
Informatica® Multidomain MDM
10.3

Repository Manager Guide

Informatica Multidomain MDM Repository Manager Guide
10.3
September 2018

© Copyright Informatica LLC 2001, 2018

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2018-12-11

Table of Contents

Preface . 7
Informatica Resources. 7

Informatica Network. 7

Informatica Knowledge Base. 7

Informatica Documentation. 7

Informatica Product Availability Matrixes. 8

Informatica Velocity. 8

Informatica Marketplace. 8

Informatica Global Customer Support. 8

Chapter 1: Introduction. 9
Overview. 9

About the Repository Manager Tool. 9

Metadata Management Concepts. 10

Metadata. 10

Design Objects. 10

Repositories. 11

Change Lists. 11

Real-Time Metadata Management. 12

Considerations When Copying Metadata. 12

Monitoring the Results of Changes. 14

Chapter 2: Getting Started with Repository Manager. 15
Overview. 15

Starting Repository Manager. 15

Repository Manager Interface Components. 15

Tabs. 16

Command Buttons. 16

Repository Lists. 16

Navigating the Repository Manager. 17

Automatic Exclusive Locking. 17

Viewing the Schema in the Graphical Model View. 17

Chapter 3: Validating Metadata. 18
Overview. 18

About the Metadata Validation Process. 18

Logical Model and Physical Schema Should Match. 18

Metadata Validation Process. 19

Scope of Metadata Validation. 19

Issue Severity Levels. 20

Table of Contents 3

Validation Indicator. 20

Command Buttons on the Validation Tab. 20

Operational Reference Store Metadata Validation. 21

Validating Metadata. 23

Prior Validation Results for Imported Schemas. 24

Filtering Issues. 24

Saving the Validation Results. 25

Showing the Validation History. 25

Metadata Repair Process. 26

Metadata Repair Results. 27

Repairing Metadata in a Repository. 27

Chapter 4: Promoting Changes Between Repositories. 28
Promoting Changes Between Repositories Overview. 28

Promotion Scenarios. 28

Design Objects That Can Be Promoted. 29

Conflicts When Promoting Objects. 29

Considerations for the Promotion Process. 31

Promoting Changes Visually. 32

Overview of Visual Promotion Tasks. 32

Navigating to the Promote / Visual Tab. 33

Command Buttons on the Visual Tab. 33

Selecting the Source Repository for Visual Promotion. 34

Selecting the Target Repository for Visual Promotion. 34

Navigating the Design Object Hierarchy for Visual Promotion. 35

Visually Promoting Changes to the Target Repository. 36

Viewing with Markup. 38

Finding Conflicts. 38

Reverting Changes. 38

Saving Changes in a Comparison Change List File. 39

Applying Changes to the Target Repository. 39

Promoting Changes Using Change Lists. 40

Overview of Change List Promotion Tasks. 40

Navigating to the Promote / Change List Tab. 41

Command Buttons on the Change List Tab. 41

Select the Target Repository for Change List Promotion. 42

Creating a Comparison Change List by Comparing Repositories. 42

Opening a Comparison Change List XML File. 43

Navigating the List of Changes. 43

Viewing the Brief Description of a Change. 43

Viewing the Detailed Description of a Change. 44

Saving Changes in a Comparison Change List XML File. 44

Running a Simulation of Applying a Change List. 44

4 Table of Contents

Applying a Change List to the Target Repository. 45

Chapter 5: Importing Design Objects. 47
Overview. 47

About Importing Design Objects. 47

Import Process. 47

Design Objects That Can Be Imported. 48

Considerations for the Import Process. 48

Importing Design Objects. 49

Overview of Import Tasks. 49

Command Buttons on the Import Tab. 49

Selecting the Source Repository to Import. 49

Selecting the Target Repository for Import. 50

Showing and Hiding Design Objects in the Hierarchy. 50

Selecting Design Objects to Import. 51

Renaming Design Objects. 51

Importing Selected Design Objects. 52

Update Relationship Base Object Start Date and End Date Information. 53

Chapter 6: Exporting Repositories. 54
Overview. 54

About Exporting a Repository. 54

About Exporting. 54

Design Objects That Can Be Exported. 54

How Exported Change List XML Files Get Used. 55

Considerations for the Export Process. 55

Command Buttons on the Export Tab. 55

Exporting a Repository. 56

Exporting a Subset of Design Objects. 56

Chapter 7: Common Warehouse Model Support. 58
Overview. 58

Import from CWM File Tab. 59

Command Buttons on the Import from CWM file Tab. 59

Importing Design Objects from a CWM File. 59

Export to CWM File Tab. 61

Command Buttons on the Export to CWM file Tab. 61

Exporting a Repository to a CWM File. 61

Appendix A: Design Objects Reference. 63
Overview. 63

Design Objects Supported in Repository Manager. 63

Design Object Dependencies. 65

Table of Contents 5

Design Objects That Can Be Renamed. 66

Appendix B: Change List Reference. 67
Overview. 67

Change List XSD File. 67

Root Tags and Attributes in a Change List XML File. 68

Types of Changes in a Change List XML File. 68

Design Objects and Changes in a Change List XML File. 68

Appendix C: MetCommand Reference. 74
Overview. 74

About MetCommand. 74

Before You Begin. 75

Prerequisites. 75

Connection Setup. 75

Usage. 75

Help Output. 75

Command-line Arguments. 76

XML Over HTTP. 76

Proxy User Access. 76

Rolling Back Changes When Applying a Changelist. 77

Examples. 77

Get Metadata. 77

Create ChangeList. 77

Validate ChangeList. 77

Apply ChangeList. 77

RollbackToLast. 78

Validate Metadata. 78

Return Codes. 78

Script Execution. 78

Running a Custom Script. 79

Example Script. 79

Extending MetCommand. 79

Index. 80

6 Table of Contents

Preface
The Repository Manager Guide provides information about the Repository Manager tool in the Informatica®

MDM Hub Console. It helps you use the Repository Manager and introduces you to related concepts.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

7

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

8 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Introduction
This chapter includes the following topics:

• Overview, 9

• About the Repository Manager Tool, 9

• Metadata Management Concepts, 10

Overview
This chapter introduces the Repository Manager tool and related concepts.

Note: This document assumes that you have read the Informatica MDM Hub Overview and have a basic
understanding of Informatica MDM Hub architecture and key concepts.

About the Repository Manager Tool
The Repository Manager is the Hub Console tool that you use to:

• Validate metadata for a repository in your Informatica MDM Hub implementation.

Validation verifies the completeness and integrity of the metadata that describes a repository. The
validation process compares the logical model of a repository with its physical schema. If any issues
arise, the Repository Manager generates a list of issues requiring attention, categorized by severity. For
certain operations, Repository Manager requires a repository that is free of major problems.

• Copy design objects from one repository to another, in either of two ways:

Approach Description

Promote You can promote new design objects, or changes to existing objects (such as differences in attribute
values), to a target repository. Promotion is used to copy incremental changes from one repository to
another.

Import You can import design objects from a design library into an empty target repository.

• Export a repository to a portable XML file that can then be imported or promoted into another repository,
edited, or saved for archival purposes in a source control system.

9

You can use the Repository Manager to export an entire repository to a change list XML file, which can
then be used to import design objects into a target repository or to save in a source control system for
archival purposes.

• Visualize the schema using a graphical model view of the repository.

Related Topics:
• “Validating Metadata” on page 18

• “Promoting Changes Between Repositories” on page 28

• “Importing Design Objects” on page 47

• “Exporting Repositories” on page 54

• “Viewing the Schema in the Graphical Model View” on page 17

• “Getting Started with Repository Manager” on page 15

Metadata Management Concepts
This section introduces metadata management concepts that you need to understand in order to use the
Repository Manager effectively.

Metadata
Metadata is data that is used to describe other data. In Informatica MDM Hub, metadata is used to describe
the schema (data model) that is used in your Informatica MDM Hub implementation, along with related
configuration settings.

Design Objects
In Informatica MDM Hub, design objects are metadata that are used to define the schema for an
implementation. Design objects include base objects and columns, landing and staging tables, columns,
indexes, relationships, mappings, cleanse functions, queries and packages, trust settings, validation and
match rules, Security Access Manager definitions, Hierarchy Manager definitions, and other settings.

Related Topics:
• “Design Objects Supported in Repository Manager” on page 63

Dependencies
Repository Manager manages dependencies among design objects. For example, when you select a base
object for promote or import, Repository Manager automatically selects all associated child objects—
columns, match rules, and so on. Similarly, when you select a mapping, Repository Manager automatically
selects the associated landing and staging tables. Repository Manager includes both direct and indirect
dependencies so that all related design objects are selected. Repository Manager also flags dependency
conflicts for design objects that you are trying to promote.

10 Chapter 1: Introduction

Related Topics:
• “Dependency Conflicts” on page 30

Conflicts When Copying Objects Between Repositories
Conflicts can arise when attempting to promote or import design objects between repositories. A conflict
results from differences between two design objects with the same identification, such as two base objects
with the same name. Certain conflicts can be resolved automatically, while others require human
interpretation and manual intervention.

Related Topics:
• “Conflicts When Promoting Objects” on page 29

System Objects
Certain system objects that come predefined in a newly-created ORS—such as the Admin system, system
cleanse functions, and the Hierarchy Manager RBO objects—are outside the set of design objects that are
managed by the Repository Manager.

Repositories
The Repository Manager manages data stored in repositories.

Metadata in the Hub Store
Metadata is stored in two places in Informatica MDM Hub:

• The Master Database stores global metadata that is descriptive of the entire Informatica MDM Hub
implementation.

• An Operational Reference Store (ORS, also known as a repository) contains metadata about its own
schema and other configuration settings.

The Repository Manager works with metadata stored in repositories, not in the Master Database. Metadata
stored in the Master Database—such as user accounts or message queue settings—is outside the scope of
this document.

To learn more about the Hub Store and the schema for a Informatica MDM Hub implementation, see the
Multidomain MDM Configuration Guide .

Source and Target Repositories
When copying metadata between repositories, there is always a source repository that contains the design
object to copy, and the target repository that is destination for the design object.

When copying metadata between repositories, you explicitly identify—in the Repository Manager—which
repository is the source and which is the target.

Change Lists
A change list is a list of changes to make to a target repository. A change is an operation in the change list—
such as adding a base object or updating properties in a match rule—that is executed against the target
repository.

Metadata Management Concepts 11

Types of Change Lists
Repository Manager uses two kinds of change lists:

• A creation change list is the result of exporting the contents of a repository. Creation change lists
represent an entire repository and are used as sources for import and promote operations.

• A comparison change list is the result of comparing the contents of two repositories and generating a list
of changes to make to the target repository. Comparison change lists are used when promoting design
objects.

Related Topics:
• “Exporting Repositories” on page 54

Change List XML Files
Change lists are stored in XML format with a *.change.xml extension. The generated XML file can be
subsequently reviewed, edited, and applied to a target repository. Change list XML files can also be archived
for configuration backup or stored in a source control system for configuration change management.

Related Topics:
• “Change List Reference” on page 67

Real-Time Metadata Management
External applications can manage metadata using the following Services Integration Framework (SIF)
requests:

Task Method Description

Validation validateMetadata Validates the metadata for the specified repository.

Export getOrsMetadata Retrieves the metadata for the specified repository.

Change List Management applyChangeList Applies the specified change list to the specified target repository.

createChangeList Compares two repositories and creates a comparison change list
XML file.

validateChangeList Runs a simulation of applying the specified change list to the
specified target repository.

For more information, see the Informatica MDM Hub Services Integration Framework Guide and the
Informatica MDM Hub Javadoc.

Considerations When Copying Metadata
When importing or promoting design objects, consider the following issues.

Migrating Large Repositories
To enhance performance when migrating large repositories in the Repository Manager, launch the Hub
Console on a machine other than the host on which the application server is running. Ideally, both the
application server machine and client machine would have 1GB (or more) of memory to handle migration

12 Chapter 1: Introduction

processing, which can be memory-intensive for large repositories. For Informatica MDM Hub system
requirements, see the Informatica MDM Hub Release Notes.

Hierarchy Manager Requirements
Both the source and target repositories must be created in a Informatica MDM Hub environment with
identical Hierarchy Manager licensing.

• You cannot copy changes between repositories if one repository was created in a Informatica MDM Hub
environment with a Hierarchy Manager license if the other was created in a Informatica MDM Hub
environment without a Hierarchy Manager license. The licensing for both environments must be identical
—either both had a Hierarchy Manager license, or neither had a hierarchy license.

• To copy Hierarchy Manager metadata between repositories, both repositories must have been created in a
Informatica MDM Hub environment with a Hierarchy Manager license.

In addition to the licensing requirement, Hierarchy Manager for the source and target repositories must be
enabled. To enable Hierarchy Manager, open the Hierarchies tool in the Hub Console, select the repository,
and follow the prompts to create the Repository Base Objects (RBO tables) and their associated queries and
HM packages. For more information, see the Multidomain MDM Configuration Guide .

Note: Repository Manager does not promote, export, or import Repository Base Objects (RBO tables).
Repository Manager displays a conflict if the source and target ORS databases have RBO tables created in
different tablespaces. You should ensure that the source and target RBO tables are created with the same
index and data space names.

Java Cleanse Adapters
Java cleanse adapters, which are stored on a file system, are not physically copied to the target repository—
only the references to the Java cleanse libraries in the metadata are copied. However, cleanse adapters are
dynamic libraries, and metadata can change—perhaps as the result of changes to an external configuration
file, or because a user has access to a new feature in the cleanse adapter.

The import and promote processes assume that the source and target environments have the same cleanse
adapters configured.

