tokenize the product and transaction data.

4. Load the linked and tokenized data into the repository.

5. Create relationships between the customer and product data and the customer and transaction data.

6. View the details of the customers in the relationship graph to understand the customers and come up
with targeted marketing programs.

Relationship Graph 15

C h a p t e r 2

Linking Batch Data
This chapter includes the following topics:

• Linking Batch Data Overview, 16

• Linking Data and Persisting the Linked Data in a Repository, 16

• Linking Data and Persisting the Linked Data in HDFS, 39

Linking Batch Data Overview
Use the Informatica MDM - Relate 360 batch jobs to link the batch data. Relate 360 reads the input data from
HDFS and links the input data. You can consolidate the linked data to create the preferred records. You can
then persist the linked and consolidated data in a repository or data warehouse.

Linking Data and Persisting the Linked Data in a
Repository

You can link the input data based on the matching rules and consolidate the linked data based on the
consolidation rules. You can then persist the linked and consolidated data in a repository so that you can
perform data analytics or searches on the data.

The following image shows the batch jobs that you can run to link the input data, consolidate the linked data,
and persist the linked data in a repository:

16

To persist the linked data in a repository, perform the following tasks:

1. Run the initial clustering job.

The job links the input data and creates clusters for the input data in HDFS.

2. If you want to process the output files of the initial clustering job, run the post-clustering job.

The post-clustering job reads the output files that the initial clustering job creates in HDFS and
processes it based on the mode that you set.

3. If you want to uniformly distribute the linked data across all the regions in the repository, run the region
splitter job.

The job analyzes the input linked data and identifies the split points for all the regions in the repository.

4. Run the load clustering job.

The job loads the linked data from HDFS into the repository.

5. If you want to consolidate the linked data, run the consolidation job.

The consolidation job creates a preferred records table with a preferred record for each cluster.

6. To add an incremental data to the repository, run the initial clustering job in the incremental mode to link
the incremental data and run the load clustering job in the incremental mode to add the linked data to
the repository.

If you consolidate the linked data, you can also run the consolidation job in the incremental mode to
update the incremental data.

7. To delete records from the repository, run the repository data deletion job with the --useIndexId
parameter.

Linking Data and Persisting the Linked Data in a Repository 17

Initial Clustering Job
The initial clustering job indexes and links the input data based on the rules in the matching rules file and the
parameters in the configuration file. The initial clustering job reads the input data in HDFS and persists the
indexed and linked data in HDFS. You can also run the initial clustering job in the incremental mode to
incrementally update the indexed and linked data in HDFS.

Initial Mode

Use the initial mode to index and link the data for the first time. The following image shows how the initial
clustering job indexes and links the input data when you run the job in the initial mode:

When you run the initial clustering job in the initial mode, the job performs the following tasks:

1. Reads the input files from HDFS.

2. Indexes and groups the input data based on the rules in the matching rules file.

3. Matches the grouped records and links the matched records.

4. Creates clusters for the matched and unmatched records.

5. Writes the indexed and linked records to the output files in HDFS.

Note: The number of output files depends on the number of reducers that you run.

Incremental Mode

Use the incremental mode to incrementally update the existing indexed and linked data. The following image
shows how the initial clustering job indexes and links the incremental data when you run the job in the
incremental mode:

When you run the initial clustering job in the incremental mode, the job performs the following tasks:

1. Reads each record from the input files and generates keys and ranges based on the matching rules file.

18 Chapter 2: Linking Batch Data

2. Searches and matches the generated keys with the keys that the previous run of the initial clustering job
creates.

3. Links the matched records to an existing cluster and creates clusters for the unmatched records.

4. If you configure the job to consolidate data, the job consolidates the incremental data with the indexed
and linked data and writes the consolidated data to HDFS. If you configure the job not to consolidate
data, the job indexes and links the incremental data and writes the incremental data to HDFS.

Note: If an input record matches with records that belong to two different clusters, the initial clustering job
links the input record to any one of the clusters.

Running the Initial Clustering Job
Use the initial clustering job to read data from the input files and then index and link the input data in HDFS.
You can also use the initial clustering job to incrementally update the indexed and linked data with additional
data.

To run the initial clustering job, run the run_genclusters.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Initial Mode

Use the following command to run the run_genclusters.sh script in the initial mode:

run_genclusters.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducers]

[--keeptemp=true|false]

[--compression=true|false]
The following table describes the options and the arguments that you can specify to run the
run_genclusters.sh script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run to perform
initial clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The initial clustering job
uses the working directory to store the output and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

Linking Data and Persisting the Linked Data in a Repository 19

Option Argument Description

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files in
the directory and rerun the job.
By default, the batch job loads the output files to the working directory
in HDFS.

--keeptemp true|false Optional. Indicates whether to retain the intermediate output tables
that the initial clustering job creates. You can use the intermediate
output tables for troubleshooting purposes.
Set to true to retain the intermediate output tables, and set to false to
remove the intermediate output tables after the successful run of the
job.
Default is false.

--compression true|false Optional. Indicates whether to compress the output files that the initial
clustering job creates. You can compress the output files to avoid any
storage issues.
Set to true to compress the output files, and set to false to retain the
original size of the output files.
Default is false.

For example, the following command runs the initial clustering job in the initial mode:

run_genclusters.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --reducer=16 --outputpath=/usr/hdfs/outputfolder --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml

If you run the initial clustering job without the --outputpath parameter, you can find the linked data in the
following directory: <Working Directory in HDFS>/batch-cluster/<Job ID>/output/dir/pass-join

Each job generates a unique ID, and you can identify the job ID based on the time stamp of the <Job ID>
folder.

If you run the initial clustering job with the --outputpath parameter, you can find the linked data in the
following directory: <Output Directory in HDFS>/batch-cluster/output/dir/pass-join

The following sample output of an initial clustering job shows the cluster ID, the field values, match rule
name, and the metadata related to the cluster:

683e6e41-9174-4a22-b08e-d5d4adc9b2ee 0000000007ERP 3M 3M
Center St. Paul USA ARC SOFT 07_UK_Rule1 00000001ZZB>$$
$$01000004NAH-C$$$QVM$*K$-N?H-C$$-NAH$$$$-

Incremental Mode

Use the following command to run the run_genclusters.sh script to incrementally update the indexed and
linked data with additional data:

run_genclusters.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--incremental

20 Chapter 2: Linking Batch Data

--clustereddirs=indexed_linked_data_directory

[--reducer=number_of_reducers]

[--outputpath=directory_for_output_files]

[--consolidate]

[--keeptemp=true|false]

[--compression=true|false]
The following table describes the options and the arguments that you can specify to run the
run_genclusters.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you
create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run to perform
initial clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The initial clustering
job uses the working directory to store the output and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you
create.

--incremental Runs the initial clustering job in the incremental mode.
If you want to incrementally update the indexed and linked data in
HDFS, run the job in the incremental mode.
By default, the initial clustering job runs in the initial mode.

--clustereddirs indexed_linked_data_directory Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/
output/dir/pass-join

--consolidate Consolidates the incremental data with the existing indexed and
linked data in HDFS.
By default, the initial clustering job indexes and links only the
incremental data.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch
job loads the output files. Use a different directory when you rerun
the batch job. If you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

Linking Data and Persisting the Linked Data in a Repository 21

Option Argument Description

--keeptemp true|false Optional. Indicates whether to retain the intermediate output tables
that the initial clustering job creates. You can use the intermediate
output tables for troubleshooting purposes.
Set to true to retain the intermediate output tables, and set to false
to remove the intermediate output tables after the successful run
of the job.
Default is false.

--compression true|false Optional. Indicates whether to compress the output files that the
initial clustering job creates. You can compress the output files to
avoid any storage issues.
Set to true to compress the output files, and set to false to retain
the original size of the output files.
Default is false.

For example, the following command runs the initial clustering job in the incremental mode:

run_genclusters.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --reducer=16 --hdfsdir=/usr/hdfs/workingdir --outputpath=/usr/hdfs/
outputfolder --rule=/usr/local/conf/matching_rules.xml --clustereddirs=/usr/hdfs/
workingdir/batch-cluster/MDMBDRM_931211654144593570/output/dir/pass-join --incremental

Post-Clustering Job
Use the post-clustering job to read the output files of an initial clustering job in HDFS and process the input
data based on the mode that you configure. The input data can be linked data or poor quality data.

You can run the post-clustering job in one of the following modes:
Skip

Skips the records in the high-volume clusters that contain more than the specified number of records.

Recluster

Re-links the records in the high-volume clusters that contain more than the specified number of records.

Longtail

Decrypts the poor quality records that the initial clustering job identifies to the original input format. You
can cleanse the decrypted data, and use it as the input data for the initial clustering job.

Export

Exports the linked data in the CSV format.

The following image shows how the post-clustering job processes the input data in the skip, recluster, and
longtail modes:

22 Chapter 2: Linking Batch Data

The post-clustering job performs the following tasks:

1. Reads the output files of an initial clustering job in HDFS.

2. Processes the input data based on the mode that you configure.

3. Writes the processed data in HDFS.

The following image shows how the post-clustering job processes the input data in the export mode:

The post-clustering job performs the following tasks:

1. Reads the input and output files of an initial clustering job in HDFS.

2. Exports the linked data in the CSV format.

Running the Post-Clustering Job
The post-clustering job uses the output files of an initial clustering job, so ensure that you run the initial
clustering job before you run the post-clustering job.

To run the post-clustering job, run the run_postprocess.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Skip and Recluster Modes

To run the run_postprocess.sh script in the skip or recluster mode, use the following command format:

run_postprocess.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--maxcluster=maximum_number_of_records

--mode=SKIP_LARGE_CLUSTER|RECLUSTER_TRANSITIVE

--threshold=matching_score_to_recluster

[--reducer=number_of_reducer_jobs]

Linking Data and Persisting the Linked Data in a Repository 23

The following table describes the options and arguments that you can specify to run the
run_postprocess.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/output/dir/
pass-join

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The post-clustering
job uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file.
The values in the matching rules file override the values in the
configuration file.

--maxcluster maximum_number_of_records Maximum number of records in a cluster.
If the number of records in a cluster exceeds the specified
maximum number of records, the cluster becomes a high-volume
cluster, and the post-clustering job processes the cluster.

--mode SKIP_LARGE_CLUSTER|
RECLUSTER_TRANSITIVE

Indicates the mode to process the input data.
Use one of the following modes:
- SKIP_LARGE_CLUSTER. Indicates to skip all the records in the

high-volume clusters.
- RECLUSTER_TRANSITIVE. Indicates to re-link all the records in

the high-volume clusters.

--threshold matching_score_to_recluster Minimum score required for the records to be part of the same
cluster when you run the post-clustering job in the recluster mode.
The job creates a separate cluster for each record whose score is
less than the threshold value.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

For example, the following command runs the post-clustering job in the skip mode:

run_postprocess.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/workingdir/
batch-cluster/MDMBDE0063_1602999447744334391/output/dir/pass-join --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml --maxcluster=1200 --threshold=90 --
mode=SKIP_LARGE_CLUSTER

If you run the post-clustering job without the --outputpath parameter, you can find the processed data in the
following directory: <Working Directory in HDFS>/ClusterPostProcessing/<Job ID>/output

If you run the post-clustering job with the --outputpath parameter, you can find the processed data in the
following directory: <Output Directory in HDFS>/ClusterPostProcessing/output

Longtail Mode

The initial clustering job identifies the poor quality data from the input data and loads it to a directory in an
encrypted format. The post-clustering job decrypts the poor quality data to the original input format.

24 Chapter 2: Linking Batch Data

To run the run_postprocess.sh script in the longtail mode, use the following command format:

run_postprocess.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--mode=LONGTAIL_CLUSTERS

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_postprocess.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file.

--input input_file_in_HDFS Absolute path to the directory that contains the poor quality data.
If you run the initial clustering job without the --outputpath parameter,
you can find the poor quality data in the following directory: <Working
Directory in HDFS>/batch-cluster/<Job ID>/poorqualitydata
If you run the initial clustering job with the --outputpath parameter, you
can find the poor quality data in the following directory: <Output
Directory in HDFS>/batch-cluster/poorqualitydata

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The post-clustering job uses
the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file.
The values in the matching rules file override the values in the configuration
file.

--mode LONGTAIL_CLUSTERS Indicates that the job processes the poor quality data.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

For example, the following command runs the post-clustering job in the longtail mode:

run_postprocess.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/workingdir/
batch-cluster/MDMBDE0063_1602999447744334391/poorqualitydata --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml --mode=LONGTAIL_CLUSTERS

If you run the post-clustering job without the --outputpath parameter, you can find the decrypted data in the
following directory: <Working Directory in HDFS>/ClusterPostProcessing/<Job ID>/output

If you run the post-clustering job with the --outputpath parameter, you can find the decrypted data in the
following directory: <Output Directory in HDFS>/ClusterPostProcessing/output

Export Mode

To run the run_postprocess.sh script in the export mode, use the following command format:

run_postprocess.sh

--config=configuration_file_name

--input=input_file_in_HDFS

Linking Data and Persisting the Linked Data in a Repository 25

--matchinput=match_output_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--mode=CSV_OUTPUT

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_postprocess.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file.

--input input_file_in_HDFS Absolute path to the directory that contains the input files of the initial
clustering job.

--matchinput match_output_in_HDFS Absolute path to the directory that contains the linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
match/dir
If you run the initial clustering job with the --outputpath parameter,
you can find the linked data in the following directory: <Output
Directory in HDFS>/batch-cluster/match/dir

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The post-clustering job
uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file.
The values in the matching rules file override the values in the
configuration file.

--mode CSV_OUTPUT Indicates to export the input data in the CSV format.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

For example, the following command runs the post-clustering job in the export mode:

run_postprocess.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --matchinput=/usr/hdfs/workingdir/batch-cluster/
MDMBDE0063_1602999447744334391/match/dir/ --hdfsdir=/usr/hdfs/workingdir --rule=/usr/
local/conf/matching_rules.xml --mode=CSV_OUTPUT

If you run the post-clustering job without the --outputpath parameter, you can find the CSV files in the
following directory: <Working Directory in HDFS>/ClusterPostProcessing/<Job ID>/output-match

If you run the post-clustering job with the --outputpath parameter, you can find the CSV files in the following
directory: <Output Directory in HDFS>/ClusterPostProcessing/output-match

26 Chapter 2: Linking Batch Data

Region Splitter Job
Use the region splitter job to analyze the input linked data and identify the split points to uniformly distribute
the linked data across all the regions in the repository. The uniform distribution of the linked data optimally
utilizes the resources and improves the search performance.

A load clustering job uses the output files of a region splitter job to distribute the linked data. Run the region
splitter job before you run the load clustering job for the first time.

The following image shows how the region splitter job identifies the split points based on the input data:

The region splitter job performs the following tasks:

1. Reads the linked data in HDFS.

2. Identifies the split points for the number of regions that you specify.

Running the Region Splitter Job
The region splitter job identifies the split points for the input linked data to uniformly distribute the linked
data across all the regions.

To run the region splitter job, run the run_hbase_region_analysis.sh script located in the following
directory: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_hbase_region_analysis.sh script:

run_hbase_region_analysis.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--regions=number_of_regions

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]

Linking Data and Persisting the Linked Data in a Repository 27

The following table describes the options and arguments that you can specify to run the
run_hbase_region_analysis.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath parameter,
you can find the linked data in the following directory: <Output
Directory in HDFS>/batch-cluster/output/dir/pass-join

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The region splitter job
uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.
The values in the matching rules file override the values in the
configuration file.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the batch
job. If you want to use the same directory, delete all the files in the
directory and rerun the job.
By default, the batch job loads the output files to the working directory in
HDFS.

--regions number_of_regions Number of regions that you want to use for the input data.
The optimal number of regions depends on your environment and
resources. For more information about regions and split points, see the
repository documentation.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

For example, the following command runs the region splitter job:

run_hbase_region_analysis.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
workingdir/MDMBDRMInitialBatch/MDMBDE0063_1602999447744334391/output/dir/pass-join --
hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/matching_rules.xml --regions=14 --

If you run the region splitter job without the --outputpath parameter, you can find the output files in the
following directory: <Working Directory in HDFS>/MDMBDRMRegionAnalysis/<Job ID>

If you run the region splitter job with the --outputpath parameter, you can find the output files in the
following directory: <Output Directory in HDFS>/MDMBDRMRegionAnalysis

Load Clustering Job
The load clustering job loads the output files of an initial clustering job from HDFS into the repository. Before
you run the load clustering job, you can run the region splitter job to identify the split points for the input data.

You can also run the load clustering job in the incremental mode to load the incremental data into the
repository.

The following image shows how the load clustering job loads the data into the repository:

28 Chapter 2: Linking Batch Data

The load clustering job performs the following tasks:

1. Reads the linked data from the output files of an initial clustering job in HDFS.

2. Loads the linked data into the repository.

Running the Load Clustering Job
The load clustering job loads the linked data from HDFS into the repository. The linked data can be initial
data or incremental data.

To run the load clustering job, run the run_clusterload.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Initial Mode

Use the following command to run the run_clusterload.sh script in the initial mode:

run_clusterload.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]

[--hbaseregionsplitpath=output_directory_of_region_splitter_job]

Linking Data and Persisting the Linked Data in a Repository 29

The following table describes the options and arguments that you can specify to run the
run_clusterload.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration
file that you create.

--input input_file_in_HDFS Absolute path to the directory that contains linked
data.
If you run the initial clustering job without the --
outputpath parameter, you can find the linked
data in the following directory: <Working
Directory in HDFS>/batch-cluster/<Job
ID>/output/dir/pass-join
If you run the initial clustering job with the --
outputpath parameter, you can find the linked
data in the following directory: <Output
Directory in HDFS>/batch-cluster/
output/dir/pass-join

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to
run to perform load clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The
load clustering process uses the working directory
to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules
file that you create.
The values in the matching rules file override the
values in the configuration file.

30 Chapter 2: Linking Batch Data

Option Argument Description

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to
which the batch job loads the output files. Use a
different directory when you rerun the batch job. If
you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to
the working directory in HDFS.

--
hbaseregionsplitpath

output_directory_of_region_splitter_job Optional. Absolute path to the output files of a
region splitter job.
Based on the analysis of the region splitter job, the
load clustering job uniformly distributes the linked
data across all the regions.
If you run the region splitter job without the --
outputpath parameter, you can find the output
files in the following directory: <Working
Directory in HDFS>/
MDMBDRMRegionAnalysis/<Job ID>
If you run the region splitter job with the --
outputpath parameter, you can find the output
files in the following directory: <Output
Directory in HDFS>/
MDMBDRMRegionAnalysis
By default, the load clustering job randomly
distributes the linked data and might result in
inconsistent distribution of data across the
regions.

For example, the following command runs the load clustering job:

run_clusterload.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/workingdir/
MDMBDEInitialBatch/MDMBDE0063_1602999447744334391/output/dir/pass-join --reducer=16 --
hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/matching_rules.xml --
hbaseregionsplitpath=/usr/hdfs/workingdir/MDMBDRMRegionAnalysis/
MDMBDRM0063_8862443019807752334 --outputpath=/usr/hdfs/outputfolder

The following sample output of the load clustering job shows index ID, fuzzy keys, and the values from the
column family:

ROW COLUMN
+CELL

 00KCKSHX$$ SALESFO column=aml_link_columns:CLUSTERNUMBER, timestamp=1454327424272,
value=5fb1e9b8-1b51-47a3-bd45-d885bdc6bbcf RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_PK, timestamp=1454327424272,
value= RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_RECORD_SOURCE,
timestamp=1454327424272, value= RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_SCORE,
timestamp=1454327424272, value=0 RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_SOURCE_NAME, timestamp=1454327424272,
value= SALESFORCE RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:NAME, timestamp=1454327424272,
value=Abbott Laboratories RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:ROWID, timestamp=1454327424272,
value=0000000066

Linking Data and Persisting the Linked Data in a Repository 31

Incremental Mode

Use the following command to run the run_clusterload.sh script in the incremental mode:

run_clusterload.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--incremental

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_clusterload.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath parameter,
you can find the linked data in the following directory: <Output
Directory in HDFS>/batch-cluster/output/dir/pass-join

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run to perform load
clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The load clustering
process uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.
The values in the matching rules file override the values in the
configuration file.

--incremental Runs the job in the incremental mode.
Use the --incremental option when you load the incremental linked
data.
The incremental linked data can be the output of the initial clustering
job that you run in the incremental mode without setting the --
consolidate option.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files in
the directory and rerun the job.
By default, the batch job loads the output files to the working directory
in HDFS.

32 Chapter 2: Linking Batch Data

For example, the following command runs the load clustering job:

run_clusterload.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
outputfolder/batch-cluster/output/dir/pass-join --reducer=16 --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml --incremental --outputpath=/usr/
hdfs/outputload

The following sample output of the load clustering job shows index ID, fuzzy keys, and the values from the
column family:

ROW COLUMN
+CELL

 00KCKSHX$$ SALESFO column=aml_link_columns:CLUSTERNUMBER, timestamp=1454327424272,
value=5fb1e9b8-1b51-47a3-bd45-d885bdc6bbcf RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_PK, timestamp=1454327424272,
value= RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_RECORD_SOURCE,
timestamp=1454327424272, value= RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_SCORE,
timestamp=1454327424272, value=0 RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_SOURCE_NAME, timestamp=1454327424272,
value= SALESFORCE RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:NAME, timestamp=1454327424272,
value=Abbott Laboratories RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:ROWID, timestamp=1454327424272,
value=0000000066

Consolidation Job
Use the consolidation job to consolidate the linked data and create a preferred records table with a preferred
record for each cluster in the repository. The consolidation job creates the preferred records based on the
rules defined in the consolidation rules file. You can run the consolidation job in the initial, incremental, and
regenerate modes.

Note: The consolidation process ignores any null values.

Initial Mode

Use the initial mode to consolidate the records and create preferred records for the first time. The initial
mode uses the output files of an initial clustering job in HDFS as input.

The following image shows how the consolidation job processes the input data in the initial mode:

The consolidation job performs the following tasks:

1. Reads the output files of an initial clustering job in HDFS.

Linking Data and Persisting the Linked Data in a Repository 33

2. Creates a preferred records table that contains a preferred record for each cluster in the repository
based on the rules defined in the consolidation rules file.

Note: The consolidation job sets the same time stamp for all the records in the repository.

Incremental Mode

Use the incremental mode to create and update the preferred records for the incremental linked data. The
incremental mode uses the output files of an initial clustering job in HDFS and the primary key table in the
repository as input. Before you run the consolidation job in the incremental mode, ensure that the initial
linked data is loaded into the repository.

The following image shows how the consolidation job processes the input data in the incremental mode:

The consolidation job performs the following tasks:

1. Reads the output files of an initial clustering job in HDFS and the primary key table in the repository.

2. Creates and updates the preferred records for the incremental data in the existing preferred records
table based on the rules defined in the consolidation rules file.

Regenerate Mode

Use the regenerate mode to consolidate the records and regenerate all the preferred records in the existing
preferred records table. The regenerate mode uses the primary key table in the repository as input. Before
you run the consolidation job in the regenerate mode, ensure that the linked data is loaded into the
repository.

The following image shows how the consolidation job processes the input data in the regenerate mode:

34 Chapter 2: Linking Batch Data

The consolidation job performs the following tasks:

1. Reads the linked data from the primary key table in the repository.

2. Regenerates preferred records for all the clusters in the existing preferred records table based on the
rules defined in the consolidation rules file.

Running the Consolidation Job
The consolidation job consolidates the linked data and creates preferred records for all the clusters in the
repository. You can run the consolidation job in the initial, incremental, or regenerate mode.

To run the consolidation job, run the run_consolidate.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Initial Mode

Use the following command to run the run_consolidate.sh script in the initial mode:

run_consolidate.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--consolidate=consolidation_rules_file_name

[--reducer=number_of_reducer_jobs]

[--help]
The following table describes the options and arguments that you can specify to run the
run_consolidate.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--consolidate consolidation_rules_file_name Absolute path and file name of the consolidation rules file.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/output/dir/
pass-join

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The consolidation
process uses the working directory to store the library files.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--help Optional. Displays the supported arguments for the script.

Linking Data and Persisting the Linked Data in a Repository 35

For example, the following command runs the consolidation job in the initial mode:

run_consolidate.sh --config=/usr/local/conf/config_big.xml --consolidate=/usr/local/conf/
consolidate_rules.xml --input=/usr/hdfs/workingdir/MDMBDEInitialBatch/
MDMBDE0063_1602999447744334391/output/dir/pass-join --reducer=16 --hdfsdir=/usr/hdfs/
workingdir

Incremental Mode

Use the following command to run the run_consolidate.sh script in the incremental mode:

run_consolidate.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--consolidate=consolidation_rules_file_name

--incremental

[--reducer=number_of_reducer_jobs]

[--help]
The following table describes the options and arguments that you can specify to run the
run_consolidate.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--consolidate consolidation_rules_file_name Absolute path and file name of the consolidation rules file.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/output/dir/
pass-join

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The consolidation
process uses the working directory to store the library files.

--incremental Runs the job in the incremental mode.
Use the --incremental option when you want to update the
preferred records table with the incremental linked data.
The incremental linked data can be the output of an initial clustering
job that you run in the incremental mode without setting the --
consolidate option.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run to perform
consolidation. Default is 1.

--help Optional. Displays the supported arguments for the script.

36 Chapter 2: Linking Batch Data

For example, the following command runs the consolidation job in the incremental mode:

run_consolidate.sh --config=/usr/local/conf/config_big.xml --consolidate=/usr/local/conf/
consolidate_rules.xml --input=/usr/hdfs/workingdir/MDMBDEInitialBatch/
MDMBDE0063_1602999447744334391/output/dir/pass-join --reducer=16 --hdfsdir=/usr/hdfs/
workingdir --incremental

Regenerate Mode

Use the following command to run the run_consolidate.sh script in the regenerate mode:

run_consolidate.sh

--config=configuration_file_name

--hdfsdir=working_directory_in_HDFS

--consolidate=consolidation_rules_file_name

--regenerate

[--reducer=number_of_reducer_jobs]

[--help]
The following table describes the options and arguments that you can specify to run the
run_consolidate.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--consolidate consolidation_rules_file_name Absolute path and file name of the consolidation rules file.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The consolidation
process uses the working directory to store the library files.

--regenerate Runs the job in the regenerate mode.
Use the --regenerate option when you want to regenerate the
preferred records for all the clusters.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run to perform
consolidation. Default is 1.

--help Optional. Displays the supported arguments for the script.

For example, the following command runs the consolidation job in the regenerate mode:

run_consolidate.sh --config=/usr/local/conf/config_big.xml --consolidate=/usr/local/conf/
consolidate_rules.xml --reducer=16 --hdfsdir=/usr/hdfs/workingdir --regenerate

Preferred Record Status
After creating a preferred record for a cluster, the consolidation process sets an indicator value that
represents the status of the preferred record in the repository. The LMT_DIRTY_IND column in the preferred
records table stores the indicator value.

The indicator uses the following values:

• 0. Indicates that the preferred record is up to date.

• 1. Indicates that the preferred record is dirty and not up to date.

Linking Data and Persisting the Linked Data in a Repository 37

A preferred record might become dirty when one or more records in the cluster have changed. When a
preferred record is dirty, run the consolidation job in the incremental or regenerate mode to update the
preferred record.

Repository Data Deletion Job
The repository data deletion job matches the input data in HDFS with the repository based on the column that
you set as primary key and deletes the matching records from the repository.

