Table of Contents

Search

  1. Preface
  2. Introduction to Transformations
  3. Transformation Ports
  4. Transformation Caches
  5. Address Validator Transformation
  6. Aggregator Transformation
  7. Association Transformation
  8. Bad Record Exception Transformation
  9. Case Converter Transformation
  10. Classifier Transformation
  11. Comparison Transformation
  12. Consolidation Transformation
  13. Data Masking Transformation
  14. Data Processor Transformation
  15. Decision Transformation
  16. Duplicate Record Exception Transformation
  17. Expression Transformation
  18. Filter Transformation
  19. Hierarchical to Relational Transformation
  20. Java Transformation
  21. Java Transformation API Reference
  22. Java Expressions
  23. Joiner Transformation
  24. Key Generator Transformation
  25. Labeler Transformation
  26. Lookup Transformation
  27. Lookup Caches
  28. Dynamic Lookup Cache
  29. Macro Transformation
  30. Match Transformation
  31. Match Transformations in Field Analysis
  32. Match Transformations in Identity Analysis
  33. Normalizer Transformation
  34. Merge Transformation
  35. Parser Transformation
  36. Python Transformation
  37. Rank Transformation
  38. Read Transformation
  39. Relational to Hierarchical Transformation
  40. REST Web Service Consumer Transformation
  41. Router Transformation
  42. Sequence Generator Transformation
  43. Sorter Transformation
  44. SQL Transformation
  45. Standardizer Transformation
  46. Union Transformation
  47. Update Strategy Transformation
  48. Web Service Consumer Transformation
  49. Parsing Web Service SOAP Messages
  50. Generating Web Service SOAP Messages
  51. Weighted Average Transformation
  52. Window Transformation
  53. Write Transformation
  54. Appendix A: Transformation Delimiters

Developer Transformation Guide

Developer Transformation Guide

Dependent Masking Example

Dependent Masking Example

A data masking dictionary might contain address rows with the following values:
SNO
STREET
CITY
STATE
ZIP
COUNTRY
1
32 Apple Lane
Chicago
IL
61523
US
2
776 Ash Street
Dallas
TX
75240
US
3
2229 Big Square
Atleeville
TN
38057
US
4
6698 Cowboy Street
Houston
TX
77001
US
You need to mask source data with valid combinations of the city, state, and ZIP code from the Address dictionary.
Configure the ZIP port for substitution masking. Enter the following masking rules for the ZIP port:
Rule
Value
Dictionary Name
Address
Serial Number Column
SNO
Output Column
ZIP
Configure the City port for dependent masking. Enter the following masking rules for the City port:
Rule
Value
Dependent Column
ZIP
Output Column
City
Configure the State port for dependent masking. Enter the following masking rules for the State port:
Rule
Value
Dependent Column
ZIP
Output Column
State
When the Data Masking transformation masks the ZIP code, it returns the correct city and state for the ZIP code from the dictionary row.

0 COMMENTS

We’d like to hear from you!