Table of Contents


  1. Preface
  2. Introduction to Informatica Big Data Management
  3. Mappings in the Hadoop Environment
  4. Mapping Sources in the Hadoop Environment
  5. Mapping Targets in the Hadoop Environment
  6. Mapping Transformations in the Hadoop Environment
  7. Processing Hierarchical Data on the Spark Engine
  8. Configuring Transformations to Process Hierarchical Data
  9. Processing Unstructured and Semi-structured Data with an Intelligent Structure Model
  10. Stateful Computing on the Spark Engine
  11. Monitoring Mappings in the Hadoop Environment
  12. Mappings in the Native Environment
  13. Profiles
  14. Native Environment Optimization
  15. Cluster Workflows
  16. Connections
  17. Data Type Reference
  18. Function Reference
  19. Parameter Reference

m or num-mappers

m or num-mappers

The m or num-mappers argument defines the number of map tasks that Sqoop must use to import and export data in parallel.
Use the following syntax:
-m <number of map tasks>
--num-mappers <number of map tasks>
If you configure the m argument or num-mappers argument, you must also configure the split-by argument to specify the column based on which Sqoop must split the work units.
Use the m argument or num-mappers argument to increase the degree of parallelism. You might have to test different values for optimal performance.
When you configure the m argument or num-mappers argument and run Sqoop mappings on the Spark or Blaze engines, Sqoop dynamically creates partitions based on the file size.
If you configure the num-mappers argument to export data on the Blaze or Spark engine, Sqoop ignores the argument. Sqoop creates map tasks based on the number of intermediate files that the Blaze or Spark engine creates.

Updated October 23, 2019