The following image shows how the data is deleted from the repository when you run the repository data
deletion job:

The repository data deletion job performs the following tasks:

1. Reads the input files from HDFS.

2. Matches the input data with the repository based on the column that you set as primary key.

3. Deletes the matching records from the repository.

Running the Repository Data Deletion Job
The repository data deletion job matches the input data in HDFS with the repository data based on the
column that you set as primary key and deletes the matching records from the repository.

To run the repository data deletion job, use the run_delete.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_delete.sh script:

run_delete.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--forceCopy

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]

[--useIndexId]

38 Chapter 2: Linking Batch Data

The following table describes the options and arguments that you can specify to run the run_delete.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The repository data
deletion job uses the working directory to store the library files.

--useIndexId Optional. Indicates to use the index identifiers to identify the input data
in the repository.
You must use the --useIndexId option to delete the linked data or the
tokenized data.

-- forceCopy Copies the dependent library files to HDFS. Use this option only when
you run the repository data deletion job for the first time.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the batch
job. If you want to use the same directory, delete all the files in the
directory and rerun the job.
By default, the batch job loads the output files to the working directory in
HDFS.

For example, the following command deletes the matching records from the repository:

run_delete.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/Source10Million
--reducer=16 --hdfsdir=/usr/hdfs/workingdir --useIndexId --forceCopy --outputpath=/usr/
hdfs/outputfolder

Linking Data and Persisting the Linked Data in HDFS
You can link the input data based on the matching rules and consolidate the linked data based on the
consolidation rules. You can persist the linked and consolidated data in HDFS.

The following image shows the batch jobs that you can run to link data, consolidate the linked data, and
persist the data in HDFS:

Linking Data and Persisting the Linked Data in HDFS 39

To persist the linked and consolidated data in HDFS, perform the following tasks:

1. Run the initial clustering job.

The job links the input data and creates clusters for the input data in HDFS.

2. If you want to process the output files of the initial clustering job, run the post-clustering job.

The post-clustering job reads the output files that the initial clustering job creates in HDFS and
processes it based on the mode that you set.

40 Chapter 2: Linking Batch Data

3. If you want to consolidate the linked data, run the consolidation job.

The consolidation job creates a preferred record for each cluster.

4. To add incremental data to the linked data and link the incremental data, run the initial clustering job in
the incremental mode.

5. To delete records from the linked data in HDFS, run the HDFS data deletion job.

Initial Clustering Job
The initial clustering job indexes and links the input data based on the rules in the matching rules file and the
parameters in the configuration file. The initial clustering job reads the input data in HDFS and persists the
indexed and linked data in HDFS. You can also run the initial clustering job in the incremental mode to
incrementally update the indexed and linked data in HDFS.

Initial Mode

Use the initial mode to index and link the data for the first time. The following image shows how the initial
clustering job indexes and links the input data when you run the job in the initial mode:

When you run the initial clustering job in the initial mode, the job performs the following tasks:

1. Reads the input files from HDFS.

2. Indexes and groups the input data based on the rules in the matching rules file.

3. Matches the grouped records and links the matched records.

4. Creates clusters for the matched and unmatched records.

5. Writes the indexed and linked records to the output files in HDFS.

Note: The number of output files depends on the number of reducers that you run.

Incremental Mode

Use the incremental mode to incrementally update the existing indexed and linked data. The following image
shows how the initial clustering job indexes and links the incremental data when you run the job in the
incremental mode:

Linking Data and Persisting the Linked Data in HDFS 41

When you run the initial clustering job in the incremental mode, the job performs the following tasks:

1. Reads each record from the input files and generates keys and ranges based on the matching rules file.

2. Searches and matches the generated keys with the keys that the previous run of the initial clustering job
creates.

3. Links the matched records to an existing cluster and creates clusters for the unmatched records.

4. If you configure the job to consolidate data, the job consolidates the incremental data with the indexed
and linked data and writes the consolidated data to HDFS. If you configure the job not to consolidate
data, the job indexes and links the incremental data and writes the incremental data to HDFS.

Note: If an input record matches with records that belong to two different clusters, the initial clustering job
links the input record to any one of the clusters.

Running the Initial Clustering Job
Use the initial clustering job to read data from the input files and then index and link the input data in HDFS.
You can also use the initial clustering job to incrementally update the indexed and linked data with additional
data.

To run the initial clustering job, run the run_genclusters.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Initial Mode

Use the following command to run the run_genclusters.sh script in the initial mode:

run_genclusters.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducers]

[--keeptemp=true|false]

[--compression=true|false]

42 Chapter 2: Linking Batch Data

The following table describes the options and the arguments that you can specify to run the
run_genclusters.sh script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run to perform
initial clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The initial clustering job
uses the working directory to store the output and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files in
the directory and rerun the job.
By default, the batch job loads the output files to the working directory
in HDFS.

--keeptemp true|false Optional. Indicates whether to retain the intermediate output tables
that the initial clustering job creates. You can use the intermediate
output tables for troubleshooting purposes.
Set to true to retain the intermediate output tables, and set to false to
remove the intermediate output tables after the successful run of the
job.
Default is false.

--compression true|false Optional. Indicates whether to compress the output files that the initial
clustering job creates. You can compress the output files to avoid any
storage issues.
Set to true to compress the output files, and set to false to retain the
original size of the output files.
Default is false.

For example, the following command runs the initial clustering job in the initial mode:

run_genclusters.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --reducer=16 --outputpath=/usr/hdfs/outputfolder --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml

If you run the initial clustering job without the --outputpath parameter, you can find the linked data in the
following directory: <Working Directory in HDFS>/batch-cluster/<Job ID>/output/dir/pass-join

Each job generates a unique ID, and you can identify the job ID based on the time stamp of the <Job ID>
folder.

If you run the initial clustering job with the --outputpath parameter, you can find the linked data in the
following directory: <Output Directory in HDFS>/batch-cluster/output/dir/pass-join

The following sample output of an initial clustering job shows the cluster ID, the field values, match rule
name, and the metadata related to the cluster:

683e6e41-9174-4a22-b08e-d5d4adc9b2ee 0000000007ERP 3M 3M
Center St. Paul USA ARC SOFT 07_UK_Rule1 00000001ZZB>$$
$$01000004NAH-C$$$QVM$*K$-N?H-C$$-NAH$$$$-

Linking Data and Persisting the Linked Data in HDFS 43

Incremental Mode

Use the following command to run the run_genclusters.sh script to incrementally update the indexed and
linked data with additional data:

run_genclusters.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--incremental

--clustereddirs=indexed_linked_data_directory

[--reducer=number_of_reducers]

[--outputpath=directory_for_output_files]

[--consolidate]

[--keeptemp=true|false]

[--compression=true|false]
The following table describes the options and the arguments that you can specify to run the
run_genclusters.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you
create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run to perform
initial clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The initial clustering
job uses the working directory to store the output and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you
create.

--incremental Runs the initial clustering job in the incremental mode.
If you want to incrementally update the indexed and linked data in
HDFS, run the job in the incremental mode.
By default, the initial clustering job runs in the initial mode.

44 Chapter 2: Linking Batch Data

Option Argument Description

--clustereddirs indexed_linked_data_directory Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/
output/dir/pass-join

--consolidate Consolidates the incremental data with the existing indexed and
linked data in HDFS.
By default, the initial clustering job indexes and links only the
incremental data.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch
job loads the output files. Use a different directory when you rerun
the batch job. If you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

--keeptemp true|false Optional. Indicates whether to retain the intermediate output tables
that the initial clustering job creates. You can use the intermediate
output tables for troubleshooting purposes.
Set to true to retain the intermediate output tables, and set to false
to remove the intermediate output tables after the successful run
of the job.
Default is false.

--compression true|false Optional. Indicates whether to compress the output files that the
initial clustering job creates. You can compress the output files to
avoid any storage issues.
Set to true to compress the output files, and set to false to retain
the original size of the output files.
Default is false.

For example, the following command runs the initial clustering job in the incremental mode:

run_genclusters.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --reducer=16 --hdfsdir=/usr/hdfs/workingdir --outputpath=/usr/hdfs/
outputfolder --rule=/usr/local/conf/matching_rules.xml --clustereddirs=/usr/hdfs/
workingdir/batch-cluster/MDMBDRM_931211654144593570/output/dir/pass-join --incremental

Post-Clustering Job
Use the post-clustering job to read the output files of an initial clustering job in HDFS and process the input
data based on the mode that you configure. The input data can be linked data or poor quality data.

You can run the post-clustering job in one of the following modes:
Skip

Skips the records in the high-volume clusters that contain more than the specified number of records.

Linking Data and Persisting the Linked Data in HDFS 45

Recluster

Re-links the records in the high-volume clusters that contain more than the specified number of records.

Longtail

Decrypts the poor quality records that the initial clustering job identifies to the original input format. You
can cleanse the decrypted data, and use it as the input data for the initial clustering job.

Export

Exports the linked data in the CSV format.

The following image shows how the post-clustering job processes the input data in the skip, recluster, and
longtail modes:

The post-clustering job performs the following tasks:

1. Reads the output files of an initial clustering job in HDFS.

2. Processes the input data based on the mode that you configure.

3. Writes the processed data in HDFS.

The following image shows how the post-clustering job processes the input data in the export mode:

The post-clustering job performs the following tasks:

1. Reads the input and output files of an initial clustering job in HDFS.

2. Exports the linked data in the CSV format.

Running the Post-Clustering Job
The post-clustering job uses the output files of an initial clustering job, so ensure that you run the initial
clustering job before you run the post-clustering job.

To run the post-clustering job, run the run_postprocess.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

46 Chapter 2: Linking Batch Data

Skip and Recluster Modes

To run the run_postprocess.sh script in the skip or recluster mode, use the following command format:

run_postprocess.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--maxcluster=maximum_number_of_records

--mode=SKIP_LARGE_CLUSTER|RECLUSTER_TRANSITIVE

--threshold=matching_score_to_recluster

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_postprocess.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/output/dir/
pass-join

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The post-clustering
job uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file.
The values in the matching rules file override the values in the
configuration file.

--maxcluster maximum_number_of_records Maximum number of records in a cluster.
If the number of records in a cluster exceeds the specified
maximum number of records, the cluster becomes a high-volume
cluster, and the post-clustering job processes the cluster.

--mode SKIP_LARGE_CLUSTER|
RECLUSTER_TRANSITIVE

Indicates the mode to process the input data.
Use one of the following modes:
- SKIP_LARGE_CLUSTER. Indicates to skip all the records in the

high-volume clusters.
- RECLUSTER_TRANSITIVE. Indicates to re-link all the records in

the high-volume clusters.

Linking Data and Persisting the Linked Data in HDFS 47

Option Argument Description

--threshold matching_score_to_recluster Minimum score required for the records to be part of the same
cluster when you run the post-clustering job in the recluster mode.
The job creates a separate cluster for each record whose score is
less than the threshold value.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

For example, the following command runs the post-clustering job in the skip mode:

run_postprocess.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/workingdir/
batch-cluster/MDMBDE0063_1602999447744334391/output/dir/pass-join --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml --maxcluster=1200 --threshold=90 --
mode=SKIP_LARGE_CLUSTER

If you run the post-clustering job without the --outputpath parameter, you can find the processed data in the
following directory: <Working Directory in HDFS>/ClusterPostProcessing/<Job ID>/output

If you run the post-clustering job with the --outputpath parameter, you can find the processed data in the
following directory: <Output Directory in HDFS>/ClusterPostProcessing/output

Longtail Mode

The initial clustering job identifies the poor quality data from the input data and loads it to a directory in an
encrypted format. The post-clustering job decrypts the poor quality data to the original input format.

To run the run_postprocess.sh script in the longtail mode, use the following command format:

run_postprocess.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--mode=LONGTAIL_CLUSTERS

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_postprocess.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file.

--input input_file_in_HDFS Absolute path to the directory that contains the poor quality data.
If you run the initial clustering job without the --outputpath parameter,
you can find the poor quality data in the following directory: <Working
Directory in HDFS>/batch-cluster/<Job ID>/poorqualitydata
If you run the initial clustering job with the --outputpath parameter, you
can find the poor quality data in the following directory: <Output
Directory in HDFS>/batch-cluster/poorqualitydata

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The post-clustering job uses
the working directory to store the library files.

48 Chapter 2: Linking Batch Data

Option Argument Description

--rule matching_rules_file_name Absolute path and file name of the matching rules file.
The values in the matching rules file override the values in the configuration
file.

--mode LONGTAIL_CLUSTERS Indicates that the job processes the poor quality data.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

For example, the following command runs the post-clustering job in the longtail mode:

run_postprocess.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/workingdir/
batch-cluster/MDMBDE0063_1602999447744334391/poorqualitydata --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml --mode=LONGTAIL_CLUSTERS

If you run the post-clustering job without the --outputpath parameter, you can find the decrypted data in the
following directory: <Working Directory in HDFS>/ClusterPostProcessing/<Job ID>/output

If you run the post-clustering job with the --outputpath parameter, you can find the decrypted data in the
following directory: <Output Directory in HDFS>/ClusterPostProcessing/output

Export Mode

To run the run_postprocess.sh script in the export mode, use the following command format:

run_postprocess.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--matchinput=match_output_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--mode=CSV_OUTPUT

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_postprocess.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file.

--input input_file_in_HDFS Absolute path to the directory that contains the input files of the initial
clustering job.

--matchinput match_output_in_HDFS Absolute path to the directory that contains the linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
match/dir
If you run the initial clustering job with the --outputpath parameter,
you can find the linked data in the following directory: <Output
Directory in HDFS>/batch-cluster/match/dir

Linking Data and Persisting the Linked Data in HDFS 49

Option Argument Description

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The post-clustering job
uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file.
The values in the matching rules file override the values in the
configuration file.

--mode CSV_OUTPUT Indicates to export the input data in the CSV format.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

For example, the following command runs the post-clustering job in the export mode:

run_postprocess.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --matchinput=/usr/hdfs/workingdir/batch-cluster/
MDMBDE0063_1602999447744334391/match/dir/ --hdfsdir=/usr/hdfs/workingdir --rule=/usr/
local/conf/matching_rules.xml --mode=CSV_OUTPUT

If you run the post-clustering job without the --outputpath parameter, you can find the CSV files in the
following directory: <Working Directory in HDFS>/ClusterPostProcessing/<Job ID>/output-match

If you run the post-clustering job with the --outputpath parameter, you can find the CSV files in the following
directory: <Output Directory in HDFS>/ClusterPostProcessing/output-match

Consolidation Job
Use the consolidation job to consolidate the linked data and create a preferred record for each cluster in
HDFS. The consolidation job uses the output files of an initial clustering job in HDFS as input. The
consolidation job creates the preferred records based on the rules defined in the consolidation rules file.

For incremental data, use the output files of an initial clustering job that you run in the incremental mode with
the --consolidate option as input for the consolidation job.

Note: The consolidation process ignores any null values.

The following image shows how the consolidation job processes the input data:

The consolidation job performs the following tasks:

1. Reads the output files of an initial clustering job in HDFS.

2. Creates preferred records for all the clusters based on the rules defined in the consolidation rules file.

50 Chapter 2: Linking Batch Data

Running the Consolidation Job
The consolidation job consolidates the linked data and creates preferred records for all the clusters in HDFS.

To run the consolidation job, run the run_consolidate.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_consolidate.sh script:

run_consolidate.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--consolidate=consolidation_rules_file_name

--hdfsOnly

[--reducer=number_of_reducer_jobs]

[--help]
The following table describes the options and arguments that you can specify to run the
run_consolidate.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--consolidate consolidation_rules_file_name Absolute path and file name of the consolidation rules file.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/output/dir/
pass-join
For incremental data, use the output files of an initial clustering job
that you run in the incremental mode with the --consolidate
option.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The consolidation
process uses the working directory to store the library files.

--hdfsOnly Indicates to persist the preferred records in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--help Optional. Displays the supported arguments for the script.

For example, the following command runs the consolidation job in the initial mode:

run_consolidate.sh --config=/usr/local/conf/config_big.xml --consolidate=/usr/local/conf/
consolidate_rules.xml --input=/usr/hdfs/workingdir/MDMBDEInitialBatch/
MDMBDE0063_1602999447744334391/output/dir/pass-join --reducer=16 --hdfsdir=/usr/hdfs/
workingdir --hdfsOnly

Linking Data and Persisting the Linked Data in HDFS 51

If you run the consolidation job without the --outputpath parameter, you can find the preferred records in
the following directory: <Working Directory in HDFS>/batch-consolidation/<Job ID>/consolidation-
output

Each job generates a unique ID, and you can identify the job ID based on the time stamp of the <Job ID>
folder.

If you run the consolidation job with the --outputpath parameter, you can find the preferred records in the
following directory: <Output Directory in HDFS>/batch-consolidation/<Job ID>/consolidation-output

HDFS Data Deletion Job
The HDFS data deletion job matches the input data in HDFS with the linked or tokenized data in HDFS that the
initial clustering or HDFS tokenization job creates. The job deletes the matching data and writes the
consolidated data to an output directory in HDFS.

The following image shows how the HDFS data deletion job deletes the input data:

The HDFS data deletion job performs the following tasks:

1. Reads the input files from HDFS.

2. Matches the input data with the linked or tokenized data in HDFS.

3. Deletes the matching records from the linked or tokenized data in HDFS.

Running the HDFS Data Deletion Job
The HDFS data deletion job matches the input data in HDFS with the linked or tokenized data in HDFS,
deletes the matching data, and writes the consolidated data to an output directory in HDFS.

To run the HDFS data deletion job, use the run_clusterdel.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_clusterdel.sh script:

run_clusterdel.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--clustereddirs=indexed_linked_data_directory

[--reducer=number_of_reducer_jobs]

[--outputpath=directory_for_output_files]

52 Chapter 2: Linking Batch Data

The following table describes the options and arguments that you can specify to run the run_clusterdel.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you
create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The HDFS data
deletion job uses the working directory to store the library files.

--clustereddirs indexed_linked_data_directory Absolute path to the output files that an initial clustering job or a
HDFS tokenization job creates.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/
output/dir/pass-join
If you run the HDFS tokenization job without the --outputpath
parameter, you can find the tokenized data in the following
directory: <Working Directory in HDFS>/batch-tokenize/
<Job ID>/tokenize
If you run the HDFS tokenization job with the --outputpath
parameter, you can find the tokenized data in the following
directory: <Output Directory in HDFS>/batch-tokenize/
tokenize

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch
job loads the output files. Use a different directory when you rerun
the batch job. If you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command deletes the matching records from the linked data in HDFS and writes
the consolidated data to the output files in HDFS:

run_clusterdel.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --reducer=16 --hdfsdir=/usr/hdfs/workingdir --clustereddirs=/usr/hdfs/
workingdir/batch-cluster/MDMBDRM_931211654144593570/output/dir/pass-join

If you run the HDFS data deletion job without the --outputpath parameter, you can find the consolidated
data in the following directory: <Working Directory in HDFS>/BDRMClusterDel/<Job ID>/output/dir/
consolidated-dir

If you run the HDFS data deletion job with the --outputpath parameter, you can find the consolidated data in
the following directory: <Output Directory in HDFS>/BDRMClusterDel/output/dir/consolidated-dir

Linking Data and Persisting the Linked Data in HDFS 53

C h a p t e r 3

Tokenizing Batch Data
This chapter includes the following topics:

• Tokenizing Batch Data Overview, 54

• Tokenizing Data and Persisting the Tokenized Data in a Repository, 54

• Tokenizing Data and Persisting the Tokenized Data in HDFS, 71

Tokenizing Batch Data Overview
Use the Informatica MDM - Relate 360 batch jobs to tokenize the batch data. Relate 360 reads the input data
from HDFS, adds a fuzzy token for each input record, and writes the tokenized data to HDFS. You can persist
the tokenized data in HDFS or in a repository.

Tokenizing Data and Persisting the Tokenized Data in
a Repository

You can create fuzzy tokens for the input data based on the matching rules and persist the tokenized data in
a repository so that you can perform searches on the tokenized data.

The following image shows the batch jobs that you can run to tokenize data and persist the tokenized data in
a repository:

54

To persist the tokenized data in a repository, perform the following tasks:

1. Run the repository tokenization job.

The job creates fuzzy tokens for the input data in HDFS and loads the tokenized data into the repository.

Alternatively, you can perform the following tasks:

1. Run the HDFS tokenization job to create fuzzy tokens for the input data.

2. Optionally, run the region splitter job to analyze the input tokenized data and identify the split points
for all the regions in the repository.

3. Run the load clustering job to load the tokenized data into the repository.

2. To search for records in the repository, run the repository batch search job.

3. To add an incremental data to the tokenized data in the repository, run the repository update job.

4. To delete records from the tokenized data in the repository, run the repository data deletion job.

Repository Tokenization Job
The repository tokenization job creates match tokens for the input data in HDFS and loads the tokenized data
into the repository. The repository tokenization job uses the columns that you configure as index fields to
generate the match tokens.

The repository tokenization job performs the tasks of a HDFS tokenization job and a load clustering job. The
repository tokenization job reads the input data in HDFS, creates tokenized data in HDFS, and loads the
tokenized data into the repository. The tokenized data includes input records and their match tokens. You
must use the repository update job to incrementally update the tokenized data in the repository.

The following image shows how the repository tokenization job creates match tokens for the input data and
loads the tokenized data into a repository:

Tokenizing Data and Persisting the Tokenized Data in a Repository 55

When you run the repository tokenization job, the job performs the following tasks:

1. Reads the input files in HDFS.

2. Generates match tokens for the input data.

3. Writes the tokenized data to the output files in HDFS.
The tokenized data includes input records and their match tokens.

Note: The number of output files depends on the number of reducers that you run.

4. Loads the tokenized data into the repository.

Running the Repository Tokenization Job
The repository tokenization job reads the input data from HDFS, creates match tokens for the input data in
HDFS, and loads the tokenized data into the repository.

To run the repository tokenization job, run the run_tokenloader.sh script located in the following
directory: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_tokenloader.sh script:

run_tokenloader.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--tmpdir=temporary_working_directory

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_tokenloader.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.
In the configuration file, if you set the StoreAllFields parameter to
false, the repository does not persist all the columns but persists only
the columns that you use to index the input data. If you want to persist
all the columns in the repository, ensure that you set the
StoreAllFields parameter to true in the configuration file before
you tokenize the input data.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

56 Chapter 3: Tokenizing Batch Data

Option Argument Description

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The repository
tokenization process uses the working directory to store the library
files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.
The values in the matching rules file override the values in the
configuration file.

--tmpdir temporary_working_directory Absolute path to a temporary directory to which you have write
permission in the local file system.
The repository tokenization job uses the directory to store the
intermediate files.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files in
the directory and rerun the job.
By default, the batch job loads the output files to the working directory
in HDFS.

For example, the following command runs the repository tokenization job:

run_tokenloader.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
GenerateTokens --reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/
matching_rules.xml --tmpdir=/tmp

The following sample output of the repository tokenization job shows index ID, token, and the values from the
column family:

ROW COLUMN
+CELL

 00KCKSHX$$ SALESFORCE0000000 column=aml_link_columns:CLUSTERNUMBER,
timestamp=1454406691384, value=f9febe82-8f55-4b7e-98de-a11290ae2807 066
 00KCKSHX$$ SALESFORCE0000000 column=aml_link_columns:LMT_MATCHED_PK,
timestamp=1454406691384, value= 066
 00KCKSHX$$ SALESFORCE0000000 column=aml_link_columns:LMT_MATCHED_RECORD_SOURCE,
timestamp=1454406691384, value= 066
 00KCKSHX$$ SALESFORCE0000000 column=aml_link_columns:LMT_MATCHED_SCORE,
timestamp=1454406691384, value=0 066
 00KCKSHX$$ SALESFORCE0000000 column=aml_link_columns:LMT_SOURCE_NAME,
timestamp=1454406691384, value= 066
 00KCKSHX$$ SALESFORCE0000000 column=aml_link_columns:NAME, timestamp=1454406691384,
value=Abbott Laboratories 066
 00KCKSHX$$ SALESFORCE0000000 column=aml_link_columns:ROWID, timestamp=1454406691384,
value=0000000066 066

HDFS Tokenization Job
The HDFS tokenization job creates fuzzy tokens for the input data based on the rules in the matching rules
file and the parameters in the configuration file. The HDFS tokenization job uses the columns that you
configure as index fields to generate the fuzzy tokens.

The HDFS tokenization job reads the input data in HDFS and creates the output files that contain tokenized
data in HDFS. The tokenized data includes input records and the fuzzy tokens of the input records. You can

Tokenizing Data and Persisting the Tokenized Data in a Repository 57

also run the HDFS tokenization job in the incremental mode to update the tokenized data that a HDFS
tokenization job creates.

Initial Mode

Use the initial mode to create fuzzy tokens for the first time.

The following image shows how the HDFS tokenization job creates fuzzy tokens for the input data in the
initial mode:

When you run the HDFS tokenization job in the initial mode, the job performs the following tasks:

1. Reads the input files in HDFS.

2. Generates fuzzy tokens for the input data.

3. Writes the tokenized data to the output files in HDFS.
The tokenized data includes input records and the fuzzy tokens of the input records.

Note: The number of output files depends on the number of reducers that you run.

Incremental Mode

Use the incremental mode to update the tokenized data that a HDFS tokenization job creates.

The following image shows how the HDFS tokenization job updates the tokenized data in the incremental
mode:

When you run the HDFS tokenization job in the incremental mode, the job performs the following tasks:

1. Reads the input files in HDFS.

2. Reads the output files of a HDFS tokenization job in HDFS.

3. Merges the input data from the input files and the tokenized data from the HDFS tokenization job.

4. Identifies the duplicate records in the tokenized data based on the fuzzy tokens and updates them with
the records from the input files.

5. Generates fuzzy tokens for the input data and adds them to the merged data.

6. Writes the merged data to the output files in HDFS.

58 Chapter 3: Tokenizing Batch Data

Running the HDFS Tokenization Job
Use the HDFS tokenization job to read data from the input files in HDFS, create match tokens for the input
data, and write the tokenized data to the output files in HDFS.

To run the HDFS tokenization job, run the run_tokenizer.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Initial Mode

Use the following command to run the run_tokenizer.sh script in the initial mode:

run_tokenizer.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducers]
The following table describes the options and the arguments that you can specify to run the
run_tokenizer.sh script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.
In the configuration file, if you set the StoreAllFields parameter to
false, the output files of the job does not include all the columns but
includes only the columns that you use to index the input data. If you
want to include all the columns in the output files, ensure that you set
the StoreAllFields parameter to true in the configuration file before
you run the job.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The HDFS tokenization job
uses the working directory to store the output and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the batch
job. If you want to use the same directory, delete all the files in the
directory and rerun the job.
By default, the batch job loads the output files to the working directory in
HDFS.

For example, the following command runs the HDFS tokenization job in the initial mode:

run_tokenizer.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
GenerateTokens --reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/
matching_rules.xml

If you run the HDFS tokenization job without the --outputpath parameter, you can find the tokenized data in
the following directory: <Working Directory in HDFS>/batch-tokenize/<Job ID>/tokenize

Tokenizing Data and Persisting the Tokenized Data in a Repository 59

Each job generates a unique ID, and you can identify the job ID based on the time stamp of the <Job ID>
folder.

