Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Aggregator transformation
  6. Cleanse transformation
  7. Data Masking transformation
  8. Data Services transformation
  9. Deduplicate transformation
  10. Expression transformation
  11. Filter transformation
  12. Hierarchy Builder transformation
  13. Hierarchy Parser transformation
  14. Hierarchy Processor transformation
  15. Input transformation
  16. Java transformation
  17. Java transformation API reference
  18. Joiner transformation
  19. Labeler transformation
  20. Lookup transformation
  21. Machine Learning transformation
  22. Mapplet transformation
  23. Normalizer transformation
  24. Output transformation
  25. Parse transformation
  26. Python transformation
  27. Rank transformation
  28. Router transformation
  29. Rule Specification transformation
  30. Sequence Generator transformation
  31. Sorter transformation
  32. SQL transformation
  33. Structure Parser transformation
  34. Transaction Control transformation
  35. Union transformation
  36. Velocity transformation
  37. Verifier transformation
  38. Web Services transformation

Transformations

Transformations

Dependent masking

Dependent masking

Dependent masking replaces a column of data with values from a custom dictionary that you use to mask data in another column. To use dependent masking, at least one other source column must be masked with a custom substitution rule.
For example, mask a Name column in the source data with a custom substitution rule. Configure the rule to mask the values with values from the Name column in a Personal_Information dictionary.
You can configure dependent masking on another column to mask the source with values from a corresponding column in the same dictionary. For example, apply dependent masking on the Age column. Choose the Name column as the dependent column. You can then select a corresponding column from the Personal_Information dictionary as the dependent output column. If you select the Age column from the dictionary, the masking rule uses the age value that corresponds to the name value.

0 COMMENTS

We’d like to hear from you!