Azure OpenAI Prompt Chaining

Azure OpenAI Prompt Chaining

Step 3: Configure and publish the process

Step 3: Configure and publish the process

Configure the deployment details of the LLM model and publish the processes.
  1. Open the
    Prompt Chaining Azure OpenAI
    process.
  2. On the
    Temp Fields
    tab of the
    Start
    step, enter values for the following fields:
    • In the
      api_version
      field, enter the API version of the LLM model. Default is
      2024-06-01
      . You can optionally edit the api version.
    • In the
      deployment_id
      field, enter the user-specific deployment ID.
  3. Optionally, in the
    Configure Request Parameters
    step, configure the prompt instructions in the
    Assignments
    field by updating the
    Prompt_Configuration
    field using the Expression Editor, as shown in the following sample code:
    <GenerationConfig_AzureAI> <topP>1</topP> <max_tokens>500</max_tokens> <temperature>0.5</temperature> </GenerationConfig_AzureAI>
    For the
    Prompt_Configuration
    field, enter values for the following properties:
    Property
    Description
    max_tokens
    Defines the maximum number of tokens that the model can generate in its response. Setting a limit ensures that the response is concise and fits within the desired length constraints.
    temperature
    Controls the randomness of the model's output. A lower value makes the output more deterministic, while a higher value increases randomness and creativity. For example, a temperature of 0.5 balances between deterministic and creative outputs.
    topP
    Determines the cumulative probability threshold for token selection. The model considers the smallest set of tokens whose cumulative probability meets or exceeds topP. For example, if topP is set to 0.1, the model considers only the top 10% most probable tokens at each step.
  4. In the
    Create Prompt 1
    step, enter the prompt instructions in the
    Assignments
    field by updating the
    Prompt_Request
    field using the Expression Editor as shown in the following sample code:
    <CreateChatCompletionRequest> <temperature>{$temp.Prompt_Configuration[1]/temperature }</temperature> <top_p>{$temp.Prompt_Configuration[1]/top_p }</top_p> <max_tokens>{$temp.Prompt_Configuration[1]/max_tokens }</max_tokens> <messages> <role>system</role> <content>{$input.First_System_Prompt } </content> </messages> <messages> <role>user</role> <content>{$input.First_User_Prompt }</content> </messages> </CreateChatCompletionRequest>
    After configuring the prompt instructions, the process sends the details to the LLM to fetch the required response, and then stores the first response.
  5. In the
    Create Prompt 2
    step, in the
    Assignments
    field, update the
    Prompt_Request
    field using the Expression Editor as shown in the following sample code:
    <CreateChatCompletionRequest> <temperature>{$temp.Prompt_Configuration[1]/temperature }</temperature> <top_p>{$temp.Prompt_Configuration[1]/top_p }</top_p> <max_tokens>{$temp.Prompt_Configuration[1]/max_tokens }</max_tokens> <messages> <role>system</role> <content> {$input.First_System_Prompt} </content> </messages> <messages> <role>user</role> <content>{ $input.First_User_Prompt }</content> </messages> <messages> <role>assistant</role> <content>{ $temp.Prompt_Response[1]/choices[1]/message[1]/content }</content> </messages> <messages> <role>user</role> <content>{$input.Second_User_Prompt }</content> </messages> </CreateChatCompletionRequest>
    The LLM uses both the requests as an instruction to prepare the final response.
  6. Save and publish the process.

0 COMMENTS

We’d like to hear from you!