Table of Contents

Search

  1. Preface
  2. Introduction to Informatica Data Engineering Integration
  3. Mappings
  4. Mapping Optimization
  5. Sources
  6. Targets
  7. Transformations
  8. Python Transformation
  9. Data Preview
  10. Cluster Workflows
  11. Profiles
  12. Monitoring
  13. Hierarchical Data Processing
  14. Hierarchical Data Processing Configuration
  15. Hierarchical Data Processing with Schema Changes
  16. Intelligent Structure Models
  17. Blockchain
  18. Stateful Computing
  19. Appendix A: Connections Reference
  20. Appendix B: Data Type Reference
  21. Appendix C: Function Reference

HDFS or View File System (ViewFS) Data Extraction Mapping Example

HDFS or View File System (ViewFS) Data Extraction Mapping Example

Your organization needs to analyze purchase order details such as customer ID, item codes, and item quantity. The purchase order details are stored in a semi-structured compressed XML file in HDFS or ViewFS. The hierarchical data includes a purchase order parent hierarchy level and a customer contact details child hierarchy level. Create a mapping that reads all the purchase records from the file in HDFS or ViewFS. The mapping must convert the hierarchical data to relational data and write it to a relational target.
You can use the extracted data for business analytics.
The following figure shows the example mapping:
HDFS mapping example shows complex file input, a data processor transformation and a relational output.
You can use the following objects in the HDFS or ViewFS mapping:
HDFS Input
The input object, Read_Complex_File, is a Read transformation that represents a compressed XML file stored in HDFS or ViewFS.
Data Processor Transformation
The Data Processor transformation, Data_Processor_XML_to_Relational, parses the XML file and provides a relational output.
Relational Output
The output object, Write_Relational_Data_Object, is a Write transformation that represents a table in an Oracle database.
When you run the mapping, the Data Integration Service reads the file in a binary stream and passes it to the Data Processor transformation. The Data Processor transformation parses the specified file and provides a relational output. The output is written to the relational target.
You can configure the mapping to run in a native or Hadoop run-time environment.
Complete the following tasks to configure the mapping:
  1. Create an HDFS connection to read files from the Hadoop cluster.
  2. Create a complex file data object read operation. Specify the following parameters:
    • The file as the resource in the data object.
    • The file compression format.
    • The HDFS file location.
  3. Optionally, you can specify the input format that the Mapper uses to read the file.
  4. Drag and drop the complex file data object read operation into a mapping.
  5. Create a Data Processor transformation. Configure the following properties in the Data Processor transformation:
    • An input port set to buffer input and binary data type.
    • Relational output ports depending on the number of columns you want in the relational output. Specify the port size for the ports. Use an XML schema reference that describes the XML hierarchy. Specify the normalized output that you want. For example, you can specify PurchaseOrderNumber_Key as a generated key that relates the Purchase Orders output group to a Customer Details group.
    • Create a Streamer object and specify Streamer as a startup component.
  6. Create a relational connection to an Oracle database.
  7. Import a relational data object.
  8. Create a write transformation for the relational data object and add it to the mapping.

0 COMMENTS

We’d like to hear from you!