Table of Contents

Search

  1. Preface
  2. Introduction to Informatica Data Engineering Integration
  3. Mappings
  4. Mapping Optimization
  5. Sources
  6. Targets
  7. Transformations
  8. Python Transformation
  9. Data Preview
  10. Cluster Workflows
  11. Profiles
  12. Monitoring
  13. Hierarchical Data Processing
  14. Hierarchical Data Processing Configuration
  15. Hierarchical Data Processing with Schema Changes
  16. Intelligent Structure Models
  17. Blockchain
  18. Stateful Computing
  19. Appendix A: Connections Reference
  20. Appendix B: Data Type Reference
  21. Appendix C: Function Reference

Sqoop Mapping-Level Arguments

Sqoop Mapping-Level Arguments

If a data object uses Sqoop, you can click the corresponding
Read
transformation or
Write
transformation in the Sqoop mapping to define the arguments that Sqoop must use to process the data. The Data Integration Service merges the additional Sqoop arguments that you specify in the mapping with the arguments that you specified in the JDBC connection and constructs the Sqoop command.
The Sqoop arguments that you specify in the mapping take precedence over the arguments that you specified in the JDBC connection. However, if you do not enable the Sqoop connector in the JDBC connection but enable the Sqoop connector in the mapping, the Data Integration Service does not run the mapping through Sqoop. The Data Integration Service runs the mapping through JDBC.
You can configure the following Sqoop arguments in a Sqoop mapping:
  • m or num-mappers
  • split-by
  • batch
  • infaoptimize
  • infaownername
  • schema
  • verbose
For a complete list of the Sqoop arguments that you can configure, see the Sqoop documentation.


Updated September 28, 2020