Table of Contents

Search

  1. Preface
  2. Introduction to Informatica Big Data Management
  3. Mappings in the Hadoop Environment
  4. Mapping Sources in the Hadoop Environment
  5. Mapping Targets in the Hadoop Environment
  6. Mapping Transformations in the Hadoop Environment
  7. Processing Hierarchical Data on the Spark Engine
  8. Configuring Transformations to Process Hierarchical Data
  9. Processing Unstructured and Semi-structured Data with an Intelligent Structure Model
  10. Stateful Computing on the Spark Engine
  11. Monitoring Mappings in the Hadoop Environment
  12. Mappings in the Native Environment
  13. Profiles
  14. Native Environment Optimization
  15. Cluster Workflows
  16. Connections
  17. Data Type Reference
  18. Function Reference
  19. Parameter Reference

Big Data Management User Guide

Big Data Management User Guide

Step 2. Cleanse the Data

Step 2. Cleanse the Data

Cleanse the data by profiling, cleaning, and matching your data. You can view data lineage for the data.
You can perform data profiling to view missing values and descriptive statistics to identify outliers and anomalies in your data. You can view value and pattern frequencies to isolate inconsistencies or unexpected patterns in your data. You can drill down on the inconsistent data to view results across the entire data set.
You can automate the discovery of data domains and relationships between them. You can discover sensitive data such as social security numbers and credit card numbers so that you can mask the data for compliance.
After you are satisfied with the quality of your data, you can also create a business glossary from your data. You can use the Analyst tool or Developer tool to perform data profiling tasks. Use the Analyst tool to perform data discovery tasks. Use Metadata Manager to perform data lineage tasks.

0 COMMENTS

We’d like to hear from you!