Table of Contents


  1. Preface
  2. Introduction to Transformations
  3. Transformation Ports
  4. Transformation Caches
  5. Address Validator Transformation
  6. Aggregator Transformation
  7. Association Transformation
  8. Bad Record Exception Transformation
  9. Case Converter Transformation
  10. Classifier Transformation
  11. Comparison Transformation
  12. Consolidation Transformation
  13. Data Masking Transformation
  14. Data Processor Transformation
  15. Decision Transformation
  16. Duplicate Record Exception Transformation
  17. Expression Transformation
  18. Filter Transformation
  19. Hierarchical to Relational Transformation
  20. Java Transformation
  21. Java Transformation API Reference
  22. Java Expressions
  23. Joiner Transformation
  24. Key Generator Transformation
  25. Labeler Transformation
  26. Lookup Transformation
  27. Lookup Caches
  28. Dynamic Lookup Cache
  29. Match Transformation
  30. Match Transformations in Field Analysis
  31. Match Transformations in Identity Analysis
  32. Normalizer Transformation
  33. Merge Transformation
  34. Parser Transformation
  35. Python Transformation
  36. Rank Transformation
  37. Read Transformation
  38. Relational to Hierarchical Transformation
  39. REST Web Service Consumer Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. SQL Transformation
  44. Standardizer Transformation
  45. Union Transformation
  46. Update Strategy Transformation
  47. Web Service Consumer Transformation
  48. Parsing Web Service SOAP Messages
  49. Generating Web Service SOAP Messages
  50. Weighted Average Transformation
  51. Window Transformation
  52. Write Transformation
  53. Appendix A: Transformation Delimiters

Developer Transformation Guide

Developer Transformation Guide

Data Masking Transformation on the Spark Engine

Data Masking Transformation on the Spark Engine

The Data Masking transformation is supported with the following restrictions.
Mapping validation fails in the following situations:
  • The transformation is configured for repeatable expression masking.
  • The transformation is configured for unique repeatable substitution masking.
You can use the following masking techniques on this engine:

    Credit Card



    IP Address








    Random Substitution

    Repeatable Substitution

    Dependent with Random Substitution

    Dependent with Repeatable Substitution

To optimize performance of the Data Masking transformation, configure the following Spark engine configuration properties in the Hadoop connection:
Indicates the number of cores that each executor process uses to run tasklets on the Spark engine.
Set to:
Indicates the number of instances that each executor process uses to run tasklets on the Spark engine.
Set to:
Indicates the amount of memory that each executor process uses to run tasklets on the Spark engine.
Set to:


We’d like to hear from you!