If you run the HDFS tokenization job with the --outputpath parameter, you can find the tokenized data in the
following directory: <Output Directory in HDFS>/batch-tokenize/tokenize

The following sample output of the HDFS tokenization job shows the cluster ID, the field values, and the
token for an input record:

a3ebff6d-c578-4ace-b6d1-2805788d78a6 0000000007ERP 3M 3M
Center St. Paul USA ARC SOFT 00000001ZZB>$$$$01000004N?H-C$$-
NAH$$$$-NAH-C$$$QVM$*K$-

Incremental Mode

Use the following command to run the run_tokenizer.sh script in the incremental mode:

run_tokenizer.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--incremental

--clustereddirs=tokenize_output_data_directory

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducers]
The following table describes the options and the arguments that you can specify to run the
run_tokenizer.sh script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you
create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run. Default is
1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The HDFS
tokenization job uses the working directory to store the output
and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you
create.

--incremental Runs the HDFS tokenization job in the incremental mode.
If you want to incrementally update the output files of a HDFS
tokenization job, run the job in the incremental mode.
By default, the HDFS tokenization job runs in the initial mode.

60 Chapter 3: Tokenizing Batch Data

Option Argument Description

--clustereddirs tokenize_output_data_directory Absolute path to the directory that contains tokenized data.
If you run the HDFS tokenization job without the --outputpath
parameter, you can find the tokenized data in the following
directory: <Working Directory in HDFS>/batch-
tokenize/<Job ID>/tokenizeIf you run the HDFS tokenization
job with the --outputpath parameter, you can find the tokenized
data in the following directory: <Output Directory in
HDFS>/batch-tokenize/tokenize

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch
job loads the output files. Use a different directory when you rerun
the batch job. If you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command runs the HDFS tokenization job in the incremental mode:

run_tokenizer.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
GenerateTokens --reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/
matching_rules.xml --clustereddirs=/usr/hdfs/workingdir/batch-tokenize/
MDMBDRM_931211654144593570/tokenize --incremental

Region Splitter Job
Use the region splitter job to analyze the input tokenized data and identify the split points to uniformly
distribute the tokenized data across all the regions in the repository. The uniform distribution of the
tokenized data optimally utilizes the resources and improves the search performance.

A load clustering job uses the output files of a region splitter job to distribute the linked data. Run the region
splitter job before you run the load clustering job for the first time.

The following image shows how the region splitter job identifies the split points based on the input data:

The region splitter job performs the following tasks:

1. Reads the tokenized data in HDFS.

2. Identifies the split points for the number of regions that you specify.

Tokenizing Data and Persisting the Tokenized Data in a Repository 61

Running the Region Splitter Job
The region splitter job identifies the split points for the input tokenized data to uniformly distribute the
tokenized data across all the regions.

To run the region splitter job, run the run_hbase_region_analysis.sh script located in the following
directory: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_hbase_region_analysis.sh script:

run_hbase_region_analysis.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--regions=number_of_regions

[--reducer=number_of_reducer_jobs]

[--outputpath=directory_for_output_files]
The following table describes the options and arguments that you can specify to run the
run_hbase_region_analysis.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the directory that contains tokenized data.
If you run the HDFS tokenization job without the --outputpath
parameter, you can find the tokenized data in the following directory:
<Working Directory in HDFS>/batch-tokenize/<Job ID>/
tokenize
If you run the HDFS tokenization job with the --outputpath parameter,
you can find the tokenized data in the following directory: <Output
Directory in HDFS>/batch-tokenize/tokenize

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The region splitter job
uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.
The values in the matching rules file override the values in the
configuration file.

--regions number_of_regions Number of regions that you want to use for the input data.
The optimal number of regions depends on your environment and
resources. For more information about regions and split points, see the
repository documentation.

62 Chapter 3: Tokenizing Batch Data

Option Argument Description

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the batch
job. If you want to use the same directory, delete all the files in the
directory and rerun the job.
By default, the batch job loads the output files to the working directory in
HDFS.

For example, the following command runs the region splitter job:

run_hbase_region_analysis.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
workingdir/MDMBDRMInitialBatch/MDMBDE0063_1602999447744334391/output/dir/pass-join --
hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/matching_rules.xml --regions=14

If you run the region splitter job without the --outputpath parameter, you can find the output files in the
following directory: <Working Directory in HDFS>/MDMBDRMRegionAnalysis/<Job ID>

If you run the region splitter job with the --outputpath parameter, you can find the output files in the
following directory: <Output Directory in HDFS>/MDMBDRMRegionAnalysis

Load Clustering Job
The load clustering job loads the output files of a HDFS tokenization job from HDFS into the repository.
Before you run the load clustering job, you can run the region splitter job to identify the split points for the
input data.

The following image shows how the load clustering job loads the data into the repository:

The load clustering job performs the following tasks:

1. Reads the data from the output files of a HDFS tokenization job in HDFS.

2. Loads the tokenized data into the repository.

Running the Load Clustering Job
The load clustering job loads the tokenized data from HDFS into the repository.

To run the load clustering job, run the run_clusterload.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_clusterload.sh script:

run_clusterload.sh

--config=configuration_file_name

Tokenizing Data and Persisting the Tokenized Data in a Repository 63

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

[--reducer=number_of_reducer_jobs]

[--hbaseregionsplitpath=output_directory_of_region_splitter_job]

[--outputpath=directory_for_output_files]
The following table describes the options and arguments that you can specify to run the
run_clusterload.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration
file that you create.

--input input_file_in_HDFS Absolute path to the directory that contains
tokenized data.
If you run the HDFS tokenization job without the --
outputpath parameter, you can find the
tokenized data in the following directory:
<Working Directory in HDFS>/batch-
tokenize/<Job ID>/tokenize
If you run the HDFS tokenization job with the --
outputpath parameter, you can find the
tokenized data in the following directory: <Output
Directory in HDFS>/batch-tokenize/
tokenize

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to
run to perform load clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The
load clustering process uses the working directory
to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules
file that you create.
The values in the matching rules file override the
values in the configuration file.

64 Chapter 3: Tokenizing Batch Data

Option Argument Description

--
hbaseregionsplitpath

output_directory_of_region_splitter_job Optional. Absolute path to the output files of the
region splitter job.
If you run the region splitter job without the --
outputpath parameter, you can find the output
files in the following directory: <Working
Directory in HDFS>/
MDMBDRMRegionAnalysis/<Job ID>
If you run the region splitter job with the --
outputpath parameter, you can find the output
files in the following directory: <Output
Directory in HDFS>/
MDMBDRMRegionAnalysis
By default, the load clustering job randomly
distributes the tokenized data and might result in
inconsistent distribution of data across the
regions.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to
which the batch job loads the output files. Use a
different directory when you rerun the batch job. If
you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to
the working directory in HDFS.

For example, the following command runs the load clustering job:

run_clusterload.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/workingdir/
batch-tokenize/MDMBDE0063_1602999447744334391/tokenize --reducer=16 --hdfsdir=/usr/hdfs/
workingdir --rule=/usr/local/conf/matching_rules.xml --hbaseregionsplitpath=/usr/hdfs/
workingdir/MDMBDRMRegionAnalysis/MDMBDRM0063_8862443019807752334

The following sample output of the load clustering job shows index ID, fuzzy keys, and the values from the
column family:

ROW COLUMN
+CELL

 00KCKSHX$$ SALESFO column=aml_link_columns:CLUSTERNUMBER, timestamp=1454327424272,
value=5fb1e9b8-1b51-47a3-bd45-d885bdc6bbcf RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_PK, timestamp=1454327424272,
value= RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_RECORD_SOURCE,
timestamp=1454327424272, value= RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_MATCHED_SCORE,
timestamp=1454327424272, value=0 RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:LMT_SOURCE_NAME, timestamp=1454327424272,
value= SALESFORCE RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:NAME, timestamp=1454327424272,
value=Abbott Laboratories RCE0000000066
 00KCKSHX$$ SALESFO column=aml_link_columns:ROWID, timestamp=1454327424272,
value=0000000066

Repository Update Job
The repository update job updates the tokenized data in the repository with the input data and creates match
tokens for the input data in the repository. During the update process, the repository update job matches the

Tokenizing Data and Persisting the Tokenized Data in a Repository 65

input data with the repository data, deletes the matching records from the repository, and adds the input data
to the repository.

Note: Before you run the repository update job, ensure that the repository contains tokenized data.

The following image shows how the repository update job updates the repository data:

The repository update job performs the following tasks:

1. Reads the input files in HDFS.

2. Matches the input data with the repository data.

3. Deletes the matching records from the repository.

4. Generates match tokens for the input data.

5. Loads the input data with the match tokens to the repository.

Running the Repository Update Job
The repository update job updates the repository data with the input data and creates match tokens for the
input data in the repository.

To run the repository update job, run the run_updatesync.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_updatesync.sh script:

run_updatesync.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the run_updatesync.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

66 Chapter 3: Tokenizing Batch Data

Option Argument Description

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run to update the
repository. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The repository update job
uses the working directory to store the library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.
The values in the matching rules file override the values in the
configuration file.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the batch
job. If you want to use the same directory, delete all the files in the
directory and rerun the job.
By default, the batch job loads the output files to the working directory in
HDFS.

For example, the following command runs the repository update job:

run_updatesync.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
IncrementalData --reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/
matching_rules.xml

Repository Data Deletion Job
The repository data deletion job matches the input data in HDFS with the repository based on the column that
you set as primary key and deletes the matching records from the repository.

The following image shows how the data is deleted from the repository when you run the repository data
deletion job:

The repository data deletion job performs the following tasks:

1. Reads the input files from HDFS.

2. Matches the input data with the repository based on the column that you set as primary key.

3. Deletes the matching records from the repository.

Running the Repository Data Deletion Job
The repository data deletion job matches the input data in HDFS with the repository data based on the
column that you set as primary key and deletes the matching records from the repository.

To run the repository data deletion job, use the run_delete.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Tokenizing Data and Persisting the Tokenized Data in a Repository 67

Use the following command to run the run_delete.sh script:

run_delete.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--forceCopy

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]

[--useIndexId]
The following table describes the options and arguments that you can specify to run the run_delete.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The repository data
deletion job uses the working directory to store the library files.

--useIndexId Optional. Indicates to use the index identifiers to identify the input data
in the repository.
You must use the --useIndexId option to delete the linked data or the
tokenized data.

-- forceCopy Copies the dependent library files to HDFS. Use this option only when
you run the repository data deletion job for the first time.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the batch
job. If you want to use the same directory, delete all the files in the
directory and rerun the job.
By default, the batch job loads the output files to the working directory in
HDFS.

For example, the following command deletes the matching records from the repository:

run_delete.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/Source10Million
--reducer=16 --hdfsdir=/usr/hdfs/workingdir --useIndexId --forceCopy --outputpath=/usr/
hdfs/outputfolder

68 Chapter 3: Tokenizing Batch Data

Repository Batch Search Job
The repository batch search job identifies the matching records for the input data in the repository based on
the match tokens. The repository batch search job reads the input data in HDFS and creates the output files
that contain the matching records for the input data in HDFS.

The repository batch search job requires the repository to contain all the columns with the match tokens. You
must set the StoreAllFields parameter to true in the configuration file when you tokenize the input data to
include all the columns.

The following image shows how the repository batch search job searches for the matching records in the
repository:

When you run the repository batch search job, the job performs the following tasks:

1. Reads the input files in HDFS.

2. Compares the input data against the tokenized data in the repository based on the match tokens.

3. Writes the matching records for the input data to the output files in HDFS.
The number of output files depends on the number of reducers that you run.

Running the Repository Batch Search Job
Use the repository batch search job to identify the matching records for the input data in the repository based
on the match tokens.

To run the repository batch search job, run the run_dbrelate.sh script located in the following
directory: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_dbrelate.sh script:

run_dbrelate.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--tmpdir=temporary_working_directory

[--reducer=number_of_reducers]

[--outputpath=directory_for_output_files]

Tokenizing Data and Persisting the Tokenized Data in a Repository 69

The following table describes the options and the arguments that you can specify to run the
run_dbrelate.sh script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The repository batch
search job uses the working directory to store the output and library
files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--tmpdir temporary_working_directory Absolute path to a temporary directory to which you have write
permission in the local file system.
The repository tokenization job uses the directory to store the
intermediate files.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files in
the directory and rerun the job.
By default, the batch job loads the output files to the working directory
in HDFS.

For example, the following command runs the repository batch search job:

run_dbrelate.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/SearchRecords
--reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/matching_rules.xml

If you run the repository batch search job without the --outputpath parameter, you can find the matching
records in the following directory: <Working Directory in HDFS>/BDRMRelate/<Job ID>/relate-
output/dir

If you run the repository batch search job with the --outputpath parameter, you can find the matching
records in the following directory: <Output Directory in HDFS>/BDRMRelate/relate-output/dir

The following sample output of a repository batch search job shows the search record and the matching
record with the matching score:

*************** a18f250f-4e2f-4b4e-b014-837b428d94a3 ***************
100AML.ADDR a18f250f-4e2f-4b4e-b014-837b428d94a3 0000009514 ERPWright Medical
Technology 5677 Airline Road Arlington USA ARC SOFT
--- a18f250f-4e2f-4b4e-b014-837b428d94a3 0000009514 ERPWright Medical
Technology 5677 Airline Road Arlington USA ARC SOFT

70 Chapter 3: Tokenizing Batch Data

Tokenizing Data and Persisting the Tokenized Data in
HDFS

You can create fuzzy tokens for the input data based on the matching rules and persist the tokenized data in
HDFS so that you can perform searches on the tokenized data.

The following image shows the batch jobs that you can run to tokenize data and persist the tokenized data in
HDFS:

To persist the tokenized data in HDFS, perform the following tasks:

1. Run the HDFS tokenization job.

The job creates fuzzy tokens for the input data in HDFS.

2. To search for records, run the HDFS batch search job.

3. To add an incremental data to the tokenized data in HDFS, run the HDFS tokenization job in the
incremental mode.

4. To delete records from the tokenized data in HDFS, run the HDFS data deletion job.

HDFS Tokenization Job
The HDFS tokenization job creates fuzzy tokens for the input data based on the rules in the matching rules
file and the parameters in the configuration file. The HDFS tokenization job uses the columns that you
configure as index fields to generate the fuzzy tokens.

The HDFS tokenization job reads the input data in HDFS and creates the output files that contain tokenized
data in HDFS. The tokenized data includes input records and the fuzzy tokens of the input records. You can
also run the HDFS tokenization job in the incremental mode to update the tokenized data that a HDFS
tokenization job creates.

Tokenizing Data and Persisting the Tokenized Data in HDFS 71

Initial Mode

Use the initial mode to create fuzzy tokens for the first time.

The following image shows how the HDFS tokenization job creates fuzzy tokens for the input data in the
initial mode:

When you run the HDFS tokenization job in the initial mode, the job performs the following tasks:

1. Reads the input files in HDFS.

2. Generates fuzzy tokens for the input data.

3. Writes the tokenized data to the output files in HDFS.
The tokenized data includes input records and the fuzzy tokens of the input records.

Note: The number of output files depends on the number of reducers that you run.

Incremental Mode

Use the incremental mode to update the tokenized data that a HDFS tokenization job creates.

The following image shows how the HDFS tokenization job updates the tokenized data in the incremental
mode:

When you run the HDFS tokenization job in the incremental mode, the job performs the following tasks:

1. Reads the input files in HDFS.

2. Reads the output files of a HDFS tokenization job in HDFS.

3. Merges the input data from the input files and the tokenized data from the HDFS tokenization job.

4. Identifies the duplicate records in the tokenized data based on the fuzzy tokens and updates them with
the records from the input files.

5. Generates fuzzy tokens for the input data and adds them to the merged data.

6. Writes the merged data to the output files in HDFS.

72 Chapter 3: Tokenizing Batch Data

Running the HDFS Tokenization Job
Use the HDFS tokenization job to read data from the input files in HDFS, create match tokens for the input
data, and write the tokenized data to the output files in HDFS.

To run the HDFS tokenization job, run the run_tokenizer.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Initial Mode

Use the following command to run the run_tokenizer.sh script in the initial mode:

run_tokenizer.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducers]
The following table describes the options and the arguments that you can specify to run the
run_tokenizer.sh script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.
In the configuration file, if you set the StoreAllFields parameter to
false, the output files of the job does not include all the columns but
includes only the columns that you use to index the input data. If you
want to include all the columns in the output files, ensure that you set
the StoreAllFields parameter to true in the configuration file before
you run the job.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The HDFS tokenization job
uses the working directory to store the output and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the batch
job. If you want to use the same directory, delete all the files in the
directory and rerun the job.
By default, the batch job loads the output files to the working directory in
HDFS.

For example, the following command runs the HDFS tokenization job in the initial mode:

run_tokenizer.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
GenerateTokens --reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/
matching_rules.xml

If you run the HDFS tokenization job without the --outputpath parameter, you can find the tokenized data in
the following directory: <Working Directory in HDFS>/batch-tokenize/<Job ID>/tokenize

Tokenizing Data and Persisting the Tokenized Data in HDFS 73

Each job generates a unique ID, and you can identify the job ID based on the time stamp of the <Job ID>
folder.

If you run the HDFS tokenization job with the --outputpath parameter, you can find the tokenized data in the
following directory: <Output Directory in HDFS>/batch-tokenize/tokenize

The following sample output of the HDFS tokenization job shows the cluster ID, the field values, and the
token for an input record:

a3ebff6d-c578-4ace-b6d1-2805788d78a6 0000000007ERP 3M 3M
Center St. Paul USA ARC SOFT 00000001ZZB>$$$$01000004N?H-C$$-
NAH$$$$-NAH-C$$$QVM$*K$-

Incremental Mode

Use the following command to run the run_tokenizer.sh script in the incremental mode:

run_tokenizer.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--rule=matching_rules_file_name

--incremental

--clustereddirs=tokenize_output_data_directory

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducers]
The following table describes the options and the arguments that you can specify to run the
run_tokenizer.sh script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you
create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run. Default is
1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The HDFS
tokenization job uses the working directory to store the output
and library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you
create.

--incremental Runs the HDFS tokenization job in the incremental mode.
If you want to incrementally update the output files of a HDFS
tokenization job, run the job in the incremental mode.
By default, the HDFS tokenization job runs in the initial mode.

74 Chapter 3: Tokenizing Batch Data

Option Argument Description

--clustereddirs tokenize_output_data_directory Absolute path to the directory that contains tokenized data.
If you run the HDFS tokenization job without the --outputpath
parameter, you can find the tokenized data in the following
directory: <Working Directory in HDFS>/batch-
tokenize/<Job ID>/tokenizeIf you run the HDFS tokenization
job with the --outputpath parameter, you can find the tokenized
data in the following directory: <Output Directory in
HDFS>/batch-tokenize/tokenize

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch
job loads the output files. Use a different directory when you rerun
the batch job. If you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command runs the HDFS tokenization job in the incremental mode:

run_tokenizer.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
GenerateTokens --reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/
matching_rules.xml --clustereddirs=/usr/hdfs/workingdir/batch-tokenize/
MDMBDRM_931211654144593570/tokenize --incremental

HDFS Data Deletion Job
The HDFS data deletion job matches the input data in HDFS with the linked or tokenized data in HDFS that the
initial clustering or HDFS tokenization job creates. The job deletes the matching data and writes the
consolidated data to an output directory in HDFS.

The following image shows how the HDFS data deletion job deletes the input data:

The HDFS data deletion job performs the following tasks:

1. Reads the input files from HDFS.

2. Matches the input data with the linked or tokenized data in HDFS.

3. Deletes the matching records from the linked or tokenized data in HDFS.

Running the HDFS Data Deletion Job
The HDFS data deletion job matches the input data in HDFS with the linked or tokenized data in HDFS,
deletes the matching data, and writes the consolidated data to an output directory in HDFS.

To run the HDFS data deletion job, use the run_clusterdel.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Tokenizing Data and Persisting the Tokenized Data in HDFS 75

Use the following command to run the run_clusterdel.sh script:

run_clusterdel.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--clustereddirs=indexed_linked_data_directory

[--reducer=number_of_reducer_jobs]

[--outputpath=directory_for_output_files]
The following table describes the options and arguments that you can specify to run the run_clusterdel.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you
create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The HDFS data
deletion job uses the working directory to store the library files.

--clustereddirs indexed_linked_data_directory Absolute path to the output files that an initial clustering job or a
HDFS tokenization job creates.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/
output/dir/pass-join
If you run the HDFS tokenization job without the --outputpath
parameter, you can find the tokenized data in the following
directory: <Working Directory in HDFS>/batch-tokenize/
<Job ID>/tokenize
If you run the HDFS tokenization job with the --outputpath
parameter, you can find the tokenized data in the following
directory: <Output Directory in HDFS>/batch-tokenize/
tokenize

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch
job loads the output files. Use a different directory when you rerun
the batch job. If you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

76 Chapter 3: Tokenizing Batch Data

For example, the following command deletes the matching records from the linked data in HDFS and writes
the consolidated data to the output files in HDFS:

run_clusterdel.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
Source10Million --reducer=16 --hdfsdir=/usr/hdfs/workingdir --clustereddirs=/usr/hdfs/
workingdir/batch-cluster/MDMBDRM_931211654144593570/output/dir/pass-join

If you run the HDFS data deletion job without the --outputpath parameter, you can find the consolidated
data in the following directory: <Working Directory in HDFS>/BDRMClusterDel/<Job ID>/output/dir/
consolidated-dir

If you run the HDFS data deletion job with the --outputpath parameter, you can find the consolidated data in
the following directory: <Output Directory in HDFS>/BDRMClusterDel/output/dir/consolidated-dir

HDFS Batch Search Job
The HDFS batch search job identifies the matching records for the input data in the output files of a HDFS
tokenization job. The HDFS batch search job reads the input data in HDFS and creates the output files that
contain the matching records for the input data in HDFS.

The following image shows how the HDFS batch search job searches for the matching records:

When you run the HDFS batch search job, the job performs the following tasks:

1. Reads the input files in HDFS.

2. Compares the input data against the tokenized data that a HDFS tokenization job creates.

3. Writes the matching records for the input data to the output files in HDFS.

Note: The number of output files depends on the number of reducers that you run.

Running the HDFS Batch Search Job
Use the HDFS batch search job to identify the matching records for the input data in the tokenized data that a
HDFS tokenization job creates.

To run the HDFS batch search job, run the run_relate.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_relate.sh script:

run_relate.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

Tokenizing Data and Persisting the Tokenized Data in HDFS 77

--rule=matching_rules_file_name

--clustereddirs=tokenize_output_data_directory

[--reducer=number_of_reducers]

[--outputpath=directory_for_output_files]
The following table describes the options and the arguments that you can specify to run the run_relate.sh
script in the initial mode:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you
create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducers Optional. Number of reducer jobs that you want to run to perform
initial clustering. Default is 1.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The HDFS batch
search job uses the working directory to store the output and
library files.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you
create.

--clustereddirs tokenize_output_data_directory Absolute path to the directory that contains tokenized data.
If you run the HDFS tokenization job without the --outputpath
parameter, you can find the tokenized data in the following
directory: <Working Directory in HDFS>/batch-
tokenize/<Job ID>/tokenize
If you run the HDFS tokenization job with the --outputpath
parameter, you can find the tokenized data in the following
directory: <Output Directory in HDFS>/batch-tokenize/
tokenize

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch
job loads the output files. Use a different directory when you rerun
the batch job. If you want to use the same directory, delete all the
files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command runs the HDFS batch search job:

run_relate.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/SearchData --
reducer=16 --hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/matching_rules.xml --
clustereddirs=/usr/hdfs/workingdir/batch-tokenize/MDMBDRM_931211654144593570/tokenize

If you run the HDFS batch search job without the --outputpath parameter, you can find the matching records
in the following directory: <Working Directory in HDFS>/BDRMRelate/<Job ID>/relate-output/dir

If you run the HDFS batch search job with the --outputpath parameter, you can find the matching records in
the following directory: <Output Directory in HDFS>/BDRMRelate/relate-output/dir

The following sample output of the HDFS batch search job shows the search record and the matching record:

*************** 13489618-64bc-44a6-8ef4-fb57d63894ff ***************
100AML.ADDR 13489618-64bc-44a6-8ef4-fb57d63894ff 0000009514ERP Wright Medical
Technology 5677 Airline Road Arlington USA ARC SOFT

78 Chapter 3: Tokenizing Batch Data

--- 13489618-64bc-44a6-8ef4-fb57d63894ff 0000009514ERP Wright Medical
Technology 5677 Airline Road Arlington USA ARC SOFT

Tokenizing Data and Persisting the Tokenized Data in HDFS 79

C h a p t e r 4

Processing Streaming Data
This chapter includes the following topics:

• Processing Streaming Data Overview, 80

• Prerequisites, 80

• Streaming Data by Using the RESTful Web Services, 82

• Streaming Data by Using the Command-Line Command, 92

• Viewing the Output Messages, 101

Processing Streaming Data Overview
You can link and consolidate or tokenize the streaming data. Use the JSON format to stream the input data
into Kafka. Spark or Storm processes the input data in Kafka and then loads it to the repository. After loading
the processed data to the repository, Informatica MDM - Relate 360 publishes relevant messages to the
output topic in Kafka that you configure when you deploy Relate 360 on Spark or Storm.

You can use the following methods to stream the input data:

• RESTful web services

• Command line

• Informatica Vibe® Data Stream

Prerequisites
Before you process the input data, ensure that you perform the following tasks:

1. Configure Relate 360 to process streaming data.

For more information about configuring Relate 360 to process streaming data, see the Informatica MDM
- Relate 360 Installation and Configuration Guide.

2. If you use Spark, ensure that the setup_realtime.sh script runs.

3. Create the required tables in the repository.

80

Creating the Required Tables in the Repository
Before you process the input data, you must create the required tables in the repository. Use the batch jobs
to create the required tables in the repository.

1. If you plan to perform the linking process, perform the following tasks:

a. Run the initial clustering job with at least one record.

b. If you want to uniformly distribute the linked data across all the regions in the repository, run the
region splitter job.

The job analyzes the input linked data and identifies the split points for all the regions in the
repository.

c. Run the load clustering job.

The job creates primary key table, link table, and index table in the repository.

d. If you want to consolidate the linked data, run the create_preferred_records_table.sh script
located in the following directory: /usr/local/mdmbdrm-<Version Number>
The script creates an empty preferred records table in the repository.

Use the following command to run the create_preferred_records_table.sh script:

create_preferred_records_table.sh --config=<Configuration file name>
The following sample command runs the create_preferred_records_table.sh script:

create_preferred_records_table.sh --config=/usr/local/conf/config_big.xml
For more information about the initial clustering, region splitter, load clustering, and consolidation jobs,
see the Linking Data and Persisting the Linked Data in a Repository section.

2. If you plan to perform the tokenization process, perform one of the following tasks:

• Run the repository tokenization job with at least one record.

The job creates the required tables in the repository.

• Perform the following tasks:

1. Run the HDFS tokenization job with at least one record.

2. If you want to uniformly distribute the linked data across all the regions in the repository, run the
region splitter job.

The job analyzes the input linked data and identifies the split points for all the regions in the
repository.

3. Run the load clustering job.

The job creates the required tables in the repository.

For more information about the repository tokenization, HDFS tokenization, region splitter, and load
clustering jobs, see the Tokenizing Data and Persisting the Tokenized Data in a Repository section.

Related Topics:
• “Linking Data and Persisting the Linked Data in a Repository” on page 16

• “Tokenizing Data and Persisting the Tokenized Data in a Repository” on page 54

Prerequisites 81

Streaming Data by Using the RESTful Web Services
You can use the RESTful web services to stream the input data in the JSON format for processing. Before you
use the web services, ensure that you have packaged and deployed the web services.

