Table of Contents


  1. Preface
  2. Introduction to Informatica Big Data Management
  3. Connections
  4. Mappings in the Hadoop Environment
  5. Mapping Objects in the Hadoop Environment
  6. Processing Hierarchical Data on the Spark Engine
  7. Stateful Computing on the Spark Engine
  8. Monitoring Mappings in the Hadoop Environment
  9. Mappings in the Native Environment
  10. Profiles
  11. Native Environment Optimization
  12. Data Type Reference
  13. Complex File Data Object Properties
  14. Function Reference
  15. Parameter Reference

Processing Big Data on a Grid

Processing Big Data on a Grid

You can run an Integration Service on a grid to increase the processing bandwidth. When you enable grid, the Integration Service runs a service process on each available node of the grid to increase performance and scalability.
Big data may require additional bandwidth to process large amounts of data. For example, when you run a Model repository profile on an extremely large data set, the Data Integration Service grid splits the profile into multiple mappings and runs the mappings simultaneously on different nodes in the grid.

Updated December 13, 2018