User Exits
User exits that are stored in the database, are not physically copied to the target repository.

User Information
User information is not copied. This includes:

• user accounts (Users tool)

• user groups and user account memberships (Users and Groups tool)

• user account assignments to databases (Users and Groups tool)

• user/role assignments (Roles tool)

For more information, see the Multidomain MDM Configuration Guide .

Populations for Matching
If your Informatica MDM Hub implementation uses one or more non-US populations for matching, all required
populations must be enabled for both the source and target repositories before attempting to copy design
objects between them. For more information, see the Multidomain MDM Configuration Guide .

Metadata Management Concepts 13

Repositories Currently Registered with a Proxy User
If an ORS is currently registered with a proxy user, the ORS schema owner password is required when
applying changes in a changelist (either via promotion or import).

In these situations, the Repository Manager prompts you to provide the owner password before proceeding
with the requested operation.

Monitoring the Results of Changes
When you import design objects or apply promotion changes to a target repository, Repository Manager
stores the results of change list execution in the following log tables in the Hub Store:

Table in Hub Store Description

C_REPOS_MET_CHANGE_EXEC Log of each change list execution, including the resulting
execution status code and error description, if applicable.

C_REPOS_MET_CHANGE_EXEC_ITEM Log of each individual action that was executed in the
change list, including the item involved and the action
that was taken on that item. Child table of
C_REPOS_MET_CHANGE_EXEC.

If an error occurs during change list execution, the process terminates and reports the last problem
encountered. Fix the problem and apply the change list again.

14 Chapter 1: Introduction

C h a p t e r 2

Getting Started with Repository
Manager

This chapter includes the following topics:

• Overview, 15

• Starting Repository Manager, 15

• Repository Manager Interface Components, 15

• Navigating the Repository Manager, 17

Overview
This chapter describes how to start and navigate the Repository Manager tool in the Hub Console.

Starting Repository Manager
To start the Repository Manager:

1. Start the Hub Console according to the instructions in “Getting Started With the Hub Console” as
described in the Multidomain MDM Configuration Guide .

2. In the Hub Console, connect to the Master Database.

3. In the Hub Console, expand the Configuration workbench, and then click Repository Manager.

The Hub Console displays the Repository Manager tool.

Repository Manager Interface Components
This section describes Repository Manager interface components.

15

Tabs
The Repository Manager tool has the following tabs:

Tab Description

Validate Used to validate metadata for a repository in your Informatica MDM Hub implementation. The metadata
validation process is designed to verify the completeness and integrity of the metadata that describes a
repository.

Promote Used to promote design objects between repositories.

Import Used to import design objects into an empty repository.

Export Used to export a repository.

Related Topics:
• “Validating Metadata” on page 18

• “Promoting Changes Between Repositories” on page 28

• “Importing Design Objects” on page 47

• “Exporting Repositories” on page 54

Command Buttons
Command buttons are used to execute applicable operations on the current tab. For a list of buttons on each
tab, see:

Tab Description

Validate “Command Buttons on the Validation Tab” on page 20

Promote “Command Buttons on the Visual Tab” on page 33
“Command Buttons on the Change List Tab” on page 41

Import “Command Buttons on the Import Tab” on page 49

Export “Command Buttons on the Export Tab” on page 55

Repository Lists
All Repository Manager tabs have lists of the repositories (ORS databases) that are defined in the Master
Database for this Informatica MDM Hub implementation. If the validation process was previously run on an
ORS, an icon next to the ORS name indicates whether the repository has been validated and, if so, whether
the most recent validation succeeded or failed.

16 Chapter 2: Getting Started with Repository Manager

Related Topics:
• “Validation Indicator” on page 20

Navigating the Repository Manager
This section describes how to navigate the Repository Manager.

Automatic Exclusive Locking
Before applying changes to a target repository during promote or import, the Repository Manager
automatically releases locks that other users have on the target repository, then places an exclusive lock on
the target repository while changes are being applied. An exclusive lock prevents any other users from
making changes to the target repository in the Hub Console while its metadata is being modified.

After the changes are complete, Repository Manager automatically releases the exclusive lock on the target
repository. For more information about locks in the Hub Console, see “Getting Started with the Hub Console”
in the Multidomain MDM Configuration Guide .

Note: Write locks cannot be obtained on an ORS that is in production mode—when the Production Mode
check box is selected for this ORS in the database properties tab in the Databases tool. For more information,
see “Configuring Operational Record Stores and Datasources” in the Multidomain MDM Configuration Guide .

Viewing the Schema in the Graphical Model View
You can use the Schema Viewer tool, accessible from different tabs in the Repository Manager, to display a
graphical view of the data model for any repository—whether an ORS or loaded from an XML file. The Schema
Viewer is particularly helpful for visualizing a complex schema, graphically showing base objects and foreign-
key relationships in the schema. The Schema Viewer gives you the ability to visually examine an existing
schema before applying changes to it or exporting its metadata to a change list.

To launch the Schema Viewer:

u On the Validate, Promote, or Export tab, click the Schema Viewer button.

The Hub Console displays the Schema Viewer.

For detailed instructions on using the tool, see the Multidomain MDM Configuration Guide .

Navigating the Repository Manager 17

C h a p t e r 3

Validating Metadata
This chapter includes the following topics:

• Overview, 18

• About the Metadata Validation Process, 18

• Operational Reference Store Metadata Validation, 21

• Metadata Repair Process, 26

• Repairing Metadata in a Repository, 27

Overview
This chapter describes how to use the Repository Manager in the Hub Console to validate metadata for a
repository in your Informatica MDM Hub implementation.

About the Metadata Validation Process
The metadata validation process is designed to verify the completeness and integrity of the metadata that
describes a repository.

Logical Model and Physical Schema Should Match
In an ORS, its metadata (logical model) should match its physical schema (tables and columns) exactly. For
every metadata definition, there should be a corresponding physical component, and for every physical
component there should be a corresponding metadata definition.

Certain events, however, can cause discrepancies between the metadata and physical schema. For example,
a database administrator might make changes directly to the database instead of using the Schema Manager
in the Hub Console. Similarly, database corruption might result from a power outage or hardware failure. The
Repository Manager can help determine whether a discrepancy is inconsequential to Informatica MDM Hub
operations, or whether it can cause major disruptions.

18

Metadata Validation Process
The metadata validation process performs the following tasks:

• determines whether all expected metadata tables are in the schema and that they have the expected
signature (column data type, precision, and scale)

• determines whether the physical schema is synchronized with the metadata

• checks just the metadata to determine whether it is internally consistent

• generates a list of issues, if any, that merit attention

Note: For promotion, import, and export operations, Repository Manager requires a repository that has been
validated and free of major problems.

Related Topics:
• “Issue Severity Levels” on page 20

Scope of Metadata Validation
The metadata validation process performs the following kinds of checks on the repository:

Type of Check Description

system Checks all repository tables (C_REPOS_*), columns, and views at the system level. Includes
constraints (primary keys, foreign keys, and indexes), sequences, and triggers (signature only).

physical Compares repository structure with database’s metadata. For example, for base object tables, the
repository metadata must match the Oracle physical metadata; tables, constraints, views, and
sequences.

repository Metadata stored in the repository.

Note: The Repository Manager allows you to narrow the scope of validation.

In addition, Repository Manager verifies that the version of the ORS matches the installed Informatica MDM
Hub software. Validation cannot proceed if the versions do not match.

Note: To validate design objects associated with the Informatica MDM Hub Services Integration Framework
(SIF), use the SIF Manager tool in the Hub Console instead.

Related Topics:
• “Design Objects Supported in Repository Manager” on page 63

• “Validating Metadata” on page 23

• “Issue Severity Levels” on page 20

• “Showing the Validation History” on page 25

About the Metadata Validation Process 19

Issue Severity Levels
During the validation process, the Repository Manager assigns a severity level to each issue. The issues are
displayed in the Issues Found pane, under the issue severity category tabs described in the following table:

Severity Description

Information Information-only message that warrants attention. Example: A package does not contain all records
from the underlying table.

Warnings Inconsistency that does not have a harmful effect on Informatica MDM Hub operations.

Errors Problem that can prevent normal promote, import, and export operations from completing successfully.

FATAL Repository cannot be loaded or severe error that could lead to others errors if not remedied
immediately. Example: unknown data type.

For promotion, import, and export operations, Repository Manager requires a repository that has no Errors or
FATAL issues.

Validation Indicator
Throughout the Hub Console, an icon next to an ORS indicates whether it has been validated and, if so,
whether the most recent validation resulted in issues.

Image Meaning

Unknown. ORS has not been validated since it was initially created, or since the last time the repository was
changed. If anything in the ORS metadata is changed, its validation indicator reverts to Unknown.

ORS has been validated with no issues. No change has been made to the repository since the validation
process was made.

ORS has been validated with warnings.

ORS has failed validation and errors were found.

Command Buttons on the Validation Tab
The Validation tab has the following command buttons.

Button Description

Validates the selected repository.

Saves the validation results for the selected repository to an HTML file.

Displays the validation history for the selected repository.

20 Chapter 3: Validating Metadata

Button Description

Start the Schema Viewer for the selected repository.

Shows reparable metadata errors in the Issues Found pane.

Stops filtering reparables in the Issues Found pane.

Expands all nodes in the Issues Found pane.

Collapses all nodes in the Issues Found pane.

Repairs the selected reparable metadata error.

Filters out and hides metadata errors that do not match search criteria specified in the search filter field.

Shows all metadata errors. The metadata errors that match search criteria are highlighted.

Clears the search filter field.

Related Topics:
• “Validating Metadata” on page 23

• “Saving the Validation Results” on page 25

• “Viewing the Schema in the Graphical Model View” on page 17

Operational Reference Store Metadata Validation
You can run use the Repository Manager tool in the Hub Console to validate Operational Reference Store
(ORS) metadata.

You must validate ORS metadata and resolve all errors and fatal issues before you perform a promotion
operation, import operation, or an export operation. You must also validate the metadata and resolve all
errors and fatal issues before you upgrade.

By default, all validation checks are enabled, but you can choose to validate specific areas of the repository.

Operational Reference Store Metadata Validation 21

The following table lists the validation checks that you can select:

Validation Check Description

All System Checks Performs the following systems checks:
- repository tables
- system columns
- system views
- primary key constraints
- foreign key constraints
- constraints on indexes
- sequences
- trigger signatures
- packages

All Physical Checks Compares repository structure with database metadata. For example, for base object tables,
the repository metadata must match the physical database metadata for tables, constraints,
views, and sequences.

All Repository Checks Validates metadata stored in the repository

The following table describes the individual repository checks you can select:

Validation Check Description

Repository Validates the repository

Mappings Validates mappings between landing and staging tables

Cleanse Validates Process Servers, cleanse functions, and cleanse lists

Queries Validates queries

Schema Validates the following data model design objects:
- base object tables
- base object columns
- landing tables
- match configuration
- external match tables
- validation rules
- message queues
- relationships
- staging tables
- custom indexes

Trust Validates the source system trust configuration and trust columns

Security Access Manager Validates resource groups, secure resources, and roles

Hierarchy Manager Validates entity types, relationship types, hierarchies, packages, profiles, sandboxes, and
Hierarchy Manager metadata

Miscellaneous Validates all other supported design objects

22 Chapter 3: Validating Metadata

Validating Metadata
To validate the metadata of an Operational Reference Store (ORS) repository, use the Repository Manager
tool in the Hub Console.

1. From the Configuration workbench in the Hub Console, select the Repository Manager tool.

2. From the Repository Manager tool, select the Validate tab.

3. From the Select the repository to validate list, select a repository.

4. Click the Validate button.

5. From the Select Validation Checks dialog box, select the validation checks to perform. Click OK.

The Repository Manager tool validates the repository and displays any issues in the Issues Found pane.

6. Click the Repair button to fix repairable issues.

7. If the ORS remains in the Unknown state, synchronize the system clocks of the application server and
the database machine.

Related Topics:
• “Issue Severity Levels” on page 20

• “Starting Repository Manager” on page 15

• “Scope of Metadata Validation” on page 19

• “Design Objects Supported in Repository Manager” on page 63

Information Pane
In the Information pane, Repository Manager displays the following information:

Field Description

Version Informatica MDM Hub version. The repository version must match the version of the installed
Informatica MDM Hub software.

Date Date/time when the validation process was started.

Validation Scope Scope of validation. Determined by whether all options were selected in the Select Validation
Checks (Complete) or at least one option was not selected (Partial).

Summary Summary of validation results.

Operational Reference Store Metadata Validation 23

Properties Pane
In the properties pane, the Repository Manager displays a scrollable report of the issues found. This report
contains the following columns:

Column Description

Sequential number of the issue.

Severity Severity of the issue.

Message Description of the issue, including:
- error code. Example: SIP-PV-10312
- diagnostic text. Example: Index 'SVR1_AF9' of table ‘C_RBO_HIERARCHY_XREF’ is in the metadata but

not in the database.
Note: If you encounter an SIP-PV-10000 issue, the Repository Manager could not load the metadata (for
example, there is corruption in the database), and therefore repository checks were not performed. This
error means that a system check failed.

Prior Validation Results for Imported Schemas
If an Oracle export (dump) file is created for an ORS that has undergone the validation process, and if the
dump file contains prior validation results, then if the dump file is subsequently imported into a new ORS
(when running setup.sql or setup_ors.sql according to the instructions in the Multidomain MDM Installation
Guide, the new ORS will contain the prior validation results from the exported dump file.

When you validate the new ORS, Repository Manager appends the new results in two system tables
(C_REPOS_MET_VALID_MSG and C_REPOS_MET_VALID_RESULT). If you click the History button, you can see
all past validation results—including those from the imported dump file.