For more information about packing and deploying the web services, see the Informatica MDM - Relate 360
Installation and Configuration Guide.

1. If you have secured the web services, run the AUTHENTICATE web service.

The AUTHENTICATE web service authenticates the user credentials and generates an authentication
token.

2. Run the GETINGESTLAYOUT web service.

The GETINGESTLAYOUT web service gets a layout for the input data based on the configuration file. The
layout contains a list of fields and their lengths that you can use to specify the input data in the JSON
format.

3. Run the INGEST web service.

The INGEST web service reads the input data, links and consolidates or tokenizes the data, and loads the
linked and consolidated or tokenized data into the repository. If any input record is an update to an
existing record, the INGEST web service updates the record in the repository.

4. To get or delete a record, perform the following tasks:

a. Run the GETRECORDLAYOUT web service.

The GETRECORDLAYOUT web service gets a layout that contains a list of fields required to identify
a record. Use the layout to specify the input record for the GETRECORD or DELETERECORD web
service.

b. To get a record, run the GETRECORD web service.

The GETRECORD web service gets the matching records for the input data from the repository.

c. To delete a record, run the DELETERECORD web service.

The DELETERECORD web service deletes the matching record from the repository.

5. To move records into any specific cluster, perform the following tasks:

a. Run the GETMANAGECLUSTERLAYOUT web service.

The GETMANAGECLUSTERLAYOUT web service gets a layout that contains a list of fields required
to identify records. Use the layout to specify the records for the MANAGECLUSTER web service that
removes the records from their current clusters and adds them to a new cluster or to the specified
cluster number.

b. Run the MANAGECLUSTER web service.

The MANAGECLUSTER web service reads the input records, removes the input records from their
respective clusters, and moves the records to the specified cluster or to a new cluster.

Authenticate Web Service
The Authenticate web service authenticates the user credentials that you specify in the web service request.
After a successful authentication, the web service request returns an encoded authentication token that you
can specify in the header of the subsequent web service requests. A web service request returns appropriate
response only if the request contains a valid token or user credentials.

Note: Use the Authenticate web service only if you have secured the RESTful web services.

82 Chapter 4: Processing Streaming Data

Request URL

Use the GET method to run the Authenticate web service.

To run the Authenticate web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
Authenticate

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/Authenticate
Request Header

Use the request header to specify the following headers:
Authorization

Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following sample response shows the token generated after a successful authentication:

{
 "timeTaken":0.134,
 "token":"AQIC5wM2LY4Sfczqyo9VO8tpm3qq7vDAsf3BB9nzatkh_S8.*AAJTSQACMDEAAlNLABI4MzAzMj
 EwNzMzODg0ODAxNTkAAlMxAAA.*"
}

Note: An authentication token is valid for the web service requests that use the same WAR file and host name
as that of the Authenticate web service request.

GETINGESTLAYOUT Web Service
The GETINGESTLAYOUT web service gets a layout for the input data based on the configuration file. The
layout contains a list of fields and their lengths that you can use to specify the input data for the INGEST web
service in the JSON format.

Request URL

Use the GET method to run the GETINGESTLAYOUT web service.

To run the GETINGESTLAYOUT web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETINGESTLAYOUT

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETINGESTLAYOUT
Request Header

Use the request header to specify the following headers:

Streaming Data by Using the RESTful Web Services 83

Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following response format shows a list of fields that you can use to specify the input data:

{
 "input":{
 "SOURCE":"MaxLen:20",
 "PERSON":"MaxLen:100",
 "DATE_OF_BIRTH":"MaxLen:10",
 "ADDRESS":"MaxLen:100",
 "POSTCODE":"MaxLen:10",
 "CITY":"MaxLen:100",
 "ROWID":"MaxLen:21"
 },
 "resultCount":0,
 "messages":{

 }
}

INGEST Web Service
The INGEST web service reads the input data and then links or tokenizes the input data based on the value
that you set for the ALTERNATETABLEFORGROUPINFO parameter in the configuration file. The INGEST web
service then loads the linked or tokenized data into the repository.

When you deploy Relate 360 on Spark or Storm, if you have specified the consolidation rules file, the INGEST
web service consolidates the linked data and creates preferred records in the repository. If any input record is
an update to an existing record, the INGEST web service updates the record in the repository.

During the linking process, when an input record matches with a record in the repository, the linking process
links the input record to the cluster of the matching record. The linking process does not further match the
input record with other records.

Note: When you link the input data, ensure that you do not configure the MaxCandidateSet parameter in the
configuration file. The MaxCandidateSet parameter value impacts the maximum number of records that the
INGEST web service can add to a cluster.

Before you run the INGEST web service, run the GETINGESTLAYOUT web service to get the layout for the
input data in the JSON format based on the configuration file. Based on the layout, you can specify the input
data for the INGEST web service.

84 Chapter 4: Processing Streaming Data

Request URL

Use the POST method to run the INGEST web service.

To run the INGEST web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
INGEST

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/INGEST
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Request Body

Use the request body to specify the input data for the INGEST web service based on the layout that the
GETINGESTLAYOUT web service returns.

The following sample body contains a record for the INGEST web service to process:

{
 "input":{
 "SOURCE":"AML",
 "PERSON":"Susan Shaw",
 "ADDRESS":"Castle Boulevard",
 "POSTCODE":"94061",
 "CITY":"Redwood City",
 "ROWID":"0000300002"
 },
 "resultCount":0,
 "messages":{

 }

Streaming Data by Using the RESTful Web Services 85

Sample Response

The following sample response shows a record that the INGEST web service submits for processing:

{
 "input":{
 "SOURCE":"AML",
 "PERSON":"Susan Shaw",
 "ADDRESS":"Castle Boulevard",
 "POSTCODE":"94061",
 "CITY":"Redwood City",
 "ROWID":"0000300002"
 },
 "resultCount":1,
 "messages":{
 "Message.1":"Record submitted for Processing"
 }
}

GETRECORDLAYOUT Web Service
The GETRECORDLAYOUT web service gets a layout that contains a list of fields required to identify a record.
Use the layout to specify the input data for the DELETERECORD web service that deletes the specified
records from the repository.

Request URL

Use the GET method to run the GETRECORDLAYOUT web service.

To run the GETRECORDLAYOUT web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETRECORDLAYOUT

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETRECORDLAYOUT
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

86 Chapter 4: Processing Streaming Data

Sample Response

The following sample response shows a list of fields required to identity a record:

{
 "keyData": {
 "SOURCE": "mandatory",
 "ROWID": "mandatory"
 },
 "record": {},
 "resultCount": 0,
 "messages": {}
}

GETRECORD Web Service
The GETRECORD web service gets the matching records for the input data from the repository. Before you
run the GETRECORD web service, run the GETRECORDLAYOUT web service to get the layout for the input data
in the JSON format based on the configuration file. Based on the layout, you can specify the input data for
the GETRECORD web service.

Request URL

Use the GET method to run the GETRECORD web service.

To run the GETRECORD web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETRECORD

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETRECORD
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Streaming Data by Using the RESTful Web Services 87

Request Body

Use the request body to specify the input data for the GETRECORD web service based on the layout that the
GETRECORDLAYOUT web service returns.

The following sample body contains the condition based on which you want to retrieve the matching records:

{
 "keyData":{
 "LMT_SOURCE_NAME":"AML",
 "ROWID":"0000300001"
 },
 "record":{

 },
 "resultCount":0,
 "messages":{

 }
}

Sample Response

The following sample response shows a record that the GETRECORD web service retrieved:

{
 "keyData": {
 "LMT_SOURCE_NAME": "AML",
 "ROWID": "0000300001"
 },
 "record": {
 "AGENCY_TYPE": "SDN",
 "NAME": "AL SAADI, FARAJ FARJ HASSAN",
 "COUNTRY": "ITALY",
 "ADDRESS": "VIALE BLIGNY 42",
 "CITY": "MILAN",
 "COUNTRYISO": "IT",
 "AGENCY": "FAC",
 "LMT_SOURCE_NAME": " AML",
 "ROWID": "0000300001"
 },
 "resultCount": 1,
 "messages": {}
}

DELETERECORD Web Service
The DELETERECORD web service indicates to read the input data and delete the matching records from the
repository. Before you run the DELETERECORD web service, run the GETRECORDLAYOUT web service to get
the layout for the input data in the JSON format based on the configuration file. Based on the layout, you can
specify the input data for the DELETERECORD web service.

Request URL

Use the POST method to run the DELETERECORD web service.

To run the DELETERECORD web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
DELETERECORD

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/DELETERECORD
Request Header

Use the request header to specify the following headers:

88 Chapter 4: Processing Streaming Data

Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Request Body

Use the request body to specify the input data for the DELETERECORD web service based on the layout that
the GETRECORDLAYOUT web service returns.

The following sample body contains a record that you want to delete:

{
 "keyData":{
 "LMT_SOURCE_NAME":"AML",
 "ROWID":"0000300001"
 },
 "record":{

 },
 "resultCount":0,
 "messages":{

 }
}

Sample Response

The following sample response shows a record that the DELETERECORD web service submits for processing:

{
 "keyData":{
 "LMT_SOURCE_NAME":"AML",
 "ROWID":"0000300001"
 },
 "record":{

 },
 "resultCount":1,
 "messages":{
 "Message.1":"Record submitted for Processing"
 }
}

Streaming Data by Using the RESTful Web Services 89

GETMANAGECLUSTERLAYOUT Web Service
The GETMANAGECLUSTERLAYOUT web service gets a layout that contains a list of fields required to identify
records. Use the layout to specify the records for the MANAGECLUSTER web service that removes the
records from their current clusters and adds them to a new cluster or to the specified cluster number.

Request URL

Use the GET method to run the GETMANAGECLUSTERLAYOUT web service.

To run the GETMANAGECLUSTERLAYOUT web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETMANAGECLUSTERLAYOUT

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETMANAGECLUSTERLAYOUT
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following response format shows the list of fields that you can specify to manage clusters:

{
 "clusterNumber": "",
 "members": [
 {
 "LMT_SOURCE_NAME": "",
 "PK": ""
 }
],
 "resultCount": 0,
 "messages": {}
}

A cluster layout includes the following parameters:
clusterNumber

Identifier for the cluster. Run the GETCLUSTER web service to get the cluster number of a record.

LMT_SOURCE_NAME

Source name of the record.

90 Chapter 4: Processing Streaming Data

PK

Column name that you set as primary key in the configuration file.

MANAGECLUSTER Web Service
The MANAGECLUSTER web service indicates to read the input records, remove the input records from their
respective clusters, and move the records to the specified cluster or to a new cluster.

Before you run the MANAGECLUSTER web service, run the GETMANAGECLUSTERLAYOUT web service to get
the layout for the input data in the JSON format based on the configuration file. Based on the layout, you can
specify the input data for the MANAGECLUSTER web service.

Request URL

Use the POST method to run the MANAGECLUSTER web service.

To run the MANAGECLUSTER web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
MANAGECLUSTER

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/MANAGECLUSTER
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Request Body

Use the request body to specify the input data for the MANAGECLUSTER web service based on the layout
that the GETMANAGECLUSTERLAYOUT web service returns.

If you do not specify the cluster number in the body, the MANAGECLUSTER web service indicates to create a
cluster and move the specified records to the created cluster.

Streaming Data by Using the RESTful Web Services 91

The following sample body contains a record that you want to add it to the specified cluster number:

{
 "clusterNumber":"12b1ea9f-4f5c-4168-828e-1b03edef0c6a ",
 "members":[
 {
 "LMT_SOURCE_NAME":"AML",
 "PK":"0000300003"
 }
],
 "resultCount":0,
 "messages":{

 }
}

Sample Response

The following sample response shows a record that the MANAGECLUSTER web service submits for
processing:

{
 "clusterNumber": "12b1ea9f-4f5c-4168-828e-1b03edef0c6a ",
 "members": [
 {
 "LMT_SOURCE_NAME": "AML",
 "PK": "0000300003"
 }
],
 "resultCount": 1,
 "messages": {
 "Message.1": "Record submitted for Processing"
 }
}

Streaming Data by Using the Command-Line
Command

You can use the command-line command to stream the input data in the JSON format for processing.

1. Perform the GETINGESTLAYOUT operation.

The GETINGESTLAYOUT operation gets a layout for the input data based on the configuration file. The
layout contains a list of fields and their lengths that you can use to specify the input data in the JSON
format.

2. Perform the INGEST operation.

The INGEST operation reads the input data, links or tokenizes the data, and loads the linked or tokenized
data into the repository. If any input record is an update to an existing record, the INGEST operation
updates the record in the repository.

3. To delete a record, perform the following tasks:

a. Perform the GETRECORDLAYOUT operation.

The GETRECORDLAYOUT operation gets a layout that contains a list of fields required to identify a
record. Use the layout to specify the input record for the GETRECORD or DELETERECORD operation.

b. To get a record, perform the GETRECORD operation.

The GETRECORD operation gets the matching records for the input data from the repository.

92 Chapter 4: Processing Streaming Data

c. To delete a record, perform the DELETERECORD operation.

The DELETERECORD operation deletes the matching record from the repository.

4. To move the records into a specific cluster, perform the following tasks:

a. Perform the GETMANAGECLUSTERLAYOUT operation.

The GETMANAGECLUSTERLAYOUT operation gets a layout that contains a list of fields required to
identify records. Use the layout to specify the records for the MANAGECLUSTER operation that
removes the records from their current clusters and adds them to a new cluster or to the specified
cluster number.

b. Perform the MANAGECLUSTER operation.

The MANAGECLUSTER operation reads the input records, removes the input records from their
respective clusters, and moves the records to the specified cluster or to a new cluster.

GETINGESTLAYOUT Operation
The GETINGESTLAYOUT operation gets a layout for the input data based on the configuration file. The layout
contains a list of fields and their lengths that you can use to specify the input data for the INGEST web
service in the JSON format.

Run the run_client.sh script located in the following directory to perform the GETINGESTLAYOUT operation:
/usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=GETINGESTLAYOUT

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation GETINGESTLAYOUT Type of operation that you want to perform. Specify GETINGESTLAYOUT.

--outputfile output_file_name Absolute path and name of the output JSON file to which you want to load
the layout.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=GETINGESTLAYOUT --
outputfile=/usr/local/tree/output.json --rule=usr/local/conf/matching_rules.xml

The following response format shows a list of fields that you can use to specify the input data:

{
 "input":{
 "SOURCE":"MaxLen:20",
 "PERSON":"MaxLen:100",

Streaming Data by Using the Command-Line Command 93

 "DATE_OF_BIRTH":"MaxLen:10",
 "ADDRESS":"MaxLen:100",
 "POSTCODE":"MaxLen:10",
 "CITY":"MaxLen:100",
 "ROWID":"MaxLen:21"
 },
 "resultCount":0,
 "messages":{

 }
}

INGEST Operation
The INGEST operation reads the input data and then links or tokenizes the input data based on the value that
you set for the ALTERNATETABLEFORGROUPINFO parameter in the configuration file. The INGEST operation then
loads the linked or tokenized data into the repository.

When you deploy Relate 360 on Spark or Storm, if you have specified the consolidation rules file, the INGEST
operation consolidates the linked data and creates preferred records in the repository. If any input record is
an update to an existing record, the INGEST operation updates the record in the repository.

During the linking process, when an input record matches with a record in the repository, the linking process
links the input record to the cluster of the matching record. The linking process does not further match the
input record with other records.

Note: When you link the input data, ensure that you do not configure the MaxCandidateSet parameter in the
configuration file. The MaxCandidateSet parameter value impacts the maximum number of records that the
INGEST operation can add to a cluster.

Run the run_client.sh script located in the following directory to perform the INGEST operation: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=INGEST

--input=input_file_name

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation INGEST Type of operation that you want to perform. Specify INGEST.

94 Chapter 4: Processing Streaming Data

Option Argument Description

--input input_file_name Absolute path and name of the input JSON file that contains the input data.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the processed data.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=INGEST --input=/usr/
local/tree/input.json --rule=usr/local/conf/matching_rules.xml --outputfile=/usr/local/
tree/output.json

The following input data contains a record for the INGEST operation to process:

{
 "input":{
 "SOURCE":"AML",
 "PERSON":"Susan Shaw",
 "ADDRESS":"Castle Boulevard",
 "POSTCODE":"94061",
 "CITY":"Redwood City",
 "ROWID":"0000300002"
 },
 "resultCount":0,
 "messages":{

 }
The following sample output shows a record that the INGEST operation submits for processing:

{
 "input":{
 "SOURCE":"AML",
 "PERSON":"Susan Shaw",
 "ADDRESS":"Castle Boulevard",
 "POSTCODE":"94061",
 "CITY":"Redwood City",
 "ROWID":"0000300002"
 },
 "resultCount":1,
 "messages":{
 "Message.1":"Record submitted for Processing"
 }
}

GETRECORDLAYOUT Operation
The GETRECORDLAYOUT operation gets a layout that contains a list of fields required to identify a record.
Use the layout to specify the input data for the DELETERECORD operation that deletes the specified records
from the repository.

Run the run_client.sh script located in the following directory to perform the GETRECORDLAYOUT
operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=GETRECORDLAYOUT

Streaming Data by Using the Command-Line Command 95

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation GETRECORDLAYOUT Type of operation that you want to perform. Specify GETRECORDLAYOUT.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the record layout.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=GETRECORDLAYOUT --
outputfile=/usr/local/tree/output.json --rule=usr/local/conf/matching_rules.xml

The following output format shows the list of fields that you can specify the input data:

{
 "keyData": {
 "SOURCE": "mandatory",
 "ROWID": "mandatory"
 },
 "record": {},
 "resultCount": 0,
 "messages": {}
}

GETRECORD Operation
The GETRECORD operation gets the matching records for the input data from the repository. Before you run
the GETRECORD operation, run the GETRECORDLAYOUT operation to get the layout for the input data in the
JSON format based on the configuration file. Based on the layout, you can specify the input data for the
GETRECORD operation.

Run the run_client.sh script located in the following directory to perform the GETRECORD operation: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=GETRECORD

--input=input_file_name

[--outputfile=output_file_name]

96 Chapter 4: Processing Streaming Data

The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation GETRECORD Type of operation that you want to perform. Specify GETRECORD.

--input input_file_name Absolute path and name of the input JSON file that contains the input data.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the record layout.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=GETRECORD --
input=/usr/local/tree/input.json --rule=usr/local/conf/matching_rules.xml --
outputfile=/usr/local/tree/output.json

The following input data contains the condition based on which you want to retrieve the matching records:

{
 "keyData":{
 "LMT_SOURCE_NAME":"AML",
 "ROWID":"0000300001"
 },
 "record":{

 },
 "resultCount":0,
 "messages":{

 }
}

The following sample output shows a record that the GETRECORD operation retrieved:

{
 "keyData": {
 "LMT_SOURCE_NAME": "AML",
 "ROWID": "0000300001"
 },
 "record": {
 "AGENCY_TYPE": "SDN",
 "NAME": "AL SAADI, FARAJ FARJ HASSAN",
 "COUNTRY": "ITALY",
 "ADDRESS": "VIALE BLIGNY 42",
 "CITY": "MILAN",
 "COUNTRYISO": "IT",
 "AGENCY": "FAC",
 "LMT_SOURCE_NAME": " AML",
 "ROWID": "0000300001"
 },
 "resultCount": 1,
 "messages": {}
}

DELETERECORD Operation
The DELETERECORD operation indicates to read the input data and delete the matching records from the
repository. Before you run the DELETERECORD operation, run the GETRECORDLAYOUT operation to get the

Streaming Data by Using the Command-Line Command 97

layout for the input data in the JSON format based on the configuration file. Based on the layout, you can
specify the input data for the DELETERECORD operation.

Run the run_client.sh script located in the following directory to perform the DELETERECORD
operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=DELETERECORD

--input=input_file_name

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation DELETERECORD Type of operation that you want to perform. Specify DELETERECORD.

--input input_file_name Absolute path and name of the input JSON file that contains the input data.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the deleted record.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=DELETERECORD --
input=/usr/local/tree/input.json --rule=usr/local/conf/matching_rules.xml --
outputfile=/usr/local/tree/output.json

The following input data contains a record that you want to delete:

{
 "keyData":{
 "LMT_SOURCE_NAME":"AML",
 "ROWID":"0000300001"
 },
 "record":{

 },
 "resultCount":0,
 "messages":{

 }
}

The following sample output shows a record that the DELETERECORD operation submits for processing:

{
 "keyData":{
 "LMT_SOURCE_NAME":"AML",
 "ROWID":"0000300001"
 },
 "record":{

98 Chapter 4: Processing Streaming Data

 },
 "resultCount":1,
 "messages":{
 "Message.1":"Record submitted for Processing"
 }
}

GETMANAGECLUSTERLAYOUT Operation
The GETMANAGECLUSTERLAYOUT operation gets a layout that contains a list of fields required to identify
records. Use the layout to specify the records for the MANAGECLUSTER operation that removes the records
from their current clusters and adds them to a new cluster or to the specified cluster number.

Run the run_client.sh script located in the following directory to perform the
GETMANAGECLUSTERLAYOUT operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=GETMANAGECLUSTERLAYOUT

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation GETMANAGECLUSTERLAYOUT Type of operation that you want to perform. Specify
GETMANAGECLUSTERLAYOUT.

--outputfile output_file_name Absolute path and name of the output JSON file to which you want to
load the layout.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the layout.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --
operation=GETMANAGECLUSTERLAYOUT --outputfile=/usr/local/tree/output.json --rule=usr/
local/conf/matching_rules.xml --outputfile=/usr/local/tree/output.json

The following output format shows the list of fields that you can specify the input data:

{
 "clusterNumber": "",
 "members": [
 {
 "LMT_SOURCE_NAME": "",
 "PK": ""
 }
],
 "resultCount": 0,

Streaming Data by Using the Command-Line Command 99

 "messages": {}
}

A cluster layout includes the following parameters:
clusterNumber

Identifier for the cluster. Perform the GETCLUSTER operation to get the cluster number of a record.

LMT_SOURCE_NAME

Source name of the record.

PK

Column name that you set as primary key in the configuration file.

MANAGECLUSTER Operation
The MANAGECLUSTER operation indicates to read the input records, remove the input records from their
respective clusters, and move the records to the specified cluster or to a new cluster. If you do not specify
the cluster number in the input file, the MANAGECLUSTER operation indicates to create a cluster and move
the specified records to the created cluster.

Run the run_client.sh script located in the following directory to perform the MANAGECLUSTER
operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=MANAGECLUSTER

--input=input_file_name

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation MANAGECLUSTER Type of operation that you want to perform. Specify MANAGECLUSTER.

--input input_file_name Absolute path and name of the input JSON file that contains the input data.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the processed data.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=MANAGECLUSTER --
input=/usr/local/tree/input.json --rule=usr/local/conf/matching_rules.xml --
outputfile=/usr/local/tree/output.json

100 Chapter 4: Processing Streaming Data

The following input data contains a record that you want to add it to the specified cluster number:

{
 "clusterNumber":"12b1ea9f-4f5c-4168-828e-1b03edef0c6a ",
 "members":[
 {
 "LMT_SOURCE_NAME":"AML",
 "PK":"0000300003"
 }
],
 "resultCount":0,
 "messages":{

 }
}

The following sample output shows a record that the MANAGECLUSTER operation submits for processing:

{
 "clusterNumber": "12b1ea9f-4f5c-4168-828e-1b03edef0c6a ",
 "members": [
 {
 "LMT_SOURCE_NAME": "AML",
 "PK": "0000300003"
 }
],
 "resultCount": 1,
 "messages": {
 "Message.1": "Record submitted for Processing"
 }
}

Viewing the Output Messages
The RESTful web services or the command-line command publishes the input data to the input topic in Kafka.
Spark or Storm processes the input data in Kafka. After processing the input data, Relate 360 publishes
output messages to a topic in Kafka that you configure when you deploy Relate 360 on Spark or Storm.

For information about how to view messages in a Kafka topic, see the Kafka documentation.

The following sample message indicates successful INGEST and DELETERECORD operations:

{
 "Status":"SUCCESS",
 "CLUSTER":"5b53d62e-e87a-4618-9d97-a6c858d8bee8 ",
 "SOURCE":"AML",
 "PK":"0000300011",
 "OPERATION":"CREATE"
}
{
 "Status":"SUCCESS",
 "SOURCE":"AML",
 "PK":"0000300014",
 "OPERATION":"DELETE"
}

Viewing the Output Messages 101

C h a p t e r 5

Creating Relationship Graph
This chapter includes the following topics:

• Relationship Graph Overview, 102

• Creating Relationship Graph, 102

• Retrieving the Relationship Details, 107

• Managing the Relationships, 120

• Viewing the Relationship Graph, 124

• Relationship Graph User Interface, 125

Relationship Graph Overview
You can create relationships between the processed records. The processed records can be customer data,
transaction data, product data, and other types of data. You can consider each type of data as a business
entity type. When you create relationships between two or more business entity types, the relationships result
in a relationship graph. A relationship graph displays all the related records of a record and its relationships
with the related records.

You create relationships between the business entity types based on the parameters in the relationship
configuration file.

Creating Relationship Graph
A business entity type is a set of similar type of input data. The input data can be customer data, transaction
data, product data, and other types of data. You can customize the PZMAP section of the configuration file and
the match rule sets in the matching rules file for each type of input data. You can link or tokenize the input
data based on the type of data.

For example, you can link the customer data to identify the household relationships. You do not require to link
the transaction data. In this case, link the customer data and load the linked data into the repository, and
tokenize the transaction data and load the tokenized data into the repository.

The following image shows the batch jobs that you can run to create the relationship graph:

102

To create a relationship graph, perform the following tasks:

1. If you want to link the input data, perform the following tasks:

a. Run the initial clustering job.

The job links the input data and creates linked and match-pair data in HDFS.

b. Run the load clustering job.

The job creates required tables in the repository and loads the linked data into the tables.

c. Run the load match pairs job.

The job loads the match-pair data of the business entity type into the repository.

2. If you do not want to link the input data, run the repository tokenization job.

The job tokenizes the input data, creates required tables in the repository, and loads the tokenized data
into the tables.

3. Similarly, process other business entity types and load the processed data into the repository.

4. Run the create relationship job.

The job creates relationship between two entities.

5. Similarly, run the create relationship job for other entities to create the relationship graph.

Creating Relationship Graph 103

Related Topics:
• “Initial Clustering Job” on page 18

• “Load Clustering Job” on page 28

• “Repository Tokenization Job” on page 55

• “Load Match Pairs Job” on page 104

• “Create Relationship Job” on page 106

Load Match Pairs Job
The load match pairs job creates a relationship table in the repository and loads the details of the match
pairs into the relationship table. If the relationship table already exists, the load match pairs job appends the
details of the match pairs to the relationship table. The input data can be linked or match-pair data that an
initial clustering job creates.

Before you run the load match pairs job, you must have run the load clustering job at least once.

The following image shows how the load match pairs job loads the data into the repository:

The load match pairs job performs the following tasks:

1. Creates a relationship table in the repository if the table does not exist.

2. Loads the linked or match-pair data into the relationship table.

Run the Load Match Pairs Job
The load match pairs job loads the linked or match-pair data into the relationship table. If the relationship
table does not exist, the job creates the table and then loads the data into it.

