Table of Contents

Search

  1. Preface
  2. Analyst Service
  3. Catalog Service
  4. Content Management Service
  5. Data Integration Service
  6. Data Integration Service Architecture
  7. Data Integration Service Management
  8. Data Integration Service Grid
  9. Data Integration Service Applications
  10. Interactive Data Preparation Service
  11. Enterprise Data Preparation Service
  12. Informatica Cluster Service
  13. Mass Ingestion Service
  14. Metadata Access Service
  15. Metadata Manager Service
  16. Model Repository Service
  17. PowerCenter Integration Service
  18. PowerCenter Integration Service Architecture
  19. High Availability for the PowerCenter Integration Service
  20. PowerCenter Repository Service
  21. PowerCenter Repository Management
  22. PowerExchange Listener Service
  23. PowerExchange Logger Service
  24. SAP BW Service
  25. Search Service
  26. System Services
  27. Test Data Manager Service
  28. Test Data Warehouse Service
  29. Web Services Hub
  30. Application Service Upgrade
  31. Appendix A: Application Service Databases
  32. Appendix B: Connecting to Databases from Windows
  33. Appendix C: Connecting to Databases
  34. Appendix D: Updating the DynamicSections Parameter of a DB2 Database

CPU Usage

CPU Usage

The PowerCenter Integration Service process performs read, transformation, and write processing for a pipeline in parallel. It can process multiple partitions of a pipeline within a session, and it can process multiple sessions in parallel.
If you have a symmetric multi-processing (SMP) platform, you can use multiple CPUs to concurrently process session data or partitions of data. This provides increased performance, as true parallelism is achieved. On a single processor platform, these tasks share the CPU, so there is no parallelism.
The PowerCenter Integration Service process can use multiple CPUs to process a session that contains multiple partitions. The number of CPUs used depends on factors such as the number of partitions, the number of threads, the number of available CPUs, and amount or resources required to process the mapping.

0 COMMENTS

We’d like to hear from you!