Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Working with Transformations
  3. Address Validator Transformation
  4. Aggregator Transformation
  5. Association Transformation
  6. Bad Record Exception Transformation
  7. Case Converter Transformation
  8. Classifier Transformation
  9. Cleanse transformation
  10. Comparison Transformation
  11. Custom Transformation
  12. Custom Transformation Functions
  13. Consolidation Transformation
  14. Data Masking Transformation
  15. Data Masking Examples
  16. Decision Transformation
  17. Duplicate Record Exception Transformation
  18. Dynamic Lookup Cache
  19. Expression Transformation
  20. External Procedure Transformation
  21. Filter Transformation
  22. HTTP Transformation
  23. Identity Resolution Transformation
  24. Java Transformation
  25. Java Transformation API Reference
  26. Java Expressions
  27. Java Transformation Example
  28. Joiner Transformation
  29. Key Generator Transformation
  30. Labeler Transformation
  31. Lookup Transformation
  32. Lookup Caches
  33. Match Transformation
  34. Match Transformations in Field Analysis
  35. Match Transformations in Identity Analysis
  36. Merge Transformation
  37. Normalizer Transformation
  38. Parser Transformation
  39. Rank Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. Source Qualifier Transformation
  44. SQL Transformation
  45. Using the SQL Transformation in a Mapping
  46. Stored Procedure Transformation
  47. Standardizer Transformation
  48. Transaction Control Transformation
  49. Union Transformation
  50. Unstructured Data Transformation
  51. Update Strategy Transformation
  52. Weighted Average Transformation
  53. XML Transformations

Transformation Guide

Transformation Guide

Duplicate Record Exceptions

Duplicate Record Exceptions

You can use a Duplicate Record Exception transformation to identify clusters of duplicate data that needs manual review. The match scores of records in clusters determines the potential duplicates. You can configure upper and lower thresholds for match scores in the transformation. The upper and lower thresholds define the degree of similarity.
A cluster contains related records that a matching operation groups together. The Match transformation creates clusters using the duplicate analysis operation and the identity resolution operation. Each record in a cluster has the same cluster ID. When the lowest match score in a cluster is between the upper and lower thresholds, the Duplicate Record Exception transformation identifies the cluster as a duplicate record exception cluster. The Match transformation adds a cluster ID value column to all the records. Duplicate records receive the same cluster ID.
The lowest record score in a cluster determines the cluster type. A cluster might have 11 records that have a match score of 0.95 and one record with match score of 0.79. If the upper threshold is 0.9 and the lower threshold is 0.8, the Exception transformation writes the records to the unique records table.

0 COMMENTS

We’d like to hear from you!