Table of Contents

Search

  1. Preface
  2. Introduction to Transformations
  3. Transformation Ports
  4. Transformation Caches
  5. Address Validator Transformation
  6. Aggregator Transformation
  7. Association Transformation
  8. Bad Record Exception Transformation
  9. Case Converter Transformation
  10. Classifier Transformation
  11. Comparison Transformation
  12. Consolidation Transformation
  13. Data Masking Transformation
  14. Data Processor Transformation
  15. Decision Transformation
  16. Duplicate Record Exception Transformation
  17. Expression Transformation
  18. Filter Transformation
  19. Hierarchical to Relational Transformation
  20. Java Transformation
  21. Java Transformation API Reference
  22. Java Expressions
  23. Joiner Transformation
  24. Key Generator Transformation
  25. Labeler Transformation
  26. Lookup Transformation
  27. Lookup Caches
  28. Dynamic Lookup Cache
  29. Macro Transformation
  30. Match Transformation
  31. Match Transformations in Field Analysis
  32. Match Transformations in Identity Analysis
  33. Normalizer Transformation
  34. Merge Transformation
  35. Parser Transformation
  36. Python Transformation
  37. Rank Transformation
  38. Read Transformation
  39. Relational to Hierarchical Transformation
  40. REST Web Service Consumer Transformation
  41. Router Transformation
  42. Sequence Generator Transformation
  43. Sorter Transformation
  44. SQL Transformation
  45. Standardizer Transformation
  46. Union Transformation
  47. Update Strategy Transformation
  48. Web Service Consumer Transformation
  49. Parsing Web Service SOAP Messages
  50. Generating Web Service SOAP Messages
  51. Weighted Average Transformation
  52. Window Transformation
  53. Write Transformation
  54. Appendix A: Transformation Delimiters

Developer Transformation Guide

Developer Transformation Guide

Pattern-Based Parsing Mode

Pattern-Based Parsing Mode

In pattern-based parsing mode, the Parser transformation parses patterns made of multiple strings.
You can use the following methods to define patterns in pattern-based parsing mode:
  • Parse input data using patterns defined in reference tables. You can create a pattern reference table from the profiled output of a Labeler transformation that uses the token labeling mode.
  • Parse input data using patterns that you define.
  • Parse input data using patterns that you import from a reusable pattern set in the Model repository. Changes to the reusable pattern set do not update the data you add in the Parser transformation.
You can use the "
+
" and "
*
" wildcards to define a pattern. Use "
*
" characters to match any string, and "
+
" characters to match one or more instances of the preceding string. For example, use "
WORD+
" to find multiple consecutive instances of a word token, and use "
WORD *
" to find a word token followed by one or more tokens of any type.
You can use multiple instances of these methods within the Parser transformation. The transformation uses the instances in the order in which they are listed on the
Configuration
view.
In pattern-based parsing mode, the Parser transformation requires the output of a Labeler transformation that uses token labeling mode. Create and configure the Labeler transformation before creating a Parser transformation that uses pattern-based parsing mode.

0 COMMENTS

We’d like to hear from you!