Table of Contents

Search

  1. Preface
  2. Understanding Pipeline Partitioning
  3. Partition Points
  4. Partition Types
  5. Pushdown Optimization
  6. Pushdown Optimization Transformations
  7. Real-time Processing
  8. Commit Points
  9. Row Error Logging
  10. Workflow Recovery
  11. Stopping and Aborting
  12. Concurrent Workflows
  13. Grid Processing
  14. Load Balancer
  15. Workflow Variables
  16. Parameters and Variables in Sessions
  17. Parameter Files
  18. FastExport
  19. External Loading
  20. FTP
  21. Session Caches
  22. Incremental Aggregation
  23. Session Log Interface
  24. Understanding Buffer Memory
  25. High Precision Data
  26. POWERCENTERHELP

Advanced Workflow Guide

Advanced Workflow Guide

Partitioning Multiple Input Group Transformations

Partitioning Multiple Input Group Transformations

The master thread creates a reader and transformation thread for each pipeline in the target load order group. A target load order group has multiple pipelines when it contains a transformation with multiple input groups.
When you connect more than one pipeline to a multiple input group transformation, the Integration Service maintains the transformation threads or creates a new transformation thread depending on whether or not the multiple input group transformation is a partition point:
  • Partition point does not exist at multiple input group transformation.
    When a partition point does not exist at a multiple input group transformation, the Integration Service processes one thread at a time for the multiple input group transformation and all downstream transformations in the stage.
  • Partition point exists at multiple input group transformation.
    When a partition point exists at a multiple input group transformation, the Integration Service creates a new pipeline stage and processes the stage with one thread for each partition. The Integration Service creates one transformation thread for each partition regardless of the number of output groups the transformation contains.


Updated July 04, 2018