Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Working with Transformations
  3. Address Validator Transformation
  4. Aggregator Transformation
  5. Association Transformation
  6. Bad Record Exception Transformation
  7. Case Converter Transformation
  8. Classifier Transformation
  9. Cleanse transformation
  10. Comparison Transformation
  11. Custom Transformation
  12. Custom Transformation Functions
  13. Consolidation Transformation
  14. Data Masking Transformation
  15. Data Masking Examples
  16. Decision Transformation
  17. Duplicate Record Exception Transformation
  18. Dynamic Lookup Cache
  19. Expression Transformation
  20. External Procedure Transformation
  21. Filter Transformation
  22. HTTP Transformation
  23. Identity Resolution Transformation
  24. Java Transformation
  25. Java Transformation API Reference
  26. Java Expressions
  27. Java Transformation Example
  28. Joiner Transformation
  29. Key Generator Transformation
  30. Labeler Transformation
  31. Lookup Transformation
  32. Lookup Caches
  33. Match Transformation
  34. Match Transformations in Field Analysis
  35. Match Transformations in Identity Analysis
  36. Merge Transformation
  37. Normalizer Transformation
  38. Parser Transformation
  39. Rank Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. Source Qualifier Transformation
  44. SQL Transformation
  45. Using the SQL Transformation in a Mapping
  46. Stored Procedure Transformation
  47. Standardizer Transformation
  48. Transaction Control Transformation
  49. Union Transformation
  50. Unstructured Data Transformation
  51. Update Strategy Transformation
  52. Weighted Average Transformation
  53. XML Transformations

Transformation Guide

Transformation Guide

Column Analysis

Column Analysis

When you configure a Match transformation, you select one or more columns for analysis.
The Match transformation analyzes columns in pairs. When you select a single column for analysis, the transformation creates a temporary copy of the column and compares the source column with the temporary column. When you select two columns for analysis, the transformation compares the values across the two columns that you select. The transformation compares each value in one column with all of the values in the other column. The transformation returns a match score for each pair of values that it analyzes.
You select the columns to analyze when you configure a strategy in the Match transformation. The strategy specifies the columns to analyze and the algorithm to apply to the columns. The algorithm calculates the levels of similarity between each pair of values. The different algorithms in the transformation use different criteria to measure the levels of similarity between the values. You can define multiple strategies in a transformation, and you can and assign different columns to each strategy.

Column Analysis Example

You want to compare the values in a column of surname data. You create a mapping that includes a data source and a Match transformation. You connect the
Surname
port to the Match transformation. The transformation creates a temporary copy of the data on the
Surname
port when the mapping runs.
The following image shows a fragment of the surname data:
The spreadsheet contains two columns of surname data. Column A represents the data on a transformation input port. Column B represents the temporary copy of the data that the transformation generates for match analysis.
The mapping generates a set of match scores that indicate that the following values might be duplicates:
  • Baker, Barker
  • Barker, Parker
  • Smith, Smith
When you review the data, you decide that
Baker, Barker,
and
Parker
are not duplicate values. You decide that
Smith
and
Smith
are duplicate values.

0 COMMENTS

We’d like to hear from you!