Table of Contents

Search

  1. Preface
  2. Introduction to Transformations
  3. Transformation Ports
  4. Transformation Caches
  5. Address Validator Transformation
  6. Aggregator Transformation
  7. Association Transformation
  8. Bad Record Exception Transformation
  9. Case Converter Transformation
  10. Classifier Transformation
  11. Comparison Transformation
  12. Consolidation Transformation
  13. Data Masking Transformation
  14. Data Processor Transformation
  15. Decision Transformation
  16. Duplicate Record Exception Transformation
  17. Expression Transformation
  18. Filter Transformation
  19. Hierarchical to Relational Transformation
  20. Java Transformation
  21. Java Transformation API Reference
  22. Java Expressions
  23. Joiner Transformation
  24. Key Generator Transformation
  25. Labeler Transformation
  26. Lookup Transformation
  27. Lookup Caches
  28. Dynamic Lookup Cache
  29. Match Transformation
  30. Match Transformations in Field Analysis
  31. Match Transformations in Identity Analysis
  32. Normalizer Transformation
  33. Merge Transformation
  34. Parser Transformation
  35. Python Transformation
  36. Rank Transformation
  37. Read Transformation
  38. Relational to Hierarchical Transformation
  39. REST Web Service Consumer Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. SQL Transformation
  44. Standardizer Transformation
  45. Union Transformation
  46. Update Strategy Transformation
  47. Web Service Consumer Transformation
  48. Parsing Web Service SOAP Messages
  49. Generating Web Service SOAP Messages
  50. Weighted Average Transformation
  51. Window Transformation
  52. Write Transformation
  53. Appendix A: Transformation Delimiters

Developer Transformation Guide

Developer Transformation Guide

Probabilistic Models

Probabilistic Models

A probabilistic model identifies tokens by the types of information that they contain and by the positions that they occupy in an input string.
A probabilistic model contains reference data values and label values. The reference data values represent the data on an input port that you connect to the transformation. The label values describe the types of information that the reference data values contain. You assign a label to each reference data value in the model.
To link the reference data values to the labels in a probabilistic model, you compile the model. The compilation process generates a series of logical associations between the data values and the labels. When you run a mapping that reads the model, the Data Integration Service applies the model logic to the transformation input data. The Data Integration Service returns the label that most accurately describes the input data values.
You create a probabilistic model in the Developer tool. The Model repository stores the probabilistic model object. The Developer tool writes the data values, the labels, and the compilation data to a file in the Informatica directory structure.

0 COMMENTS

We’d like to hear from you!