Table of Contents

Search

  1. Preface
  2. Introduction to Informatica Big Data Management
  3. Mappings in the Hadoop Environment
  4. Mapping Sources in the Hadoop Environment
  5. Mapping Targets in the Hadoop Environment
  6. Mapping Transformations in the Hadoop Environment
  7. Processing Hierarchical Data on the Spark Engine
  8. Configuring Transformations to Process Hierarchical Data
  9. Processing Unstructured and Semi-structured Data with an Intelligent Structure Model
  10. Stateful Computing on the Spark Engine
  11. Monitoring Mappings in the Hadoop Environment
  12. Mappings in the Native Environment
  13. Profiles
  14. Native Environment Optimization
  15. Cluster Workflows
  16. Connections
  17. Data Type Reference
  18. Function Reference
  19. Parameter Reference

Big Data Management User Guide

Big Data Management User Guide

Step 1. Collect the Data

Step 1. Collect the Data

Identify the data sources from which you need to collect the data.
Big Data Management provides several ways to access your data in and out of Hadoop based on the data types, data volumes, and data latencies in the data.
You can use PowerExchange adapters to connect to multiple big data sources. You can schedule batch loads to move data from multiple source systems to HDFS without the need to stage the data. You can move changed data from relational and mainframe systems into HDFS or the Hive warehouse. For real-time data feeds, you can move data off message queues and into HDFS.
You can collect the following types of data:
  • Transactional
  • Interactive
  • Log file
  • Sensor device
  • Document and file
  • Industry format

0 COMMENTS

We’d like to hear from you!