Related Topics:
• “Showing the Validation History” on page 25

Filtering Issues
To filter metadata validation results (if issues are found):

1. Run the metadata validation process.

The metadata errors are displayed in the Issues Found pane under the FATAL, Errors, Warnings, and
Information issues category tabs.

2. Click an issues tab to select an issue category such as FATAL, Errors, Warnings, or Information.

The issues found for the selected issue category is displayed.

3. Enter a string filter criterion in the filter field for filtering validation error messages for the selected issue
category.

The filtered error messages are highlighted in the Issues Found pane.

4. Click the Hide button to hide the error messages that did not match the filter criterion.

You can use the Hide button and the Stop filtering reparables or Show reparables only buttons at the same
time. If the two buttons are clicked at the same time, they act as an AND operation.

24 Chapter 3: Validating Metadata

Related Topics:
• “Validating Metadata” on page 23

Saving the Validation Results
After you run the validation process, you can save the validation results as an HTML file.

1. From the Repository Manager tool in the Hub Console, select the Validate tab.

2. Click the Save button.

3. From the Save dialog box, navigate to the directory where you want to save the validation results.

4. Specify a descriptive file name for the HTML file. Click Save.

The Repository Manager saves the validation results as an HTML file in the specified location.

Related Topics:
• “Validating Metadata” on page 23

Showing the Validation History
To show the validation history:

1. Run the metadata validation process.

2. Click the History button.

The Repository Manager displays the Validation History window.

Each row in the Validation History window represents the results of one execution of the validation
process. The Validation History window displays the following columns.

Column Description

Date Date and time when the validation process was run.

User User who initiated the validation process.

Fatal Number of issues encountered during validation with a Fatal severity level.

Error Number of issues encountered during validation with an Error severity level.

Warning Number of issues encountered during validation with a Warning severity level.

Information Number of issues encountered during validation with an Information severity level.

Scope Specifies whether the scope of validation was Complete or Partial.

Related Topics:
• “Scope of Metadata Validation” on page 19

• “Validating Metadata” on page 23

• “Issue Severity Levels” on page 20

Operational Reference Store Metadata Validation 25

Viewing Validation Results
To view validation results from the Validation History window:

1. In the Validation History window, select the validation result that you want to view.

2. Click the View button.

The Repository Manager displays the View Validation Result window.

3. If you want, you can:

• Filter results.

• Click the Save button to save the results.

• Select an issue in the list and click the Recommendations button to see recommendations for that
issue.

4. Click Close.

Related Topics:
• “Saving the Validation Results” on page 25

Deleting Entries in the Validation History Log
To delete a validation result from the Validation History window:

1. In the Validation History window, select the validation result that you want to view.

2. Click the Delete button.

The Repository Manager prompts you to confirm deletion.

3. Click Yes.

4. Click Close.

Metadata Repair Process
This section describes how to repair metadata for a repository (ORS) in your Informatica MDM Hub
implementation.

The MDM Hub provides an internal framework for automatic repair of some validation errors reported by the
Repository Manager. You can perform a batch or selective repair of reparable metadata validation errors. A
metadata error can prevent validation of metadata dependent on it and can result in hidden metadata
validation errors. The hidden metadata validation errors are revealed after the metadata errors related to
them are repaired.

Note:

• Only metadata validation errors with the repair icon can be repaired.

• The Repair feature is available only to users with the administrator role.

26 Chapter 3: Validating Metadata

Metadata Repair Results
When you repair metadata for a repository, Repository Manager appends the new results to the
C_REPOS_MET_VALID_MSG system table.

The results of the metadata repair are stored in the following columns of the C_REPOS_MET_VALID_MSG
system table:

• REPAIR_IND

• REPAIR_FAIL_MESSAGE

Repairing Metadata in a Repository
To repair metadata errors, you must use the following procedure:

1. Validate the metadata.

If issues are found, then they are displayed in the Issues Found pane. The reparable errors are displayed
with a repair icon under the FATAL, Errors, Warnings, and Information issues category tabs.

2. Click an issues tab to select an issue category such as FATAL, Errors, Warnings, or Information.

The issues found for the selected issue category is displayed.

3. Click the Show reparables only button, to view reparable metadata errors.

For help with metadata validation errors that cannot be repaired, contact Informatica Global Customer
Support.

4. Select an error from the Issues Found pane.

• For a batch repair of reparable validation errors, select the validation error code.

• For repair of selective reparable validation errors, select one error at a time from the validation errors
listed under a validation error code.

5. Click the Repair button.

A repair dialog appears with a warning of the metadata repair operation that will be executed.

6. If you need to perform the prompted metadata repair operation, then click OK.

The metadata is repaired automatically.
If you do not want to perform the prompted metadata repair operation, then click Cancel.

If the repair is successful, then the repaired validation errors are marked as repaired with a distinctive
icon.

7. If the repair fails, then you can click the Repair button to try again.

Note: A repair may fail because it may be blocked by other issues. You need to find and fix the issues
blocking the repair and then try again.

Related Topics:
• “Validating Metadata” on page 23

Repairing Metadata in a Repository 27

C h a p t e r 4

Promoting Changes Between
Repositories

This chapter includes the following topics:

• Promoting Changes Between Repositories Overview, 28

• Promoting Changes Visually, 32

• Promoting Changes Using Change Lists, 40

Promoting Changes Between Repositories Overview
You can use the Repository Manager in the Hub Console to move incremental changes from one repository to
another in your MDM Hub implementation.

In the Repository Manager, the Promote tab allows you promote changes between repositories. Promotion
copies incremental changes from one repository to another. Incremental changes can involve the following
types of operation:
The insertion of new design objects

To insert new design objects into an empty target repository, you can use the import process according
to the instructions in Chapter 5, “Importing Design Objects” on page 47.

The update of metadata for identically named design objects in the source and target repositories

If the target repository already contains design objects, however, then you must promote changes
between repositories. Through the Repository Manager, you can promote changes, such as differences
in attribute values, to a design object from the source repository into the target repository. For example,
you could update a Party base object in a production repository with changes from a development
repository. Changes might include differences in base object property settings, column definitions, or
mappings.

You can choose whether the Repository Manager performs data integrity validation before or after the
promotion of changes. Data integrity validation checks unique constraints and foreign keys.

Note: You cannot promote changes between repositories across heterogeneous databases such as between
an Oracle repository and an IBM DB2 repository.

Promotion Scenarios
This section describes common scenarios in which promotion is used.

28

Synchronize Promotion
Synchronize promotion is used to synchronize design objects from one repository with another, such as
between development and test repositories, or between test and production repositories.

Synchronize promotion can also be used to create an identical repository. In this scenario, synchronize
promotion uses an intermediary change list XML file. The change list XML file contains a list of changes to
apply to the target repository. All changes in the change list XML file are applied to the target repository. This
scenario uses the Change List tab in the Repository Manager.

Related Topics:
• “Change Lists” on page 11

• “Promoting Changes Using Change Lists” on page 40

Selective Promotion
In a distributed implementation environment, developers can use the Repository Manager tool to share and
re-use selected design objects across separate but parallel implementation repositories. For example,
developers can use separate repositories for data modeling, SQL coding, and application integration.

The list of selected changes can be saved in a comparison change list XML file before being applied so that
changes can be reviewed, edited, and approved beforehand. Approved changes can be propagated to a
central, master repository. This scenario uses the Visual tab in the Repository Manager.

Related Topics:
• “Promoting Changes Visually” on page 32

Differences Between Selective and Synchronize Promotion
Selective promotion is more granular than synchronize promotion, and it allows you to select individual
design objects to promote. Synchronize promotion requires that you apply the entire change list XML to the
target repository. However, you can edit the change list XML file beforehand to edit or remove changes as
needed.

Design Objects That Can Be Promoted
For a complete list of design objects that can be promoted, see “Design Objects Supported in Repository
Manager” on page 63.

Note: Custom indexes created on supporting tables are not promoted to the target environment during
migration.

Conflicts When Promoting Objects
Conflicts can arise when attempting to promote objects between repositories.

Property Conflicts
Property conflicts arise during the promotion process when the same design object in both the source and
target repositories has different property values. For example, suppose you were trying to promote changes
in a Customer base object in which the Enable History property differed between the source and target base
objects.

Promoting Changes Between Repositories Overview 29

In this case, you could have Repository Manager compare the repositories and create a conflicts list. For
each property conflict, Repository Manager will highlight the conflict and prompt you to take the appropriate
action, such as deciding which value to keep—the existing property in the target repository, or the property in
the base object that you are trying to promote. Repository Manager displays a properties panel that shows a
side-by-side comparison of property values.

Related Topics:
• “Properties Panel for the Selected Design Object” on page 36

Dependency Conflicts
Dependency conflicts arise during the promotion process when the source and target design objects have
different collections of child design objects.

For example, if you try to promote changes in a Person base object, and the column definitions differ
between the source and the target repository, dependency conflicts can arise.

In this case, Repository Manager can analyze the two repositories and create a conflict list. When you
attempt to promote changes, Repository Manager flags dependency conflicts and for each conflict, prompt
you to take the appropriate action.

Related Topics:
• “Design Object Dependencies” on page 65

• “Conflicts When Copying Objects Between Repositories” on page 11

Actions to Resolve Conflicts
After you initiate the process of applying changes to the target repository, Repository Manager prompts you
to specify how to handle property and dependency conflicts if they are encountered.

You can select one of the following actions:

• Merge

- Manually merge the two design objects, creating a combination of both the source and target design
objects

Note: A manual merge is useful when you want the target object to contain some property values from
the source and others from the target. For example, if you were promoting a base object from a
development environment to a production environment, you might want to exclude certain property
settings from promotion (such as the batch size) that could affected performance in the production
environment.

- Keep the source design object and discard the target design object

- Keep the target design object and discard the source design object

• Replace

- Replace the target design object completely with the source design object (overwrite the target)

Note:

• The Replace option applies to both property and object conflicts, while the Merge options apply to
property conflicts only.

• Choose the Replace the target objects completely with source objects option to resolve conflicts when
promoting deleted objects (such as base objects, staging tables, columns, etc.).

Repository Manager also flags related design objects for more complex dependencies, such as mappings
that depend on columns in landing and staging tables.

30 Chapter 4: Promoting Changes Between Repositories

Related Topics:
• “Applying Changes to the Target Repository” on page 39

• “Applying a Change List to the Target Repository” on page 45

Considerations for the Promotion Process
Before you promote changes, consider the following information:

• Before you promote changes, consider making a back up copy of the target repository.

• Promotion involves changes to the target repository only. The source repository remains unchanged.

• For promote operations, the Repository Manager requires a repository that has been validated and free of
errors, or fatal issues.

• The deleted_[*] columns that are defined as user columns, instead of system columns, can be promoted
like any other user column.

• You cannot reduce column lengths in the promotion process. For example, if you have a varchar(50)
column in both the source and target repository, the Repository Manager generates an error when you
reduce the column to varchar(20) in the source repository and then try to promote the change to the
target repository.

• The ROWID_SYSTEM values must match in the source and target repositories. If these values do not
match, before attempting promotion operations, you must synchronize system rowids in
C_REPOS_SYSTEM for the source and target repositories. Use the rowids from the source repository to
update the target repository so that the source and target have the same rowids for the same systems.

• Before you promote changes between repositories, ensure that both the source and target repositories
have sufficient privileges to all required tablespaces.

• The Repository Manager supports the migration of design objects in an ORS but not in the Master
Database. This includes user accounts, user groups, user account assignments to databases, and user or
role assignments. On the target schema, you must manually synchronize user information.

• If you promote a package that is based on a custom query, the Repository Manager cannot guarantee the
correctness of the custom query on which it is based. If the package is not valid after promotion, you
must save the package again through the Packages tool in the Hub Console.

• If your custom query uses a custom table, you cannot promote the custom table. Instead, after migrating
the custom query, you must create the custom table on the target repository.

• When you promote the saved queries associated with business entities between repositories, the
Repository Manager promotes the queries only. The user information associated with the queries are not
promoted to the target repository. After the promotion, you must reassign users to the saved queries in
the target repository.

• In an environment with Elasticsearch, when you promote changes to the searchable properties of a field
after you index your data, the indexes are deleted. You must run the Initially Index Smart Search Data
batch job to reindex the data.

• When you promote match rule changes between repositories, the Repository Manager generates a change
warning to indicate that you might have to reset the associated match tables.

• The Repository Manager might flag the attempted promotion of invalid configurations. For example, if
trust settings are configured for a column in the target repository, but trust is not enabled for that column
in the source repository, the Repository Manager flags this as invalid. When you apply the changelist, this
object does not promote. If you promote visually, you can use the Replace the target objects completely
with source objects option to promote it anyway.

Promoting Changes Between Repositories Overview 31

• To ensure a date default promotion is successful, set default date values for Date columns. Informatica
recommends to use cleanse functions to assign default values during the stage process.

• To migrate a unique column, you must configure the column to have a default value. For more
information, see the Multidomain MDM Configuration Guide.

• When Production Mode is enabled for an ORS, you must enable Transition Mode, which allows you to run
the Repository Manager Promote actions. For more information, see the Multidomain MDM Configuration
Guide.

• To ensure any promotion is successful in an Oracle repository, use a Unicode-enabled database. To verify
the character set of the database, enter the following command:

SQL> select * from v$nls_parameters where parameter Like '%CHARACTERSET';
For additional considerations, such as promoting Hierarchy Manager metadata, see “Considerations When
Copying Metadata” on page 12.

