Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Rank transformation

Rank transformation

The Rank transformation selects the top or bottom range of data. Use the Rank transformation to return the largest or smallest numeric values in a group. You can also use the Rank transformation to return strings at the top or bottom of the mapping sort order.
For example, you can use a Rank transformation to select the top 10 customers by region. Or, you might identify the three departments with the lowest expenses in salaries and overhead.
The Rank transformation differs from the transformation functions MAX and MIN because the Rank transformation returns a group of values, not just one value. While the SQL language provides many functions designed to handle groups of data, identifying top or bottom strata within a set of rows is not possible using standard SQL functions.
The Rank transformation is an active transformation because it can change the number of rows that pass through it. For example, you configure the transformation to select the top 10 rows from a source that contains 100 rows. In this case, 100 rows pass into the transformation but only 10 rows pass from the Rank transformation to the downstream transformation or target.
When you run a mapping that contains a Rank transformation,
Data Integration
caches input data until it can perform the rank calculations.

0 COMMENTS

We’d like to hear from you!