Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Cleanse transformation
  9. Data Masking transformation
  10. Data Services transformation
  11. Deduplicate transformation
  12. Expression transformation
  13. Filter transformation
  14. Hierarchy Builder transformation
  15. Hierarchy Parser transformation
  16. Hierarchy Processor transformation
  17. Input transformation
  18. Java transformation
  19. Java transformation API reference
  20. Joiner transformation
  21. Labeler transformation
  22. Lookup transformation
  23. Machine Learning transformation
  24. Mapplet transformation
  25. Normalizer transformation
  26. Output transformation
  27. Parse transformation
  28. Python transformation
  29. Rank transformation
  30. Router transformation
  31. Rule Specification transformation
  32. Sequence transformation
  33. Sorter transformation
  34. SQL transformation
  35. Structure Parser transformation
  36. Transaction Control transformation
  37. Union transformation
  38. Velocity transformation
  39. Verifier transformation
  40. Web Services transformation

Transformations

Transformations

Transformation caches

Transformation caches

Data Integration
allocates cache memory for Aggregator, Joiner, Lookup, Rank, and Sorter transformations in a mapping.
You can configure the cache sizes for these transformations. The cache size determines how much memory
Data Integration
allocates for each transformation cache at the start of a mapping run.
If the cache size is larger than the available memory on the machine,
Data Integration
cannot allocate enough memory and the task fails.
If the cache size is smaller than the amount of memory required to run the transformation,
Data Integration
processes some of the transformation in memory and stores overflow data in cache files. When
Data Integration
pages cache files to the disk, processing time increases. For optimal performance, configure the cache size so that
Data Integration
can process the transformation data in the cache memory.
By default,
Data Integration
automatically calculates the memory requirements at run time based on the maximum amount of memory that it can allocate. After you run a mapping in auto cache mode, you can tune the cache sizes for each transformation.

0 COMMENTS

We’d like to hear from you!