Table of Contents

Search

  1. Preface
  2. Introduction to Transformations
  3. Transformation Ports
  4. Transformation Caches
  5. Address Validator Transformation
  6. Aggregator Transformation
  7. Association Transformation
  8. Bad Record Exception Transformation
  9. Case Converter Transformation
  10. Classifier Transformation
  11. Comparison Transformation
  12. Consolidation Transformation
  13. Data Masking Transformation
  14. Data Processor Transformation
  15. Decision Transformation
  16. Duplicate Record Exception Transformation
  17. Expression Transformation
  18. Filter Transformation
  19. Hierarchical to Relational Transformation
  20. Java Transformation
  21. Java Transformation API Reference
  22. Java Expressions
  23. Joiner Transformation
  24. Key Generator Transformation
  25. Labeler Transformation
  26. Lookup Transformation
  27. Lookup Caches
  28. Dynamic Lookup Cache
  29. Macro Transformation
  30. Match Transformation
  31. Match Transformations in Field Analysis
  32. Match Transformations in Identity Analysis
  33. Normalizer Transformation
  34. Merge Transformation
  35. Parser Transformation
  36. Python Transformation
  37. Rank Transformation
  38. Read Transformation
  39. Relational to Hierarchical Transformation
  40. REST Web Service Consumer Transformation
  41. Router Transformation
  42. Sequence Generator Transformation
  43. Sorter Transformation
  44. SQL Transformation
  45. Standardizer Transformation
  46. Union Transformation
  47. Update Strategy Transformation
  48. Web Service Consumer Transformation
  49. Parsing Web Service SOAP Messages
  50. Generating Web Service SOAP Messages
  51. Weighted Average Transformation
  52. Window Transformation
  53. Write Transformation
  54. Appendix A: Transformation Delimiters

Developer Transformation Guide

Developer Transformation Guide

Data Processor Transformation Overview

Data Processor Transformation Overview

The Data Processor transformation processes unstructured and semi-structured file formats in a mapping. Configure the transformation to process messaging formats, HTML pages, XML, JSON, and PDF documents. You can also convert structured formats such as ACORD, HIPAA, HL7, EDI-X12, EDIFACT, and SWIFT.
A mapping uses a Data Processor transformation to change documents from one format to another. The Data Processor transformation processes files of any format in a mapping. When you create a Data Processor transformation, you define components that convert the data.
A Data Processor transformation can contain multiple components to process data. Each component might contain other components.
For example, you might receive customer invoices in Microsoft Word files. You configure a Data Processor transformation to parse the data from each word file. Extract the customer data to a Customer table. Extract order information to an Orders table.
When you create a Data Processor transformation, you define an XMap, Script, or Library. An XMap converts an input hierarchical file into an output hierarchical file of another structure. A Library converts an industry messaging type into an XML document with a hierarchy structure or from XML to an industry standard format. A Script can parse source documents to hierarchical format, convert hierarchical format to other file formats, or map a hierarchical document to another hierarchical format.
Define Scripts in the Data Processor transformation IntelliScript editor. You can define the following types of Scripts:
  • Parser. Converts source documents to XML. The output of a Parser is always XML. The input can have any format, such as text, HTML, Word, PDF, or HL7.
  • Serializer. Converts an XML file to an output document of any format. The output of a Serializer can be any format, such as a text document, an HTML document, or a PDF.
  • Mapper. Converts an XML source document to another XML structure or schema. You can convert the same XML documents as in an XMap.
  • Transformer. Modifies the data in any format. Adds, removes, converts, or changes text. Use Transformers with a Parser, Mapper, or Serializer. You can also run a Transformer as stand-alone component.
  • Streamer. Splits large input documents, such as multi-gigabyte data streams, into segments. The Streamer processes documents that have multiple messages or records in them, such as HIPAA or EDI files.

0 COMMENTS

We’d like to hear from you!