Table of Contents

Search

  1. Preface
  2. Introduction
  3. IDD Concepts
  4. Implementation Process
  5. IDD Configuration Manager
  6. Manual IDD Configuration
  7. IDD Global Properties
  8. Appendix A: Sizing and Platform Requirements
  9. Appendix B: Application Components
  10. Appendix C: IDD Security Configuration
  11. Appendix D: Data Security
  12. Appendix E: Example Role-Based Security Configuration
  13. Appendix F: Data Masking
  14. Appendix G: Siperian BPM Workflow Engine
  15. Appendix H: Locale Codes
  16. Appendix I: Troubleshooting
  17. Appendix J: Glossary

Data Director Implementation Guide

Data Director Implementation Guide

Validation

Validation

A cleanse function can be used to perform custom data validation.
Validation results are processed if the cleanse function has a validationStatus output parameter.
  • If the validationStatus parameter is blank, there are no validation errors and the process can continue.
  • If there are validation errors, the validationStatus parameter will include a series of validation messages describing the inputParameter name and a message. In the IDD application UI, each validation error is associated with an input value in a specific input column.
The Resource Kit contains the ValidationCleanseLib sample, which provides an example of a cleanse library with functions that perform validation in an IDD application.

0 COMMENTS

We’d like to hear from you!