Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Cleanse transformation
  9. Data Masking transformation
  10. Data Services transformation
  11. Deduplicate transformation
  12. Expression transformation
  13. Filter transformation
  14. Hierarchy Builder transformation
  15. Hierarchy Parser transformation
  16. Hierarchy Processor transformation
  17. Input transformation
  18. Java transformation
  19. Java transformation API reference
  20. Joiner transformation
  21. Labeler transformation
  22. Lookup transformation
  23. Machine Learning transformation
  24. Mapplet transformation
  25. Normalizer transformation
  26. Output transformation
  27. Parse transformation
  28. Python transformation
  29. Rank transformation
  30. Router transformation
  31. Rule Specification transformation
  32. Sequence transformation
  33. Sorter transformation
  34. SQL transformation
  35. Structure Parser transformation
  36. Transaction Control transformation
  37. Union transformation
  38. Velocity transformation
  39. Verifier transformation
  40. Web Services transformation

Transformations

Transformations

Data types in input and output fields

Data types in input and output fields

In the Python transformation, the data types in corresponding incoming fields and output fields must be the same. If the data types are not the same, convert them in the Python code.
For example, you create an incoming field with the integer data type and an output field with the string data type. You define the Python code to process the data in the incoming field and write the data to the output field. In the Python code, you can use the
str()
function to convert the integer data type in the incoming field and write the output as a string data type in the output field.

0 COMMENTS

We’d like to hear from you!