Related Topics:
• “Issue Severity Levels” on page 20

• “Considerations When Copying Metadata” on page 12

• “Exporting a Repository” on page 56

Reducing the Column Length
If you want to reduce the length of a column, you must drop and re-create the column through changelists.

1. In the source repository, drop the column that is too long.

2. Create the changelist.

3. Apply the changelist to the target repository.

4. In the source repository, add the column with a shorter length.

5. Create the changelist.

6. Apply the changelist to the target repository.

Promoting Changes Visually
This section describes how to promote visually between repositories.

Related Topics:
• “Selective Promotion” on page 29

Overview of Visual Promotion Tasks
Note: Before you promote changes, make a back up copy of the target repository.

To promote changes visually:

1. Navigate to the Promote / Visual tab.

2. Select the source repository.

32 Chapter 4: Promoting Changes Between Repositories

3. Select the target repository.

4. Select and promote the design objects that you want to promote from the source repository, resolving
conflicts as needed.

5. Optionally, you can save proposed changes to a change list XML file.

6. Apply the changes to the target repository.

Related Topics:
• “Exporting a Repository” on page 56

• “Navigating to the Promote / Visual Tab” on page 33

• “Selecting the Target Repository for Visual Promotion” on page 34

• “Visually Promoting Changes to the Target Repository” on page 36

• “Saving Changes in a Comparison Change List File” on page 39

• “Applying Changes to the Target Repository” on page 39

Navigating to the Promote / Visual Tab
To promote changes visually:

1. Start the Repository Manager tool.

2. Click the Promote tab.

Complete the remaining tasks in this section.

Related Topics:
• “Starting Repository Manager” on page 15

Command Buttons on the Visual Tab
The Visual tab has the following command buttons.

Button Description

Promote the selected design object in the source repository to the target repository.

View the design object hierarchy with markups.

Go to the previous conflict in the design object hierarchy.

Go to the next conflict in the design object hierarchy.

Save as a change list.

Promoting Changes Visually 33

Button Description

Apply the changes to the target repository.

Start the Schema Viewer for the selected repository.

Selecting the Source Repository for Visual Promotion
For the source repository, you can choose either a database (ORS) or a creation change list XML file.

To select the source repository for promotion:

1. Click the Select button next to the Source drop-down list.

The Repository Manager displays the Open Repository window.

2. Select a source repository in the list.

• For a database repository, select one from the list.
If you selected a database repository that has not yet been validated, click the Validate button and
complete the validation process.

Note: Repository Manager allows you to use a repository only after it has been validated and found to
be free of Errors or FATAL issues.

Click OK.

Repository Manager loads the source repository.

• For a change list XML file, click the File Repository tab.
Click the Open button.

Select the change list XML file (navigate to the folder if needed) and click Open.

Note: You must select a creation change list that represents a complete schema as a basis of
comparison. Repository Manager does not allow you to choose a comparison change list.

Repository Manager loads and validates the repository from the selected file.

Choose OK.

3. Review the loaded source repository, which Repository Manager displays as a hierarchical tree (design
object hierarchy).

Related Topics:
• “Operational Reference Store Metadata Validation” on page 21

• “Issue Severity Levels” on page 20

Selecting the Target Repository for Visual Promotion
To select the target repository for promotion:

1. Click the Target drop-down list.

34 Chapter 4: Promoting Changes Between Repositories

2. Select a repository in the list.

Note: Repository Manager allows you to use a repository only after it has been validated and found to be
free of Fatal errors.

Repository Manager loads the target repository.

Repository Manager displays the loaded target repository.

Related Topics:
• “Operational Reference Store Metadata Validation” on page 21

• “Issue Severity Levels” on page 20

Navigating the Design Object Hierarchy for Visual Promotion
For both the source and target repositories, the design object hierarchy contains the collection of design
objects defined in the repository. The top level of the hierarchy consists of a list of design object types.

Expanding and Collapsing the Design Object Hierarchy
Click the following buttons to expand and collapse levels in the design object hierarchy.

Button Description

Expand the tree in the design object hierarchy.

Collapse the tree in the design object hierarchy.

Conflict Indicators in the Source Repository
In the source design object hierarchy, icons provide additional information about the adjacent design object
or its associated collection of child objects. The following indicators can appear in the source design object
hierarchy:

Icon Description

Difference exists between the source and the target repository for this design object its associated collection
of child objects. For example:
The collection of associated child object contains a new or different design object.
The design object exists in both the source and target repositories, but one or more design object’s properties
differ between the source and target repositories.

Design object exists in one repository but not the other repository.
If this icon appears next to a design object in the source repository, then the design object does not exist in
the target repository. If the design object were promoted and changes applied, then the design object will be
added to the target repository.
If this icon appears next to a design object in the target repository, then the design object does not exist in the
source repository. You can decide to keep the design object as is, or remove it.

Additional indicators can appear in markup mode.

Promoting Changes Visually 35

Related Topics:
• “Viewing with Markup” on page 38

• “Conflicts When Copying Objects Between Repositories” on page 11

Properties Panel for the Selected Design Object
When a design object is selected in the design object hierarchy, Repository Manager displays the properties
associated with that design object in a properties panel. The properties panel contains the following
columns:

Column Description

Property Name of the selected property.

Value from source Value of the selected property in the source repository.

Value from target Value of the selected property in the target repository.

Final result Value that will appear in the target repository after changes are applied.

Note: Differences in binary files—such as custom cleanse Java libraries or icons used in Hierarchy Manager—
cannot be detected in Repository Manager. For such objects, use your own discretion about migrating these
kinds of design objects.

Context Menus
Right-clicking a design object in the design object hierarchy displays a pop-up menu of available operations.
In the source repository, you can choose Promote.

In the target repository, while in markup mode, you can choose Revert to revert a previously-promoted value
to its former value.

Multiple Design Object Selections
Multiple design objects can be selected in the design object hierarchy in order to move them in a single
operation.

If you select a parent design object (such as a base object) in the design object hierarchy, all of its child
objects are included automatically (such as its columns, match settings, staging tables, and so on).

Related Design Objects
When promoting a design object to the target repository, you likely want to include related design objects as
well. The design object hierarchy child objects or other related in the design object tree, even though the
design object is of a different type. For example, a mapping has dependence on landing tables and staging
tables. The following example shows that trust settings are configured for the LAST_NAME column in a base
object.

Visually Promoting Changes to the Target Repository
To promote changes from the source repository to the target repository:

1. In the source list, select the design objects or properties that you want to promote.

36 Chapter 4: Promoting Changes Between Repositories

2. Do one of the following:

• Click the Promote button.

• Drag selected design objects from the source repository and drop them anywhere onto the target
repository.

• Right-click in the source repository and choose Promote from the pop-up menu.

3. If Repository Manager detects any conflicts in the target system, it prompts you to choose an action.

Select the action that is most appropriate for your particular metadata based on the desired outcome.
Some conflicts can be resolved automatically based on whether the source or target value should be the
final result after promotion. Other conflicts might require selective, manual intervention. For example, if
you want to retain some values from the source and others from the target.

Note: Property conflicts must be resolved, automatically or manually, before applying the change to the
target repository. In contrast, dependency conflicts do not need to be resolved before applying the
change. For example, if a base object in the source repository has an extra column, then the column will
be added regardless of the action selected.

4. Select one of the following actions.

Option Description

Merge

Manually merge the conflicts Provides a side-by-side comparison of values from the source and target design
objects, allowing you to manually choose (on a case-by-case basis) the value to
use in the target design object. Proceed to “Manual Conflict Resolution” on page
37.

Use source values as final
result for conflict

Overwrites values in the target design object with the values from the source
design object. Proceed to “Automatic Conflict Resolution” on page 38.

Use target values as final
result for conflict

Retains values from the target design object. The target design object is
unchanged. Proceed to “Automatic Conflict Resolution” on page 38.

Replace

Replace the target object with
source object

Completely replaces the target design object with the source design object.
Used when the source design object contains the newer version of the design
object. Proceed to “Automatic Conflict Resolution” on page 38.

Related Topics:
• “Manual Conflict Resolution” on page 37

• “Automatic Conflict Resolution” on page 38

Manual Conflict Resolution
If you chose to manually merge the conflicts, Repository Manager adds check boxes next to the conflicts in
the source and target columns.

For each property conflict, select the check box next to the value that you want to survive after promotion.

Promoting Changes Visually 37

Automatic Conflict Resolution
If you chose to automatically resolve conflicts based on a specific rule (value from source, value from target,
or replace target with source), Repository Manager displays the Impact Analyzer to show you the impact of
the promotion selections.

If the impact is acceptable, then click OK.

Viewing with Markup
The Markup button is a toggle that displays or hides visual indicators of proposed changes in the target
repository.

The following indicators can appear in the target design object hierarchy in markup mode:

Icon Description

Design object has been added.

Design object is to be modified.

Design object has been deleted.

Design object has been modified.

Finding Conflicts
Use the following buttons to jump to conflicts in the design object hierarchy for objects that are selected for
promotion.

Button Description

Go to the previous conflict in the design object hierarchy.

Go to the next conflict in the design object hierarchy that must resolved.

Reverting Changes
If you have not yet applied changes to the target repository, you can selectively undo any changes that you
made.

To revert a change:

u In the target repository, right-click the object associated with the change that you want to restore, and
then choose Revert from the pop-up menu.

Repository Manager reverts the change and replaces it with the original value in the target repository.

38 Chapter 4: Promoting Changes Between Repositories

Saving Changes in a Comparison Change List File
Repository Manager allows you to save proposed changes to a comparison change list XML file. You might
save changes before applying them, for example, to:

• have them reviewed and approved first

• edit the changes manually in the XML file, such as selecting a subset of changes to apply

• save a log of changes for future reference

• apply the same changes to multiple target repositories

To save changes in a comparison change list XML file:

1. Click the Save button.

Repository Manager displays a progress bar while it processes the changes.

Repository Manager display the Save Change List dialog.

2. Navigate to the target directory where you will save the change list XML file.

3. Specify the following information about the repository.

Field Description

Name Logical name for this change list file. This value will be stored in the <name> tag of the change list
XML file.

Description Description of this change list file. This value will be stored in the <description> tag of the change
list XML file.

File Name Name of the change list file to save. Repository Manager will add an extension to this file
(*.change.xml).

4. Click Save.

The Repository Manager saves the specified change list file, displaying a progress bar while writing to
the target location.

5. You can open the change list XML file in an editor to review its contents.

The specific name and description, along with a time stamp, file name, and other information, is saved
as attributes to the <changelist> element.

Applying Changes to the Target Repository
To apply changes to the target repository:

1. Click the Apply button.

Repository Manager prompts you to select a rollback strategy in the event of a failure during the import
process.

Promoting Changes Visually 39

2. Select one of the following options:

Strategy Description

Full rollback Rolls back all of the changes attempted during the process of applying promoted changes to the
target repository.

Rollback to
last change

Rolls back to the last successful change prior to the interruption of applying promoted changes
to the target repository. For example, if changes in base object columns A and B were
successfully applied to the target repository, but the promotion application process failed
before changes in column C were successfully applied to the target repository, then changes are
rolled back to column B.
Use this option if you are promoting many changes and want to keep successfully-applied
changes in the event of a failure.

Rollbacks for each design object involve rolling back two changes: the physical change in the repository
(for example, removing a physical column), as well as the metadata about the design object (the
metadata descriptor of the column).

3. Choose OK.

If the target repository is currently registered with a proxy user, Repository Manager prompts you to
enter the owner password for this repository.

4. If prompted, enter the password of the ORS schema owner.

5. Data integrity validation is performed based on the user choice. A dialog box asks the user to select if
the data integrity validation is to be performed before promoting the changes (either in promote
ChangeList or Visual).

Repository Manager displays a progress bar.
When finished, Repository Manager displays a message indicating whether the promote process
succeeded.

Related Topics:
• “Repositories Currently Registered with a Proxy User” on page 14

• “Monitoring the Results of Changes” on page 14

Promoting Changes Using Change Lists
This section describes how to promote changes using change lists.

Overview of Change List Promotion Tasks

Note: Before you promote changes, make a back up copy of the target repository.

To promote changes using change lists:

1. Navigate to the Promote / Change List tab.

2. Select the target repository.

3. Open the change list XML file containing the changes that you want to apply to the target repository.

4. Optionally, inspect the proposed changes in the change list XML file.

40 Chapter 4: Promoting Changes Between Repositories

5. Optionally, save proposed changes to a change list XML file.

6. Test the changes before applying them by running a simulation.

7. Apply the changes to the target repository.

Related Topics:
• “Exporting a Repository” on page 56

• “Navigating to the Promote / Change List Tab” on page 41

• “Select the Target Repository for Change List Promotion” on page 42

• “Opening a Comparison Change List XML File” on page 43

• “Navigating the List of Changes” on page 43

• “Viewing the Brief Description of a Change” on page 43

• “Viewing the Detailed Description of a Change” on page 44

• “Saving Changes in a Comparison Change List XML File” on page 44

• “Running a Simulation of Applying a Change List” on page 44

• “Applying a Change List to the Target Repository” on page 45

Navigating to the Promote / Change List Tab
To navigate to the Change List tab on the Promote tab:

1. Start the Repository Manager tool.

2. Click the Promote tab.

3. Click the Change List tab.

Complete the remaining tasks in this section.

Command Buttons on the Change List Tab
The Change List tab has the following command buttons.

Button Description

Create a new change list by comparing two repositories.

Open a change list.

Save as a change list.

Simulate applying a change list to the target repository.

Apply a change list to the target repository.

View a brief description of a change.

Promoting Changes Using Change Lists 41

Button Description

View a detailed description of a change.

