Table of Contents

Search

  1. Preface
  2. Introduction to Informatica Big Data Management
  3. Mappings in the Hadoop Environment
  4. Mapping Sources in the Hadoop Environment
  5. Mapping Targets in the Hadoop Environment
  6. Mapping Transformations in the Hadoop Environment
  7. Processing Hierarchical Data on the Spark Engine
  8. Configuring Transformations to Process Hierarchical Data
  9. Processing Unstructured and Semi-structured Data with an Intelligent Structure Model
  10. Stateful Computing on the Spark Engine
  11. Monitoring Mappings in the Hadoop Environment
  12. Mappings in the Native Environment
  13. Profiles
  14. Native Environment Optimization
  15. Cluster Workflows
  16. Connections
  17. Data Type Reference
  18. Function Reference
  19. Parameter Reference

Partitioned Model Repository Mappings

Partitioned Model Repository Mappings

You can enable the Data Integration Service to use multiple partitions to process Model repository mappings.
If the nodes where mappings run have multiple CPUs, you can enable the Data Integration Service to maximize parallelism when it runs mappings. When you maximize parallelism, the Data Integration Service dynamically divides the underlying data into partitions and processes all of the partitions concurrently.
Optionally, developers can set a maximum parallelism value for a mapping in the Developer tool. By default, the maximum parallelism for each mapping is set to Auto. Each mapping uses the maximum parallelism value defined for the Data Integration Service. Developers can change the maximum parallelism value in the mapping run-time properties to define a maximum value for a particular mapping. When maximum parallelism is set to different integer values for the Data Integration Service and the mapping, the Data Integration Service uses the minimum value.
For more information, see the
Informatica Application Services Guide
and the
Informatica Developer Mapping Guide
.


Updated October 23, 2019