To run the load match pairs job, run the run_graphloader.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_graphloader.sh script:

run_graphloader.sh

--config=configuration_file_name

--relconfig=relationship_configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

104 Chapter 5: Creating Relationship Graph

--entity=entity_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]
The following table describes the options and arguments that you can specify to run the
run_graphloader.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file.

--relconfig relationship_configuration_file_name Absolute path and file name of the relationship configuration
file.

--input input_file_in_HDFS Absolute path to the directory that contains match-pair or
linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the processed data in the following
directories:
- Match-pair data. <Working Directory in HDFS>/
batch-cluster/<Job ID>/match/dir

- Linked data. <Working Directory in HDFS>/batch-
cluster/<Job ID>/output/dir/pass-join

If you run the initial clustering job with the --outputpath
parameter, you can find the processed data in the following
directories:
- Match-pair data. <Output Directory in HDFS>/batch-
cluster/match/dir

- Linked data. <Output Directory in HDFS>/batch-
cluster/output/dir/pass-join

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The job uses the
working directory to store the library files.

--entity entity_name Name of the business entity type based on which the job
retrieves the entity configuration from the relationship
configuration file.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the
batch job loads the output files. Use a different directory when
you rerun the batch job. If you want to use the same directory,
delete all the files in the directory and rerun the job.
By default, the batch job loads the output files to the working
directory in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run to load
the match pairs. Default is 1.

For example, the following command runs the load match pairs job:

run_graphloader.sh --config=/usr/local/conf/config_big.xml --relconfig=/usr/local/conf/
relconfig.xml --input=/usr/hdfs/workingdir/batch-cluster/MDMBDE0063_1602999447744334391/
match/dir --reducer=16 --hdfsdir=/usr/hdfs/workingdir --entity=Customer --
outputpath=/usr/hdfs/outputfolder

Creating Relationship Graph 105

Create Relationship Job
The create relationship job creates relationship between two business entity types based on the parameters
in the relationship configuration file and updates the relationship table with the relationship details. If the
relationship table does not exist, the job creates the relationship table and then loads the relationship details
into the relationship table. After you run the job, you can view the relationships in the relationship graph.

The following image shows how the create relationship job loads the data into the repository:

The create relationship job performs the following tasks:

1. Creates a relationship table in the repository if the table does not exist.

2. Creates relationship between two business entity types.

3. Updates the relationship table with the relationship details.

Run the Create Relationship Job
The create relationship job creates relationship between two entities based on the parameters in the
relationship configuration file and updates the relationship table in the repository with the relationship
details.

To run the create relationship job, run the run_relloader.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_relloader.sh script:

run_relloader.sh

--config=configuration_file_name

--relconfig=relationship_configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--sourceentity=source_entity_name

--targetentity=target_entity_name

--relationship=relationship_name

[--outputpath=directory_for_output_files]

[--reducer=number_of_reducer_jobs]

106 Chapter 5: Creating Relationship Graph

The following table describes the options and arguments that you can specify to run the run_relloader.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file for the
input files.

--relconfig relationship_configuration_file_name Absolute path and file name of the relationship configuration
file.

--sourceentity source_entity_name Name of the source business entity type for which you want
to create the relationship.

--targetentity target_entity_name Name of the target business entity type to which you want to
connect the source business entity type.

--input input_file_in_HDFS Absolute path to the input files in HDFS.
If the input files for the source and target business entity
types are different, you must integrate the input files and use
the integrated files as the input files for the create
relationship job.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. The job uses
the working directory to store the library files.

--relationship relationship_name Name of the outbound relationship for the source business
entity type.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the
batch job loads the output files. Use a different directory
when you rerun the batch job. If you want to use the same
directory, delete all the files in the directory and rerun the
job.
By default, the batch job loads the output files to the working
directory in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run.
Default is 1.

For example, the following command runs the create relationship job:

run_relloader.sh --config=/usr/local/conf/config_big.xml --relconfig=/usr/local/conf/
relconfig.xml --sourceentity=Customer --targetentity=Products --relationship=Owns --
input=/usr/hdfs/Source10Million --reducer=16 --hdfsdir=/usr/hdfs/workingdir --
outputpath=/usr/hdfs/outputfolder

Retrieving the Relationship Details
After you create relationships between the business entity types, you can retrieve details about the business
entity types, their relationships, and the relationship graph that you create.

To retrieve the relationship details, use the following RESTful web services:

• Get Graph Metadata

Retrieving the Relationship Details 107

• Get Entity Metadata

• Get Entity Relationship

• Get All Relationship

• Get Entity Details

Note: You can access these RESTful web services only when you include the relationship configuration file in
the WAR file that you generate for the RESTful web services.

Get Graph Metadata Web Service
The Get Graph Metadata web service gets the metadata information related to the relationship graph that you
created. The metadata information includes details about each business entity type and its relationships with
other entities.

Request URL

Use the GET method to run the Get Graph Metadata web service.

To run the Get Graph Metadata web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETGRAPHMETADATA

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETGRAPHMETADATA
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following sample response shows the metadata information of a relationship graph named Customer360:

{
 "relationshipName":"Customer360",
 "entities":{
 "Organization":{
 "urlEndPoint":"",
 "displayField":"CompanyName",
 "parentEntity":"Customer",

108 Chapter 5: Creating Relationship Graph

 "parentEntityColumnName":"id",
 "parentlabelName":"Owns",
 "pkColumnLength":0,
 "inboundLabel":[
 "Employee"
],
 "outboundLabel":[
 "Employee"
],
 "viewfields":{
 "field":[
 {
 "value":"id",
 "name":"id"
 },
 {
 "value":"Source",
 "name":"LMT_SOURCE_NAME"
 }
]
 },
 "partOfLayout":false,
 "attributes":{
 "attribute":[
 [
 [
 {
 "type":"EXACT"
 }
],
 "CompanyName",
 100,
 "true",
 "false"
],
 [
 [
 {
 "type":"EXACT"
 }
],
 "City",
 25,
 "false",
 "true"
],
 [
 [
 {
 "type":"EXACT"
 }
],
 "State",
 3,
 "false",
 "true"
]
]
 },
 "entityConfig":{
 "Hbase Master":"localhost:60000",
 "Hbase Zookeeper ClientPort":"2181",
 "Hbase Zookeeper
Quorum":"torarch2.informatica.com,torarch3.informatica.com,torarch4.informatica.com",
 "Hbase Distributed":"true",
 "Hbase Scan CacheSize":"5000",
 "Hbase Scan BatchSize":"25000"
 },
 "entityOptions":{
 "CompanyName":{
 "options":{

Retrieving the Relationship Details 109

 "Aggregate":"false",
 "Filterable":"true"
 }
 },
 "City":{
 "options":{
 "Aggregate":"true",
 "Filterable":"false"
 }
 }
 }
 }
 },
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

Get Entity Metadata Web Service
The Get Entity Metadata web service gets the metadata information related to a business entity type. The
metadata information includes the relationship details of the specified business entity type with other
business entity types.

Request URL

Use the POST method to run the Get Entity Metadata web service.

To run the Get Entity Metadata web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETENTITYMETADATA

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETENTITYMETADATA
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

110 Chapter 5: Creating Relationship Graph

Request Body

Use the request body to specify the business entity type for which you want to retrieve the metadata
information.

To specify the business entity type, use the following request body format:

{
 "input":{
 "EntityType":"<Entity Type>"
 }
}

The following sample request body specifies to retrieve the metadata information of the Customer business
entity type:

{
 "input":{
 "EntityType":"Customer"
 }
}

Sample Response

The following sample response shows the metadata information of the Customer business entity type:

{
 "input":{
 "EntityType":"Customer"
 },
 "entity":{
 "urlEndPoint":"http://localhost:8080/MDMBDRMCustomer360/v4.0/Customer360/",
 "displayField":"Name",
 "pkColumnLength":0,
 "inboundLabel":[
 "Duplicate",
 "Household"
],
 "outboundLabel":[
 "Duplicate",
 "Household"
],
 "viewfields":{
 "field":[
 {
 "value":"id",
 "name":"id"
 },
 {
 "value":"Source",
 "name":"LMT_SOURCE_NAME"
 },
 {
 "value":"Name",
 "name":"Name"
 }
]
 },
 "partOfLayout":false,
 "attributes":{
 "attribute":[
 [
 [
 {
 "type":"EXACT"
 }
],
 "Name",
 60,
 "true",
 "false"

Retrieving the Relationship Details 111

],
 [
 [
 {
 "facet":[
 {
 "value":"Male",
 "id":"M"
 },
 {
 "value":"Female",
 "id":"F"
 }
],
 "type":"Enum"
 }
],
 "Gender",
 2,
 "true",
 "true"
],
 [
 [
 {
 "facet":[
 {
 "value":"",
 "id":"0",
 "min":"18",
 "max":"100"
 }
],
 "type":"Range"
 }
],
 "Age",
 5,
 "true",
 "false",
 "integer"
]
]
 },
 "entityConfig":{
 "Hbase Master":"localhost:60000",
 "Hbase Zookeeper ClientPort":"2181",
 "Hbase Zookeeper
Quorum":"torarch2.informatica.com,torarch3.informatica.com,torarch4.informatica.com",
 "Hbase Distributed":"true",
 "Hbase Scan CacheSize":"5000",
 "Hbase Scan BatchSize":"25000"
 },
 "entityOptions":{
 "Name":{
 "options":{
 "Aggregate":"false",
 "Filterable":"true"
 }
 },
 "Gender":{
 "options":{
 "Aggregate":"true",
 "Filterable":"true"
 }
 },
 "Age":{
 "options":{
 "Aggregate":"false",
 "Filterable":"true"
 }

112 Chapter 5: Creating Relationship Graph

 }
 }
 },
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

Get Entity Relationship Web Service
The Get Entity Relationship web service retrieves all the related records of a record.

Request URL

Use the POST method to run the Get Entity Relationship web service.

To run the Get Entity Relationship web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETENTITYRELATIONSHIP

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETENTITYRELATIONSHIP
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Request Body

Use the request body to specify the parameters for the input record.

To specify the input record, use the following request body format:

{
 "input":{
 "source":"<Source Column>",
 "id":"<Primary Key Column>",
 "entityType":"<Entity Type>",
 "nodeLimit":"<Number of Records>",
 "depth":"<Number of Child Levels>"

Retrieving the Relationship Details 113

 },
 "aggregateEntityTypes":[
 "<Entity Type 1>",
 "<Entity Type 2>",
 ...
 "<Entity Type N>"
]
}

The request body format uses the following parameters:
Source Column

Source name of the input record.

Primary Key Column

Primary key column value of the input record.

Entity Type

Name of the business entity type to which the input record belongs.

Number of Records

Optional. Maximum number of related records that you want to retrieve. Default is 500.

Number of Child Levels

Optional. Maximum number of child levels to include in the response. Default is 5.

Entity Type 1, 2,..N

Optional. Name of the business entity types based on which you want to aggregate the related records.

The following sample request body specifies the input record and the business entity types based on which
you want to aggregate the related records:

{
 "input":{
 "source":"CRM",
 "id":"10000003",
 "entityType":"Customer",
 "nodeLimit":"3",
 "depth":"2"
 },
 "aggregateEntityTypes":[
 "Customer",
 "Transaction"
]
}

Sample Response

The following response shows the related records of a record whose identifier is 10000003:

{
 "input":{
 "depth":"2",
 "entityType":"Customer",
 "nodeLimit":"3",
 "source":"CRM",
 "id":"10000003"
 },
 "excludeEntityTypes":[
 "Customer",
 "Transaction"
],
 "excludeRelationshipTypes":[

],
 "aggregateEntityTypes":[
 "Customer",

114 Chapter 5: Creating Relationship Graph

 "Transaction"
],
 "aggregateRelationshipTypes":[

],
 "entities":[
 {
 "id":"1",
 "entityType":"Customer",
 "displayValue":"Customer",
 "attributes":{

 },
 "isPivot":false,
 "hasMore":false,
 "isAggregate":true,
 "count":15,
 "aggregateList":[
 [
 "10000004",
 "CRM",
 "Suzzy Rapp",
 "6625 The Corners Parkway"
],
 [
 "10000005",
 "CRM",
 "David Atwood",
 "6625 The Corners Parkway"
]
]
 },
 {
 "id":"10000003",
 "source":"CRM",
 "entityType":"Customer",
 "displayValue":"James Rapp",
 "attributes":{
 "MaritalStatus":"",
 "Networth":"141",
 "State":"GA",
 "Gender":"M",
 "Age":"44",
 "Name":"James Rapp"
 },
 "isPivot":true,
 "hasMore":false,
 "isAggregate":false,
 "count":0
 },
 {
 "id":"7001007",
 "source":"SAP",
 "entityType":"Product",
 "displayValue":"Mortgage",
 "attributes":{
 "ProductName":"Mortgage"
 },
 "isPivot":false,
 "hasMore":false,
 "isAggregate":false,
 "count":0
 }
],
 "relations":[
 {
 "id":"10000003#7001007",
 "label":"owns",
 "fromEntity":{
 "id":"10000003",
 "source":"CRM"

Retrieving the Relationship Details 115

 },
 "toEntity":{
 "id":"7001007",
 "source":"SAP"
 },
 "isAggregate":false,
 "count":0
 },
 {
 "id":"10000003#7001010",
 "label":"owns",
 "fromEntity":{
 "id":"10000003",
 "source":"CRM"
 },
 "toEntity":{
 "id":"7001010",
 "source":"SAP"
 },
 "isAggregate":false,
 "count":0
 }
],
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

Get All Relationships Web Service
The Get All Relationships web service gets the relationship details between two records.

Request URL

Use the POST method to run the Get All Relationships web service.

To run the Get All Relationships web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETALLRELATIONSHIPS

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETALLRELATIONSHIPS
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

116 Chapter 5: Creating Relationship Graph

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Request Body

Use the request body to specify the input records for which you want to retrieve the relationship details.

To specify the input records, use the following request body format:

{
 "input":{
 "startEntitySource":"<Source Column 1>",
 "startEntityId":"<Primary Key Column 1>",
 "startEntityType":"<Entity Type 1>",
 "targetEntitySource":"<Source Column 2>",
 "targetEntityId":"<Primary Key Column 2>",
 "targetEntityType":"<Entity Type 2>",
 "nodeLimit":"<Number of Records>",
 "depth":"<Number of Child Levels>"
 }
}

The request body format uses the following parameters:
Source Column Name 1, 2

Source name of the input records.

Primary Key Column 1, 2

Primary key column value of the input records.

Entity Type 1, 2

Name of the business entity types to which the input records belong.

Number of Records

Optional. Maximum number of related records that you want to retrieve. Default is 500.

Number of Child Levels

Optional. Maximum number of child levels to include in the response. Default is 5.

The following sample request body specifies two input records whose identifiers are 10000003 and
60000026:

{
 "input":{
 "startEntitySource":"CRM",
 "startEntityId":"10000003",
 "startEntityType":"Customer",
 "targetEntitySource":"SAP",
 "targetEntityId":"60000026",
 "targetEntityType":"Transaction",
 "nodeLimit":"150",
 "depth":"5"
 }
}

Sample Response

The following response shows the relationship details between two records:

{
 "input":{
 "startEntityType":"Customer",
 "targetEntityId":"7001008",
 "depth":"5",
 "targetEntityType":"Product",
 "startEntityId":"10000003",

Retrieving the Relationship Details 117

 "nodeLimit":"150",
 "startEntitySource":"CRM",
 "targetEntitySource":"SAP"
 },
 "excludeEntityTypes":[

],
 "excludeRelationshipTypes":[

],
 "aggregateEntityTypes":[

],
 "aggregateRelationshipTypes":[

],
 "entities":[
 {
 "id":"10000003",
 "source":"CRM",
 "entityType":"Customer",
 "displayValue":"James Rapp",
 "attributes":{
 "MaritalStatus":"",
 "Networth":"141",
 "State":"GA",
 "Gender":"M",
 "Age":"44",
 "Name":"James Rapp"
 },
 "isPivot":true,
 "hasMore":false,
 "isAggregate":false,
 "count":0
 },
 {
 "id":"7001008",
 "source":"SAP",
 "entityType":"Product",
 "displayValue":"Bank account or service",
 "attributes":{
 "ProductName":"Bank account or service"
 },
 "isPivot":false,
 "hasMore":false,
 "isAggregate":false,
 "count":0
 }
],
 "relations":[
 {
 "id":"10000003#7001008",
 "label":"owns",
 "fromEntity":{
 "id":"10000003",
 "source":"CRM"
 },
 "toEntity":{
 "id":"7001008",
 "source":"SAP"
 },
 "isAggregate":false,
 "count":0
 }
],
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

118 Chapter 5: Creating Relationship Graph

Get Entity Details Web Service
The Get Entity Details web service retrieves the details of a record that you specify.

Request URL

Use the POST method to run the Get Entity Details web service.

To run the Get Entity Details web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GETENTITYDETAILS

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GETENTITYDETAILS
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Request Body

Use the request body to specify the parameters for the input record.

To specify the input record, use the following request body format:

{
 "input":{
 "source":"<Source Column Name>",
 "id":"<Primary Key Column>",
 "entityType":"<Entity Type>"
 }
}

The request body format uses the following parameters:
Source Column Name

Source name of the input record.

Primary Key Column

Primary key column value of the input record.

Entity Type

Name of the business entity type to which the input record belongs.

Retrieving the Relationship Details 119

The following sample request body specifies the input record that belongs to the Customer business entity
type:

{
 "input":{
 "source":"CRM",
 "id":"10000005",
 "entityType":"Customer"
 }
}

Sample Response

The following response shows the input record details:

{
 "input":{
 "entityType":"Customer",
 "source":"CRM",
 "id":"10000005"
 },
 "output":{
 "Address":"6625 The Corners Parkway",
 "FirstName":"David",
 "GroupNumber":"bdaed85a-dcf8-4330-9716-e53ee19478fb",
 "LMT_SOURCE_NAME":"CRM",
 "City":"Norcross",
 "Gender":"M",
 "Prefix":"",
 "Postcode":"30092",
 "Name":"David Atwood",
 "MaritalStatus":"",
 "Networth":"198",
 "Phone":"(404) 448-5210",
 "State":"GA",
 "Country":"United States",
 "LastName":"Atwood",
 "id":"10000005",
 "Age":"17"
 },
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

Managing the Relationships
You can create a relationship or remove the relationship between two records.

To manage the relationship between two records, use the following RESTful web services:

• Create Relationship

• Remove Relationship

Note: You can access these RESTful web services only when you include the relationship configuration file in
the WAR file that you generate for the RESTful web services.

120 Chapter 5: Creating Relationship Graph

Create Relationship Web Service
The Create Relationship web service creates relationship between two records.

Request URL

Use the POST method to run the Create Relationship web service.

To run the Create Relationship web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
CREATERELATIONSHIP

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/CREATERELATIONSHIP
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Request Body

Use the request body to specify the records that you want to relate.

To specify the business entity type, use the following request body format:

{
 "input":{
 "startEntitySource":"<Source Column 1>",
 "startEntityId":"<Primary Key Column 1>",
 "startEntityType":"<Entity Type 1>",
 "targetEntitySource":"<Source Column 2>",
 "targetEntityId":"<Primary Key Column 2>",
 "targetEntityType":"<Entity Type 2>",
 "relationship":"<Relationship Name>"
 }
}

The request body format uses the following parameters:
Source Column 1, 2

Source name of the input records.

Managing the Relationships 121

Primary Key Column 1, 2

Primary key column value of the input records.

Entity Type 1, 2

Name of the business entity types to which the input records belong.

Number of Records

Optional. Maximum number of related records that you want to retrieve. Default is 500.

Number of Child Levels

Optional. Maximum number of child levels to include in the response. Default is 5.

Relationship Name

Name of the relationship that you want to create.

The following sample request body specifies the records that you want to relate:

{
 "input":{
 "startEntitySource":"CRM",
 "startEntityId":"10000003",
 "startEntityType":"Customer",
 "targetEntitySource":"SAP",
 "targetEntityId":"60000026",
 "targetEntityType":"Product",
 "relationship":"Owns"
 }
}

Sample Response

The following sample response shows the relationship created between two records:

{
 "input": {
 "relationship": "Duplicate",
 "targetEntitySource": "CRM",
 "startEntityType": "Customer",
 "startEntitySource": "CRM",
 "targetEntityId": "10000006",
 "targetEntityType": "Customer",
 "startEntityId": "10000000"
 },
 "debug": false,
 "resultCount": 0,
 "messages": {
 "INFO": "Relationship created successfully"
 }
}

Remove Relationship Web Service
The Remove Relationship web service remove the relationship between two records.

Request URL

Use the POST method to run the Remove Relationship web service.

To run the Remove Relationship web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
REMOVERELATIONSHIP

122 Chapter 5: Creating Relationship Graph

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/REMOVERELATIONSHIP
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Request Body

Use the request body to specify the input records and their relationship that you want to remove.

To specify the business entity type, use the following request body format:

{
 "input":{
 "startEntitySource":"<Source Column 1>",
 "startEntityId":"<Primary Key Column 1>",
 "startEntityType":"<Entity Type 1>",
 "targetEntitySource":"<Source Column 2>",
 "targetEntityId":"<Primary Key Column 2>",
 "targetEntityType":"<Entity Type 2>",
 "relationship":"<Relationship Name>"
 }
}

The request body format uses the following parameters:
Source Column 1, 2

Source name of the input records.

Primary Key Column 1, 2

Primary key column value of the input records.

Entity Type 1, 2

Name of the business entity types to which the input records belong.

Relationship Name

Name of the relationship that you want to remove.

The following sample request body specifies to remove the Household relationship between the input two
records:

{
 "input":{

Managing the Relationships 123

 "startEntitySource":"CRM",
 "startEntityId":"10000000",
 "startEntityType":"Customer",
 "targetEntitySource":"CRM",
 "targetEntityId":"10000006",
 "targetEntityType":"Customer",
 "relationship":"Duplicate"
 }
}

Sample Response

The following sample response shows the relationship that you removed:

{
 "input": {
 "relationship": "Duplicate",
 "targetEntitySource": "CRM",
 "startEntityType": "Customer",
 "startEntitySource": "CRM",
 "targetEntityId": "10000006",
 "targetEntityType": "Customer",
 "startEntityId": "10000000"
 },
 "debug": false,
 "resultCount": 0,
 "messages": {
 "INFO": "Relationship removed successfully"
 }
}

Viewing the Relationship Graph
After you create relationships between the business entity types, the relationships result in a relationship
graph. You can search for a record and view all its related records in the relationship graph.

1. Open a browser, and enter the URL in the following format:

https://<Host>:<Port>/<Relationship UI WAR Name>
The URL format uses the following parameters:

• Host. Name or IP address of the machine on which you deploy the relationship graph user interface
WAR file.

• Port. Port through which the host listens.

• Relationship UI WAR Name. Name of the relationship graph user interface WAR file that you deploy
on the Tomcat container. Default name is bdrm-ui.

The following URL uses the default relationship user interface WAR file name:

https://BDRMServer:8080/bdrm-ui
The Home page appears and displays the business entity types for which you configured the
RESTEndPoint parameter in the relationship configuration file.

2. Click the business entity type within which you want to search for records.

3. Specify the values for the searchable fields, and click Search.

The search results appear.

4. Click the primary key column value of a record for which you want to view the relationship graph.

The relationship graph appears.

124 Chapter 5: Creating Relationship Graph

Relationship Graph User Interface
The relationship graph displays a graph, filters, and column values for the selected record. The graph
displays all the related records of the selected record. You can filter the records in the graph based on the
filters that are available for the business entity type.

The following image shows a sample relationship graph:

1. Graph panel

2. Fields panel

3. Filters panel

4. Visualization Options panel

A relationship graph includes the following panels:
Graph panel

Displays how the selected record is connected to other records. The graph changes based on the filters
that you apply.

Fields panel

Displays the columns related to a node that you select in the graph. The columns that appear in the
Fields panel depend on the parameters that you configure in the relationship configuration file.

Filters panel

Displays the filters that you can use to filter the records. You can filter the records based on the
business entity types and their column values. You can also aggregate the records based on the
columns that you specify.

Visualization Options

Allows you to highlight the relationships and business entity types. You can also hide or show the labels
of the relationships and nodes.

Relationship Graph User Interface 125

Filtering the Records
You can filter the records based on the business entity types and their column values.

1. Open the relationship graph.

By default, the graph displays the selected record and all its related records.

2. To remove all the records related to a business entity type from the graph, under Filter, clear the
business entity type.

The graph refreshes and removes the records related to the business entity type from the graph.

3. To include all the records related to a business entity type in the graph, under Filter, select the business
entity type.

4. To filter the records based on the column values of a business entity type, perform the following tasks:

a. Under Filter, click the filter icon of a business entity type whose columns you want to use
to filter the records.

A list of columns appear. The columns that are available in the list are based on the parameters that
you configure in the relationship configuration file.

b. Select a column.

If you have configured the column as an exact filter, a text box appears. If you have configured the
column as an enumeration filter, a list of enumeration values appear.

c. For an exact filter, type the exact column value based on which you want to filter the records.

d. For an enumeration filter, select the enumeration value based on which you want to filter the
records.

The following image shows the enumeration values configured for the PaymentMode column:

126 Chapter 5: Creating Relationship Graph

e. Click OK.

The graph refreshes to reflect the filtered records.

Aggregating the Records
You can aggregate the records based on the selected columns of a business entity type.

1.

Under Filter, click the aggregate icon of a business entity type whose columns you want to use
to aggregate the business entity types.

Relationship Graph User Interface 127

2. Select the column based on which you want to aggregate the records, and click OK.

The graph refreshes to reflect the aggregated records.

The following image shows Gene Jackson's related records that are aggregated based on the
ProductName column:

Setting the Visualization Options
You can select to show or hide the labels of the relationships and nodes in the relationship graph. You can
also turn the highlight effect on or off for the relationships and nodes.

In the Visualizations Options panel, click the following icons that you can find against each relationship and
business entity:

Icon Description

Turns the highlight effect on or off.

Shows or hides the labels of the relationships or nodes.

Modifying the Graph View
You can zoom in, zoom out, and perform other actions in the graph to modify the view of the graph.

In the Graph panel, click the following icons that you can find in the upper right corner of the panel:

Icon Description

Adjusts the graph to highlight how the selected node is related to the main node.

Aligns the graph to the center of the panel.

128 Chapter 5: Creating Relationship Graph

Icon Description

Zooms in or zooms out the graph so that the entire graph fits the panel.

Resets the graph to its original size.

Zooms out to reduce the size of the nodes.

Zooms in to increase the size of the nodes.

Resets the graph to its default layout.

Relationship Graph User Interface 129

C h a p t e r 6

Loading Linked and Consolidated
Data into Hive

This chapter includes the following topics:

• Loading Linked and Consolidated Data into Hive Overview, 130

• Loading Linked Data from the Repository, 130

• Loading Linked Data from HDFS, 134

• Loading Consolidated Data from the Repository, 138

• Loading Consolidated Data from HDFS, 140

Loading Linked and Consolidated Data into Hive
Overview

You can load the linked and consolidated data that you persist in the repository or in HDFS into Hive. You can
perform analytics in Hive based on your requirement.

Loading Linked Data from the Repository
Use the Hive enabler job to load the linked data into Hive from the repository or to link a Hive table to the
repository table.

If you load the linked data into Hive, to update the incremental linked data in Hive, you must run the Hive
enabler job to drop the existing output table and re-create the output table. If you link a Hive table to the
repository table, you do not have to run the Hive enabler job again because the linked data persists in the
repository. You can use the Hive table to access the linked data in the repository.