Start the Schema Viewer for the selected repository.

Select the Target Repository for Change List Promotion
To select the target repository:

1. Click the Target drop-down list.

2. Select a repository in the list.

Note: Repository Manager allows you to use a repository only after it has been validated and found to be
free of Errors, or FATAL issues.

Related Topics:
• “Issue Severity Levels” on page 20

• “Operational Reference Store Metadata Validation” on page 21

Creating a Comparison Change List by Comparing Repositories
You can create a new change list by comparing the selected target repository with a source repository that
you select.

1. Click the Create Change List button.

Repository Manager displays the Create Change List dialog.

2. Select the source repository to use for the change list. You can choose either a database (ORS) or a
creation change list XML file.

• For a database repository, select one from the source repository list.

If you selected a database repository that has not yet been validated, click the Validate button and
complete the validation process.

Note: Repository Manager allows you to use a repository only after it has been validated and found to
be free of Errors, or FATAL issues.

Click OK.

Repository Manager loads the source repository.

• For a change list XML file, click the File Repository tab.
Click the Open button.

Select the change list XML file (navigate to the folder if needed) and click Open.

Note: You must select a creation change list that represents a complete schema as a basis of
comparison. Repository Manager does not allow you to choose a comparison change list.

Repository Manager loads and validates the repository from the selected file.

Click OK.

3. Click OK.

Repository Manager compares the two repositories and generates the change list.

42 Chapter 4: Promoting Changes Between Repositories

Related Topics:
• “Navigating the List of Changes” on page 43

• “Issue Severity Levels” on page 20

• “Operational Reference Store Metadata Validation” on page 21

Opening a Comparison Change List XML File
You can open a comparison change list that contains the changes that you want to apply to the selected
target repository. You can review the changes before applying them to the target repository.

To open a comparison change list XML file:

1. Click the Open button.

2. Specify the name of the change list XML file that you want to open, navigating to the folder where it is
stored, if necessary.

3. Click Open.

Repository Manager loads the specified change list file and displays the list of changes it contains.

Related Topics:
• “Navigating the List of Changes” on page 43

Navigating the List of Changes
To search for specific text in the list of changes for an opened change list XML file:

u Type the string that you want to search for in the Search field.

Repository Manager selects the first change that contains the specified string.

Use the following buttons to find other matches in the change list:

Button Description

Go to the previous instance of the string.

Go to the next instance of the string.

Viewing the Brief Description of a Change
To view a brief description of a change in the change list:

1. Select a change in the change list.

2. Click the View Description button.

Repository Manager displays a description of the change.

3. Click Close.

Promoting Changes Using Change Lists 43

Viewing the Detailed Description of a Change
To view a detailed description of a change in the change list:

1. Select a change in the change list.

2. Click the View Details button.

Repository Manager displays a detailed description of the change.

3. Click Close.

Saving Changes in a Comparison Change List XML File
Repository Manager allows you to save proposed changes to a change list XML file. You might save changes
before applying them, for example, to:

• have them reviewed and approved first

• edit the changes manually in the XML file, such as selecting a subset of changes to apply

• save a log of changes for future reference

• apply the same changes to multiple target repositories

This process generates a comparison change list XML file.

To save changes as in a comparison change list XML file:

1. Click the Save button.

Repository Manager displays a progress bar while it processes the changes.

Repository Manager displays the Save Change List dialog.

2. Navigate to the target directory where you will save the change list XML file.

3. Specify the following information about the repository.

Field Description

Name Logical name for this change list file. This value will be stored in the <name> tag of the change list
XML file.

Description Description of this change list file. This value will be stored in the <description> tag of the change
list XML file.

File Name Name of the change list file to save. Repository Manager will add an extension to this file
(*.change.xml).

4. Click Save.

The Repository Manager saves the specified change list file, displaying a progress bar while writing to
the target location.

5. You can open the change list XML file in an editor to review its contents.

The specific name and description, along with a time stamp, file name, and other information, is saved
as attributes to the <changelist> element.

Running a Simulation of Applying a Change List
You can simulate the process of applying a change list to the target repository to see the results and fix any
errors before actually executing the changes.

44 Chapter 4: Promoting Changes Between Repositories

To simulate applying a change list:

1.
Click the Simulate button.

Repository Manager prompts you to confirm running the simulation.

2. Click Yes to confirm.

If the target repository is currently registered with a proxy user, Repository Manager prompts you to
enter the owner password for this repository.

3. If prompted, enter the password of the ORS schema owner.

4. Data integrity validation is performed based on the user choice. A dialog box asks the user to select if
the data integrity validation is to be performed before promoting the changes (either in promote
ChangeList or Visual).

Repository Manager runs the simulation and displays a message about the results.

5. Click OK.

If you encounter a failure message, you should fix the problem(s) and run the simulation again before
actually applying the changes to the target repository. Otherwise, the process of applying changes will
likely fail.

Related Topics:
• “Repositories Currently Registered with a Proxy User” on page 14

Applying a Change List to the Target Repository
To apply changes to the target repository:

1. Click the Apply button.

Repository Manager prompts you to select a rollback strategy in the event of a failure during the import
process.

2. Select one of the following options:

Strategy Description

Full rollback Rolls back all of the changes attempted during the promote process.

Rollback to
last change

Rolls back to the last successful change prior to the interruption of the promotion application
process. For example, if changes in base object columns A and B were successfully applied to
the target repository, but the promotion application process failed before changes in column C
were successfully applied to the target repository, then changes are rolled back to column B.
Use this option if you are promoting many changes and want to keep successfully-applied
changes in the event of a failure.

Rollbacks for each design object involve rolling back two changes: the physical change in the repository
(for example, removing a physical column), as well as the metadata about the design object (the
metadata descriptor of the column).

3. Choose OK.

If the target repository is currently registered with a proxy user, Repository Manager prompts you to
enter the owner password for this repository.

4. If prompted, enter the password of the ORS schema owner.

Promoting Changes Using Change Lists 45

5. Data integrity validation is performed based on the user choice. A dialog box asks the user to select if
the data integrity validation is to be performed before promoting the changes (either in promote
ChangeList or Visual).

Repository Manager displays a progress bar.

When finished, Repository Manager displays a message indicating whether the promote process
succeeded.

Related Topics:
• “Repositories Currently Registered with a Proxy User” on page 14

• “Monitoring the Results of Changes” on page 14

46 Chapter 4: Promoting Changes Between Repositories

C h a p t e r 5

Importing Design Objects
This chapter includes the following topics:

• Overview, 47

• About Importing Design Objects, 47

• Importing Design Objects, 49

Overview
This chapter describes how to use the Repository Manager in the Hub Console to import new design objects
into a repository.

About Importing Design Objects
This section describes concepts that you need to understand before importing design objects into an empty
repository.

Import Process
In the Repository Manager, you can selectively import design objects from a source repository or change list
into an empty target repository. The import process inserts metadata for design objects that are not yet
defined in the target repository. For example, you can add a template of standard design objects to a new
repository.

Note: You cannot import a change list created in one database type into the repository of another database
type. For example, you cannot import a change list created in Oracle into a Microsoft SQL Server repository.

Importing contrasts with promoting design objects, in which design objects already exist in the target
repository. If you want to add design objects to a repository that contains metadata, use the features on the
Promote tab.

47

Related Topics:
• “Promoting Changes Between Repositories” on page 28

Design Objects That Can Be Imported
For a complete list of design objects that can be imported, see “Design Objects Supported in Repository
Manager” on page 63.

Considerations for the Import Process
Before you import, consider the following information:

• Before you import design objects, consider making a back up copy of the target repository.

• Importing (and renaming) involves changes to the target repository only—the source repository remains
unchanged.

• For import operations, Repository Manager requires a repository that has been validated and free of
Errors, or FATAL issues.

• In Informatica MDM Hub version 9.5, the Period_Start_Date and Period_End_Date columns replace the
Rel_Start_Date and Rel_End_Date columns. If you import a pre-9.5 change list into a fresh 9.5 installation,
you must run script migrate_hm_rel_start_end_dates.sql after you import the change list to update the
pre-9.5 schema. See “Update Relationship Base Object Start Date and End Date Information” on page 53.

• The Repository Manager export and import processes do not preserve ROWID_OBJECT values in design
object records. When you export design objects, the ROWID_OBJECT values from the source ORS are not
preserved in the export file. When you import these design objects into a target ORS, the import process
assigns new ROWID_OBJECT values, which might differ from the corresponding records in the source
ORS.
Problems can arise if you depend on ROWID_OBJECT values to uniquely identify design objects. For
example, Hierarchy Manager could be configured to use ROWID_BO_CLASS as the reference to the
C_RBO_BO_CLASS table on the source schema. If a SIF client application depended on this configuration,
it would work correctly in the source ORS but not necessarily in the target ORS. Therefore, instead of
ROWID_OBJECT values, use unique identifiers to identify specific design objects, such as
BO_CLASS_CODE for entities, REL_TYPE_CODE for relationship types, and HIERARCHY_CODE for
hierarchies.

• Custom match populations are not imported from a change list. Instead, remove the custom match
population element from the change list XML file, then either modify the target schema manually, or use
direct database import/changelist options.

• Before importing into a repository, make sure that both the source and target repositories have sufficient
privileges to all required tablespaces.

• If the source repository has the Admin system enabled as a state management override system, the
import procedure does not update the state management override system indicator for the Admin system
in the target repository. You must manually enable the Admin system in the target repository as a state
management override system.

Related Topics:
• “Issue Severity Levels” on page 20

• “Considerations When Copying Metadata” on page 12

• “Exporting a Repository” on page 56

48 Chapter 5: Importing Design Objects

Importing Design Objects
This section describes how to import design objects in the Repository Manager.

Overview of Import Tasks

Note: Before you import design objects, make a back up copy of the target repository.

To import design objects into a repository:

1. Navigate to the Import tab.

2. Select the source repository.

3. Select the target repository.

4. Select the design objects that you want to import from the source repository.

5. Optionally, rename objects that you want to import.

6. Execute the import process.

Related Topics:
• “Selecting Design Objects to Import” on page 51

• “Renaming Design Objects” on page 51

• “Exporting a Repository” on page 56

• “Selecting the Source Repository to Import” on page 49

• “Selecting the Target Repository for Import” on page 50

• “Importing Selected Design Objects” on page 52

Command Buttons on the Import Tab
The Import tab has the following command buttons.

Button Description

Import objects by applying the change list to the target repository.

Rename the selected design object.

Collapse the node.

Expand the node.

Selecting the Source Repository to Import
For the source repository, you can choose either a database (ORS) or a creation change list XML file.

Importing Design Objects 49

To select the source repository for import:

1. Click the Select button next to the Source field.

The Repository Manager displays the Open Repository window.

2. Select a source repository from the list.

• For a database repository, select a source repository from the list.
If you selected a database repository that has not yet been validated, click the Validate button and
complete the validation process.

Note: Repository Manager allows you to import a repository only after it has been validated and found
to be free of Errors, or FATAL issues.

Click OK.

Repository Manager loads the source repository.

• For a change list XML file, click the File Repository tab.
Click the Open button.

Select the change list XML file (navigate to the folder if needed) and click Open.

Note: You must select a creation change list. Repository Manager will not allow you to select a
comparison change list as a source for design objects to import.

Repository Manager loads and validates the repository from the selected file.

Choose OK.

3. Review the loaded source repository, which Repository Manager displays as a design object hierarchy.

Related Topics:
• “Issue Severity Levels” on page 20

• “Operational Reference Store Metadata Validation” on page 21

Selecting the Target Repository for Import
To select the target repository:

1. Click the Target drop-down list.

2. Select a repository from the list.

Repository Manager loads the target repository and compares the two repositories.

Showing and Hiding Design Objects in the Hierarchy
Use the following buttons to expand and collapse the design object hierarchy.

Button Description

Expand the node.

Collapse the node.

When you expand a node, Repository Manager expands the entire tree of child objects associated with the
selected node.

50 Chapter 5: Importing Design Objects

Selecting Design Objects to Import
After selecting the source and target repositories, you can navigate the design objects hierarchy and select
the design object(s) to import. When a design object is selected, Repository Manager analyzes its
dependencies and then automatically selects all associated design objects. For example, if a package is
selected, then all tables and queries on which the package is based are automatically selected (checked).
Likewise, if a query is removed (unselected), then any packages based on that query are also removed. You
can individually remove (unselect) any objects that you want to exclude from import.

In general, consider importing an entire collection of design objects at once, rather than importing subsets
separately, so that required design objects are not inadvertently omitted. For example, rather than importing
landing tables, staging tables, mappings, and packages separately, consider importing the entire base object
so that the collection of dependent design objects is complete.

Selecting a Design Object
To select a design object:

u Click the check box next to the design object.

For example, when a base object is selected, then the queries and packages based on it are optional.

Selecting an Object Type
To select all design objects of a particular object type:

u Select the check box next to the object type.

Repository Manager automatically selects all design objects of that type.

Selecting All Design Objects
To select all design objects in the source repository:

u Select the Repository check box, which is at the top of the hierarchy.

Renaming Design Objects
You can rename design objects. For example, before importing a template of design objects, you might want
to rename objects to comply with an organization’s naming conventions.

Related Topics:
• “Design Objects That Can Be Renamed” on page 66

Design Objects with Globally-Unique Names
Certain design objects have globally unique names: staging tables and match path components. The names
of other design objects are associated with the parent base object or column. Repository Manager ensures
that name changes to parent design objects are properly implemented in child design objects. For example, if
you rename a base object, the queries that reference that base will be updated accordingly.

Importing Design Objects 51

Renaming the Selected Object
To rename the selected design object:

1. Do one of the following:

• Select the object and click the Rename button.

