Table of Contents

Search

  1. Preface
  2. Introduction to Transformations
  3. Transformation Ports
  4. Transformation Caches
  5. Address Validator Transformation
  6. Aggregator Transformation
  7. Association Transformation
  8. Bad Record Exception Transformation
  9. Case Converter Transformation
  10. Classifier Transformation
  11. Comparison Transformation
  12. Consolidation Transformation
  13. Data Masking Transformation
  14. Data Processor Transformation
  15. Decision Transformation
  16. Duplicate Record Exception Transformation
  17. Expression Transformation
  18. Filter Transformation
  19. Hierarchical to Relational Transformation
  20. Java Transformation
  21. Java Transformation API Reference
  22. Java Expressions
  23. Joiner Transformation
  24. Key Generator Transformation
  25. Labeler Transformation
  26. Lookup Transformation
  27. Lookup Caches
  28. Dynamic Lookup Cache
  29. Match Transformation
  30. Match Transformations in Field Analysis
  31. Match Transformations in Identity Analysis
  32. Normalizer Transformation
  33. Merge Transformation
  34. Parser Transformation
  35. Python Transformation
  36. Rank Transformation
  37. Read Transformation
  38. Relational to Hierarchical Transformation
  39. REST Web Service Consumer Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. SQL Transformation
  44. Standardizer Transformation
  45. Union Transformation
  46. Update Strategy Transformation
  47. Web Service Consumer Transformation
  48. Parsing Web Service SOAP Messages
  49. Generating Web Service SOAP Messages
  50. Weighted Average Transformation
  51. Window Transformation
  52. Write Transformation
  53. Appendix A: Transformation Delimiters

Developer Transformation Guide

Developer Transformation Guide

Mapping Configuration for a Dynamic Lookup Cache

Mapping Configuration for a Dynamic Lookup Cache

If you use a Lookup with a dynamic cache, you must configure the mapping to update the dynamic lookup cache and write the changed rows to the target.
Complete the following steps to configure a mapping with a dynamic lookup cache:
Flag the input rows of the Lookup transformation for insert or update.
By default, the row type of all input rows is insert. Add an Update Strategy transformation before the Lookup transformation to specify different row types for the input rows.
Specify how the Integration Service handles the input rows for the dynamic cache.
Select the
Insert Else Update
or
Update Else Insert
options to process rows flagged for insert or update.
Create separate mapping pipelines for rows to be inserted into the target and updated in the target.
Add a Filter or Router transformation after the Lookup transformation to route insert and update rows into separate mapping branches. Use the value of the NewLookupRow to determine the appropriate branch for each row.
Configure the row type for output rows of the Lookup transformation.
Add an Update Strategy transformation to flag rows for insert or update.

0 COMMENTS

We’d like to hear from you!