Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Working with Transformations
  3. Address Validator Transformation
  4. Aggregator Transformation
  5. Association Transformation
  6. Bad Record Exception Transformation
  7. Case Converter Transformation
  8. Classifier Transformation
  9. Cleanse transformation
  10. Comparison Transformation
  11. Custom Transformation
  12. Custom Transformation Functions
  13. Consolidation Transformation
  14. Data Masking Transformation
  15. Data Masking Examples
  16. Decision Transformation
  17. Duplicate Record Exception Transformation
  18. Dynamic Lookup Cache
  19. Expression Transformation
  20. External Procedure Transformation
  21. Filter Transformation
  22. HTTP Transformation
  23. Identity Resolution Transformation
  24. Java Transformation
  25. Java Transformation API Reference
  26. Java Expressions
  27. Java Transformation Example
  28. Joiner Transformation
  29. Key Generator Transformation
  30. Labeler Transformation
  31. Lookup Transformation
  32. Lookup Caches
  33. Match Transformation
  34. Match Transformations in Field Analysis
  35. Match Transformations in Identity Analysis
  36. Merge Transformation
  37. Normalizer Transformation
  38. Parser Transformation
  39. Rank Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. Source Qualifier Transformation
  44. SQL Transformation
  45. Using the SQL Transformation in a Mapping
  46. Stored Procedure Transformation
  47. Standardizer Transformation
  48. Transaction Control Transformation
  49. Union Transformation
  50. Unstructured Data Transformation
  51. Update Strategy Transformation
  52. Weighted Average Transformation
  53. XML Transformations

Transformation Guide

Transformation Guide

Reference Data Use in the Parser Transformation

Reference Data Use in the Parser Transformation

Informatica Developer installs with multiple reference data objects that you can use with the Parser transformation. You can also create reference data objects in the Developer tool.
When you add a reference data object to a Parser transformation, the transformation writes the strings that match a value in the object to new columns that you specify.
The following table describes the types of reference data you can use:
Reference Data Type
Description
Pattern sets
Identifies data values based on the relative position of each value in the string.
Probabilistic models
Adds fuzzy match capabilities to token parsing operations. The transformation can use a probabilistic model to infer the type of information in a string. To enable the fuzzy match capabilities, you compile the probabilistic model in the Developer tool.
Reference tables
Finds strings that match the entries in a database table.
Regular expressions
Identifies strings that match conditions that you define. You can use a regular expression to find a string within a larger string.
Token sets
Identifies strings based on the types of information they contain.
Informatica installs with token sets different types of token definitions, such as word, telephone number, post code, and product code definitions.

0 COMMENTS

We’d like to hear from you!