Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Hierarchy Processor transformation overview

Hierarchy Processor transformation overview

You can choose from several different processing strategies to meet your needs, depending on the format of the source data and your desired output format.
The Hierarchy Processor transformation can operate in the following modes:
  • Hierarchical to relational. Converts one hierarchical input group to multiple output groups, which can include delimited flat files or relational files.
  • Relational to hierarchical. Converts up to five relational input groups to one hierarchical output group.
  • Hierarchical to hierarchical. Converts one or more hierarchical input groups to one hierarchical output group with a different schema.
  • Hierarchical to flattened. Converts one hierarchical input group to one flattened denormalized output group.
The default output format is relational.
The data that you pass to or from the Hierarchy Processor transformation requires a Microsoft Azure Data Lake Store V2 or an Amazon S3 V2 connection.

0 COMMENTS

We’d like to hear from you!