• Or, right-click the design object.

Repository Manager prompts you to specify the new name.

2. Enter the following information:

Strategy Description

New Name Physical name of the design object. The new name must conform with the Informatica MDM
Hub naming rules for the object type.

New Display Name Name that will be used to display this design object in the Hub Console.

3. Choose OK.

Repository Manager displays the renamed design object in the hierarchy.

Note: Although the new name appears in the design object hierarchy for the source repository, the new
name will apply to the target repository after the import process is complete. The name of the design
object in the source repository will remain unchanged.

Importing Selected Design Objects
To import the selected design object(s):

1. Click the Apply button.

Repository Manager prompts you to select a rollback strategy in the event of a failure during the import
process.

2. Select one of the following options:

Option Description

Full rollback Rolls back all of the changes attempted during the import process.

Rollback to
last change

Rolls back to the last successful change prior to the interruption of the import process. For
example, if base object columns A and B were successfully imported, but the import process
failed before column C was successfully created in the target repository, then changes are
rolled back to column B.
Use this option if you are importing many design objects and want to keep successfully-applied
changes in the event of a failure.

Rollbacks for each design object involve rolling back two changes: the physical change in the repository
(for example, removing a physical column), as well as the metadata about the design object (the
metadata descriptor of the column).

3. Choose OK.

If the target repository is currently registered with a proxy user, Repository Manager prompts you to
enter the owner password for this repository.

4. If prompted, enter the password of the ORS schema owner.

52 Chapter 5: Importing Design Objects

5. Data integrity validation is performed based on the user choice. A dialog box asks the user to select if
the data integrity validation is to be performed before promoting the changes (either in promote
ChangeList or Visual).

Repository Manager displays a progress bar.

When finished, Repository Manager displays a message indicating whether the import process
succeeded.

Related Topics:
• “Repositories Currently Registered with a Proxy User” on page 14

• “Monitoring the Results of Changes” on page 14

Update Relationship Base Object Start Date and End Date
Information

If you are upgrading to Informatica MDM Hub version 9.5 by installing a 9.5 installation and then importing a
pre-9.5 change list, the following changes are required:

• The Rel_Start_Date and Rel_End_Date columns must be made nullable.

• Mappings to the Rel_Start_Date and Rel_End_Date columns need remapped to the Period_Start_Date and
Period_End_Date columns.

• References to the Rel_Start_Date and Rel_End_Date columns need removed from the Hierarchy Manager
relationship packages.

After importing the change list, perform the following steps to make the required changes:

1. In SQL*Plus, run the migrate_hm_start_end_dates.sql script found in the following locations:

• On Windows: <infamdm_install_directory>\server\resource\database\migration_readiness\oracle

• On UNIX: <infamdm_install_directory>/server/resource/database/migration_readiness/oracle

The script runs and makes the required changes.

2. Restart the application server.

The mappings to the Period_Start_Date and Period_End_Date columns are active.

Importing Design Objects 53

C h a p t e r 6

Exporting Repositories
This chapter includes the following topics:

• Overview, 54

• About Exporting a Repository, 54

• Exporting a Repository, 56

• Exporting a Subset of Design Objects, 56

Overview
This chapter describes how to use the Repository Manager in the Hub Console to export a repository to a
change list XML file in your Informatica MDM Hub implementation.

About Exporting a Repository
This section describes what you need to understand before using the Repository Manager to export a
repository.

About Exporting
You can use the Repository Manager to export an entire repository to a change list XML file, which can then
be used to import design objects into another repository or to save it in a source control system for archival
purposes.

Related Topics:
• “Change Lists” on page 11

• “Change List Reference” on page 67

Design Objects That Can Be Exported
For a complete list of design objects that can be exported, see “Design Objects Supported in Repository
Manager” on page 63.

54

Related Topics:
• “Design Objects Supported in Repository Manager” on page 63

• “Change List Reference” on page 67

How Exported Change List XML Files Get Used
Once created, you can use the creation change list XML file for:

• importing new design objects into a repository.

• promoting changes between repositories. A creation change list can be used as a source repository for
promotion.

• archiving in a source control system.

Related Topics:
• “Importing Design Objects” on page 47

• “Promoting Changes Between Repositories” on page 28

• “Selecting the Source Repository for Visual Promotion” on page 34

Considerations for the Export Process
Before you export a repository, consider the following information:

• Exporting involves no changes to the source repository.

• To export, Repository Manager requires a source repository that has been validated and free of Errors, or
FATAL issues.

• The Repository Manager export and import processes do not preserve ROWID_OBJECT values in design
object records. When you export design objects, the ROWID_OBJECT values from the source ORS are not
preserved in the export file. When you import these design objects into a target ORS, the import process
assigns new ROWID_OBJECT values, which might differ from the corresponding records in the source
ORS.

Related Topics:
• “Issue Severity Levels” on page 20

• “Operational Reference Store Metadata Validation” on page 21

Command Buttons on the Export Tab
The Export tab has the following command buttons.

Button Description

Save as a change list.

Start the Schema Viewer for the selected repository.

About Exporting a Repository 55

Exporting a Repository
To export a repository as a creation change list:

1. Start the Repository Manager tool.

2. Click the Export tab, if it is not already selected.

3. Select a repository to export from the drop-down list.

Note: Repository Manager allows you to use a repository only after it has been validated and found to be
free of Errors, and FATAL issues.

4. Click the Save button.

Repository Manager displays the Export Repository dialog.

5. Navigate to the target directory where you will save the change list XML file.

6. Specify the following information about the repository.

Field Description

Name Logical name for this change list file. This value will be stored in the <name> tag of the change list
XML file.

Description Description of this change list file. This value will be stored in the <description> tag of the change
list XML file.

File Name Name of the change list file to save. Repository Manager will add an extension to this file
(*.change.xml).

7. Click Export.

The Repository Manager saves the specified change list file, displaying a progress bar while writing to
the target location.

8. You can open the change list XML file in an editor to review its contents.

The specific name and description, along with a time stamp, file name, and other information, is saved
as attributes to the <changelist> element.

Note: After you have created an export file and before using the file for import or promotion operations,
you can edit the file, rename design objects, delete extraneous sections, and make other changes as
needed. However, Informatica is not responsible for any consequences resulting from XML files that you
have modified in this way.

Related Topics:
• “Issue Severity Levels” on page 20

• “Starting Repository Manager” on page 15

Exporting a Subset of Design Objects
Exporting generates a creation change list XML file that includes all the design objects in the source
repository.

56 Chapter 6: Exporting Repositories

You might want to create a change list to share only a subset of selected design objects instead. For
example, you might want to contribute only an individual cleanse function. To export a subset of design
objects, complete the following tasks in the Promote tab:

1. Select the source repository that contains the design object(s) that you want to export.

2. Select an empty target repository.

3. In the source repository, select the object(s) that you want to promote.

Optionally, you can selectively rename design objects if you want to save them in the change list under a
different name.

4. Save the changes to a change list.

Once saved, you can then apply the changes in this comparison change list to any target repository by
completing the following steps.

1. Open the target repository to which you want to add the design objects.

2. Open the comparison change list XML file that you created earlier.

3. Apply the changes in the comparison change list.

Exporting a Subset of Design Objects 57

C h a p t e r 7

Common Warehouse Model
Support

This chapter includes the following topics:

• Overview, 58

• Import from CWM File Tab, 59

• Importing Design Objects from a CWM File, 59

• Export to CWM File Tab, 61

• Exporting a Repository to a CWM File, 61

Overview
The Repository Manager tool supports files in the Common Warehouse Model (CWM) format. A CWM file can
be generated using a third-party software such as Erwin. The advantage to using CWM is that you can apply
CWM schema on seed ORS using the import from CWM option in the Hub console.

If you apply a CWM schema on a seed ORS, system columns such as ROWID_OBJECT and CREATE_DATE are
automatically added. ROWID_OBJECT is the primary key of the table enforced by MDM.

You must not import content metadata tables such as EMI, EMO, and XREF tables to a seed ORS, as these are
created automatically.

Note: An EMI table is a system table and its structure is based on the match columns you define.

The Repository Manager tool provides the Import from CWM file tab and the Export to CWM file tab for
working with CWM files.

58

Import from CWM File Tab
This tool is used to convert a CWM file into a MET changelist that can be applied against an existing ORS or
saved for future use. The steps involved in this operation are:

1. Load CWM file – the file is loaded and the importable elements (tables, views, and foreign keys) are
presented in a selection tree format. At this point the user can select the objects that will be imported
and for the tables, can select the import table type (BO, Landing). The selection/type change is done by
consecutive clicks on the table checkbox. The corresponding FKs and views are automatically selected/
deselected.

2. Save changelist – using the selected objects a MET changelist is generated and saved.

3. Apply changelist - using the selected objects a MET changelist is generated and and applied against the
selected ORS.

Command Buttons on the Import from CWM file Tab
The Import from CWM file tab has the following command buttons:

Button Description

Load a CWM file.

Save as a change list.

Import objects by applying the CWM change list to the target repository.

Importing Design Objects from a CWM File
This section describes how to import design objects from CWM file in the Repository Manager.

Note: Before you import from a CWM file, back up the target repository according to the instructions in
“Exporting a Repository” on page 56.

To import from CWM file into a repository, perform the following steps:

1. In Repository Manager, click the Import from CWM file tab.

2. Load the CWM file for import.

a. Click the Load CWM File button.

The Repository Manager displays the Open dialog.

b. Navigate to the .cwm file that you must import, select the CWM file, and click Open.

Repository Manager loads and validates the selected CWM file.

c. Review the loaded source repository, which Repository Manager displays as a design object
hierarchy.

3. Select design objects to import.

Import from CWM File Tab 59

• To select a design object, click the check box next to the design object.
When a design object is selected, all associated design objects are automatically selected. For
example, if a package is selected, then all tables and queries on which the package is based are
automatically selected (checked). Likewise, if a query is removed (unselected), then packages based
on that query are also removed. You can individually remove (unselect) any objects that you want to
exclude from import.

• To select all design objects of a particular object type, select the check box next to the object type.
Repository Manager automatically selects all design objects of that type.

• To select all design objects in the source repository, select the check box next to the repository at the
top of the hierarchy.

In general, consider importing an entire collection of design objects at once, rather than importing
subsets separately, so that required design objects are not inadvertently omitted. For example, rather
than importing landing tables, staging tables, mappings, and packages separately, consider importing
the entire base object so that the collection of dependent design objects is complete.

4. Import selected design objects.

a. Click the Apply Change List button.

Repository Manager displays an Open Repository dialog with a database repository list.

5. Select the target repository for import.

a. Select a target repository from the database repository list and click OK.

b. Repository Manager prompts you to select a rollback strategy in the event of a failure during the
import process.

Select one of the following options:

Option Description

Full rollback Rolls back all of the changes attempted during the import process.

Rollback to
last change

Rolls back to the last successful change prior to the interruption of the import process.
For example, if base object columns A and B were successfully imported, but the import
process failed before column C was successfully created in the target repository, then
changes are rolled back to column B.
Use this option if you are importing many design objects and want to retain successfully-
applied changes in the event of a failure.

c. Click OK.

If the target repository is currently registered with a proxy user, Repository Manager prompts you to
enter the owner password for the repository.

d. If prompted to enter the password, enter the password of the ORS schema owner.

Repository Manager displays a progress bar. When the import process is complete, Repository
Manager displays a message indicating whether the import process succeeded.

6. Save changes in a comparison change list XML file.

a. Click the Save button.

Repository Manager displays the Save Change List dialog.

b. Navigate to the target directory where you need to save the change list XML file.

c. In the File name field, enter the name of the change list file to be saved.

60 Chapter 7: Common Warehouse Model Support

Repository Manager adds an extension to the file (*.change.xml).

d. Click Save.

Repository Manager saves the specified change.xml file, displaying a progress bar while writing to
the target location.

Note: You can open the change XML file in an editor to review its contents.

Export to CWM File Tab
This tool is used to export the ORS metadata to CWM format. There are two steps involved in this operation:

1. Load repository – loads the source ORSrepository into the tool. The result of this operation is the
selection tree of the exportable ORS objects. By selecting the tree elements the user can specify the ORS
objects exported to CWM format.

2. Save CWM file – the selected objects are exported to CWM format and the file is saved (with an XML
extension). Click on the tab and then click on the folder icon to import or export CWM files.

Command Buttons on the Export to CWM file Tab
The Export to CWM file tab has the following command buttons:

Button Description

Load repository.

Save change list.

Exporting a Repository to a CWM File
To export a repository as a CWM XML file, perform the following steps:

1. In Repository Manager, click the Export to CWM file tab.

2. Load the database repository for export.

a. Click the Load Repository button.

The Repository Manager displays the Open Repository dialog.

b. Select a repository from the Database Repository list and click OK.

Note: Repository Manager allows you to use a repository only after it has been validated and found
to be free of Error, Critical, or Fatal errors.

c. Select the repository objects to be exported to CWM file.

Export to CWM File Tab 61

3. Save the CWM file.

a. Click the Save button.

Repository Manager displays the Save dialog.

b. Navigate to the target directory where you need to save the change list XML file.

c. In the File name field, enter the name of the change list file to be saved.

Repository Manager adds an extension to the file (*.CWM.xml).

d. Click Save.

Repository Manager saves the specified CWM.xml file, displaying a progress bar while writing to the
target location.

Note: You can open the CWM XML file in an editor to review its contents.