The following image shows how the Hive enabler job loads the linked data into Hive:

130

To load the linked data into Hive from the repository, run the Hive enabler job without the link option. The
Hive enabler job performs the following tasks:

1. Joins the input data in HDFS and the primary key table that contains the cluster details of the input data
in the repository.

2. Loads the joined data into Hive.

The following image shows how the Hive enabler job links the Hive table to the repository table:

To link a Hive table to the repository table, run the Hive enabler job with the link option. You can use the Hive
table to access the linked data in the repository.

Note: In the configuration file, if you set StoreAllFields to false, the repository does not persist all the
columns but persists only the columns that you use to index the input data. If you want to view all the
columns in Hive, ensure that you set StoreAllFields to true in the configuration file when you link the input
data.

Running the Hive Enabler Job
Run the Hive enabler job to load the linked data into Hive or to link a Hive table to a repository table.

To run the Hive enabler job, use the run_hiveEnabler.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Loading Linked Data into Hive from the Repository

Use the following command to run the run_hiveEnabler.sh script without the link option:

run_hiveEnabler.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--outputtable=output_table_name

--hiveserver=Hive_server_host_name:port

Loading Linked Data from the Repository 131

--forceCopy

[--reducer=number_of_reducer_jobs]

[--hiveuser=user_name]

[--hivepassword=password]

[--hivedb=database_name]

[--outputpath=directory_for_output_files]
The following table describes the options and arguments that you can specify to run the
run_hiveEnabler.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the input files in HDFS.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. In a high availability-
enabled cluster, prefix the absolute path with the logical URI of the
cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
The Hive enabler job uses the working directory to store the library
files.

--outputtable output_table_name Unique name for the output table in Hive to which you want to load
the linked data.

--hiveserver Hive_server_host_name:port Host name of the Hive server and the port number on which the Hive
server listens.
Use the following format to specify the --hiveserver parameter:
<Hive Server Host Name>:<Port Number>

--hivedb database_name Optional. Name of the Hive database on which you want to create
the output table.
If you do not specify the name of the Hive database, the Hive enabler
job creates the output table in the default database.

--hiveuser user_name Optional. Name of the user to access the Hive database.
Note: Ensure that the user or the role to which the user belongs is
granted the ALL privilege for the Hive database.

--hivepassword password Optional. Password for the user to access the Hive database.

132 Chapter 6: Loading Linked and Consolidated Data into Hive

Option Argument Description

--forceCopy Copies the dependent library files to HDFS. Use this option only
when you run the Hive enabler job for the first time.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files
in the directory and rerun the job.
In a high availability-enabled cluster, prefix the absolute path with
the logical URI of the cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command loads the linked data into Hive:

run_hiveEnabler.sh --config=/usr/local/config/Configuration.xml --input=/usr/hdfs/Source
--hdfsdir=hdfs://R360nameservice/usr/hdfs/Hive --outputtable=HiveOutput --
hiveserver=Analytics1:20000 --forceCopy

Linking a Hive Table to the Repository Table

Use the following command to run the run_hiveEnabler.sh script with the link option:

run_hiveEnabler.sh

--config=configuration_file_name

--linkHBase

--outputtable=output_table_name

--hiveserver=Hive_server_host_name:port

--forceCopy

[--reducer=number_of_reducer_jobs]

[--hiveuser=user_name]

[--hivepassword=password]

[--hivedb=database_name]
The following table describes the options and arguments that you can specify to run the
run_hiveEnabler.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run.

--outputtable output_table_name Unique name for the output table in Hive that you want to link to the
repository table.

Loading Linked Data from the Repository 133

Option Argument Description

--hiveserver Hive_server_host_name:port Host name of the Hive server and the port number on which the Hive
server listens.
Use the following format to specify the --hiveserver parameter:
<Hive Server Host Name>:<Port Number>

--hivedb database_name Optional. Name of the Hive database on which you want to create
the output table.
If you do not specify the name of the Hive database, the Hive enabler
job creates the output table in the default database.

--hiveuser user_name Optional. Name of the user to access the Hive database.
Note: Ensure that you grant all the privileges to the user or the role
to which the user belongs for the Hive database.

--hivepassword password Optional. Password for the user to access the Hive database.

--linkHBase Links the output table in Hive to the repository table that contains
the linked data.

--forceCopy Copies the dependent library files to HDFS. Use this option only
when you run the Hive enabler job for the first time.

For example, the following command links the Hive table to the repository table:

run_hiveEnabler.sh --config=/usr/local/config/Configuration.xml --linkHBase --
outputtable=HiveOutput --hiveserver=Analytics1:20000 --forceCopy

Loading Linked Data from HDFS
Use the Hive enabler job to load the linked data that you persist in HDFS into Hive. After loading the initial
linked data, you can also use the Hive enabler job to incrementally update the linked data in Hive.

The following image shows how the data is loaded into Hive if you persist the linked data in HDFS:

To load the linked data into Hive from HDFS, perform the following tasks:

1. Run the Hive enabler job in the initial mode.

The Hive enabler job loads the linked data into Hive from HDFS.

134 Chapter 6: Loading Linked and Consolidated Data into Hive

2. To incrementally update the linked data in Hive, run the Hive enabler job in the incremental mode.

You must run the Hive enabler job in the incremental mode whenever you want to update the linked data
in Hive.

Running the Hive Enabler Job
Run the Hive enabler job in the initial mode to load the initial linked data into Hive. To incrementally update
the linked data in Hive, run the Hive enabler job in the incremental mode to load the incremental data into
Hive.

To run the Hive enabler job, use the run_hiveEnabler.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Initial Mode

Use the following command to run the run_hiveEnabler.sh script in the initial mode:

run_hiveEnabler.sh

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--outputtable=output_table_name

--hiveserver=Hive_server_host_name:port

--skipHBase

--forceCopy

[--reducer=number_of_reducer_jobs]

[--hiveuser=user_name]

[--hivepassword=password]

[--hivedb=database_name]
The following table describes the options and arguments that you can specify to run the
run_hiveEnabler.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/output/dir/
pass-join

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run.

Loading Linked Data from HDFS 135

Option Argument Description

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. In a high availability-
enabled cluster, prefix the absolute path with the logical URI of the
cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
The Hive enabler job uses the working directory to store the library
files.

--outputtable output_table_name Unique name for the output table in Hive to which you want to load
the linked data.

--hiveserver Hive_server_host_name:port Host name of the Hive server and the port number on which the Hive
server listens.
Use the following format to specify the --hiveserver parameter:
<Hive Server Host Name>:<Port Number>

--hivedb database_name Optional. Name of the Hive database on which you want to create
the output table.
If you do not specify the name of the Hive database, the Hive enabler
job creates the output table in the default database.

--hiveuser user_name Optional. Name of the user to access the Hive database.
Note: Ensure that the user or the role to which the user belongs is
granted the ALL privilege for the Hive database.

--hivepassword password Optional. Password for the user to access the Hive database.

--skipHBase Indicates that the linked data is in HDFS.

--forceCopy Copies the dependent library files to HDFS. Use this option only
when you run the Hive enabler job for the first time.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files
in the directory and rerun the job.
In a high availability-enabled cluster, prefix the absolute path with
the logical URI of the cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command loads the linked data into Hive from HDFS:

run_hiveEnabler.sh --config=/usr/local/config/Configuration.xml --input=/usr/hdfs/
workingdir/batch-cluster/MDMBDRM_931211654144593570/output/dir/pass-join --
hdfsdir=hdfs://r360nameservice/usr/hdfs/workingdir --outputtable=HiveOutput --
hiveserver=Analytics1:20000 --skipHBase --forceCopy

Incremental Mode

Use the following command to run the run_hiveEnabler.sh script in the incremental mode:

run_hiveEnabler.sh

136 Chapter 6: Loading Linked and Consolidated Data into Hive

--config=configuration_file_name

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--outputtable=output_table_name

--hiveserver=Hive_server_host_name:port

--skipHBase

--incremental

[--hiveuser=user_name]

[--hivepassword=password]

[--hivedb=database_name]

[--reducer=number_of_reducer_jobs]

[--outputpath=directory_for_output_files]
The following table describes the options and arguments that you can specify to run the
run_hiveEnabler.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--input input_file_in_HDFS Absolute path to the directory that contains linked data.
If you run the initial clustering job without the --outputpath
parameter, you can find the linked data in the following directory:
<Working Directory in HDFS>/batch-cluster/<Job ID>/
output/dir/pass-join
If you run the initial clustering job with the --outputpath
parameter, you can find the linked data in the following directory:
<Output Directory in HDFS>/batch-cluster/output/dir/
pass-join

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS.In a high availability-
enabled cluster, prefix the absolute path with the logical URI of the
cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
The Hive enabler job uses the working directory to store the library
files.

--outputtable output_table_name Name of the table in Hive that contains the linked data.

--hiveserver Hive_server_host_name:port Host name of the Hive server and the port number on which the Hive
server listens.
Use the following format to specify the --hiveserver parameter:
<Hive Server Host Name>:<Port Number>

Loading Linked Data from HDFS 137

Option Argument Description

--hivedb database_name Optional. Name of the Hive database that contains the output table.
If you do not specify the name of the Hive database, the Hive enabler
job uses the default database.

--hiveuser user_name Optional. Name of the user to access the Hive database.
Note: Ensure that you grant all the privileges to the user or the role
to which the user belongs for the Hive database.

--hivepassword password Optional. Password for the user to access the Hive database.

--skipHBase Indicates that the linked data is in HDFS.

--incremental Runs the Hive enabler job in the incremental mode.
The Hive enabler job updates the output table with the incremental
data .

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files
in the directory and rerun the job.
In a high availability-enabled cluster, prefix the absolute path with
the logical URI of the cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command loads the incremental linked data into Hive from HDFS:

run_hiveEnabler.sh --config=/usr/local/config/Configuration.xml --input=/usr/hdfs/
workingdir/batch-cluster/MDMBDRM_931211654144593970/output/dir/pass-join --hdfsdir=/usr/
hdfs/workingdir --outputtable=HiveOutput --hiveserver=Analytics1:20000 --skipHBase --
incremental

Loading Consolidated Data from the Repository
Use the Hive enabler job to link a Hive table to the preferred records table in the repository. If you link a Hive
table to the preferred records table in the repository, the data continues to persist in the repository, and the
Hive table accesses data from the repository. You do not have to run the Hive enabler job again for the
incremental data.

The following image shows how the Hive enabler job links the Hive table to the repository table:

138 Chapter 6: Loading Linked and Consolidated Data into Hive

Note: In the configuration file, if you set StoreAllFields to false, the repository does not persist all the
columns but persists only the columns that you use to index the input data. If you want to view all the
columns in Hive, ensure that you set StoreAllFields to true in the configuration file when you link the input
data.

Running the Hive Enabler Job
Run the Hive enabler job to link a Hive table to the preferred records table in the repository.

To run the Hive enabler job, use the run_hiveEnabler.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_hiveEnabler.sh script:

run_hiveEnabler.sh

--config=configuration_file_name

--consolidate

--linkHBase

--outputtable=output_table_name

--hiveserver=Hive_server_host_name:port

--forceCopy

[--reducer=number_of_reducer_jobs]

[--hiveuser=user_name]

[--hivepassword=password]

[--hivedb=database_name]
The following table describes the options and arguments that you can specify to run the
run_hiveEnabler.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run.

--outputtable output_table_name Unique name for the output table in Hive that you want to link to the
repository table.

Loading Consolidated Data from the Repository 139

Option Argument Description

--consolidate Indicates to link the preferred records table in the repository that
contains the consolidated data to the Hive table.

--linkHBase Links the output table in Hive to the preferred records table in the
repository.

--hiveserver Hive_server_host_name:port Host name of the Hive server and the port number on which the Hive
server listens.
Use the following format to specify the --hiveserver parameter:
<Hive Server Host Name>:<Port Number>

--hivedb database_name Optional. Name of the Hive database on which you want to create
the output table.
If you do not specify the name of the Hive database, the Hive enabler
job creates the output table in the default database.

--hiveuser user_name Optional. Name of the user to access the Hive database.
Note: Ensure that the user or the role to which the user belongs is
granted the ALL privilege for the Hive database.

--hivepassword password Optional. Password for the user to access the Hive database.

--forceCopy Copies the dependent library files to HDFS. Use this option only
when you run the Hive enabler job for the first time.

For example, the following command links the Hive table to the preferred records table:

run_hiveEnabler.sh --config=/usr/local/config/Configuration.xml --linkHBase --
consolidate --outputtable=HiveOutput --hiveserver=Analytics1:20000 --forceCopy

Loading Consolidated Data from HDFS
Use the Hive enabler job to load the consolidated data that you persist in HDFS into Hive. The Hive enabler
job uses the output files of a consolidation job as input.

After you load the initial consolidated data into Hive, you cannot incrementally update the consolidated data.
To update the consolidated data in Hive, you must reload the consolidated data of the entire dataset into
Hive.

To create the consolidated data of the entire dataset, use the output files of an initial clustering job that you
run in the incremental mode with the --consolidate option as the input for the consolidation job. You can
then use the output files of the consolidation job as the input for the Hive enabler job.

The following image shows how the consolidated data in HDFS is loaded into Hive:

140 Chapter 6: Loading Linked and Consolidated Data into Hive

To load the consolidated data in HDFS into Hive, perform the following tasks:

1. Run the Hive enabler job.

The Hive enabler job loads the consolidated data in HDFS into Hive.

2. To update the consolidated data in Hive, perform the following tasks:

a. Run the initial clustering job in the incremental mode with the --consolidate option.

b. Run the consolidation job that uses the output files of the initial clustering job.

c. Drop the output table in Hive.

d. If the <Output table>_internal table exists in Hive, drop it.

e. Run the Hive enabler job that uses the output files of the consolidation job.

Running the Hive Enabler Job
Run the Hive enabler job to load the consolidated data in HDFS into Hive.

To run the Hive enabler job, use the run_hiveEnabler.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_hiveEnabler.sh script:

run_hiveEnabler.sh

--config=configuration_file_name

--consolidate

--skipHBase

--input=input_file_in_HDFS

--hdfsdir=working_directory_in_HDFS

--outputtable=output_table_name

--hiveserver=Hive_server_host_name:port

--forceCopy

[--reducer=number_of_reducer_jobs]

[--hiveuser=user_name]

[--hivepassword=password]

[--hivedb=database_name]

Loading Consolidated Data from HDFS 141

The following table describes the options and arguments that you can specify to run the
run_hiveEnabler.sh script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--consolidate Indicates to load the consolidated data into the Hive table.

--skipHBase Indicates that the consolidated data is persisted in HDFS.

--input input_file_in_HDFS Absolute path to the directory that contains the consolidated data.
If you run the consolidation job without the --outputpath
parameter, you can find the preferred records in the following
directory: <Working Directory in HDFS>/batch-
consolidation/<Job ID>/consolidation-output
If you run the consolidation job with the --outputpath parameter,
you can find the preferred records in the following directory:
<Output Directory in HDFS>/batch-consolidation/<Job
ID>/consolidation-output

--reducer number_of_reducer_jobs Optional. Number of reducer jobs that you want to run.

--hdfsdir working_directory_in_HDFS Absolute path to a working directory in HDFS. In a high availability-
enabled cluster, prefix the absolute path with the logical URI of the
cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
The Hive enabler job uses the working directory to store the library
files.

--outputtable output_table_name Unique name for the output table in Hive to which you want to load
the consolidated data.

--hiveserver Hive_server_host_name:port Host name of the Hive server and the port number on which the Hive
server listens.
Use the following format to specify the --hiveserver parameter:
<Hive Server Host Name>:<Port Number>

--hivedb database_name Optional. Name of the Hive database on which you want to create
the output table.
If you do not specify the name of the Hive database, the Hive enabler
job creates the output table in the default database.

--hiveuser user_name Optional. Name of the user to access the Hive database.
Note: Ensure that the user or the role to which the user belongs is
granted the ALL privilege for the Hive database.

--hivepassword password Optional. Password for the user to access the Hive database.

142 Chapter 6: Loading Linked and Consolidated Data into Hive

Option Argument Description

--forceCopy Copies the dependent library files to HDFS. Use this option only
when you run the Hive enabler job for the first time.

--outputpath directory_for_output_files Optional. Absolute path to a directory in HDFS to which the batch job
loads the output files. Use a different directory when you rerun the
batch job. If you want to use the same directory, delete all the files
in the directory and rerun the job.
In a high availability-enabled cluster, prefix the absolute path with
the logical URI of the cluster.
Use the following format for the logical URI of a cluster:
hdfs://<nameservice ID>
By default, the batch job loads the output files to the working
directory in HDFS.

For example, the following command loads the consolidated data in HDFS into Hive:

run_hiveEnabler.sh --config=/usr/local/config/Configuration.xml --consolidate --
input=/usr/hdfs/workingdir/batch-consolidation/MDMBDRM_931211654144593570/consolidation-
output --hdfsdir=hdfs://r360nameservice/usr/hdfs/workingdir --outputtable=HiveOutput --
hiveserver=Analytics1:20000 --skipHBase --forceCopy

Loading Consolidated Data from HDFS 143

C h a p t e r 7

Searching Data
This chapter includes the following topics:

• Searching Data Overview, 144

• Prerequisites, 144

• Searching Data by Using the RESTful Web Services, 144

• Searching Data by Using the Command-Line Commands, 161

Searching Data Overview
You can perform fuzzy or exact searches on the repository data based on the settings in the configuration file
and the matching rules file. The fuzzy search can handle initials, aliases, common variations, prefixes,
suffixes, transpositions, and word order. You can search for matching records or get a list of records in a
specific cluster.

You can use the following methods to perform a search:

• RESTful web services

• Command line

Prerequisites
If you configure to perform distributed search, you must restart the repository server in all the region servers
to activate the distributed search.

Searching Data by Using the RESTful Web Services
You can use the RESTful web services to search for matching records in the repository based on the
matching criteria that you specify in the configuration file or the matching rules file. Use the JSON format to

144

specify the input parameters for the web services, and the web services return the results in the JSON
format. Ensure that you have deployed the RESTful web services before you use them.

1. If you have secured the web services, run the Authenticate web service to generate the authentication
token.

2. Run the Get Multisearch Layout web service.

The Get Multisearch Layout web service gets the required fields based on the matching rules file. You
must specify the required fields as the input parameters in the JSON format when you search for the
matching records.

3. Run the Multisearch web service.

The Multisearch web service searches for the matching records based on the searching and matching
criteria that you specify in the matching rules file. Use the search layout that the Get Multisearch Layout
web service returns to specify the input parameters for the Multisearch web service.

4. To get a list of records that are part of a cluster, perform the following tasks:

a. Run the Get Cluster Layout web service to get the required fields based on the configuration file.

You must specify the required fields as the input parameters in the JSON format to get the list of
records that are part of a cluster.

b. Run the Get Cluster web service to get the list of other records that are part of the same cluster to
which the specified record belongs.

5. To get the preferred record of a cluster, perform the following tasks:

a. Run the Get Preferred Record Layout web service. The web service returns the layout that you can
use to specify the input parameters for the Get Preferred Record web service.

b. Run the Get Preferred Record web service. The web service returns the preferred record for the
specified cluster or generates the preferred record for the specified cluster in the run time.

6. To search for the matching records and get the preferred records for the matching records, perform the
following tasks:

a. Run the Get Multisearch Layout web service. The web service returns the layout that you can use to
specify the input parameters for the Preferred Record Search web service.

b. Run the Preferred Record Search web service. The web service gets the matching records for the
input data and uses the cluster numbers of the matching records to get the preferred records of the
clusters.

Authenticate Web Service
The Authenticate web service authenticates the user credentials that you specify in the web service request.
After a successful authentication, the web service request returns an encoded authentication token that you
can specify in the header of the subsequent web service requests. A web service request returns appropriate
response only if the request contains a valid token or user credentials.

Note: Use the Authenticate web service only if you have secured the RESTful web services.

Request URL

Use the GET method to run the Authenticate web service.

To run the Authenticate web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
Authenticate

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/Authenticate

Searching Data by Using the RESTful Web Services 145

Request Header

Use the request header to specify the following headers:
Authorization

Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following sample response shows the token generated after a successful authentication:

{
 "timeTaken":0.134,
 "token":"AQIC5wM2LY4Sfczqyo9VO8tpm3qq7vDAsf3BB9nzatkh_S8.*AAJTSQACMDEAAlNLABI4MzAzMj
 EwNzMzODg0ODAxNTkAAlMxAAA.*"
}

Note: An authentication token is valid for the web service requests that use the same WAR file and host name
as that of the Authenticate web service request.

Get Multisearch Layout Web Service
The Get Multisearch Layout web service gets the search layout for the matching rules file that you use to
generate the WAR file. The layout contains the required fields that you can specify as input parameters in the
JSON format to run the MULTISEARCH web service.

Note: If you do not use a matching rules file to generate the WAR file, the Get Multisearch Layout web service
does not return any search layout.

Request URL

Use the POST method to run the Get Multisearch Layout web service.

To run the Get Multisearch Layout web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Identifier for Configuration and
Matching Rules Files>/GetMultisearchLayout

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GetMultisearchLayout
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

146 Chapter 7: Searching Data

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following sample response shows the search layout for a matching rules file:

{
 "sortField":"",
 "searchType":"Football",
 "resultlimit":0,
 "scoreThreshold":0,
 "ignoreMatch":false,
 "searchinput":{

 },
 "searchlayout":{
 "<Field 1>":"mandatory",
 "<Field 2>":"mandatory",
 "<Field 3>":"mandatory",
 "<Field 4>":"optional"
 },
 "searchResults":[

],
 "searchToken":-1,
 "pageLimit":10,
 "pageOffset":0,
 "totalCount":0,,
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

A search layout includes the following parameters:
sortField

Optional. Column name based on which you want to sort the search results lexicographically.

You can use one of the columns that you define in the PZMAP section of the configuration file to sort the
search results. You can also use the parameter value as score to sort the results in the descending order
of the search result scores. For example, "sortField":"score"

searchType

Name for the search.

resultlimit

Optional. Maximum number of records that you want to return. Default is 0, which indicates to return a
maximum of 200 records.

Searching Data by Using the RESTful Web Services 147

scoreThreshold

Optional. Minimum matching score of the records that you want to include in the results. Default is 0,
which indicates to include all the records in the results.

ignoreMatch

Optional. Indicates whether to perform matching on the records retrieved based on the key ranges. Set
to true to ignore matching, and set to false to perform matching. Default is false.

searchlayout

List of required search fields that you must specify.

Use the following format to specify a search field:

"<Field 1>": "<Field Value>"
searchToken

Optional. Indicates whether to enable pagination for the search results when you perform a search for
the first time. If you enable pagination, the search request returns a token with the search results. You
can use the token in the subsequent requests to get the search results from cache to avoid performing
the search again.

When you run a search request for the first time, set searchToken=0 to enable pagination. In the
subsequent requests, you can use the token that the search request returns. For example,
searchToken=1994262671816343815. Set searchToken=-1 to disable pagination. By default, pagination is
disabled.

pageLimit

Optional. Maximum number of search results to return. The pageLimit parameter is applicable if you
enable pagination. For example, pageLimit=20 returns 20 search results. Default is 10.

pageOffset

Optional. Number of search results to skip. The pageOffset parameter is applicable if you enable
pagination. For example, pageOffset=40 indicates to skip the first 40 search results and return search
results starting from 41. Default is 0.

Multisearch Web Service
The Multisearch web service generates key ranges, compares the key ranges with the repository data, and
gets the matching records based on the searching and matching rules that you configure in the matching
rules file.

Before you run the Multisearch web service, run the Get Multisearch Layout web service to get the search
layout in the JSON format for the matching rules file. Based on the search layout, you can configure the input
parameters for the Multisearch web service.

Note: If you do not use a matching rules file to generate the WAR file, the Multisearch web service does not
return any results.

You can run the Multisearch web service in the debug mode. The debug mode returns performance metrics
for the Multisearch web service. You can use the debug mode for troubleshooting purposes. To enable the
debug mode, you must add the Debug parameter to the MDMBDRMEnablerOptions section within the
MDMBDRMMatchRulesSet section of the matching rules file and set it to true.

Request URL

Use the POST method to run the Multisearch web service.

148 Chapter 7: Searching Data

To run the Multisearch web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Identifier for Configuration and
Matching Rules Files>/Multisearch

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/Multisearch
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Request Body

Use the request body to specify the input parameters for the Multisearch web service based on the search
layout that the Get Multisearch Layout web service returns.

Sample Response

The following sample response shows the matching records based on the input parameters:

{
 "searchType":"Football",
 "resultlimit":200,
 "scoreThreshold":0,
 "ignoreMatch":false,
 "searchinput":{
 "NAME":"Smith"
 },
 "searchlayout":{

 },
 "searchResults":[
 {
 "COMPANY":"INFA",
 "MatchRuleID":"match.rule",
 "NAME":"John Smith",
 "AGE":"30",
 "ADDRESS":"Bagmane Tech Park",
 "score":"094",
 "LMT_MATCHED_SCORE":"100",

Searching Data by Using the RESTful Web Services 149

 "DOJ":"2012",
 "LMT_MATCHED_RECORD_SOURCE":"SAP",
 "match_decision":"ACCEPT",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"00df1d63-44d2-4a73-9658-e5a5e47ed99c",
 "SOURCE":"Baan",
 "SALARY":"10000",
 "ID":"14",
 "PINCODE":"560101",
 "LMT_MATCHED_PK":"1",
 "CITY":"Bangalore",
 "MatchedIndex":"00",
 "LMT_SOURCE_NAME":"Baan"
 },
 {
 "COMPANY":"INFA",
 "MatchRuleID":"match.rule",
 "NAME":"John Smith",
 "AGE":"30",
 "ADDRESS":"Bagmane Tech Park",
 "score":"094",
 "LMT_MATCHED_SCORE":"100",
 "DOJ":"2013",
 "LMT_MATCHED_RECORD_SOURCE":"SAP",
 "match_decision":"ACCEPT",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"00df1d63-44d2-4a73-9658-e5a5e47ed99c",
 "SOURCE":"Baan",
 "SALARY":"10000",
 "ID":"18",
 "PINCODE":"560101",
 "LMT_MATCHED_PK":"1",
 "CITY":"Bangalore",
 "MatchedIndex":"00",
 "LMT_SOURCE_NAME":"Baan"
 }
],
 "searchToken":1994262671816343800,
 "pageLimit":10,
 "pageOffset":0,
 "totalCount":2,
 "debug":false,
 "resultCount":2,
 "messages":{
 "Message.0": "Fresh Token generated",
 "Response Time":"111 ms"
 }
}

A search result includes the following parameters:
match_decision

Indicates whether the match is accepted or rejected based on the match level and the search level that
you configure.

Fields

Column values of all the index fields, the match fields, and the partition field, if defined.

score

Matching score for the record.

LMT_MATCHED_PK

Primary key column value of a record in the repository that matches with the matched record. The value
0 indicates that the matched record does not match with another record in the repository.

For example, a search returns record A as the matching record. If record A matches with record B,
LMT_MATCHED_PK displays the primary key column value of record B.

150 Chapter 7: Searching Data

LMT_MATCHED_SCORE

Matching score between the matched record and the record that matches with the matched record.

For example, a search returns record A as the matching record. If record A matches with record B,
LMT_MATCHED_SCORE displays the matching score between record A and record B.

