Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Working with Transformations
  3. Address Validator Transformation
  4. Aggregator Transformation
  5. Association Transformation
  6. Bad Record Exception Transformation
  7. Case Converter Transformation
  8. Classifier Transformation
  9. Cleanse transformation
  10. Comparison Transformation
  11. Custom Transformation
  12. Custom Transformation Functions
  13. Consolidation Transformation
  14. Data Masking Transformation
  15. Data Masking Examples
  16. Decision Transformation
  17. Duplicate Record Exception Transformation
  18. Dynamic Lookup Cache
  19. Expression Transformation
  20. External Procedure Transformation
  21. Filter Transformation
  22. HTTP Transformation
  23. Identity Resolution Transformation
  24. Java Transformation
  25. Java Transformation API Reference
  26. Java Expressions
  27. Java Transformation Example
  28. Joiner Transformation
  29. Key Generator Transformation
  30. Labeler Transformation
  31. Lookup Transformation
  32. Lookup Caches
  33. Match Transformation
  34. Match Transformations in Field Analysis
  35. Match Transformations in Identity Analysis
  36. Merge Transformation
  37. Normalizer Transformation
  38. Parser Transformation
  39. Rank Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. Source Qualifier Transformation
  44. SQL Transformation
  45. Using the SQL Transformation in a Mapping
  46. Stored Procedure Transformation
  47. Standardizer Transformation
  48. Transaction Control Transformation
  49. Union Transformation
  50. Unstructured Data Transformation
  51. Update Strategy Transformation
  52. Weighted Average Transformation
  53. XML Transformations

Transformation Guide

Transformation Guide

Normalizer Tab

Normalizer Tab

The Normalizer tab defines the structure of the source data. The Normalizer tab defines source data as columns and groups of columns. A group of columns might define a record in a COBOL source or it might define a group of multiple-occurring fields in the source.
The column level number identifies groups of columns in the data. Level numbers define a data hierarchy. Columns in a group have the same level number and display sequentially below a group-level column. A group-level column has a lower level number, and it contains no data.
The following figure shows the Normalizer tab of a pipeline Normalizer transformation:
Normalizer Tab
The Normalizer tab in the Edit Transformations dialog box contains the column name, level, occurs, datatype, precision, and scale columns. The tab also contains the Select transformation and Description fields.
Quarterly_Data is a group-level column. It is Level 1. The Quarterly_Data group occurs four times in each row. Sales_by_Quarter and Returns_by_Quarter are Level 2 columns and belong to the group.
Each column has an Occurs attribute. The Occurs attribute identifies columns or groups of columns that occur more than once in a source row.
When you create a pipeline Normalizer transformation, you can edit the columns. When you create a VSAM Normalizer transformation, the Normalizer tab is read-only.
The following table describes the Normalizer tab attributes that are common to the VSAM and pipeline Normalizer transformations:
Attribute
Description
Column Name
Name of the source column.
Level
Group columns. Columns in the same group occur beneath a column with a lower level number. When each column is the same level, the transformation contains no column groups.
Occurs
The number of instances of a column or group of columns in the source row.
Datatype
The transformation column datatype can be String, Nstring, or Number.
Prec
Precision. Length of the column.
Scale
Number of decimal positions for a numeric column.
The Normalizer tab for a VSAM Normalizer transformation contains the same attributes as the pipeline Normalizer transformation, but it includes attributes unique to a COBOL source definition.

0 COMMENTS

We’d like to hear from you!