Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Aggregator transformation
  6. Expression transformation
  7. Filter transformation
  8. Input transformation
  9. Joiner transformation
  10. Lookup transformation
  11. Mapplet transformation
  12. Normalizer transformation
  13. Output transformation
  14. Rank transformation
  15. Router transformation
  16. Sequence transformation
  17. Sorter transformation
  18. SQL transformation
  19. Union transformation

Transformations

Transformations

Filter conditions

Filter conditions

The filter condition is an expression that returns TRUE or FALSE.
You can create one or more simple filter conditions. A simple filter condition includes a field name, operator, and value. For example, Sales > 0 retains rows where all sales values are greater than zero.
Filter conditions are case sensitive. You can use the following operators in a simple filter:

    = (equals)

    < (less than)

    > (greater than)

    < = (less than or equal to)

    > = (greater than or equal to)

    ! = (not equals)

When you define more than one simple filter condition, the
mapping
task evaluates the conditions in the order that you specify. The task evaluates the filter conditions using the AND logical operator to join the conditions. The task returns rows that match all of the filter conditions.
You can use an advanced filter condition to define a complex filter condition. When you configure an advanced filter condition, you can incorporate multiple conditions using the AND or OR logical operators. You can use a constant to represent condition results: 0 is the equivalent of FALSE, and any non-zero value is the equivalent of TRUE.
When you change the filter condition type from simple to advanced, the Mapping Designer includes configured simple filter conditions in the advanced filter condition. You can use or delete the simple filter conditions. The conversion does not include parameters.
To filter rows that contain null values, use the ISNULL function to test the value of the field. To filter rows that contain spaces, use IS_SPACES.
For example, if you want to filter out rows that contain a null value in the First_Name field, use the following condition: IIF(ISNULL(First_Name),FALSE,TRUE). The condition states that if the First_Name field is NULL, the return value is FALSE. The
mapping
task discards the row. Otherwise, the row passes through to the next transformation.
In mappings in SQL ELT mode, you need to enter a filter condition that is valid in your target cloud data warehouse.

0 COMMENTS

We’d like to hear from you!