Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Introduction to Databricks Connector
  3. Connections for Databricks
  4. Mappings for Databricks
  5. Migrating a mapping
  6. SQL ELT with Databricks Connector
  7. Data type reference
  8. Troubleshooting

Databricks Connector

Databricks Connector

Configure Spark parameters

Configure Spark parameters

Before you connect to the job cluster, you must configure the Spark parameters on AWS and Azure.

Configuration on AWS

Add the following Spark configuration parameters for the job cluster and restart the cluster:
  • spark.hadoop.fs.s3a.access.key <value>
  • spark.hadoop.fs.s3a.secret.key <value>
  • spark.hadoop.fs.s3a.endpoint <value>
Ensure that the access and secret key configured has access to the buckets where you store the data for Databricks tables.

Configuration on Azure

Add the following Spark configuration parameters for the job cluster and restart the cluster:
  • fs.azure.account.oauth2.client.id.<storage-account-name>.dfs.core.windows.net <value>
  • fs.azure.account.auth.type.<storage-account-name>.dfs.core.windows.net <value>
  • fs.azure.account.oauth2.client.secret.<storage-account-name>.dfs.core.windows.net <Value>
  • fs.azure.account.oauth.provider.type.<storage-account-name>.dfs.core.windows.net org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider
  • fs.azure.account.oauth2.client.endpoint.<storage-account-name>.dfs.core.windows.net https://login.microsoftonline.com/<Tenant ID>/oauth2/token
Ensure that the client ID and client secret configured has access to the file systems where you store the data for Databricks tables.

0 COMMENTS

We’d like to hear from you!