Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Aggregator transformation
  6. Cleanse transformation
  7. Data Masking transformation
  8. Data Services transformation
  9. Deduplicate transformation
  10. Expression transformation
  11. Filter transformation
  12. Hierarchy Builder transformation
  13. Hierarchy Parser transformation
  14. Hierarchy Processor transformation
  15. Input transformation
  16. Java transformation
  17. Java transformation API reference
  18. Joiner transformation
  19. Labeler transformation
  20. Lookup transformation
  21. Machine Learning transformation
  22. Mapplet transformation
  23. Normalizer transformation
  24. Output transformation
  25. Parse transformation
  26. Python transformation
  27. Rank transformation
  28. Router transformation
  29. Rule Specification transformation
  30. Sequence Generator transformation
  31. Sorter transformation
  32. SQL transformation
  33. Structure Parser transformation
  34. Transaction Control transformation
  35. Union transformation
  36. Velocity transformation
  37. Verifier transformation
  38. Web Services transformation

Transformations

Transformations

Rank transformation

Rank transformation

The Rank transformation selects the top or bottom range of data. Use the Rank transformation to return the largest or smallest numeric values in a group. You can also use the Rank transformation to return strings at the top or bottom of the mapping sort order.
For example, you can use a Rank transformation to select the top 10 customers by region. Or, you might identify the three departments with the lowest expenses in salaries and overhead.
The Rank transformation differs from the transformation functions MAX and MIN because the Rank transformation returns a group of values, not just one value. While the SQL language provides many functions designed to handle groups of data, identifying top or bottom strata within a set of rows is not possible using standard SQL functions.
The Rank transformation is an active transformation because it can change the number of rows that pass through it. For example, you configure the transformation to select the top 10 rows from a source that contains 100 rows. In this case, 100 rows pass into the transformation but only 10 rows pass from the Rank transformation to the downstream transformation or target.
When you run a mapping that contains a Rank transformation,
Data Integration
caches input data until it can perform the rank calculations.

0 COMMENTS

We’d like to hear from you!