Table of Contents

Search

  1. Preface
  2. Introduction to Informatica Data Engineering Integration
  3. Mappings
  4. Mapping Optimization
  5. Sources
  6. Targets
  7. Transformations
  8. Python Transformation
  9. Data Preview
  10. Cluster Workflows
  11. Profiles
  12. Monitoring
  13. Hierarchical Data Processing
  14. Hierarchical Data Processing Configuration
  15. Hierarchical Data Processing with Schema Changes
  16. Intelligent Structure Models
  17. Blockchain
  18. Stateful Computing
  19. Appendix A: Connections Reference
  20. Appendix B: Data Type Reference
  21. Appendix C: Function Reference

Run-time Process on the Spark Engine

Run-time Process on the Spark Engine

The Data Integration Service can use the Spark engine on a Hadoop cluster to run Model repository mappings.
To run a mapping on the Spark engine, the Data Integration Service sends a mapping application to the Spark executor. The Spark executor submits the job to the Hadoop cluster to run.
The following image shows how a Hadoop cluster processes jobs sent from the Spark executor:
The following events occur when Data Integration Service runs a mapping on the Spark engine:
  1. The Logical Data Transformation Manager translates the mapping into a Scala program, packages it as an application, and sends it to the Spark executor.
  2. The Spark executor submits the application to the Resource Manager in the Hadoop cluster and requests resources to run the application.
    When you run mappings on the HDInsight cluster, the Spark executor launches a spark-submit script. The script requests resources to run the application.
  3. The Resource Manager identifies the Node Managers that can provide resources, and it assigns jobs to the data nodes.
  4. Driver and Executor processes are launched in data nodes where the Spark application runs.


Updated September 28, 2020