Table of Contents

Search

  1. Preface
  2. Introduction to Test Data Management
  3. Test Data Manager
  4. Projects
  5. Policies
  6. Data Discovery
  7. Creating a Data Subset
  8. Performing a Data Masking Operation
  9. Data Masking Techniques and Parameters
  10. Data Generation
  11. Data Generation Techniques and Parameters
  12. Working with Test Data Warehouse
  13. Analyzing Test Data with Data Coverage
  14. Plans and Workflows
  15. Monitor
  16. Reports
  17. ilmcmd
  18. tdwcmd
  19. tdwquery
  20. Appendix A: Data Type Reference
  21. Appendix B: Data Type Reference for Test Data Warehouse
  22. Appendix C: Data Type Reference for Hadoop
  23. Appendix D: Glossary

Data Patterns for Random Generation

Data Patterns for Random Generation

You can enter data patterns from regular expressions to generate string and numeric data.
To generate numbers that contain special characters or any other operators, you use random string data generation technique. You can use the following operators to generate string data patterns:
. , \d , \w, (opt1| opt2|…..), {} , []
.
To generate numbers that do not contain special characters or any other operators, you use random numeric data generation technique. To generate numeric data, you can combine the following patterns:
\d, alternates (1|2|3|…), and [0-9]
. You cannot nest the alternates.
When you enter data patterns to generate the credit card number, Social Security number, and Social Insurance numbers, the generated data might not be valid. These numbers follow certain algorithms and you cannot use data patterns to generate valid numbers.

0 COMMENTS

We’d like to hear from you!