62 Chapter 7: Common Warehouse Model Support

A p p e n d i x A

Design Objects Reference
This appendix includes the following topics:

• Overview, 63

• Design Objects Supported in Repository Manager, 63

• Design Object Dependencies, 65

• Design Objects That Can Be Renamed, 66

Overview
This appendix provides a reference for design objects that can be managed by Repository Manager.

Design Objects Supported in Repository Manager
Repository Manager allows you to manage the metadata in Operational Reference Store. The following table
provides a detailed list of specific design objects that you can manage using Repository Manager. The table
also describes whether Repository Manager supports:

• validation of this type of design object.

• copying design objects between repositories.

Finally, the table refers to a topic in the Multidomain MDM Configuration Guide (or other document) that
provides more information about the specific element.

The following table lists design objects that can be managed by Repository Manager:

Informatica MDM Hub Component Validate Promote, Import, Export

mappings yes yes

cleanse

- Process Server yes no

- cleanse function yes yes

63

Informatica MDM Hub Component Validate Promote, Import, Export

queries

- queries yes yes

- custom queries using custom tables yes no

packages yes yes

- packages yes yes

- packages using custom queries yes no

schema

- base object tables and columns yes yes

- match, including match rules, rule sets, and path
components

yes yes

- external match yes yes

- validation yes yes

- message triggers yes yes*

- relationships yes yes

- staging table yes yes

- custom index yes yes

Trust

- source system trust yes yes

- column trust yes yes

system state yes yes

batch groups (except custom objects) yes yes

message queues partial (message triggers
only)

partial (message triggers
only)

Security Access Manager yes yes

user objects yes partial

Hierarchy Manager yes yes

Business Entity/Business Entity Configuration

- business entities yes yes

64 Appendix A: Design Objects Reference

Informatica MDM Hub Component Validate Promote, Import, Export

- business entity services yes yes

- REST business entity service configuration yes yes

- SearchableCO business entity service configuration yes yes

- WriteCO business entity service configuration yes yes

Related Topics:
• “Validating Metadata” on page 18

• “Promoting Changes Between Repositories” on page 28

• “Importing Design Objects” on page 47

• “Exporting Repositories” on page 54

• “Design Objects and Changes in a Change List XML File” on page 68

Design Object Dependencies
The following table describes dependencies between design objects.

Object Type Dependencies

system none

base object - columns
- match configuration
- validation rules
Note:
- If staging table lookups, match paths, and validation rules refer to other

design objects. then such design objects are required dependencies.
- A foreign key does not imply a required dependency to the related design

object. The foreign key is imported only if both design objects are imported.
Before importing, the user is informed of any foreign keys that are not
imported.

staging table base object, columns, system

landing table columns

query Any design objects used in a query (such as base objects)

package query

mapping - landing tables
- staging tables

Design Object Dependencies 65

Object Type Dependencies

cleanse function Any other cleanse functions used.
Note: If a cleanse function imports one function from a custom Java library, all
functions from that library are imported.

Hierarchy Manager base objects and packages used in the configuration

business entities base objects

business entity field - base object column
- parent business entity node

business entity child base object relationship between parent base object and child base object

business entity referenceOne and
referenceMany element

referenced base object

business entity service inputs that are generated from business entity

writeCO business entity service business entity definitions

searchCO business entity service business entity definitions

business entities based on
Hierarchy Manager enabled base
objects

Hierarchy Manager items such as hierarchies and relationship types

Related Topics:
• “Dependencies” on page 10

• “Dependency Conflicts” on page 30

Design Objects That Can Be Renamed
You can rename only the following design objects, during a promotion or import:

• Base Object

• Cleanse Library

Note: You can rename only internal cleanse libraries (user libraries or Java libraries) created with the
Cleanse Functions tool. Renaming of external cleanse functions from third-party cleanse engines is not
supported.

66 Appendix A: Design Objects Reference

A p p e n d i x B

Change List Reference
This appendix includes the following topics:

• Overview, 67

• Change List XSD File, 67

• Root Tags and Attributes in a Change List XML File, 68

• Types of Changes in a Change List XML File, 68

• Design Objects and Changes in a Change List XML File, 68

Overview
This appendix provides a reference for Informatica MDM Hub change list XML files.

Note: A change list XML file can contain references to system objects—such as the Admin system, system
cleanse functions, and the Hierarchy Manager RBO objects—that are not included in the change list XML file.
The Repository Manager resolves these references internally.

Related Topics:
• “Change Lists” on page 11

Change List XSD File
The siperian-changelist.xsd file defines the structure of change list XML files. This file is provided in the
Informatica MDM Hub Resource Kit. For more information, see the Informatica MDM Hub Resource Kit Guide.

67

Root Tags and Attributes in a Change List XML File

Tag Description

<changeList> Root tag for a change list XML file. Attributes include:
- xmlns:java="http://java.sun.com"
- xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="siperian-changelist.xsd"
- xsi:schemaLocation="http://java.sun.com java.xsd"
- creationDate=time stamp when the file was created
- description=description specified by the user. For comparison change lists, default description

refers to the source and target repositories (for example: "Compare docs--ORS2 (source) to docs--
ORS1 (target)")

- listType=one of the following values: "creation" or "comparison"
- name=descriptive name specified by the user
- version=version number of the change list XML schema (such as version=2)

<changes> List of changes to apply to the target repository.

Types of Changes in a Change List XML File
In the Repository Manager, a change is an operation in the change list that is executed against the target
repository. For example, a change might add a table, update settings on a match rule, delete a package, move
a query to different query group, and so on. The following table describes the types of changes that are
defined in a change list XML file.

Change Description

addObjectType Adds the specified design object with the associated properties.

modifyObjectType Adds the specified design object with the associated properties.

deleteObjectType Adds the specified design object with the associated properties.

revertObjectType Applies to Hierarchy Manager design objects and refers to the process of reverting a Hierarchy
Manager entity object or relationship object to a Informatica MDM Hub base object.

Design Objects and Changes in a Change List XML
File

The following table lists the types of design objects, and associated changes, that can occur in a change list
XML file. For detailed descriptions of the properties associated with each design object, refer to the design
object’s documentation in the Multidomain MDM Configuration Guide or other document as appropriate. For

68 Appendix B: Change List Reference

other objects specified in the change list XML file, such as ColumnDataType and ChangeError, refer to the
XSD file described in “Change List XSD File” on page 67.

Component Design Object Change

Batch BatchGroup

addBatchGroup

deleteBatchGroup

modifyBatchGroup

Cleanse

CleanseFunction addCleanseFunction

deleteCleanseFunction

modifyCleanseFunction

CleanseLibrary addCleanseLibrary

deleteCleanseLibrary

modifyCleanseLibrary

Hierarchy Manager

HmBlob addHmBlob

deleteHmBlob

modifyHmBlob

HMColumnPackage addHmColumnPackage

deleteHmColumnPackage

modifyHmColumnPackage

HmEntityObject addHmEntityObject

revertHmEntityObject

HmEntityType addHmEntityType

deleteHmEntityType

modifyHmEntityType

HmHierarchy addHmHierarchy

deleteHmHierarchy

modifyHmHierarchy

HMPackage addHmPackage

deleteHmPackage

HmProfile addHmProfile

Design Objects and Changes in a Change List XML File 69

Component Design Object Change

deleteHmProfile

modifyHmProfile

HMRelationshipObject addHmRelationshipObject

revertHmRelationshipObject

HmRelationshipType

addHmRelationshipType

deleteHmRelationshipType

modifyHmRelationshipType

HmSandbox addHmSandbox

deleteHmSandbox

modifyHmSandbox

Match

MatchColumn addMatchColumn

deleteMatchColumn

modifyMatchColumn

MatchPathComponent addMatchPathComponent

deleteMatchPathComponent

modifyMatchPathComponent

MatchPathComponentFilter addMatchPathComponentFilter

deleteMatchPathComponentFilter

modifyMatchPathComponentFilter

MatchPopulation addMatchPopulation

modifyMatchPopulation

MatchRuleSet addMatchRuleSet

deleteMatchRuleSet

modifyMatchRuleSet

PrimaryKeymatchRule addPrimaryKeyMatchRule

deletePrimaryKeyMatchRule

modifyPrimaryKeyMatchRule

70 Appendix B: Change List Reference

Component Design Object Change

Message Triggers Message Triggers addMessageTrigger

deleteMessageTrigger

modifyMessageTrigger

Package

Package (including packages
based on custom queries)

addPackage

deletePackage

modifyPackage

PackageColumn modifyPackageColumn

Query

Query addQuery

deleteQuery

modifyQuery

QueryGroup addQueryGroup

deleteQueryGroup

modifyQueryGroup

Schema

BaseObject addBaseObject

deleteBaseObject

modifyBaseObject

modifyCascadeUnmerge

BaseObjectColumn addBaseObjectColumn

deleteBaseObjectColumn

modifyBaseObjectColumn

ForeignKey addForeignKey

deleteForeignKey

Index addIndex

deleteIndex

modifyIndex

LandingTable addLandingTable

deleteLandingTable

Design Objects and Changes in a Change List XML File 71

Component Design Object Change

modifyLandingTable

LandingTableColumn addLandingTableColumn

deleteLandingTableColumn

modifyLandingTableColumn

Mapping addMapping

deleteMapping

modifyMapping

StagingTable addStagingTable

deleteStagingTable

modifyStagingTable

StagingTableColumn addStagingTableColumn

deleteStagingTableColumn

modifyStagingTableColumn

SystemColumnTrust modifySystemColumnTrust

SystemTable addSystemTable

SystemTableColumn systemTableColumn

SystemTableOrderColumn orderColumn

Security Access Manager

ResourceGroup addResourceGroup

deleteResourceGroup

modifyResourceGroup

Role addRole

deleteRole

modifyRole

SecureResource addSecureResource

deleteSecureResource

Smart Search SearchableField addSearchableField

modifySearchableField

72 Appendix B: Change List Reference

Component Design Object Change

deleteSearchableField

Source Systems

DistinctSystem addDistinctSystem

deleteDistinctSystem

modifyDistinctSystem

ImmutableSystem modifyImmutableSystem

System addSystem

deleteSystem

modifySystem

Validation

ValidationRule

addValidationRule

deleteValidationRule

modifyValidationRule

Related Topics:
• “Design Objects Supported in Repository Manager” on page 63

• “Change List XSD File” on page 67

Design Objects and Changes in a Change List XML File 73

A p p e n d i x C

MetCommand Reference
This appendix includes the following topics:

• Overview, 74

• About MetCommand, 74

• Before You Begin, 75

• Usage, 75

• Examples, 77

• Return Codes, 78

• Script Execution, 78

• Extending MetCommand, 79

Overview
This appendix provides a reference for the MetCommand utility.

About MetCommand
MetCommand is a command-line wrapper for the Repository Manager APIs, which are used to manage the
metadata in a Informatica MDM Hub implementation.

API Call Description

applyChangeList Apply a changelist.

createChangeList Create a changelist.

getOrsMetadata Export metadata to the specified file.

validateChangeList Validate a changelist.

validateMetadata Validate a repository.

For more information about these APIs, see the Informatica MDM Hub Services Integration Framework Guide
and the Informatica MDM Hub Javadoc.

74

Before You Begin
Complete the instructions in this section before you begin using MetCommand.

Prerequisites
MetCommand is a Java program. Therefore, a JRE or JDK must be installed, and the java command must be
in the OS path.

Connection Setup
The properties for connecting to the Informatica MDM Hub are found in the following file:

MetCommand\source\resources\properties\SiperianConnection.properties
You should edit this file and configure the username, password, and orsId for your Informatica MDM Hub
installation.

• Uncomment the protocol for the application server you are using.

• Comment out the application servers you are not using.

• If your application server is not on localhost, replace localhost with the host name of the application
server.

• The orsId is used by default as the sourceOrsId. This can be overridden with a command-line argument.
The orsId is the name of the ORS as registered in the Databases tool in the Hub Console.

Usage
This section describes how to use MetCommand.

Help Output
The metcommand.cmd file (on Windows) displays usage information if you run the utility from the command
line without any parameters.

>metcommand
usage: MetCommand
-applyChangeList apply a changelist (-sourceXmlFilename, -targetOrsId)
-createChangeList create a changelist (-sourceOrsId|-sourceXmlFilename,

 -targetOrsId, -outputFilename)
-getOrsMetadata export metadata to the specified file (-sourceOrsId,
 -outputFilename)
-outputFilename <arg> output file name
-password Owner password
-propertiesFilename <arg> hub client properties file name
-rollbackToLast rollback to last change
-sourceOrsId <arg> source ors id
-sourceXmlFilename <arg> source ors file
-targetOrsId <arg> target ors id
-validateChangeList validate a changelist (-sourceXmlFilename, -targetOrsId)
-validateMetadata validate a ORS (-targetOrsId)

Before You Begin 75

Command-line Arguments
The following table describes the command-line arguments.

Argument Description Associated Argument(s)

-applyChangeList Applies a changelist. -sourceXmlFilename
-targetOrsId
-rollbackToLast
-password

-createChangeList Creates a changelist. -sourceOrsId or -
sourceXmlFilename
-targetOrsId
-outputFilename

-getOrsMetadata Exports metadata to the specified file. -sourceOrsId
-outputFilename

-outputFilename <arg> Output file name. <arg>=valid filename

-password If specified, MetCommand prompts the user for the
password of the ORS schema owner in the
command window or shell.

-propertiesFilename <arg> Client properties file name. <arg>=valid filename

-rollbackToLast Rolls back to the last change. If not specified,
applyChangeList defaults to a full rollback.

