Hi, I'm Ask INFA!
What would you like to know?
ASK INFAPreview
Please to access Ask INFA.

Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Dependent masking

Dependent masking

Dependent masking replaces a column of data with values from a custom dictionary that you use to mask data in another column. To use dependent masking, at least one other source column must be masked with a custom substitution rule.
For example, mask a Name column in the source data with a custom substitution rule. Configure the rule to mask the values with values from the Name column in a Personal_Information dictionary.
You can configure dependent masking on another column to mask the source with values from a corresponding column in the same dictionary. For example, apply dependent masking on the Age column. Choose the Name column as the dependent column. You can then select a corresponding column from the Personal_Information dictionary as the dependent output column. If you select the Age column from the dictionary, the masking rule uses the age value that corresponds to the name value.

0 COMMENTS

We’d like to hear from you!