Table of Contents


  1. Preface
  2. Introduction to Informatica Big Data Management
  3. Mappings in the Hadoop Environment
  4. Mapping Sources in the Hadoop Environment
  5. Mapping Targets in the Hadoop Environment
  6. Mapping Transformations in the Hadoop Environment
  7. Processing Hierarchical Data on the Spark Engine
  8. Configuring Transformations to Process Hierarchical Data
  9. Processing Unstructured and Semi-structured Data with an Intelligent Structure Model
  10. Stateful Computing on the Spark Engine
  11. Monitoring Mappings in the Hadoop Environment
  12. Mappings in the Native Environment
  13. Profiles
  14. Native Environment Optimization
  15. Cluster Workflows
  16. Connections
  17. Data Type Reference
  18. Function Reference
  19. Parameter Reference

Processing Big Data on a Grid

Processing Big Data on a Grid

You can run an Integration Service on a grid to increase the processing bandwidth. When you enable grid, the Integration Service runs a service process on each available node of the grid to increase performance and scalability.
Big data may require additional bandwidth to process large amounts of data. For example, when you run a Model repository profile on an extremely large data set, the Data Integration Service grid splits the profile into multiple mappings and runs the mappings simultaneously on different nodes in the grid.

Updated October 23, 2019