Table of Contents

Search

  1. Preface
  2. Introduction to Informatica Big Data Management
  3. Connections
  4. Mappings in the Hadoop Environment
  5. Mapping Objects in the Hadoop Environment
  6. Processing Hierarchical Data on the Spark Engine
  7. Stateful Computing on the Spark Engine
  8. Monitoring Mappings in the Hadoop Environment
  9. Mappings in the Native Environment
  10. Profiles
  11. Native Environment Optimization
  12. Data Type Reference
  13. Complex File Data Object Properties
  14. Function Reference
  15. Parameter Reference

Big Data Process

Big Data Process

As part of a big data project, you collect the data from diverse data sources. You can perform profiling, cleansing, and matching for the data. You build the business logic for the data and push the transformed data to the data warehouse. Then you can perform business intelligence on a view of the data.
Based on your big data project requirements, you can perform the following high-level tasks:
  1. Collect the data.
  2. Cleanse the data
  3. Transform the data.
  4. Process the data.
  5. Monitor jobs.


Updated December 13, 2018