LMT_SOURCE_NAME

Source name of the matched record.

GROUPNO

Cluster identifier of the matched record.

<Primary Key Column Name>

Primary key column value of the matched record.

searchToken

Token that you can use in the subsequent search requests to retrieve the results from cache to avoid
performing the search again. The token expires after the validity time that you configure in the
SearchTokenValidity parameter of the configuration file. By default, the token is valid for 600 seconds.
A search token value of -1 indicates that the pagination is disabled.

Note: If you use search tokens to retrieve search results from cache, the other parameters in the search
layout do not affect the search results.

totalCount

Number of matching search results.

resultCount

Number of search results that the search request returns. The number of results depends on the value of
the pageLimit parameter.

Get Cluster Layout Web Service
The Get Cluster Layout web service gets the cluster layout for the configuration file based on which you
generate the WAR file. The cluster layout contains the required fields that you can specify as input
parameters in the JSON format for the GETCLUSTER web service.

Request URL

Use the POST method to run the Get Cluster Layout web service.

To run the Get Cluster Layout web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GetClusterLayout

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GetClusterLayout
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Searching Data by Using the RESTful Web Services 151

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following sample response shows the cluster layout for a configuration file:

{
 "clusterinput": {
 "LMT_SOURCE_NAME": "mandatory",
 "<Primary Key Column Name>": "mandatory"
 },
 "clusterResults": { },
 "resultCount": 0,
 "messages": { }
}

A cluster layout includes the following parameters:
LMT_SOURCE_NAME

Source name of the record.

<Primary Key Column Name>

Column name that you set as primary key in the configuration file.

Get Cluster Web Service
The Get Cluster web service gets a list of records in a cluster based on the primary key column value of a
record that is part of the cluster.

Before you run the Get Cluster web service, run the Get Cluster Layout web service to get the cluster layout in
the JSON format for the configuration file. Based on the cluster layout, you can configure the input
parameters for the Get Cluster web service.

Request URL

Use the POST method to run the Get Cluster web service.

To run the Get Cluster web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GetCluster

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GetCluster
Request Header

Use the request header to specify the following headers:

152 Chapter 7: Searching Data

Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Request Body

Use the request body to specify the input parameters for the Get Cluster web service based on the layout that
the Get Cluster Layout web service returns.

Sample Response

The following sample response shows the list of records in the cluster to which the specified input record
belongs:

{
 "clusterinput":{
 "SOURCE":"SAP",
 "ID":"31"
 },
 "clusterResults":{
 "16bf81d3-e4f5-4f25-a352-3c2a4ff15fb3":{
 "SAP#31":{
 "key":"31",
 "source":"SAP"
 },
 "Salesforce#33":{
 "key":"33",
 "source":"Salesforce"
 },
 "Baan#32":{
 "key":"32",
 "source":"Baan"
 }
 }
 },
 "debug":false,
 "resultCount":3,
 "messages":{

 }
}

Searching Data by Using the RESTful Web Services 153

Get Preferred Record Layout Web Service
The Get Preferred Record Layout web service gets the layout details that you can use to specify the input
parameters in the JSON format for the Get Preferred Record web service. The layout contains parameters
that you can use to retrieve the preferred record of a cluster or to define consolidation rules and generate the
preferred record for a cluster during run time.

Request URL

Use the POST method to run the Get Preferred Record Layout web service.

To run the Get Preferred Record Layout web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GetPreferredRecordLayout

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GetPreferredRecordLayout
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following sample response shows the layout details that you can use to specify the input parameters for
the Get Preferred Record web service:

{
 "keyData":{
 "<Cluster Column Name>":"mandatory",
 "LMT_SOURCE_NAME":"mandatory",
 "<Primary Key Column Name>":"mandatory"
 },
 "record":{

 },
 "rowRules":{
 "row":[
 {
 "target":{
 "value":"",
 "name":""
 },
 "source":[

154 Chapter 7: Searching Data

 {
 "name":"",
 "weight":1
 }
],
 "name":"",
 "rule":"MODAL_EXACT",
 "order":1
 }
]
 },
 "columnRules":{
 "column":[
 {
 "source":[
 {
 "name":"",
 "weight":1
 }
],
 "target":{
 "value":"",
 "name":""
 },
 "name":"",
 "rule":"MODAL_EXACT",
 "order":1,
 "columnName":""
 },{
 "source":[
 {
 "name":"",
 "weight":1
 }
],
 "target":{
 "value":"",
 "name":""
 },
 "name":"",
 "rule":"MODAL_EXACT",
 "order":1,
 "columnName":""
 }
],
 "columnGroup":[
 {
 "source":[
 {
 "name":"",
 "weight":1
 }
],
 "target":{
 "value":"",
 "name":""
 },
 "column":[
 {
 "name":""
 },
 {
 "name":""
 }
],
 "name":"",
 "rule":"MODAL_EXACT"
 }
]
 },
 "defaultRules":{

Searching Data by Using the RESTful Web Services 155

 },
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

The layout details include the following parameters:
LMT_SOURCE_NAME

Source name of the record.

Primary Key Column Name

Column name that you set as primary key in the configuration file.

Cluster Column Name

Name of the column on which you store the cluster identifiers.

rowRules

Optional. List of row rules. If you want to generate the preferred record for the specified cluster in the run
time, specify the rules.

Under rowRules, specify the parameters based on the rules that you plan to use.

For more information about the row rules, see the Informatica MDM - Relate 360 Installation and
Configuration Guide.

columnRules

Optional. List of column rules. If you want to generate the preferred record for the specified cluster in the
run time, specify the rules.

Under columnRules, specify the parameters based on the rules that you plan to use.

For more information about the column rules, see the Informatica MDM - Relate 360 Installation and
Configuration Guide.

columnGroup

Optional. Group of columns to which you want to apply the column rules.

Under columnGroup, specify the parameters based on the rule that you plan to use.

For more information about the column groups, see the Informatica MDM - Relate 360 Installation and
Configuration Guide.

Get Preferred Record Web Service
The Get Preferred Record web service gets the preferred record for the specified cluster. The web service can
also generate the preferred record for the cluster in the run time based on the specified consolidation rules.

Before you run the Get Preferred Record web service, run the Get Preferred Record Layout web service to get
the layout details for the preferred record. Based on the layout details, you can configure the input
parameters for the Get Preferred Record web service.

Request URL

Use the POST method to run the Get Preferred Record web service.

156 Chapter 7: Searching Data

To run the Get Preferred Record web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GetPreferredRecord

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GetPreferredRecord
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Request Body

Use the request body to specify the input parameters for the Get Preferred Record web service based on the
layout details that the Get Preferred Record Layout web service returns.

Sample Response

The following sample response shows the preferred record for the specified cluster:

{
 "keyData":{
 "CLUSTERNUMBER":"4d8f6161-78be-4868-a2de-1876827d8de1",
 "SOURCE":"",
 "ID":""
 },
 "record":{
 "COMPANY":"AB Associates",
 "NAME":"John Smith",
 "AGE":"30",
 "ROW_RULE":"MODAL_EXACT",
 "COLUMN_RULE":"NONE",
 "ADDRESS":"Freeway Lane",
 "LMT_DIRTY_IND":"0",
 "DOJ":"2012",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"4d8f6161-78be-4868-a2de-1876827d8de1 ",
 "SALARY":"10000",
 "SOURCE":"Baan",
 "ID":" 26",
 "PINCODE":"560103",

Searching Data by Using the RESTful Web Services 157

 "CITY":"Chicago",
 "LMT_CREATE_DATE":"20160908063700"
 },
 "rowRules":{
 "row":[

]
 },
 "columnRules":{
 "column":[

],
 "columnGroup":[

]
 },
 "debug":false,
 "resultCount":1,
 "messages":{
 "Response Time":"35 ms"
 }
}

Preferred Record Search Web Service
The Preferred Record Search web service searches the primary key table in the repository and retrieves the
records that match the input data based on the rules in the matching rules file. The Preferred Record Search
web service then uses the cluster numbers of the matching records to return the corresponding preferred
records from the preferred record table.

Before you run the Preferred Record Search web service, run the Get Multisearch Layout web service to get
the search layout details in the JSON format for the matching rules file. Based on the search layout details,
you can configure the input parameters for the Preferred Record Search web service.

Note: Ensure that you consolidate the linked data before you run the Preferred Record Search web service.

Request URL

Use the POST method to run the Preferred Record Search web service.

To run the Preferred Record Search web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Identifier for Configuration and
Matching Rules Files>/PreferredRecordSearch

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/PreferredRecordSearch
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

158 Chapter 7: Searching Data

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Content-Type

Format of the request body. The supported format is JSON. Specify application/json as the header
value.

Request Body

Use the request body to specify the input parameters for the Preferred Record Search web service based on
the search layout details that the Get Multisearch Layout web service returns.

Sample Response

The following sample response shows the preferred record for the input record:

{
 "searchType":"Football",
 "resultlimit":200,
 "scoreThreshold":0,
 "ignoreMatch":false,
 "searchinput":{
 "NAME":"Wayne"
 },
 "searchlayout":{

 },
 "searchResults":[
 {
 "COMPANY":"Manchester Unit",
 "NAME":"Wayne Rooney",
 "AGE":"31",
 "ROW_RULE":"MAX_PK",
 "COLUMN_RULE":"CITY:MOST_DATA",
 "ADDRESS":"Old Trafford",
 "LMT_DIRTY_IND":"0",
 "DOJ":"2011",
 "PHONE":"08040201000",
 "CLUSTERNUMBER":"097e692d-7e9d-4262-b1d8-25272efbbefa ",
 "SALARY":"10000",
 "SOURCE":"SAP",
 "ID":" 52",
 "PINCODE":"560103",
 "CITY":"Manchester",
 "LMT_CREATE_DATE":"20160914101437"
 }
],
 "searchToken":-1,
 "pageLimit":10,
 "pageOffset":0,
 "totalCount":0,
 "debug":false,
 "resultCount":1,
 "messages":{
 "Response Time":"117 ms"
 }
}

Searching Data by Using the RESTful Web Services 159

Get Strategies Web Service
The Get Strategies web service gets a list of consolidation rules that you can use to consolidate the linked
data.

Request URL

Use the POST method to run the Get Strategies web service.

To run the Get Strategies web service, use the following URL format:

http://<Host>:<Port>/<WAR File Name>/<Version Number>/<Configuration File Identifier>/
GetStrategies

For example:

http://localhost:8080/MDMBDRMSYS/v4.0/SYS/GetStrategies
Request Header

Use the request header to specify the following headers:
Token

Required if you secure the RESTful web services. Authentication token that the Authenticate web service
returns. If the token is not valid or you do not specify the Token header, the web service request uses the
Authorization header.

Authorization

Required if you have secured the RESTful web services, but optional if you specify the Token header.
Type of authentication and the user credentials in the Base64 format. The RESTful web services use the
HTTP basic authentication. Use the following format to specify the value for the Authorization header:
Basic <Encoded User Credentials>

Basic indicates the HTTP basic authentication, and Encoded User Credentials indicates the Base64
format of the user name and password separated by a colon. For example, Authorization: Basic
dGVzdDpUZXN0

Accept

Format of the response. The supported response format is JSON. Specify application/json as the
header value.

Sample Response

The following sample response shows a list of rules that the Get Strategies web service returns:

{
 "rowStrategies":[
 "RANK",
 "MOST_DATA",
 "MODAL_EXACT",
 "MIN_COLUMN",
 "MAX_COLUMN",
 "MOST_FILLED",
 "EQUALS_COLUMN"
],
 "columnStrategies":[
 "RANK",
 "MOST_DATA",
 "MODAL_EXACT",
 "MIN_COLUMN",
 "MAX_COLUMN",
 "FROM_MASTER",
 "EQUALS_OTHER_COLUMN",
 "MIN_OTHER_COLUMN",
 "MAX_OTHER_COLUMN"
],

160 Chapter 7: Searching Data

 "defaultStrategies":[
 "LATEST_TIMESTAMP",
 "MAX_PK"
],
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

Searching Data by Using the Command-Line
Commands

You can use the command-line commands to search for matching records in the repository based on the
matching criteria that you specify in the configuration file or the matching rules file. Use the JSON format to
specify the input parameters, and the command-line commands return the results in the JSON format.

1. Perform the Get Multisearch Layout operation.

The Get Multisearch Layout operation gets the required fields based on the matching rules file. You must
specify the required fields as the input parameters in the JSON format when you search for the matching
records.

2. Perform the Multisearch operation.

The Multisearch operation searches for the matching records based on the searching and matching
criteria that you specify in the matching rules file. Use the search layout that the Get Multisearch Layout
operation returns to specify the input parameters for the Multisearch operation.

3. To get a list of records that are part of a cluster, perform the following tasks:

a. Perform the Get Cluster Layout operation to get the required fields based on the configuration file.

You must specify the required fields as the input parameters in the JSON format to get the list of
records that are part of a cluster.

b. Perform the Get Cluster operation to get the list of other records that are part of the same cluster to
which the specified record belongs.

4. To get the preferred record of a cluster, perform the following tasks:

a. Run the Get Preferred Record Layout operation. The operation returns the layout details that you can
use to specify the input parameters for the Get Preferred Record operation.

b. Run the Get Preferred Record operation. The operation returns the preferred record for the specified
cluster or generates the preferred record for the specified cluster in the run time.

5. To search for the matching records and get the preferred records for the matching records, perform the
following tasks:

a. Run the Get Multisearch Layout operation. The operation returns the layout details that you can use
to specify the input parameters for the Preferred Record Search operation.

b. Run the Preferred Record Search operation. The operation gets the matching records for the input
data and uses the cluster numbers of the matching records to get the preferred records of the
clusters.

Searching Data by Using the Command-Line Commands 161

Get Multisearch Layout Operation
The Get Multisearch Layout operation gets the search layout for your matching rules file. The search layout
contains the required fields that you can specify in the input JSON file to perform the MULTISEARCH
operation.

Run the run_client.sh script located in the following directory to perform the Get Multisearch Layout
operation: /usr/local/mdmbdrm-<Version Number>

To run the run_client.sh script, use the following command format:

run_client.sh

--config=configuration_file_name

--operation=GETMULTISEARCHLAYOUT

[--outputfile=output_file_name]

--rule=matching_rules_file_name
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--operation GETMULTISEARCHLAYOUT Type of operation that you want to perform. Specify
GETMULTISEARCHLAYOUT.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the search layout.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --
operation=GETMULTISEARCHLAYOUT --outputfile=/usr/local/tree/output.json --rule=/usr/
local/conf/matching_rules.xml

The following sample response shows the search layout for a matching rules file:

{
 "sortField":"",
 "searchType":"Football",
 "resultlimit":0,
 "scoreThreshold":0,
 "ignoreMatch":false,
 "searchinput":{

 },
 "searchlayout":{
 "<Field 1>":"mandatory",
 "<Field 2>":"mandatory",
 "<Field 3>":"mandatory",
 "<Field 4>":"optional"
 },
 "searchResults":[

],
 "searchToken":-1,
 "pageLimit":10,
 "pageOffset":0,

162 Chapter 7: Searching Data

 "totalCount":0,,
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

A search layout includes the following parameters:
sortField

Optional. Column name based on which you want to sort the search results lexicographically.

You can use one of the columns that you define in the PZMAP section of the configuration file to sort the
search results. You can also use the parameter value as score to sort the results in the descending order
of the search result scores. For example, "sortField":"score"

searchType

Name for the search.

resultlimit

Optional. Maximum number of records that you want to return. Default is 0, which indicates to return a
maximum of 200 records.

scoreThreshold

Optional. Minimum matching score of the records that you want to include in the results. Default is 0,
which indicates to include all the records in the results.

ignoreMatch

Optional. Indicates whether to perform matching on the records retrieved based on the key ranges. Set
to true to ignore matching, and set to false to perform matching. Default is false.

searchlayout

List of required search fields that you must specify.

Use the following format to specify a search field:

"<Field 1>": "<Field Value>"
searchToken

Optional. Indicates whether to enable pagination for the search results when you perform a search for
the first time. If you enable pagination, the search request returns a token with the search results. You
can use the token in the subsequent requests to get the search results from cache to avoid performing
the search again.

When you run a search request for the first time, set searchToken=0 to enable pagination. In the
subsequent requests, you can use the token that the search request returns. For example,
searchToken=1994262671816343815. Set searchToken=-1 to disable pagination. By default, pagination is
disabled.

pageLimit

Optional. Maximum number of search results to return. The pageLimit parameter is applicable if you
enable pagination. For example, pageLimit=20 returns 20 search results. Default is 10.

pageOffset

Optional. Number of search results to skip. The pageOffset parameter is applicable if you enable
pagination. For example, pageOffset=40 indicates to skip the first 40 search results and return search
results starting from 41. Default is 0.

Searching Data by Using the Command-Line Commands 163

Multisearch Operation
The Multisearch operation generates key ranges, compares the key ranges with the repository data, and gets
the matching records based on the searching and matching criteria that you specify in the matching rules
file. You can perform the Multisearch operation to identify the matching records for a single record or
multiple records.

To perform the Multisearch operation, run the run_client.sh script located in the following directory: /usr/
local/mdmbdrm-<Version Number>

You can perform the Multisearch operation in the debug mode. The debug mode returns performance metrics
for the Multisearch operation. You can use the debug mode for troubleshooting purposes. To enable the
debug mode, you must add the Debug parameter to the MDMBDRMEnablerOptions section within the
MDMBDRMMatchRulesSet section of the matching rules file and set it to true.

Single Record Search
Before you run the run_client.sh script, create an input JSON file and configure the parameters based on
the search layout of the matching rules file. To get the search layout for the matching rules file in the JSON
format, perform the Get Multisearch Layout operation.

To identify matching records for a single search record, use the following command to run the
run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=MULTISEARCH

--input=input_file_name

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation MULTISEARCH Type of operation that you want to perform. Specify MULTISEARCH as the
value.

--input input_file_name Absolute path and name of the input JSON file that you configure based on
the search layout.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the search results.

For example, the following command identifies the matching records for a single search record:

run_client.sh --config=/usr/local/tree/configuration.xml --rule=/usr/local/conf/
matching_rules.xml --operation=MULTISEARCH --input=/usr/local/tree/input.json --
outputfile=/usr/local/tree/output.json

164 Chapter 7: Searching Data

The following sample response shows the matching records based on the input parameters:

{
 "searchType":"Football",
 "resultlimit":200,
 "scoreThreshold":0,
 "ignoreMatch":false,
 "searchinput":{
 "NAME":"Smith"
 },
 "searchlayout":{

 },
 "searchResults":[
 {
 "COMPANY":"INFA",
 "MatchRuleID":"match.rule",
 "NAME":"John Smith",
 "AGE":"30",
 "ADDRESS":"Bagmane Tech Park",
 "score":"094",
 "LMT_MATCHED_SCORE":"100",
 "DOJ":"2012",
 "LMT_MATCHED_RECORD_SOURCE":"SAP",
 "match_decision":"ACCEPT",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"00df1d63-44d2-4a73-9658-e5a5e47ed99c",
 "SOURCE":"Baan",
 "SALARY":"10000",
 "ID":"14",
 "PINCODE":"560101",
 "LMT_MATCHED_PK":"1",
 "CITY":"Bangalore",
 "MatchedIndex":"00",
 "LMT_SOURCE_NAME":"Baan"
 },
 {
 "COMPANY":"INFA",
 "MatchRuleID":"match.rule",
 "NAME":"John Smith",
 "AGE":"30",
 "ADDRESS":"Bagmane Tech Park",
 "score":"094",
 "LMT_MATCHED_SCORE":"100",
 "DOJ":"2013",
 "LMT_MATCHED_RECORD_SOURCE":"SAP",
 "match_decision":"ACCEPT",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"00df1d63-44d2-4a73-9658-e5a5e47ed99c",
 "SOURCE":"Baan",
 "SALARY":"10000",
 "ID":"18",
 "PINCODE":"560101",
 "LMT_MATCHED_PK":"1",
 "CITY":"Bangalore",
 "MatchedIndex":"00",
 "LMT_SOURCE_NAME":"Baan"
 }
],
 "searchToken":1994262671816343800,
 "pageLimit":10,
 "pageOffset":0,
 "totalCount":2,
 "debug":false,
 "resultCount":2,
 "messages":{
 "Message.0": "Fresh Token generated",
 "Response Time":"111 ms"
 }
}

A search result includes the following parameters:

Searching Data by Using the Command-Line Commands 165

match_decision

Indicates whether the match is accepted or rejected based on the match level and the search level that
you configure.

Fields

Column values of all the index fields, the match fields, and the partition field, if defined.

score

Matching score for the record.

LMT_MATCHED_PK

Primary key column value of a record in the repository that matches with the matched record. The value
0 indicates that the matched record does not match with another record in the repository.

For example, a search returns record A as the matching record. If record A matches with record B,
LMT_MATCHED_PK displays the primary key column value of record B.

LMT_MATCHED_SCORE

Matching score between the matched record and the record that matches with the matched record.

For example, a search returns record A as the matching record. If record A matches with record B,
LMT_MATCHED_SCORE displays the matching score between record A and record B.

LMT_SOURCE_NAME

Source name of the matched record.

GROUPNO

Cluster identifier of the matched record.

<Primary Key Column Name>

Primary key column value of the matched record.

searchToken

Token that you can use in the subsequent search requests to retrieve the results from cache to avoid
performing the search again. The token expires after the validity time that you configure in the
SearchTokenValidity parameter of the configuration file. By default, the token is valid for 600 seconds.
A search token value of -1 indicates that the pagination is disabled.

Note: If you use search tokens to retrieve search results from cache, the other parameters in the search
layout do not affect the search results.

totalCount

Number of matching search results.

resultCount

Number of search results that the search request returns. The number of results depends on the value of
the pageLimit parameter.

166 Chapter 7: Searching Data

Multiple Records Search
Before you run the run_client.sh script, create a flat file and add the search records in the same format as
that of the input data in HDFS.

To identify matching records for multiple search records, use the following command to run the
run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=MULTISEARCH

--batchfile=batch_file_name

[--outputdir=output_directory_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation MULTISEARCH Type of operation that you want to perform. Specify MULTISEARCH.

--batchfile batch_file_name Absolute path and name of the flat file that contains the search records.
The format of the records in the batch file must match the format of the
input data in HDFS.
Specify the --batchfile parameter if you use multiple search records.

--outputdir output_directory_name Optional. Absolute path of a directory to which you want to load the search
results.
Ensure that you have the write permission to the directory.
By default, the Multisearch operation loads the search results to the
following directory: <Working Directory>/relate_output

For example, the following command identifies the matching records for multiple search records:

run_client.sh --config=/usr/local/tree/configuration.xml --rule=/usr/local/conf/
matching_rules.xml --operation=MULTISEARCH --batchfile=/usr/local/tree/batch.in --
outputdir=/usr/local/tree

The following sample response shows the matching records based on the input parameters:

{
 "searchType":"Football",
 "resultlimit":200,
 "scoreThreshold":0,
 "ignoreMatch":false,
 "searchinput":{
 "NAME":"Smith"
 },
 "searchlayout":{

 },
 "searchResults":[
 {

Searching Data by Using the Command-Line Commands 167

 "COMPANY":"INFA",
 "MatchRuleID":"match.rule",
 "NAME":"John Smith",
 "AGE":"30",
 "ADDRESS":"Bagmane Tech Park",
 "score":"094",
 "LMT_MATCHED_SCORE":"100",
 "DOJ":"2012",
 "LMT_MATCHED_RECORD_SOURCE":"SAP",
 "match_decision":"ACCEPT",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"00df1d63-44d2-4a73-9658-e5a5e47ed99c",
 "SOURCE":"Baan",
 "SALARY":"10000",
 "ID":"14",
 "PINCODE":"560101",
 "LMT_MATCHED_PK":"1",
 "CITY":"Bangalore",
 "MatchedIndex":"00",
 "LMT_SOURCE_NAME":"Baan"
 },
 {
 "COMPANY":"INFA",
 "MatchRuleID":"match.rule",
 "NAME":"John Smith",
 "AGE":"30",
 "ADDRESS":"Bagmane Tech Park",
 "score":"094",
 "LMT_MATCHED_SCORE":"100",
 "DOJ":"2013",
 "LMT_MATCHED_RECORD_SOURCE":"SAP",
 "match_decision":"ACCEPT",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"00df1d63-44d2-4a73-9658-e5a5e47ed99c",
 "SOURCE":"Baan",
 "SALARY":"10000",
 "ID":"18",
 "PINCODE":"560101",
 "LMT_MATCHED_PK":"1",
 "CITY":"Bangalore",
 "MatchedIndex":"00",
 "LMT_SOURCE_NAME":"Baan"
 }
],
 "searchToken":1994262671816343800,
 "pageLimit":10,
 "pageOffset":0,
 "totalCount":2,
 "debug":false,
 "resultCount":2,
 "messages":{
 "Message.0": "Fresh Token generated",
 "Response Time":"111 ms"
 }
}

A search result includes the following parameters:
match_decision

Indicates whether the match is accepted or rejected based on the match level and the search level that
you configure.

Fields

Column values of all the index fields, the match fields, and the partition field, if defined.

score

Matching score for the record.

168 Chapter 7: Searching Data

LMT_MATCHED_PK

Primary key column value of a record in the repository that matches with the matched record. The value
0 indicates that the matched record does not match with another record in the repository.

For example, a search returns record A as the matching record. If record A matches with record B,
LMT_MATCHED_PK displays the primary key column value of record B.

LMT_MATCHED_SCORE

Matching score between the matched record and the record that matches with the matched record.

For example, a search returns record A as the matching record. If record A matches with record B,
LMT_MATCHED_SCORE displays the matching score between record A and record B.

LMT_SOURCE_NAME

Source name of the matched record.

GROUPNO

Cluster identifier of the matched record.

<Primary Key Column Name>

Primary key column value of the matched record.

searchToken

Token that you can use in the subsequent search requests to retrieve the results from cache to avoid
performing the search again. The token expires after the validity time that you configure in the
SearchTokenValidity parameter of the configuration file. By default, the token is valid for 600 seconds.
A search token value of -1 indicates that the pagination is disabled.

Note: If you use search tokens to retrieve search results from cache, the other parameters in the search
layout do not affect the search results.

totalCount

Number of matching search results.

resultCount

Number of search results that the search request returns. The number of results depends on the value of
the pageLimit parameter.

Get Cluster Layout Operation
The Get Cluster Layout operation gets the cluster layout for your configuration file. The cluster layout
contains the required fields that you can specify in the input JSON file to perform the Get Cluster operation.

Run the run_client.sh script located in the following directory to perform the Get Cluster Layout
operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--operation=GETCLUSTERLAYOUT

[--outputfile=output_file_name]

Searching Data by Using the Command-Line Commands 169

The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--operation GETCLUSTERLAYOUT Type of operation that you want to perform. Specify GETCLUSTERLAYOUT.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you want
to load the cluster layout.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=GETCLUSTERLAYOUT --
outputfile=/usr/local/tree/output.json

The following sample response shows the cluster layout for a configuration file:

{
 "clusterinput": {
 "LMT_SOURCE_NAME": "mandatory",
 "<Primary Key Column Name>": "mandatory"
 },
 "clusterResults": { },
 "resultCount": 0,
 "messages": { }
}

A cluster layout includes the following parameters:
LMT_SOURCE_NAME

Source name of the record.

<Primary Key Column Name>

Column name that you set as primary key in the configuration file.

Get Cluster Operation
The Get Cluster operation gets a list of records in a cluster based on the primary key column value of a
record that is part of the cluster.

