Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Working with Transformations
  3. Address Validator Transformation
  4. Aggregator Transformation
  5. Association Transformation
  6. Bad Record Exception Transformation
  7. Case Converter Transformation
  8. Classifier Transformation
  9. Cleanse transformation
  10. Comparison Transformation
  11. Custom Transformation
  12. Custom Transformation Functions
  13. Consolidation Transformation
  14. Data Masking Transformation
  15. Data Masking Examples
  16. Decision Transformation
  17. Duplicate Record Exception Transformation
  18. Dynamic Lookup Cache
  19. Expression Transformation
  20. External Procedure Transformation
  21. Filter Transformation
  22. HTTP Transformation
  23. Identity Resolution Transformation
  24. Java Transformation
  25. Java Transformation API Reference
  26. Java Expressions
  27. Java Transformation Example
  28. Joiner Transformation
  29. Key Generator Transformation
  30. Labeler Transformation
  31. Lookup Transformation
  32. Lookup Caches
  33. Match Transformation
  34. Match Transformations in Field Analysis
  35. Match Transformations in Identity Analysis
  36. Merge Transformation
  37. Normalizer Transformation
  38. Parser Transformation
  39. Rank Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. Source Qualifier Transformation
  44. SQL Transformation
  45. Using the SQL Transformation in a Mapping
  46. Stored Procedure Transformation
  47. Standardizer Transformation
  48. Transaction Control Transformation
  49. Union Transformation
  50. Unstructured Data Transformation
  51. Update Strategy Transformation
  52. Weighted Average Transformation
  53. XML Transformations

Transformation Guide

Transformation Guide

Match Score Calculations

Match Score Calculations

The match score is a numerical value that represents the degree of similarity between two column values. An algorithm calculates a match score as a decimal value in the range 0 through 1. An algorithm assigns a score of 1 when two column values are identical.
When you select multiple column pairs for analysis, the transformation calculates an average score based on the scores in the selected columns. By default, the transformation assigns equal weight to scores from each pair of columns. The transformation does not infer the relative importance of the column data in the data set.
You can edit the weight values that the transformation uses to calculate the match score. Edit the weight values when you want to assign higher or lower priority to columns in the data set.
You can also set the scores that the transformation applies when it finds a null value in a column. By default, the transformation treats null values as data errors and assigns a low match score to any pair of values that contains a null.
The algorithm you select determines the match score between two values. The algorithm generates a single score for the two values. The match scores do not depend on the type of match output or the type of scoring method you select.

0 COMMENTS

We’d like to hear from you!