Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. B2B transformation
  7. Aggregator transformation
  8. Cleanse transformation
  9. Data Masking transformation
  10. Data Services transformation
  11. Deduplicate transformation
  12. Expression transformation
  13. Filter transformation
  14. Hierarchy Builder transformation
  15. Hierarchy Parser transformation
  16. Hierarchy Processor transformation
  17. Input transformation
  18. Java transformation
  19. Java transformation API reference
  20. Joiner transformation
  21. Labeler transformation
  22. Lookup transformation
  23. Machine Learning transformation
  24. Mapplet transformation
  25. Normalizer transformation
  26. Output transformation
  27. Parse transformation
  28. Python transformation
  29. Rank transformation
  30. Router transformation
  31. Rule Specification transformation
  32. Sequence Generator transformation
  33. Sorter transformation
  34. SQL transformation
  35. Structure Parser transformation
  36. Transaction Control transformation
  37. Union transformation
  38. Velocity transformation
  39. Verifier transformation
  40. Web Services transformation

Transformations

Transformations

Random masking

Random masking

Random masking generates random nondeterministic masked data.
The Data Masking transformation returns different values when the same source value occurs in different rows. You can configure masking rules that affect the format of data that the Data Masking transformation returns.
You can mask datetime, numeric, and string values with random masking.
To mask date values with random masking, either configure a range of output dates or choose a variance. When you configure a variance, choose a part of the date to blur. Choose the year, month, day, hour, minute, or second. The Data Masking transformation returns a date that is within the range you configure.
When you mask numeric data, you can configure a range of output values for a column. The Data Masking transformation returns a value between the minimum and maximum values of the range based on field precision. To define the range, configure the minimum and maximum ranges or configure a blurring range based on a variance from the original source value.
Configure random masking to generate random output for string columns. To configure limitations for each character in the output string, configure a mask format. Configure source and target filter characters to define which source characters to mask and the characters to mask them with.

0 COMMENTS

We’d like to hear from you!