Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Transformation caches

Transformation caches

Data Integration
allocates cache memory for Aggregator, Joiner, Lookup, Rank, and Sorter transformations in a mapping.
You can configure the cache sizes for these transformations. The cache size determines how much memory
Data Integration
allocates for each transformation cache at the start of a mapping run.
If the cache size is larger than the available memory on the machine,
Data Integration
cannot allocate enough memory and the task fails.
If the cache size is smaller than the amount of memory required to run the transformation,
Data Integration
processes some of the transformation in memory and stores overflow data in cache files. When
Data Integration
pages cache files to the disk, processing time increases. For optimal performance, configure the cache size so that
Data Integration
can process the transformation data in the cache memory.
By default,
Data Integration
automatically calculates the memory requirements at run time based on the maximum amount of memory that it can allocate. After you run a mapping in auto cache mode, you can tune the cache sizes for each transformation.

0 COMMENTS

We’d like to hear from you!