Before you perform the Get Cluster operation, perform the Get Cluster Layout operation to get the cluster
layout in the JSON format for the configuration file. Based on the cluster layout, you can configure the input
parameters for the Get Cluster operation.

Run the run_client.sh script located in the following directory to perform the Get Cluster operation: /usr/
local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--operation=GETCLUSTER

--input=input_file_name

[--outputfile=output_file_name]

170 Chapter 7: Searching Data

The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--operation GETCLUSTER Type of operation that you want to perform. Specify GETCLUSTER.

--input input_file_name Absolute path and name of the input JSON file that contains the cluster
layout for the configuration file.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you want
to load the list of records in the cluster.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=GETCLUSTER --
input=/usr/local/tree/input.json --outputfile=/usr/local/tree/output.json

The following sample response shows the list of records in the cluster to which the specified input record
belongs:

{
 "clusterinput":{
 "SOURCE":"SAP",
 "ID":"31"
 },
 "clusterResults":{
 "16bf81d3-e4f5-4f25-a352-3c2a4ff15fb3":{
 "SAP#31":{
 "key":"31",
 "source":"SAP"
 },
 "Salesforce#33":{
 "key":"33",
 "source":"Salesforce"
 },
 "Baan#32":{
 "key":"32",
 "source":"Baan"
 }
 }
 },
 "debug":false,
 "resultCount":3,
 "messages":{

 }
}

Get Preferred Record Layout Operation
The Get Preferred Record Layout operation gets the layout that you can use to specify the input parameters
in the JSON format for the Get Preferred Record operation. The layout contains parameters that you can use
to retrieve the preferred record of a cluster or to define consolidation rules and generate the preferred record
for a cluster in the run time.

Run the run_client.sh script located in the following directory to perform the Get Preferred Record Layout
operation: /usr/local/mdmbdrm-<Version Number>

Searching Data by Using the Command-Line Commands 171

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--operation=GETPREFERREDRECORDLAYOUT

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--operation GETPREFERREDRECORDLAYOUT Type of operation that you want to perform. Specify
GETPREFERREDRECORDLAYOUT.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which
you want to load the layout.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --
operation=GETPREFERREDRECORDLAYOUT --outputfile=/usr/local/tree/output.json

The following sample response shows the layout that you can use to specify the input parameters for the
GETPREFERREDRECORD operation:

{
 "keyData":{
 "<Cluster Column Name>":"mandatory",
 "LMT_SOURCE_NAME":"mandatory",
 "<Primary Key Column Name>":"mandatory"
 },
 "record":{

 },
 "rowRules":{
 "row":[
 {
 "target":{
 "value":"",
 "name":""
 },
 "source":[
 {
 "name":"",
 "weight":1
 }
],
 "name":"",
 "rule":"MODAL_EXACT",
 "order":1
 }
]
 },
 "columnRules":{
 "column":[
 {
 "source":[
 {
 "name":"",
 "weight":1
 }

172 Chapter 7: Searching Data

],
 "target":{
 "value":"",
 "name":""
 },
 "name":"",
 "rule":"MODAL_EXACT",
 "order":1,
 "columnName":""
 },{
 "source":[
 {
 "name":"",
 "weight":1
 }
],
 "target":{
 "value":"",
 "name":""
 },
 "name":"",
 "rule":"MODAL_EXACT",
 "order":1,
 "columnName":""
 }
],
 "columnGroup":[
 {
 "source":[
 {
 "name":"",
 "weight":1
 }
],
 "target":{
 "value":"",
 "name":""
 },
 "column":[
 {
 "name":""
 },
 {
 "name":""
 }
],
 "name":"",
 "rule":"MODAL_EXACT"
 }
]
 },
 "defaultRules":{

 },
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

A cluster layout includes the following parameters:
LMT_SOURCE_NAME

Source name of the record.

Primary Key Column Name

Column name that you set as primary key in the configuration file.

Searching Data by Using the Command-Line Commands 173

Cluster Column Name

Name of the column on which you store the cluster identifiers.

rowRules

Optional. List of row rules. If you want to generate the preferred record for the specified cluster in the run
time, specify the rules.

Under rowRules, specify the parameters based on the rules that you plan to use.

For more information about the row rules, see the Informatica MDM - Relate 360 Installation and
Configuration Guide.

columnRules

Optional. List of column rules. If you want to generate the preferred record for the specified cluster in the
run time, specify the rules.

Under columnRules, specify the parameters based on the rules that you plan to use.

For more information about the column rules, see the Informatica MDM - Relate 360 Installation and
Configuration Guide.

columnGroup

Optional. Group of columns to which you want to apply the column rules.

Under columnGroup, specify the parameters based on the rule that you plan to use.

For more information about the column groups, see the Informatica MDM - Relate 360 Installation and
Configuration Guide.

Get Preferred Record Operation
The Get Preferred Record operation gets the preferred record for the specified cluster. The operation can
also generate the preferred record for the cluster in the run time based on the specified consolidation rules.

Before you perform the Get Preferred Record operation, perform the Get Preferred Record Layout operation to
get the layout for the preferred record. Based on the layout, you can configure the input parameters for the
Get Preferred Record operation.

Run the run_client.sh script located in the following directory to perform the Get Preferred Record
operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--operation=GETPREFERREDRECORD

--input=input_file_name

[--outputfile=output_file_name]

174 Chapter 7: Searching Data

The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--operation GETPREFERREDRECORD Type of operation that you want to perform. Specify GETPREFERREDRECORD.

--input input_file_name Absolute path and name of the input JSON file that contains the layout for
the preferred record.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you want
to load the preferred record of the cluster.

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=GETPREFERREDRECORD
--input=/usr/local/tree/input.json --outputfile=/usr/local/tree/output.json

The following sample response shows the preferred record for the specified cluster:

{
 "keyData":{
 "CLUSTERNUMBER":"4d8f6161-78be-4868-a2de-1876827d8de1",
 "SOURCE":"",
 "ID":""
 },
 "record":{
 "COMPANY":"AB Associates",
 "NAME":"John Smith",
 "AGE":"30",
 "ROW_RULE":"MODAL_EXACT",
 "COLUMN_RULE":"NONE",
 "ADDRESS":"Freeway Lane",
 "LMT_DIRTY_IND":"0",
 "DOJ":"2012",
 "PHONE":"08040201001",
 "CLUSTERNUMBER":"4d8f6161-78be-4868-a2de-1876827d8de1 ",
 "SALARY":"10000",
 "SOURCE":"Baan",
 "ID":" 26",
 "PINCODE":"560103",
 "CITY":"Chicago",
 "LMT_CREATE_DATE":"20160908063700"
 },
 "rowRules":{
 "row":[

]
 },
 "columnRules":{
 "column":[

],
 "columnGroup":[

]
 },
 "debug":false,
 "resultCount":1,
 "messages":{
 "Response Time":"35 ms"
 }
}

Searching Data by Using the Command-Line Commands 175

Preferred Record Search Operation
The Preferred Record Search operation searches the primary key table in the repository and retrieves the
records that match the input data based on the rules in the matching rules file. The Preferred Record Search
operation then uses the cluster numbers of the matching records to return the corresponding preferred
records from the preferred record table.

Before you run the Preferred Record Search operation, run the Get Multisearch Layout operation to get the
search layout details in the JSON format for the matching rules file. Based on the search layout details, you
can configure the input parameters for the Preferred Record Search operation.

Note: Ensure that you consolidate the linked data before you run the Preferred Record Search operation.

Run the run_client.sh script located in the following directory to perform the Preferred Record Search
operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--rule=matching_rules_file_name

--operation=PREFERREDRECORDSEARCH

--input=input_file_name

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--rule matching_rules_file_name Absolute path and file name of the matching rules file that you create.

--operation PREFERREDRECORDSEARCH Type of operation that you want to perform. Specify
PREFERREDRECORDSEARCH as the value.

--input input_file_name Absolute path and name of the input JSON file that you configure based
on the search layout details.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you
want to load the search results.

For example, the following command identifies the matching records for a single search record:

run_client.sh --config=/usr/local/tree/configuration.xml --rule=/usr/local/conf/
matching_rules.xml --operation=PREFERREDRECORDSEARCH --input=/usr/local/tree/input.json
--outputfile=/usr/local/tree/output.json

The following sample response shows the preferred record for the input record:

{
 "searchType":"Football",
 "resultlimit":200,
 "scoreThreshold":0,
 "ignoreMatch":false,
 "searchinput":{
 "NAME":"Wayne"
 },

176 Chapter 7: Searching Data

 "searchlayout":{

 },
 "searchResults":[
 {
 "COMPANY":"Manchester Unit",
 "NAME":"Wayne Rooney",
 "AGE":"31",
 "ROW_RULE":"MAX_PK",
 "COLUMN_RULE":"CITY:MOST_DATA",
 "ADDRESS":"Old Trafford",
 "LMT_DIRTY_IND":"0",
 "DOJ":"2011",
 "PHONE":"08040201000",
 "CLUSTERNUMBER":"097e692d-7e9d-4262-b1d8-25272efbbefa ",
 "SALARY":"10000",
 "SOURCE":"SAP",
 "ID":" 52",
 "PINCODE":"560103",
 "CITY":"Manchester",
 "LMT_CREATE_DATE":"20160914101437"
 }
],
 "searchToken":-1,
 "pageLimit":10,
 "pageOffset":0,
 "totalCount":0,
 "debug":false,
 "resultCount":1,
 "messages":{
 "Response Time":"117 ms"
 }
}

Get Strategies Operation
The Get Strategies operation gets a list of consolidation rules that you can use to consolidate the linked data.

Run the run_client.sh script located in the following directory to perform the Get Strategies
operation: /usr/local/mdmbdrm-<Version Number>

Use the following command to run the run_client.sh script:

run_client.sh

--config=configuration_file_name

--operation=GETSTRATEGIES

[--outputfile=output_file_name]
The following table describes the options and arguments that you can specify to run the run_client.sh
script:

Option Argument Description

--config configuration_file_name Absolute path and file name of the configuration file that you create.

--operation GETSTRATEGIES Type of operation that you want to perform. Specify GETSTRATEGIES.

--outputfile output_file_name Optional. Absolute path and name of the output JSON file to which you want
to load the list of rules.

Searching Data by Using the Command-Line Commands 177

For example:

run_client.sh --config=/usr/local/tree/configuration.xml --operation=GETSTRATEGIES --
outputfile=/usr/local/tree/output.json

The following sample response shows a list of rules that the Get Strategies operation returns:

{
 "rowStrategies":[
 "RANK",
 "MOST_DATA",
 "MODAL_EXACT",
 "MIN_COLUMN",
 "MAX_COLUMN",
 "MOST_FILLED",
 "EQUALS_COLUMN"
],
 "columnStrategies":[
 "RANK",
 "MOST_DATA",
 "MODAL_EXACT",
 "MIN_COLUMN",
 "MAX_COLUMN",
 "FROM_MASTER",
 "EQUALS_OTHER_COLUMN",
 "MIN_OTHER_COLUMN",
 "MAX_OTHER_COLUMN"
],
 "defaultStrategies":[
 "LATEST_TIMESTAMP",
 "MAX_PK"
],
 "debug":false,
 "resultCount":0,
 "messages":{

 }
}

178 Chapter 7: Searching Data

C h a p t e r 8

Monitoring the Batch Jobs
This chapter includes the following topics:

• Monitoring Overview, 179

• Starting the Hadoop ResourceManager, 179

• Running the Mapred Command, 179

Monitoring Overview
Use the Hadoop ResourceManager or mapred commands to get a list of batch jobs and to get the status of a
batch job that you run. You can also stop a batch job that you already started.

The Hadoop ResourceManager is a daemon within Hadoop that you can use to monitor the batch jobs.

Starting the Hadoop ResourceManager
Use the Hadoop ResourceManager to track the status of the batch jobs and to list the batch jobs that you
run.

In a browser, type the following URL to start the Hadoop ResourceManager:

http://<ResourceManager Host Name>:<Port>
Specify the following parameters in the URL:
ResourceManager Host Name

Host machine that runs the Hadoop ResourceManager.

Port

Port number on which the Hadoop ResourceManager listens. Default is 8088.

Running the Mapred Command
Run the mapred commands to get a list of batch jobs and to get the status of a batch job that you run. You
can also stop a batch job that you started.

You can run the following commands from the command line:

179

mapred job -list

Gets a list of batch jobs that you run.

mapred job -status <Job Identifier>

Gets the status of the batch job that you specify. You can get the job identifier when you list the batch
jobs.

For example, mapred job -status job_1416639675736_0228

mapred job -kill <Job Identifier>

Stops the batch job that you specify. You can get the job identifier when you list the batch jobs.

For example, mapred job -kill job_1416639675736_0228

180 Chapter 8: Monitoring the Batch Jobs

C h a p t e r 9

Troubleshooting
This chapter includes the following topics:

• Troubleshooting Batch Jobs, 181

• Troubleshooting Spark, 182

• Troubleshooting Search Requests, 183

• Troubleshooting Relationship Graph, 183

Troubleshooting Batch Jobs
If you encounter any issues with the batch jobs, use the following information to troubleshoot.

The region splitter job takes a longer time to run.

The region splitter job uses random sampling to analyze the input data. The random sampling is based on the
default values of the following parameters:
--sortmaxsamples

Maximum number of samples that the job uses to analyze the input data. Default is 100,000.

--sortmaxsplitssampled

Maximum number of splits that the job uses to extract the sample data. Default is 20.

--sortsampleprobability

Frequency to sample the input data in each split. Specify a value between 0.0 and 1.0. A higher value
results in dense sampling of each split and a lower value results in sparse sampling of each split. Default
is 1.0.

If the input data is uniformly distributed, you can use a small sample size, few splits, and a higher sampling
frequency to reduce the running time of the job. If the input data is skewed, you can use a large sample size,
more number of splits, and a lower sampling frequency to reduce the running time of the job.

For example, the following command runs the region splitter job with the additional parameters:

run_hbase_region_analysis.sh --config=/usr/local/conf/config_big.xml --input=/usr/hdfs/
workingdir/MDMBDRMInitialBatch/MDMBDE0063_1602999447744334391/output/dir/pass-join --
hdfsdir=/usr/hdfs/workingdir --rule=/usr/local/conf/matching_rules.xml --regions=14 --
sortmaxsamples=200000 --sortmaxsplitssampled=30 --sortsampleprobability=0.5

181

When you rerun the Hive enabler job with the same Hive-related options, the job fails.

When you run the Hive enabler job for the first time, the job creates an output table and an internal table in
Hive. When you rerun the Hive enabler job with the same Hive-related options, you get an error in the
following format:

AlreadyExistsException(message:Table <Table Name>|<Table Name>_internal already exists)
where Table Name indicates the output table, and <Table Name>_internal indicates the internal table. For
example, mdmbdrm002_emp indicates the output table and mdmbdrm002_emp_internal indicates the internal
table.

To rerun the Hive enabler job with the same Hive-related options, perform the following tasks:

1. If you ran the Hive enabler job without the --linkHBase parameter, drop the output table as a view.

2. If you ran the Hive enabler job with the --linkHBase parameter, drop the output table.

3. If the <Table Name>_internal table exists, drop it.

4. Rerun the Hive enabler job.

In an encrypted environment, when you run the Hive enabler job, the job fails.

In an encrypted environment, when you run the Hive enabler job, you get the following error:

ERROR transport.TSaslTransport: SASL negotiation failure
javax.security.sasl.SaslException: No common protection layer between client and server

When you do not specify the authentication type that your environment uses in the configuration file, you get
this error.

To fix this issue, in the HiveConfiguration section of the configuration file, specify the sasl.qop parameter
in the JDBCUrl parameter.

For more information about the JDBCUrl parameter, see the Informatica MDM - Relate 360 Installation and
Configuration Guide.

When you run the load clustering job, the job fails.

If the repository configuration in the configuration file is not in sync with the hbase-site.xml file, the job
fails. You can find the hbase-site.xml file in the following directory: ${HBASE_HOME}/conf/hbase-site.xml

Ensure that the values that you specify in the HBASEConfiguration section of the configuration file are in
sync with the values in the hbase-site.xml file.

For more information about the repository configuration, see the Informatica MDM - Relate 360 Installation
and Configuration Guide.

Troubleshooting Spark
If you encounter any issues with Spark, use the following information to troubleshoot.

You get a ClassNotFoundException error in the Spark driver log file.

If you get a ClassNotFoundException error in the Spark driver log file, view the Spark executor log file for
more information about the error.

182 Chapter 9: Troubleshooting

Troubleshooting Search Requests
If you encounter any issues when you run search requests, use the following information to troubleshoot.

The distributed search does not return expected results.

When you configure to perform distributed search and the search requests return unexpected results, you can
disable the distributed search.

To disable the distributed search, perform the following tasks:

1. Remove or comment the following parameters in the configuration file:

• CoprocessorPath

• CoprocessorClass

2. Remove the coprocessor JAR file that you deployed.

3. Run the load clustering job to reload the linked or tokenized data from HDFS into the repository.

Troubleshooting Relationship Graph
If you encounter any issues when you use the relationship graph user interface, use the following information
to troubleshoot.

When you aggregate the related records, the relationship graph does not show all the related
records.

The maximum number of nodes that you see in the relationship graph depends on the graph_maxnode
parameter that you configure in the properties file of the relationship graph user interface. Default is 500.

The relationship graph can display only the configured number of nodes even if a record returns more nodes
than the configured number of nodes.

To increase the maximum number of nodes that you want to view in the relationship graph, perform the
following tasks:

1. In the properties file of the relationship graph user interface, increase the graph_maxnode parameter
value.

2. Regenerate the relationship graph user interface WAR file.

3. Deploy the generated WAR file on the Tomcat container.

Troubleshooting Search Requests 183

A p p e n d i x A

Glossary
Hadoop Distributed File System (HDFS)

A distributed file storage system that Hadoop applications use.

HBase

A nonrelational database that runs on top of HDFS.

Hive

A data warehouse infrastructure built on top of Hadoop. Hive supports an SQL-like language called
HiveQL for data summarization, query, and analysis.

Kafka

A distributed messaging system that manages input data stream.

Linking

A process of grouping related records into clusters based on the matching rules.

Matching

A process of comparing two records to identity whether they match based on the matching rules.

Population file

File that contains rules specific to the particular population of data. The rules define how to build keys
and how the search and match strategies function for the specified population.

Searching

A process of comparing the input data with the repository data to identify matching records.

Spark

A distributed realtime computation system that processes the streaming data.

SSA-NAME3

A component of Relate 360 that builds keys, generates an array of search key ranges, and uses the key
ranges to identify records for matching.

Storm

A distributed realtime computation system that processes the streaming data.

Tokenization

A process of adding a fuzzy token, which is an encoded key, to each input record

184

I n d e x

A
architecture

linking streaming data 12
streaming data 12

Authenticate web service
RESTful web service 82, 145

C
command line

DELETERECORD operation 98
Get Cluster Layout operation 169
Get Cluster operation 170
Get Multisearch Layout operation 162
Get Preferred Record Layout operation 171
Get Preferred Record operation 174
Get Strategies operation 177
GETINGESTLAYOUT operation 93
GETMANAGECLUSTERLAYOUT operation 99
GETRECORD operation 96
GETRECORDLAYOUT operation 95
INGEST operation 94
MANAGECLUSTER operation 100
Multisearch operation 164

components 9
consolidated data

HDFS 141
consolidation

HDFS 51
repository 35

consolidation job 33, 50
create relationship 106
Create Relationship web service

RESTful web service 121

D
DELETERECORD operation 98
DELETERECORD web service

RESTful web service 88

E
enabler

Hive 131, 135, 139, 141

G
Get All Relationships web service

RESTful web service 116

Get Cluster Layout operation
command line 169

Get Cluster Layout web service
RESTful web service 86, 151, 152, 154, 156, 160

Get Cluster operation
command line 170

Get Cluster web service
RESTful web service 86, 151, 152, 154, 156, 160

Get Entity Details web service
RESTful web service 119

Get Entity Metadata web service
RESTful web service 110

Get Entity Relationship web service
RESTful web service 113

Get Graph Metadata web service
RESTful web service 108

Get Multisearch Layout operation 162
Get Multisearch Layout web service

RESTful web service 146
Get Preferred Record Layout operation

command line 171
Get Preferred Record Layout web service

RESTful web service 86, 151, 152, 154, 156, 160
Get Preferred Record operation

command line 174
Get Preferred Record web service

RESTful web service 86, 151, 152, 154, 156, 160
Get Strategies operation

command line 177
Get Strategies web service

RESTful web service 86, 151, 152, 154, 156, 160
GETINGESTLAYOUT operation 93
GETINGESTLAYOUT web service

RESTful web service 83
GETMANAGECLUSTERLAYOUT operation 99
GETMANAGECLUSTERLAYOUT web service

RESTful web service 90
GETRECORD operation 96
GETRECORD web service

RESTful web service 87
GETRECORDLAYOUT operation 95
GETRECORDLAYOUT web service

RESTful web service 86, 151, 152, 154, 156, 160

H
Hadoop ResourceManager 179
HDFS batch search 77
HDFS data deletion 52, 75
HDFS tokenization 57, 71
high-volume clusters 22, 45

185

I
INGEST operation 94
INGEST web service

RESTful web service 84
initial clustering 18, 19, 41, 42
initial tokenize 69

K
Kafka

output messages 101

L
linking process 10
load clustering 28, 29, 63
load match pairs 104

M
MANAGECLUSTER operation 100
MANAGECLUSTER web service

RESTful web service 91
mapred 179
monitoring

mapred commands 179
ResourceManager 179

Multisearch operation
command line 164

Multisearch web service
RESTful web service 148

O
output messages

Kafka 101
overview 9

P
poor quality data 22, 45
post-clustering job 22, 23, 45, 46
preferred record 33, 50
Preferred Record Search web service

RESTful web service 158
prerequisites

streaming data 80

R
region splitter 27, 61, 62

Remove Relationship web service
RESTful web service 122

repository batch search 69
repository data deletion 38, 67
repository tokenization 55, 56
repository update 66
ResourceManager 179
RESTful web service

Authenticate 82, 145
Create Relationship 121
DELETERECORD 88
Get All Relationships 116
Get Entity Details 119
Get Entity Metadata 110
Get Entity Relationship 113
Get Graph Metadata 108
Get Multisearch Layout web service 146
GETINGESTLAYOUT 83
GETMANAGECLUSTERLAYOUT 90
GETRECORD 87
INGEST 84
MANAGECLUSTER 91
Multisearch web service 148
Preferred Record Search web service 158
Remove Relationship 122

run_clusterdel.sh 52, 75
run_clusterload.sh 29, 63
run_consolidate.sh 35, 51
run_dbrelate.sh 69
run_delete.sh 38, 67
run_genclusters.sh 19, 42
run_graphloader.sh 104
run_hbase_region_analysis.sh 27, 62
run_hiveEnabler.sh 131, 135, 139, 141
run_postprocess.sh 23, 46
run_relate.sh 77
run_relloader.sh 106
run_tokenizer.sh 59, 73
run_tokenloader.sh 56
run_updatesync.sh 66

S
streaming data 12

T
tokenization 13, 59, 73
troubleshooting 181–183

U
use case 12, 14

186 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to Informatica MDM - Relate 360
	Informatica MDM - Relate 360 Overview
	Relate 360 Components
	Linking Process
	Linking Batch Data
	Linking Streaming Data
	Use Case for the Linking Process

	Tokenization Process
	Tokenizing Batch Data
	Tokenizing Streaming Data
	Use Case for the Tokenization Process

	Relationship Graph
	Use Case for the Relationship Graph

	Chapter 2: Linking Batch Data
	Linking Batch Data Overview
	Linking Data and Persisting the Linked Data in a Repository
	Initial Clustering Job
	Post-Clustering Job
	Region Splitter Job
	Load Clustering Job
	Consolidation Job
	Repository Data Deletion Job

	Linking Data and Persisting the Linked Data in HDFS
	Initial Clustering Job
	Post-Clustering Job
	Consolidation Job
	HDFS Data Deletion Job

	Chapter 3: Tokenizing Batch Data
	Tokenizing Batch Data Overview
	Tokenizing Data and Persisting the Tokenized Data in a Repository
	Repository Tokenization Job
	HDFS Tokenization Job
	Region Splitter Job
	Load Clustering Job
	Repository Update Job
	Repository Data Deletion Job
	Repository Batch Search Job

	Tokenizing Data and Persisting the Tokenized Data in HDFS
	HDFS Tokenization Job
	HDFS Data Deletion Job
	HDFS Batch Search Job

	Chapter 4: Processing Streaming Data
	Processing Streaming Data Overview
	Prerequisites
	Creating the Required Tables in the Repository

	Streaming Data by Using the RESTful Web Services
	Authenticate Web Service
	GETINGESTLAYOUT Web Service
	INGEST Web Service
	GETRECORDLAYOUT Web Service
	GETRECORD Web Service
	DELETERECORD Web Service
	GETMANAGECLUSTERLAYOUT Web Service
	MANAGECLUSTER Web Service

	Streaming Data by Using the Command-Line Command
	GETINGESTLAYOUT Operation
	INGEST Operation
	GETRECORDLAYOUT Operation
	GETRECORD Operation
	DELETERECORD Operation
	GETMANAGECLUSTERLAYOUT Operation
	MANAGECLUSTER Operation

	Viewing the Output Messages

	Chapter 5: Creating Relationship Graph
	Relationship Graph Overview
	Creating Relationship Graph
	Load Match Pairs Job
	Create Relationship Job

	Retrieving the Relationship Details
	Get Graph Metadata Web Service
	Get Entity Metadata Web Service
	Get Entity Relationship Web Service
	Get All Relationships Web Service
	Get Entity Details Web Service

	Managing the Relationships
	Create Relationship Web Service
	Remove Relationship Web Service

	Viewing the Relationship Graph
	Relationship Graph User Interface
	Filtering the Records
	Aggregating the Records
	Setting the Visualization Options
	Modifying the Graph View

	Chapter 6: Loading Linked and Consolidated Data into Hive
	Loading Linked and Consolidated Data into Hive Overview
	Loading Linked Data from the Repository
	Running the Hive Enabler Job

	Loading Linked Data from HDFS
	Running the Hive Enabler Job

	Loading Consolidated Data from the Repository
	Running the Hive Enabler Job

	Loading Consolidated Data from HDFS
	Running the Hive Enabler Job

	Chapter 7: Searching Data
	Searching Data Overview
	Prerequisites
	Searching Data by Using the RESTful Web Services
	Authenticate Web Service
	Get Multisearch Layout Web Service
	Multisearch Web Service
	Get Cluster Layout Web Service
	Get Cluster Web Service
	Get Preferred Record Layout Web Service
	Get Preferred Record Web Service
	Preferred Record Search Web Service
	Get Strategies Web Service

	Searching Data by Using the Command-Line Commands
	Get Multisearch Layout Operation
	Multisearch Operation
	Get Cluster Layout Operation
	Get Cluster Operation
	Get Preferred Record Layout Operation
	Get Preferred Record Operation
	Preferred Record Search Operation
	Get Strategies Operation

	Chapter 8: Monitoring the Batch Jobs
	Monitoring Overview
	Starting the Hadoop ResourceManager
	Running the Mapred Command

	Chapter 9: Troubleshooting
	Troubleshooting Batch Jobs
	Troubleshooting Spark
	Troubleshooting Search Requests
	Troubleshooting Relationship Graph

	Appendix A: Glossary
	Index

