Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Defining relational output with the Hierarchy Processor transformation

Defining relational output with the Hierarchy Processor transformation

To define a Hierarchy Processor transformation, use the
Hierarchy Processor
tab to map incoming fields to output fields, configure the output data structure, and optionally generate keys for relational output.
The following image shows the
Hierarchy Processor
tab with hierarchical input and relational output:
The Hierarchy Processor tab appears with Output Format Relational selected. The transformation contains the incoming fields in the left panel and an output group and fields in the right panel. The Data Configuration icons, links to output fields, and links to expressions provide ways to define the data processing strategy.
  1. Output format. Select
    Relational
    to convert incoming hierarchical data into one or more relational output groups.
  2. Input groups, incoming fields. Use these fields to map to the output fields.
  3. Output group, output fields. Use these fields to create the complex output file.
  4. Generate keys. Optionally generate keys for the input group to define relationships between output groups.
  5. Add incoming field to output group. Use to add fields to the output group.
  6. Output field names. Click on a field name to modify the field name or data type.
  7. Data Configuration icons. Use to configure the output groups and fields.
  8. Expression. Click on an expression to view or customize the output field expression.
  9. Add or delete output field. Use to create or delete output fields.
You can resize the Incoming Fields or Output Fields panels to better see the information.

0 COMMENTS

We’d like to hear from you!