-sourceOrsId <arg> ORS id of the source repository. <arg>=valid ORS ID

-sourceXmlFilename<arg> Filename of the source repository (changelist). <arg>=valid filename

-targetOrsId <arg> ORS id of the target repository. <arg>=valid ORS ID

-validateChangeList Validates a changelist. -sourceXmlFilename
-targetOrsId
-password

-validateMetadata Validates an ORS. -targetOrsId

XML Over HTTP
Note: The properties are set to communicate with the Hub via XML over HTTP. The metcommand.cmd file
references only the JAR files that support this protocol – not the ones needed for EJB or SOAP. This is done
because there would be little benefit to using the other protocols here, and the JAR files user is not
dependent on the application server that is being used.

Proxy User Access
If an ORS is currently registered with a proxy user, in order to validate a repository or apply a changelist,
MetCommand must be configured to prompt for the password of the schema owner (-password argument).
The user must provide a valid password in order for MetCommand to execute successfully on the target ORS.

76 Appendix C: MetCommand Reference

For example:

cmd /c metcommand -validateChangeList -targetOrsId %target_ors% -sourceXmlFilename
 %changelist_file% -password
cmd /c metcommand -applyChangeList -targetOrsId %target_ors% -sourceXmlFilename
 %changelist_file% -password

The password prompt is not used with other MetCommand operations. For information about proxy user
configuration, see the Multidomain MDM Installation Guide and the Multidomain MDM Configuration Guide.

Rolling Back Changes When Applying a Changelist
When using the applyChangeList argument with MetCommand, the -rollbackToLast argument is used to
perform a partial rollback. For example:

cmd /c metcommand -applyChangeList -targetOrsId %target_ors% -sourceXmlFilename
 %changelist_file% -rollbackToLast -password

If not specified, applyChangeList defaults to a full rollback.

Examples
This section provides examples of MetCommand usage.

Get Metadata
metcommand -getOrsMetadata -sourceOrsId localhost-orcl-cmx_ors2
ORS Metadata has been written to: localhost-orcl-cmx_ors2.change.xml

Create ChangeList
metcommand -createChangeList -sourceOrsId localhost-orcl-cmx_ors1 -targetOrsId
 localhost-orcl-cmx_ors2
Change list has been written to: localhost-orcl-cmx_ors1.change.xml

Or

metcommand -createChangeList -sourceXmlFilename localhost-orcl-cmx_ors1.change.xml
 -targetOrsId localhost-orcl-cmx_ors2 -outputFilename changelist.change.xml
Change list has been written to: changelist.change.xml

Validate ChangeList
metcommand -validateChangeList -sourceXmlFilename changelist.change.xml
 -targetOrsId localhost-orcl-cmx_ors2
The change list is valid.

For an ORS that is currently registered with a proxy user (-password argument is required):

metcommand -validateChangeList -sourceXmlFilename changelist.change.xml -targetOrsId
 localhost-orcl-cmx_ors2 -password
The change list is valid.

Apply ChangeList
metcommand -applyChangeList -sourceXmlFilename changelist.change.xml -targetOrsId
 localhost-orcl-cmx_ors2
The change list has been applied.

Examples 77

For an ORS that is currently registered with a proxy user (-password argument is required):

metcommand -applyChangeList -sourceXmlFilename changelist.change.xml -targetOrsId
 localhost-orcl-cmx_ors2 -password
The change list has been applied.

RollbackToLast
metcommand -applyChangeList -sourceXmlFilename changelist.change.xml -targetOrsId
 localhost-orcl-cmx_ors2 –rollbackToLast
A partial rollback will happen.

For an ORS that is currently registered with a proxy user (-password argument is required):

metcommand -applyChangeList -sourceXmlFilename changelist.change.xml -targetOrsId
 localhost-orcl-cmx_ors2 -rollbackToLast –password
A partial rollback will happen.

Validate Metadata
metcommand -validateMetadata -targetOrsId localhost-orcl-cmx_ors2
The ORS is valid.

Return Codes
Each METCommand API call option returns an integer value (0 for success, -1 for failure), which can be
trapped and handled in a script.

The following table describes the meaning associated with a Failure (return code=-1) for the API call options.

API Call Meaning

validateMetadata MET validation was not successfully initiated, or validation messages with severity level Errors
and FATAL were returned.

validateChangeList Validation of changelist was not successful.

createChangeList Changelist was not created.

applyChangeList Changelist was not applied.

rollbackToLast Rollback to last change not done.

getOrsMetadata ORS Metadata was not written to file.

Script Execution
MetCommand can be executed inside a script that automates the promotion of design objects from one ORS
to another.

78 Appendix C: MetCommand Reference

Running a Custom Script
If you create a custom script:

1. Run the newly-created script from the following directory:

Windows:

resourcekit\samples\MetCommand
Unix:

resourcekit/samples/metcommand
2. Check for any error messages in the command line window or redirect the output and check the

execution of Met API calls.

Example Script
The following code shows a Windows batch script that makes various MetCommand calls. You can adapt
this script using your schema names.

REM Sample Windows batch script using METCommand
echo off
set target_ors=localhost-orcl-target_ors
set source_ors=localhost-orcl-newtest1
set changelist_file=changelist1.change.xml
cmd /c metcommand -validateMetadata -targetOrsId %source_ors%
IF NOT %ERRORLEVEL% == 0 GOTO METCOMMAND_ERRORED
cmd /c metcommand -validateMetadata -targetOrsId %target_ors%
IF NOT %ERRORLEVEL% == 0 GOTO METCOMMAND_ERRORED
cmd /c metcommand -createChangeList -targetOrsId %target_ors% -sourceOrsId %source_ors%
 -outputFilename %changelist_file%
IF NOT %ERRORLEVEL% == 0 GOTO METCOMMAND_ERRORED
cmd /c metcommand -validateChangeList -targetOrsId %target_ors% -sourceXmlFilename
 %changelist_file%
IF NOT %ERRORLEVEL% == 0 GOTO METCOMMAND_ERRORED

cmd /c metcommand -applyChangeList -targetOrsId %target_ors% -sourceXmlFilename
 %changelist_file%
IF NOT %ERRORLEVEL% == 0 GOTO METCOMMAND_ERRORED
cmd /c metcommand -validateMetadata -targetOrsId %target_ors%
IF NOT %ERRORLEVEL% == 0 GOTO METCOMMAND_ERRORED
GOTO DONE
:METCOMMAND_ERRORED
ECHO MetCommand Failed
:DONE

ECHO Done

Extending MetCommand
The source code and build files for MetCommand are included in the Resource Kit as an example of how to
use the Repository Manager APIs. This allows for modifications or extensions to be made if needed.

Extending MetCommand 79

I n d e x

C
change list

applying a change list 45
change descriptions 43
change details 44

change lists
about change lists 11
comparison change lists 12
creation change lists 12
reference 67
siperian-changelist.xsd file 67
types of 12
XML files 12

command-line utility 74
Common Warehouse Model (CWM)

export tab 58
exporting files 61
import tab 58
importing files 59
overview 58

comparison change lists 12
conflicts

actions to resolve 30
conflict indicators 35
dependency conflicts 30
finding 38
property conflicts 29

D
dependencies 10
dependency conflicts 30
design objects

about design objects 10
dependencies 10

E
exclusive lock 17
exporting

about exporting 54
command buttons 55
considerations for 55
supported objects 63

H
Hierarchy Manager licensing requirements 13

I
importing

about importing 47
applying changes 52
command buttons 49
considerations for 48
Hierarchy Manager requirements 13
Java cleanse adapters 13
renaming 51
rollback options 39, 45, 52
selecting design objects 51
source repository 49
supporting objects 63
target repository 50
task summary 49
user exits 13

J
Java cleanse adapters 13

M
metadata

about metadata 10
Master Database metadata 11
repository metadata 11
validating 23
where stored 11

metadata validation
validation checks 23

MetCommand 74

P
promoting

about promoting 28
change list

running a simulation 44
saving changes 44
target repository, selecting 42
task summary 40

conflict indicators 35
considerations for 31
dependency conflicts 30
Hierarchy Manager requirements 13
Java cleanse adapters 13
property conflicts 29
rolling back changes 39, 45, 52
scenarios 28
selective promotion 29
supported objects 63

80

promoting (continued)
synchronize promotion 29
user exits 13

visual
applying changes 39
automatic conflict resolution 38
command buttons 33
context menus 36
finding conflicts 38
manual conflict resolution 37
markup mode 38
multiple selections 36
promoting selected design objects 36
properties panel 36
related design objects 36
saving changes in a change list 39
source repository, selecting 34
target repository, selecting 34
task summary 32

promoting change list
command buttons 41
comparing repositories 42
navigating changes 43
navigating to the Change List tab 41
opening a change list XML file 43

property conflicts 29

R
renaming design objects 51
repositories

about repositories 11
lists of 16
source repositories 11
target repositories 11

Repository Manager
about the Repository Manager 9
command buttons 16
navigating 15
repository lists 16
starting 15
tabs 16

S
Services Integration Framework (SIF) requests 12
severity levels 20
siperian-changelist.xsd file 67
source repositories 11
system objects 11

T
target repositories 11

U
user exits 13

V
validating

about validating 18
command buttons 20
history 25
information pane 23
logical model 18
physical model 18
process overview 19
properties pane 24
scope of 19
severity levels 20
supported objects 63
validation indicators 20

validation results
saving 25

visual promotion
design object hierarchy 35
navigating to the Visual tab 33

Index 81

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction
	Overview
	About the Repository Manager Tool
	Metadata Management Concepts
	Metadata
	Design Objects
	Repositories
	Change Lists
	Real-Time Metadata Management
	Considerations When Copying Metadata
	Monitoring the Results of Changes

	Chapter 2: Getting Started with Repository Manager
	Overview
	Starting Repository Manager
	Repository Manager Interface Components
	Tabs
	Command Buttons
	Repository Lists

	Navigating the Repository Manager
	Automatic Exclusive Locking
	Viewing the Schema in the Graphical Model View

	Chapter 3: Validating Metadata
	Overview
	About the Metadata Validation Process
	Logical Model and Physical Schema Should Match
	Metadata Validation Process
	Scope of Metadata Validation
	Issue Severity Levels
	Validation Indicator
	Command Buttons on the Validation Tab

	Operational Reference Store Metadata Validation
	Validating Metadata
	Prior Validation Results for Imported Schemas
	Filtering Issues
	Saving the Validation Results
	Showing the Validation History

	Metadata Repair Process
	Metadata Repair Results

	Repairing Metadata in a Repository

	Chapter 4: Promoting Changes Between Repositories
	Promoting Changes Between Repositories Overview
	Promotion Scenarios
	Design Objects That Can Be Promoted
	Conflicts When Promoting Objects
	Considerations for the Promotion Process

	Promoting Changes Visually
	Overview of Visual Promotion Tasks
	Navigating to the Promote / Visual Tab
	Command Buttons on the Visual Tab
	Selecting the Source Repository for Visual Promotion
	Selecting the Target Repository for Visual Promotion
	Navigating the Design Object Hierarchy for Visual Promotion
	Visually Promoting Changes to the Target Repository
	Viewing with Markup
	Finding Conflicts
	Reverting Changes
	Saving Changes in a Comparison Change List File
	Applying Changes to the Target Repository

	Promoting Changes Using Change Lists
	Overview of Change List Promotion Tasks
	Navigating to the Promote / Change List Tab
	Command Buttons on the Change List Tab
	Select the Target Repository for Change List Promotion
	Creating a Comparison Change List by Comparing Repositories
	Opening a Comparison Change List XML File
	Navigating the List of Changes
	Viewing the Brief Description of a Change
	Viewing the Detailed Description of a Change
	Saving Changes in a Comparison Change List XML File
	Running a Simulation of Applying a Change List
	Applying a Change List to the Target Repository

	Chapter 5: Importing Design Objects
	Overview
	About Importing Design Objects
	Import Process
	Design Objects That Can Be Imported
	Considerations for the Import Process

	Importing Design Objects
	Overview of Import Tasks
	Command Buttons on the Import Tab
	Selecting the Source Repository to Import
	Selecting the Target Repository for Import
	Showing and Hiding Design Objects in the Hierarchy
	Selecting Design Objects to Import
	Renaming Design Objects
	Importing Selected Design Objects
	Update Relationship Base Object Start Date and End Date Information

	Chapter 6: Exporting Repositories
	Overview
	About Exporting a Repository
	About Exporting
	Design Objects That Can Be Exported
	How Exported Change List XML Files Get Used
	Considerations for the Export Process
	Command Buttons on the Export Tab

	Exporting a Repository
	Exporting a Subset of Design Objects

	Chapter 7: Common Warehouse Model Support
	Overview
	Import from CWM File Tab
	Command Buttons on the Import from CWM file Tab

	Importing Design Objects from a CWM File
	Export to CWM File Tab
	Command Buttons on the Export to CWM file Tab

	Exporting a Repository to a CWM File

	Appendix A: Design Objects Reference
	Overview
	Design Objects Supported in Repository Manager
	Design Object Dependencies
	Design Objects That Can Be Renamed

	Appendix B: Change List Reference
	Overview
	Change List XSD File
	Root Tags and Attributes in a Change List XML File
	Types of Changes in a Change List XML File
	Design Objects and Changes in a Change List XML File

	Appendix C: MetCommand Reference
	Overview
	About MetCommand
	Before You Begin
	Prerequisites
	Connection Setup

	Usage
	Help Output
	Command-line Arguments
	XML Over HTTP
	Proxy User Access
	Rolling Back Changes When Applying a Changelist

	Examples
	Get Metadata
	Create ChangeList
	Validate ChangeList
	Apply ChangeList
	RollbackToLast
	Validate Metadata

	Return Codes
	Script Execution
	Running a Custom Script
	Example Script

	Extending MetCommand

	Index

