Table of Contents


  1. Preface
  2. Introduction to Informatica Data Engineering Integration
  3. Mappings
  4. Mapping Optimization
  5. Sources
  6. Targets
  7. Transformations
  8. Python Transformation
  9. Data Preview
  10. Cluster Workflows
  11. Profiles
  12. Monitoring
  13. Hierarchical Data Processing
  14. Hierarchical Data Processing Configuration
  15. Hierarchical Data Processing with Schema Changes
  16. Intelligent Structure Models
  17. Blockchain
  18. Stateful Computing
  19. Appendix A: Connections Reference
  20. Appendix B: Data Type Reference
  21. Appendix C: Function Reference



The infaoptimize argument defines whether you want to disable the performance optimization of Sqoop pass-through mappings on the Spark engine.
When you run a Sqoop pass-through mapping on the Spark engine, the Data Integration Service optimizes mapping performance in the following scenarios:
  • You read data from a Sqoop source and write data to a Hive target that uses the Text format.
  • You read data from a Sqoop source and write data to an HDFS target that uses the Flat, Avro, or Parquet format.
If you want to disable the performance optimization, set the --infaoptimize argument to false. For example, if you see data type issues after you run an optimized Sqoop mapping, you can disable the performance optimization.
Use the following syntax:
--infaoptimize false


We’d like to hear from you!