Table of Contents

Search

  1. Preface
  2. Performance Tuning Overview
  3. Target Optimization
  4. Source Optimization
  5. Transformation Optimization
  6. Mapping Optimization
  7. Partitioned Mapping Optimization
  8. Run-time Optimization
  9. SQL Data Service Optimization
  10. Web Service Optimization
  11. Connections Optimization
  12. Data Transformation Optimization

Performance Tuning Guide

Performance Tuning Guide

Datatype Conversion Optimization

Datatype Conversion Optimization

You can increase performance by eliminating unnecessary datatype conversions. For example, if a mapping moves data from an Integer column to a Decimal column, then back to an Integer column, the unnecessary datatype conversion slows performance. Where possible, eliminate unnecessary datatype conversions from mappings.
Consider the following solutions for datatype conversion bottlenecks:
Use integer values in place of other datatypes when performing comparisons using Lookup and Filter transformations.
For example, many databases store U.S. ZIP code information as a Char or Varchar datatype. If you convert the zip code data to an Integer datatype, the lookup database stores the zip code 94303-1234 as 943031234. This helps increase the speed of the lookup comparisons based on zip code.
Convert the source dates to strings through port-to-port conversions to increase mapping performance.
You can either leave the ports in targets as strings or change the ports to Date/Time ports.

0 COMMENTS

We’d like to hear from you!