Table of Contents


  1. Preface
  2. Introduction to Informatica Data Engineering Integration
  3. Mappings
  4. Mapping Optimization
  5. Sources
  6. Targets
  7. Transformations
  8. Python Transformation
  9. Data Preview
  10. Cluster Workflows
  11. Profiles
  12. Monitoring
  13. Hierarchical Data Processing
  14. Hierarchical Data Processing Configuration
  15. Hierarchical Data Processing with Schema Changes
  16. Intelligent Structure Models
  17. Blockchain
  18. Stateful Computing
  19. Appendix A: Connections Reference
  20. Appendix B: Data Type Reference
  21. Appendix C: Function Reference

m or num-mappers

m or num-mappers

The m or num-mappers argument defines the number of map tasks that Sqoop must use to import and export data in parallel.
Use the following syntax:
-m <number of map tasks>
--num-mappers <number of map tasks>
If you configure the m argument or num-mappers argument, you must also configure the split-by argument to specify the column based on which Sqoop must split the work units.
Use the m argument or num-mappers argument to increase the degree of parallelism. You might have to test different values for optimal performance.
When you configure the m argument or num-mappers argument and run Sqoop mappings on the Spark or Blaze engines, Sqoop dynamically creates partitions based on the file size.
If you configure the num-mappers argument to export data on the Blaze or Spark engine, Sqoop ignores the argument. Sqoop creates map tasks based on the number of intermediate files that the Blaze or Spark engine creates.


We’d like to hear from you!