Table of Contents

Search

  1. Preface
  2. Introduction to Transformations
  3. Transformation Ports
  4. Transformation Caches
  5. Address Validator Transformation
  6. Aggregator Transformation
  7. Association Transformation
  8. Bad Record Exception Transformation
  9. Case Converter Transformation
  10. Classifier Transformation
  11. Comparison Transformation
  12. Consolidation Transformation
  13. Data Masking Transformation
  14. Data Processor Transformation
  15. Decision Transformation
  16. Duplicate Record Exception Transformation
  17. Expression Transformation
  18. Filter Transformation
  19. Hierarchical to Relational Transformation
  20. Java Transformation
  21. Java Transformation API Reference
  22. Java Expressions
  23. Joiner Transformation
  24. Key Generator Transformation
  25. Labeler Transformation
  26. Lookup Transformation
  27. Lookup Caches
  28. Dynamic Lookup Cache
  29. Match Transformation
  30. Match Transformations in Field Analysis
  31. Match Transformations in Identity Analysis
  32. Normalizer Transformation
  33. Merge Transformation
  34. Parser Transformation
  35. Python Transformation
  36. Rank Transformation
  37. Read Transformation
  38. Relational to Hierarchical Transformation
  39. REST Web Service Consumer Transformation
  40. Router Transformation
  41. Sequence Generator Transformation
  42. Sorter Transformation
  43. SQL Transformation
  44. Standardizer Transformation
  45. Union Transformation
  46. Update Strategy Transformation
  47. Web Service Consumer Transformation
  48. Parsing Web Service SOAP Messages
  49. Generating Web Service SOAP Messages
  50. Weighted Average Transformation
  51. Window Transformation
  52. Write Transformation
  53. Appendix A: Transformation Delimiters

Developer Transformation Guide

Developer Transformation Guide

Update Strategy Transformation Overview

Update Strategy Transformation Overview

The Update Strategy transformation is an active transformation that flags a row for insert, update, delete, or reject. Use an Update Strategy transformation to control changes to existing rows in a target based on a condition that you apply.
As an active transformation, the Update Strategy transformation might change the number of rows passed through it. The Update Strategy transformation tests each row to see if it meets a particular condition, and then flags the row accordingly. The transformation passes rows that it flags for insert, update, or delete to the next transformation. You can configure the transformation to pass rows flagged for reject to the next transformation or to drop rows flagged for reject.
For example, you might use the Update Strategy transformation to flag all customer rows for update when the mailing address has changed. Or, you might flag all employee rows for reject for people who no longer work for the organization.
You can use an Update Strategy transformation to write results to a relational database target when the mapping runs on the Spark engine. The mapping uses a JDBC connection string.

0 COMMENTS

We’d like to hear from you!